当前位置:文档之家› 学习方法:构造法在初中数学解题中的应用

学习方法:构造法在初中数学解题中的应用

学习方法:构造法在初中数学解题中的应用
学习方法:构造法在初中数学解题中的应用

学习方法:构造法在初中数学解题中的应用[摘要]:本文根据初中数学问题的特征,针对新课标的要求,对构造法在初中数学解题中有着重要的作用。从构造方程、构造函数、构造图形、构造矛盾等几个方面来叙述如何运用构造法解题。通过运用构造法解题,是培养学生创造意识和创造新思维的重要手段之一,有利于提高学生的分析问题和解决问题的能力。它也是解决数学问题的基本思想方法之一。

[关键词]:构造解题思维能力

所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法:

一、构造方程

构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。

1、某些题目根据条件、仔细观察其特点,构造一个一元一

次方程求解,从而获得问题解决。

例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少?

解:原方程整理得(a-4)x=15-b

∵此方程有无数多解,a-4=0且15-b=0

分别解得a=4,b=15

2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造一元二次方程,再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。

例3:已知3,5,2x,3y的平均数是4。20,18,5x,-6y 的平均数是1。求的值。

分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。

最新浅谈构造法在中学数学解题中的应用上课讲义

浅谈构造法在中学数学解题中的应用 富源六中范文波 [摘要]:现代数学素质教育要求大力提高学生的数学素养,这不仅要使学生掌握数学知识,而且要使学生掌握渗透于数学知识中的数学思想方法,使他们能用数学知识和方法解决实际问题。构造法作为一种数学方法,不同于一般的逻辑方法,它是一步一步寻求必要条件,直至推导出结论,它属于非常规思维。其本质特征是“构造”,用构造法解题,无一定之规,表现出思维的试探性、不规则性和创造性。本文主要通过大量的例题说明构造法是广泛存在于解题过程中的,而且对于解某些问题是非常有用的. [关键词]:构造法;创造性;构造;几何变换 1 前言 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。构造法就是这样的手段之一. 构造的数学思想提炼于数学各分支的研究方法之中,它融直观性、简单性、统一性、抽象性、相似性于一体,显示出简化与精密、直观与抽象的高度统一. 什么是构造法又怎样去构造呢?构造法是运用数学的基本思想经过认真的观察,深入的思考、分析,迁移联想,正确思维,巧妙地、合理地构造出某些元素、某种模式,使问题转化为新元素的问题,或转化为新元素之间的一种新的组织形式,从而使问题得以解决,这种方法称之为“构造法”. 构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体的问题的特点而采取相应的解决办法,其基本的方法是:借用一类问题的性质,来研究另一类问题的思维方法.在解题过程中,若按习惯定势思维去探求解题途径比较困难时,我们可以根据题目特点,展开丰富的联想拓宽自己思维范围,运用构造法来解题也是培养我们创造意识和创新思维的手段之一,同时对提高我们的解题能力也有所帮助. 构造法包含的内容很多,在解题中的应用也千变万化,无一定规律可言,它需要更多的分析、类比、归纳、判断,同时能激发人们的直觉思维和发散思维.

构造中位线巧解题复习过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

谈构造法在数学解题中的运用

谈构造法在数学解题中的运用 摘要:“构造法”作为一种重要的化归手段,在数学解题中有着重要的作用。本文从“构造函数”、“构造方程”等常见构造及“构造模型”、“构造情境”等特殊构造出发,例谈构造法在数学解题中的运用。 关键词:构造数学解题 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 “构造法”作为一种重要的化归手段,在数学中有着极为重要的作用,现举例谈谈其在数学解题中的运用。 一、构造函数 理解和掌握函数的思想方法有助于实现数学从常量到变量的这个认识上的飞跃。很多数学命题繁冗复杂,难寻入口,若巧妙运用函数思想,能使解答别具一格,耐人寻味。 [例1](柯西不等式)设a i,b i(i=1,2,…,n)均为实数,证明:

? ? ????? ??≤??? ??∑∑∑===n i i n i i n i i i b a b a 1212 12 证:构造二次函数f(x)=?? ? ??+??? ??+??? ??∑∑∑===n i i n i i i n i i b x b a x a 1212122,则 [例2]已知x,y,z ∈(0,1),求证: x(1-y)+y(1-z)+z(1-x)<1 (第15届俄罗斯数学竞赛题) 分析:此题条件、结论均具有一定的对称性,然而难以直接证明,不妨用构造法一试。 证:构造函数 f(x)=(y+z-1)x+(yz-y-z+1) ∵y,z ∈(0,1), ∴f(0)=yz-y-z+1=(y-1)(z-1)>0 f(1)=(y+z-1)+(yz-y-z+1)=yz >0 而f(x)是一次函数,其图象是直线, ∴由x ∈(0,1)恒有f(x) >0 即(y+z-1)x+(yz-y-z+1) >0 整理可得x(1-y)+y(1-z)+z(1-x) <1 二、构造方程 方程是解数学题的一个重要工具,许多数学问题,根据其数量关系,在已知和未知之间搭上桥梁,构造出方程,使解答简洁、合理。 [例3]已知a,b,c 为互不相等的实数,试证: bc (a-b)(a-c) +ac (b-a)(b-c) +ab (c-a)(c-b) =1 (1) 证:构造方程

中考数学构造法解题技巧

构造法在初中数学中的应用 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一、构造方程 构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。 1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。 例3:已知3,5,2x,3y的平均数是4。 20,18,5x,-6y的平均数是1。求 的值。 分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。 二、构造几何图形 1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例4:已知,则x 的取值范围是()

高中数学 巧构造 妙解题解题思路大全

巧构造 妙解题 1. 直接构造 例1. 求函数f x x x ()sin cos = -+32的值域。 分析:由于f x x x ()sin cos =-+32可以看作定点(2,3)与动点(-cosx ,sinx )连线的斜率,故f(x)的值域即为斜率的最大、最小值。 解:令μθ=-=cos sin x x ,,则μθ221+=表示单位圆 f x k ()= --=32θμ 表示连接定点P (2,3)与单位圆上任一点(μ,θ)所得直线θμ---=k k ()320的斜率。 显然该直线与圆相切时,k 取得最值,此时,圆心(0,0)到这条直线的距离为1,即||32112-+=k k 所以k =± 2233 故22332233- ≤≤+f x () 例 2. 已知三条不同的直线x y a sin sin 3αα+=,x y a sin sin 3ββ+=,x y a sin sin 3γγ+=共点,求sin sin sin αβγ++的值。 分析:由条件知sin sin sin αβγ,,为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。 解:设(m ,n )是三条直线的交点,则可构造方程m n a sin sin 3θθ+=,即 4303m n m)a sin (sin θθ-++=(*) 由条件知,sin sin sin αβγ,,均为关于sin θ的一元三次方程(*)的根。 由韦达定理知sin sin sin αβγ++=0 2. 由条件入手构造 例3. 已知实数x ,y ,z 满足x y z xy =-=-692,,求证:x y = 分析:由已知得x y xy z +==+692,,以x ,y 为根构造一元二次方程,再由判别式非负证得结论。

导数合理构造函数妙解导数问题 专题训练

合理构造函数妙解导数问题 构造法是解决导数问题的重要方法之一,许多导数问题的解决需要巧妙的构造函数,如何构造函数显得非常重要在解决问题中,下面剖析几例。 一.特征构造 例1(优质试题?银川二模)f (x )是定义在非零实数集上的函数,f ′ (x )为其导函数,且x >0时,xf ' (x )﹣f (x )<0,记a=0.20.2(2)2f ,b=22(0.2)0.2f ,c=22(log 5)log 5 f ,则( ) A .a <b <c B .b <a <c C .c <a <b D .c <b <a 【分析】令g (x )= ()f x x ,通过求导得到g (x )的单调性,从而解决问题. 解:令g (x )=()f x x ,则g '(x )=2()()xf x f x x -', ∵x >0时,xf '(x )﹣f (x )<0,∴g (x )在(0,+∞)递减, 又2log 5>2log 42=,1<0.22<2,20.2=0.04,∴2log 5>0.22>20.2, ∴g (2log 5)<g (20.2)<g (0.22),∴c <a <b ,故选:C . 【点评】本题考查了函数的单调性问题,考查了导数的应用,考查了指数,对数的性质,解决本题的关键是根据所比较的三个数,合理构造函数,利用函数的单调性比较大小即可。 二.变形后构造函数

例2.(优质试题?合肥二模)定义在R上的偶函数f(x)的导函数为f'(x),若对任意的实数x,都有2f(x)+xf'(x)<2恒成立,则使x2f(x)﹣f(1)<x2﹣1成立的实数x的取值范围为()A.{x|x≠±1}B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,1)D.(﹣1,0)∪(0,1) 【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出x<0的取值范围. 解:当x>0时,由2f(x)+xf′(x)﹣2<0可知:两边同乘以x得:2xf(x)﹣x2f′(x)﹣2x<0 设:g(x)=x2f(x)﹣x2,则g'(x)=2xf(x)+x2f'(x)﹣2x<0,恒成立: ∴g(x)在(0,+∞)单调递减,由x2f(x)﹣f(1)<x2﹣1 ∴x2f(x)﹣x2<f(1)﹣1,即g(x)<g(1),即x>1; 当x<0时,函数是偶函数,同理得:x<﹣1 综上可知:实数x的取值范围为(﹣∞,﹣1)∪(1,+∞),故选:B 【点评】主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,解决本题需要注意对x的讨论。三.移项法构造函数

例谈构造法在中学数学解题中的应用

例谈构造法在中学数学解题中的应用 发表时间:2012-01-12T09:16:31.067Z 来源:《素质教育》2012年1月下供稿作者:高雁[导读] 方程,作为中学数学的重要内容之一,与数、式、函数等诸多知识密切相关。高雁江苏省吴江市松陵高级中学215200 摘要:构造法是一种重要的数学解题方法,在解题中被广泛应用。构造法是一种极其富有技巧性和创造性的解题方法,体现了数学中发现、类比、化归的思想,渗透着猜想、探索、特殊化等重要的数学方法。运用构造法解数学题可从中激发学生的发散思维,使学生的思维 和解题能力得到培养,对培养学生的多元化思维和创新精神大有裨益。关键词:构造法构造数学解题 “构造法”是指为解决某个数学问题时先构造一种数学形式(比如几何图形、代数式、方程等),寻求与问题的某种内在联系,使之简单明了,起到化简、转化和桥梁作用,从而找到解决问题的思路、方法。此法重在“构造”、深刻分析、正确思维和丰富联想,它体现了数学中发现、类比、化归等思想,渗透着猜想、试验、探索、概括等重要方法,是一种富有创造性的解决问题的方法。 下面举一些应用构造法的例题,介绍其在数学解题中的巧妙应用。 一、构造方程 方程,作为中学数学的重要内容之一,与数、式、函数等诸多知识密切相关。根据问题条件中的数量关系和结构特征,构造出一个新的方程,然后依据方程的理论,往往能使问题在新的关系下得以转化而获解。构造方程是初等代数的基本方法之一。 二、构造几何图形(体) 如果问题条件中的数量关系有明显的或隐含的几何意义与背景,或能以某种方式与几何图形建立起联系,则可考虑通过构造几何图形将题设中的数量关系直接在图形中得以实现,然后,借助于图形的性质在所构造的图形中寻求问题的结论。构造的图形,最好是简单而又熟悉其性质的,这些几何图形包括平面几何图形、立体几何图形及通过建立坐标系得到的解析几何图形。 三、构造函数 所谓“构造函数”是指:由题设条件为对象,构想、组合出一种新的函数关系、方程、多项式等具体形式,使问题在新的观点下实现转化而获解。构造函数证(解)问题是一种创造性思维过程,具有较大的灵活性和技巧性。在运用过程中,应有目的、有意识地进行构造,始终“盯住”要证、要解的目标。

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

构造中位线巧解题

构造中位线巧解题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定 理 例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着 BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速 度是相同的,且同时从B出发,则谁先到达?

巧用数学构造法解数列题

巧用数学构造法解数列题 永福中学:陈容丽 构造法作为一种重要的数学方法,而不是一个数学概念,没有严格的定义。解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题按照这样的思维方式来寻求解题途径比较困难,甚至无从下手。在这种情况下,经常要求我们改变思维方向,换一个角度思考,以找到一条绕过障碍的新途径,从而使问题得解.而构造法就是根据数学问题的条件或结论的特征,以问题中的数学元素为“元件”,数学关系为“框架”构造出新的数学对象或数学模型,从而使问题转化并得到简便解决的方法。它的特点是:创造性地使用已知条件,创造性地应用数学知识,极大限度地发散思维。 本文主要淡淡构造法在高中数列问题的应用。 数列是高中很重要且有相当难度的一章内容,在近几年的高考中,一般有一道中档的填空题和一道压轴的解答题,所占分值较高。数列问题中的构造新数列在近几年高考题中经常出现,这类题目的难度及区分度往往很大,学生不容易掌握,有时甚至无从下手。下面来专门谈一谈构造法在研究数列中的灵活运用。 一、型如(为常数且,)的数列,其本身并不是等 差或等比数列,但经过适当的变形后,即可构造出一个新数列,利用这个数列可求其通项公式。 1.(为常数),可构造等比数列求解. 例1已知数列满足,(),求通项. 解由,得,又,所以数列 是首项为,公比为的等比数列,∴. 注:一般地,递推关系式(p、q为常数,且p≠0,p≠1)可等价 地改写成,则{}为等比数列,从而可求.

2.为等比数列,可构造等差数列、等比数列求解。如(为常 数) ,两边同除以,得,令,则可转化为的形式求解. 例2(1)已知数列{a n}中,,,求通项. (2)已知数列满足,,求通项. 解(1)由条件,得,令,则,即 ,又,,∴数列为等比数列,故有 ,即,∴. (2)由条件,得,即,故数列是以为 首项,以为公差的等差数列,∴,故.3.为等差数列,如型递推式,可构造等比数列求解. 例3已知数列满足,(),求 . 解令,则,∴,代入已知条件,得,即, 令,,解得=-4,=6,所以,且,∴是以3为首项、以为公比的等比数列,故,故.注此例通过引入一些尚待确定的系数,转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 4.为非等差、非等比数列,可构造等差、等比数列求解.

例谈高中数学解题中的“法宝”

例谈高中数学解题中的“法宝” 高中数学教学课程标准中明确规定了学习数学不仅包括数学内容、数学语言,更重要的是数学思想、方法。在数学解题过程中,某些数学问题用常规方法是难以解决的,这时可以根据题目的条件和结论的特征,从新的角度,用新的观点去观察分析,用已知的数学关系为“支架”构造出满足条件或结论的数学对象,使原问题中隐晦不清的关系在新构造的数学对象中清楚地表现出来,从而借助该数学对象解决数学问题。这种解决数学问题的方法就是构造法。 一、构造法解题的思路 构造法解题的基本思想方法是“转化”思想。用构造法解题的巧妙之处在于不是直接去解决所给的问题,而是把它转化成一个与原问题有关的辅助新问题,然后通过新问题的解决帮助解决原问题。 二、构造法的思维方式 构造法是一种简捷、快速,灵活变通的解题方法,这些特点,特别是简捷的特点会大大提高学生的求知欲,他们会有一种跃跃欲试的渴望,但却无从知道什么样的问题适合用构造法去解,如何构造? 应用构造法解题的关键一是要明确的解题方向,即要明确为了解决什么样的问题面建立一个相应的构造;二是要

弄清条件的本质特点,以便重新进行逻辑整合。构造法的思维方式是多样的,主要有类比构造,即所研究问题对象之间或这些对象与已学过的知识间存在着形式上、本质上的相同或相似性的可考虑类比构造;联想构造、转换构造、归纳构造、直觉构造、逆向构造,即按逆向思维方式,向原有数学形式的相反方向去思考,通过构造对立的数学形式来解决问题。 三、构造法在中学数学解题中的应用 1. 构造函数 函数在整个中学数学是占有相当的内容,学生对于函数的性质也比较熟悉。选择烂熟于胸的内容来解决棘手问题,会大大提高学生解决问题的能力。 2. 构造一元二次方程 方程作为中学数学的重要内容之一,它与代数式、函数、不等式等知识密切不可分。依据方程理论,能使许多的问题得以转化从而得到解决,这对学生的数学思想的培养具有重要意义。 有些数学题,经过观察可以构造一个方程,从而得到巧妙简捷的解答。 例2 若(z-x)2-4(x-y)(y-z)=0 ,求证:x,y,z成等差数列。 分析:拿到题目感到无从下手,思路受阻。但我们细

构造法在中学数学中的应用研究98943465

构造法在中学数学中的应用研究98943465

本科毕业设计(论文)题目构造法在中学数学解题中的应用研究

常熟理工学院本科毕业设计(论文)诚信承诺书本人郑重声明:所呈交的本科毕业设计(论文),是本人在导师的指导下,独立进行研究工作所取得的成果.除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本人签名:日期: 常熟理工学院本科毕业设计(论文)使用授权说明本人完全了解常熟理工学院有关收集、保留和使用毕业设计(论文)的规定,即:本科生在校期间进行毕业设计(论文)工作的知识产权单位属常熟理工学院。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许毕业设计(论文)被查阅和借阅;学校可以将毕业设计(论文)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编毕业设计(论文),并且本人电子文档和纸质论文的内容相一致。 保密的毕业设计(论文)在解密后遵守此规定。 本人签名:日期: 导师签名:日期:

构造法在中学数学解题中的应用研究 摘要 构造法是一种重要的划归手段,学生通过观察、分析、抓住特征、联想熟知的数学模型,然后变换命题,恰当的构造新的数学模型来达到解题的目的,在中学数学解题中具有重要的作用,主要涉及函数,图形,方程,数列等内容。构造法是一种富有创造性的方法,属于非常规思维,运用构造法解题有利于培养学生的创造性思维,提高学生观察、分析、解决问题的能力。 关键词:构造法,观察,分析,创造性,解题

初中几何反证法专题(编辑)

初中几何反证法专题 学习要求 了解反证法的意义,懂得什么是反证法。 理解反证法的基本思路,并掌握反证法的一般证题步骤。 知识讲解 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 1.反证法的概念: 不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 2.反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 3.反证法的一般步骤: (1)假设命题的结论不成立;

(2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正 确 简而言之就是“反设-归谬-结论”三步曲。 例题: 例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。证明: 假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。 ∵OA=OB,M是AB中点 (1) ∴OM⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得: OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM 这与已知的定理相矛盾。 故AB与CD不能互相平分。 例2.已知:在四边形ABCD中,M、N分别是AB、DC的 中点,且MN=(AD+BC)。 求证:AD∥BC

数列的几种构造法解题

数列几种构造法解题 数列的构造法,我这里仅仅表示的是n 1a 与+n a 之间的常见关系,还有很多需要补充的。 以下主要是以例题为主,表示不同类型的构造方法。 1-n 1-n 1n n 1n 2q a a 等比数列,a 2a ,1例=?==+. 1 -n 2d )1n (a a 等差数列,2a 2.a 例1n n 1n =-+=+=+ 1 2a 化简可得2)1a (1a 所以整体是等比数列1a ,所以1x 展开解得)x a (2x a 构造等比数列1 a 2a 。3例n n 1 -n 1n n n 1n n 1n -=+=++=+=++=++ 1-n n 011-n 1-n n n 1n n n n 1n n n n 110111 1n 1n n n n 1n n n n n 1 -n 1n n n n 1n 1n n n 1n 2n a 所以n 1)1-n (2a 2a 可以得到 12a 2a 得到 2同除以22a a )22-3a 化简即可得3 2)32()33a (33a 即整体是等比数列33a 。所以3x 展开解得)3a (32x 3a 构造13a 23a 可以得到 3首先同除以,间接构造 2解2-3a 所以2)3-a (3-a 所以1 x 展开解得) 3x a (23x a 构造,直接构造法: 1解32a a )1,4例n ?==?+==-+==-=-=---=+=++==?=-=+=++=++-----+++++n n n n n n n n n x

3n 327an 所以2)33a (33n a 即是等比数列, 3n 3a 所以3 t ,3m 展开解得), t mn a (2t )1n (m a 构造 n 3+2a =a ,5例1-n 1 -n 1n n n 1n n 1+n --?=?++=++++==++=+++?+ 综合例6的通项公式。a ,试求n 3a 2a ,2a 已知n n n 1n 1++==+ 1n -23a 所以22 )113-a (1n 3a 所以1y ,1x ,1m 展开化简依次可以解得)y xn 3m a (2y )1n (x 3m a 解:构造1n n n 1n 1n 11n n n n 1n 1n -+==?++=++-==-=+++=++++---++

巧构造,妙解题

巧构造,妙解题 等腰三角形的性质定理和判定定理分别为:等边对等角,等角对等边。在求解或证明边长与角度的问题时,如果能够巧妙地构造出等腰三角形,就可以利用等腰三角形的性质定理和判定定理简便地解决问题。下面介绍几种构造等腰三角形的方法,供大家学习时参考。 一、“角平分线+平行线”构造等腰三角形 例1、如图,在△ABC 中,已知∠ABC 和∠ACB 的平分线交于点F ,过F 作DE//BC ,交AB 于点D ,交AC 于点E ,若BD +CE=10,则线段DE 的长为_______ F E D C B A 分析:由DE//BC ,BF 和CF 分别平分∠ABC 和∠ACB ,先判断△BDF 和△CEF 是等腰三角形,从而将DE 转化为DF +FE= BD +CE 解:∵BF 平分∠ABC ,∴∠DBF=∠FBC ,又∵DE//BC ,则∠DFB=∠FBC ,∴∠DBF=∠DFB ,∴DB=DF ,同理EF=EC ,∴DE=DF +FE= BD +CE=10 二、“角平分线+垂行线”构造等腰三角形 例2、如图所示,在△ABC 中,BM 是∠ABC 的平分线,AD ⊥BM 于点D ,求证:∠BAD=∠DAC +∠C M E D C B A 分析:由BM 是∠ABC 的平分线,AD ⊥BM ,我们只要延长AD 与BC 交于点E ,△ABE 就是等腰三角形。 证明:延长交BC 于点E ,∵BM 是∠ABC 的平分线,∴∠ABD=∠EBD ,∵AD ⊥BM , ∴∠ADB=∠EDB=90°,在△ABD 和△EBD 中,ABD EBD ADB EDB BD BD ∠=∠??∠=∠??=? ,∴△ABD ≌△EBD , ∴∠BAD==∠BED=∠DAC +∠C ,即∠BAD=∠DAC +∠C

浙教版八年级数学下册反证法作业练习

4.6 反证法 ◆基础练习 1.“ab C.a=b D.a=b或a>b 2.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设() A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 3.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等” 时,应假设___________. 4.用反证法证明“若│a│<2,则a<4”时,应假设__________. 5.请说出下列结论的反面:(1)d是正数; (2)a≥0; (3)a<5. 6.如下左图,直线AB,CD相交,求证:AB,CD只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点_______”矛盾,所以假设不成立,则________. 7.完成下列证明. 如上右图,在△ABC中,若∠C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是______或______. 当∠B是____时,则_________,这与________矛盾; 当∠B是____时,则_________,这与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角.

8.如图,已知AB∥CD,求证:∠B+∠D+∠E=360°. 9.请举一个在日常生活中应用反证法的实际例子. ◆综合提高 10.用反证法证明“三角形中至少有一个内角不小于60°”,?应先假设这个三角形中( ) A .有一个内角小于60° B.每一个内角都小于60° C .有一个内角大于60° D.每一个内角都大于60° 11.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设______________. 12.用反证法证明:两直线平行,同旁内角互补. 132是一个无理数.(说明:任何一个有理数均可表示成 b a 的形式,且a ,b 互质) 14、试写出下列命题的反面: (1)a 大于2 _____________;(2)a⊥b _______________. 15、用反证法证明“若22a b ≠,则a b ≠”的第一步是______________. 16、填空:在△ABC 中,若∠C 是直角,那么∠B 一定是锐角. 证明:假设结论不成立的,则∠B 是__________或_________. ①当∠B 是_______时,则__________,这与____________________矛盾; ②当∠B 是_______时,则__________,这与____________________矛盾.

63巧构造 妙解题

巧构造 妙解题 1. 直接构造 例1. 求函数f x x x ()sin cos = -+32的值域。 分析:由于f x x x ()sin cos =-+32可以看作定点(2,3)与动点(-cosx ,sinx )连线的斜率,故f(x)的值域即为斜率的最大、最小值。 解:令μθ=-=cos sin x x ,,则μθ221+=表示单位圆 f x k ()= --=32θμ 表示连接定点P (2,3)与单位圆上任一点(μ,θ)所得直线θμ---=k k ()320的斜率。 显然该直线与圆相切时,k 取得最值,此时,圆心(0,0)到这条直线的距离为1,即||32112-+=k k 所以k =± 2233 故22332233- ≤≤+f x () 例 2. 已知三条不同的直线x y a sin sin 3αα+=,x y a sin sin 3ββ+=,x y a sin sin 3γγ+=共点,求sin sin sin αβγ++的值。 分析:由条件知sin sin sin αβγ,,为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。 解:设(m ,n )是三条直线的交点,则可构造方程m n a sin sin 3θθ+=,即 4303m n m)a sin (sin θθ-++=(*) 由条件知,sin sin sin αβγ,,均为关于sin θ的一元三次方程(*)的根。 由韦达定理知sin sin sin αβγ++=0 2. 由条件入手构造 例3. 已知实数x ,y ,z 满足x y z xy =-=-692,,求证:x y = 分析:由已知得x y xy z +==+692,,以x ,y 为根构造一元二次方程,再由判别式非负证得结论。

构造法解题一例

构造法解题一例 构造法解题是数学中常用的一种解题思路,是深入分析、正确思维以及丰富联想的产物,请看下面的这道例题: 例:正数a 、b 、c 、A 、B 、C 满足条件a+A=b+B=c+C=k 求证:aB+bC+cAk(aB+bC+cA) 得证。

证明五:还可联想函数式,构造以c(或a或b)为变量字母的一次函数式: f(c)=(k-a-b)c+k(a+b)-ab-k2 (0

构造法及构造法在中学数学解题中的应用

摘要:构造法就是根据题设条件和结论的特殊性,构造出一些新的数学形式,并借助它来认识与解决原问题的一种思想方法。构造法是运用数学的适当的数学思想与原理,针对一些数学的问题的特点而采用相应的解决办法,合理地运用构造法一方面可以提高解题效率;同时也能够发展学生的思维能力和创新意识。本文在分析构造法的内涵和研究价值的基础上,对构造法在中学数学中一些典型问题解决中的运用进行了探索和尝试。 关键字:中学数学,解题,构造法

Abstract:According to the problem of construction method is the particularity of the set conditions and conclusion is constructed, some new form of mathematics, and with it to recognize and solution of the original problem a thought method. By using the mathematical method of construction is the proper mathematical idea and principle, in view of some mathematical characteristics and the corresponding solution, reasonable construction method on the one hand may improve by solving efficiency; Also can develop the students' thinking ability and innovative consciousness. Based on the analysis of the connotation and construction method, on the basis of research value of tectonic method in the middle school mathematics in the application of some typical problems probes and try. Keywords:middle school mathematics,problem-solving,method of construction

中考数学解题方法反证法专题

中考数学解题方法反证法专题 在初中数学题目的求解过程中,当直接证明一个命题比较复杂麻烦,甚至不能证明时,我们可以采用反证法.反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬 反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种). 用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大于/不大于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n-1)个;至多有一个/至少有两个;唯一/至少有两个. 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水.推理必须严谨.导出的矛盾有如下几种类型:与已知

条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾. 至于什么问题宜用反证法?这是很难确切回答的问题.下面我们就结合实例归纳几种常使用反证法的 情况. 一、基本定理或初始命题的证明 在数学中,许多基本定理是使用反证法来证明的,例如“过直线外一点只有该直线的一条平行线”,“过平面外一点只有平面的一条垂线”.因为在证明这种基本定理时,由于除已经学过的公理及其推论外,在此之前所导出的定理不多或者与此命题相关的定理不多. 例1在同一平面内,两条直线a,b都和直线c垂直.求证:a与b平行. 证明假设命题的结论不成立,即“直线a与b相交”. 不妨设直线a,b的交点为M,a,b与c的交点分别为P,Q,如图1所示,则∠PMQ>0°. 这样,△MPQ的内角和=∠PMQ+∠MPQ+∠PQM=∠PMQ+90°+90°>180°. 这与定理“三角形的内角和等于180°”相矛盾.说明假设不成立.

相关主题
文本预览
相关文档 最新文档