当前位置:文档之家› 光谱吸收式光纤气体传感器分辨率研究

光谱吸收式光纤气体传感器分辨率研究

光谱吸收式光纤气体传感器分辨率研究
光谱吸收式光纤气体传感器分辨率研究

安徽科技学院学报,2006,20(2):28~30

Journal of Anhui Science and Technology University

光谱吸收式光纤气体传感器分辨率研究

李双喜

(安徽科技学院工学院,安徽 凤阳 233100)

摘 要:气体传感器在环境检测、火灾与安全报警系统以及食品化工中具有广泛应用。分析了吸收式气体传感器的工作数学模型与光电检测电路的结构特点,探讨了提高吸收式光纤气体传感器分辨率的方法。关键词:气体传感器;吸收式;分辨率;光纤

中图分类号:TP212 文献标识码:A 文章编号:1672-3589(2006)02-0028-03

The Study on Spectrum Absorption Optical

Fiber G as Sensor R esolution

L I Shuang-xi

(Depart ment of Engineering,Anhui Science and Technology University,Fengyang233100,China) Abstract:Gas sensor is widely applied in environment detection,fire safety alarm,food and chemical in2 dust ry.According to t he mat hematic model of gas sensor and t he p hotoelect ric detection circuit struct ure characteristic,it discusses t he met hods of imp roving resolutio n in detail.

K ey w ords:Gas sensor;Absorptio n;Resolution;Optical fiber

光谱学研究表明当光与物质相互作用时,由于共振吸收作用的存在,每一种物质都具有自己的特征吸收谱线。其对应的吸收强度与物质的浓度相关,通过测定物质的光谱吸收强度可以定量分析测定待测物质的浓度[1~2]。基于光谱吸收式气体传感器在环境气体检测、火灾与安全报警、食品与化学工业的气体实时连续定量检测系统中具有广泛应用。另一方面由于光纤传感技术在易燃、易爆、防腐,电磁干扰强烈的环境中应用的优势以及易于实施遥测功能,具有绝缘强度高的特点,因此光谱吸收式光纤气体传感器成为有害气体检测与高压电气环境中的油气分析技术研究开发的重要方向。实用型的光谱吸收式光纤气体传感器的开发必须考虑传感器的分辨率、检测限、选择性、信噪比等基本性能参数。针对提高系统信噪比与消除光源不稳定性因素、杂散光、光纤传播噪声、信号处理电子电路噪声的随机性干扰对系统检测限的负面影响,调制技术、差分吸收式检测结构(DA T)以及基于谐波检测的方法被提出[3~4]。以下从吸收式光纤气体传感器的工作数学模型与光电检测系统电路的结构特点出发,详细讨论了提高吸收式光纤气体传感器分辨率的技术路径。

1 吸收式光纤气体传感器的工作原理

1.1 工作原理

光谱吸收式光纤气体传感器的典型结构如图1所示。光源发出的光经过光纤耦合器耦合作用进入入射光纤,光波通过测试气室与待测气体相互作用,通过出射光纤的耦合作用将出射光耦合到光电探测器上进行光电转换,相应的电信号经过信号处理电路分析处理得出待测气体的浓度参数。

根据气体分子的选择性吸收理论,由比尔-朗伯定律进行分析,波长为λ的光通过有效长度为L的

收稿日期:2005-07-07

作者简介:李双喜(1972-),男,安徽省怀宁县人,硕士,讲师,主要从事电子信息专业教学与研究。

图1 吸收式光纤气体传感器典型结构

Fig.1 The structure of optical fiber gas sensor

吸收传播距离后,出射光光强I (λ.T.t )为:

I (λ.T.t )=I 0(λ.T.t )K (λ

)ex p[-α(λ)cL +β(λ)](1)其中:I 0(λ.T.t ):入射光强、α(λ):吸收系数、c :气体浓度、β(λ):杂散光干扰项、K (λ

):光路的总效率。设光电探测器的光谱灵敏度为k (λ

),则对应的响应电流i (λT )为:i (λ.T )=k (λ)I 0(λ.T.t )K (λ

)ex p[-α(λ)cL +β(λ)](2)因此有待测气体的浓度表达式为:

c =1n i (λ)k (λ)I 0(λ.T.t )K (λ)-β(λ)/α(λ)L (3)

在通过系统优化设计的条件下,利用差分吸收技术、谐波检测技术、光源优化设计等措施可以最大限度的抑制系统不稳定因素的干扰,(3)式进一步简化为:

c =-1n i (λT )k (λ)I 0(λ.T.t )K (λ

)/α(λ)L (4)通过(4)式由信号处理电路的软件算法可容易得出待测气体的浓度参数。

1.2 分辨率数学模型

根据分辨率的定义,气体浓度测试系统的分辨率表示系统能够检测分辨出待测气体浓度的最小变化

量dc min 。考虑α(

λ)cL <<1时有:i (λ.T )=k (λ)I 0(λ.T.t )K (λ

)[1-α(λ)cL ](5)则有:

i (λ.T )+di (λ.T )=k (λ)I 0(λ.T.t )K (λ

)[1-α(λ)(c +dc )L ](6)dc di (λ.T )=1k (λ)I 0(λ.T.t )K (λ

)α(λ)L (7)dc =di (λ.T )

k (λ)I 0(λ.T.t )K (λ)α(λ)L (8)

(8)式表明,待测气体浓度变化最小达时,光电检测器的输出电流变化一个最小单位,即反映了系统检测气体浓度的极限分辩能力。

2 提高系统分辨率的途径

从(8)式可以看出,影响气体分辨率的因素包括光与气体有效作用长度L ,气体选择性吸收系数,光电检测器分辨率,光路光强总损耗系数。显然增加气体吸收光路有效长度L ,能够有效提高系统的分辨率。开放式气体实时检测系统的气室通常采用White 型结构,由气室内腔两个表面镀高反射膜镜片组成,以在有限的空间内增加气体与光波作用的有效距离,但这种结构受气体腐蚀与烟气灰尘污染的影响其适应性较差[5~6]。在保证系统气体浓度最低检测限要求和现有的红外光源器件,既能有效增加气体的吸收长度又能够减小光路损耗吸收池的优化设计对系统分辨率的提高与稳定具有重要作用。文献[7]探讨了一种与White 型吸收池特性等效的开放式结构,其反射损耗可以忽略。

其次,由于现有光源器件的光功率有限,减少光路总损耗(K (

λ)≈1)对提升系统的分辨率具有积极意义。根据经验工程实践上应选用耦合效率高的光纤耦合器、损耗低的单色滤光片作为光路链接器件。在充分考虑光纤传输模式干扰的条件下,优选数值孔径大的光纤以提高光纤能量耦合。

9

2 第20卷第2期 李双喜 光谱吸收式光纤气体传感器分辨率研究 

03安徽科技学院学报 2006年 

虽然通过差分吸收式检测或谐波检测等手段能够有效消除光源的不稳定因素的影响,即分辨率表达式中不出现入射光强相关的项。但光源功率的提高能够在保证最低检测限的要求条件下有效增加吸收池的长度L,从而对系统的分辨率的提高具有积极作用。光源的选择是在满足对输出中心频率与待测气体吸收光谱特性相吻合、温度稳定性好的条件下,要求输出光功率尽可能大并与激励电流具有良好线性关系的红外半导体光源。光电探测器是完成光电转换的关键器件,其主要性能响应度大小是影响系统分辨率的因素。此外在信号处理电路中选择分辨率高的A/D转换器,满足系统精度要求也是十分必要的。

3 结 论

由于实际的光纤气体传感器系统存在光源的发射强度与峰值波长随温度变化、探测器响应度随工作环境的变化、光源的光谱半宽度超出待测气体的吸收带宽导致对比尔-朗伯定律的偏移、测试气室透射率的不稳定、信号处理电路的增益漂移与电路噪声等等都会对系统的实际分辨率产生影响。合理设计光路结构,增加系统光、电单元各环节的工作参数稳定性;利用纳米级多孔透射膜增加气体的选择性吸收;减小光路能量损耗、通过信号处理算法设计等等具体措施对提高系统的实际分辨率与多组份气体的选择性具有重要作用,对拓展吸收式光纤气体传感器的应用范围提出了可能的研究方向。

参考文献:

[1]刘瑞复,史锦珊.光纤传感器及其应用[M].北京:机械工业出版社,1987.209-211.

[2]王莉田,史锦珊.吸收式环境气体传感器[J].传感器技术,1996,15(6):28-30.

[3]张景超,刘谨,王玉田.差分吸收式光纤NO2气体传感器[J].仪表技术与传感器,2004,(5):4-5,20.

[4]王玉田,刘谨,张景超.基于谐波检测技术的光纤甲烷气体传感器的研究[J].测控技术,2003,22(11):19-22.

[5]Yu Hongbo,Liao Yanbiao,Jin Wei.Review of the optical fiber sensor[J].Laser and Inf rared,2002,32(3):193-196.

[6]Y Shimose,T Okammoto,A Maruyamai.Remote sensing of methane gas by differential absorption measurement using a

wavelength tunable DFB LD[J].IEEE Photonics Technology Letter,1999,3(1):178-181.

[7]肖韶荣.基于开放式气室的光纤气体传感器的信号分析[J].量子电子学学报,2002,19(6):531-535.

(责任编辑:李孟良)

实验五反射式光纤位移传感器实验

实验五 反射式光纤位移传感器 一、实验目的 了解反射式光纤位移传感器的结构,学习和掌握最简单、最基本的光纤位移传感器的原理和应用。 二、基本原理 反射强度调制式光纤传感器具有准确、结构简单、价格低廉等优点,广泛应用于各种位移、压力和温度传感器中。反射式光纤位移传感器的基本结构如图5-1所示,其中发射光纤通常由一根光纤构成,接收光纤有时候由单根光纤构成,而有些时候为了提高光的接收效率也经常由多根光纤构成。本实验采用的传光型光纤,它是由两根光纤的一端熔合后组成的Y 型光纤,一根作为发射光纤,端部与光源相接发射光束;另一根作为接收光纤,端部与光电转换器相接接收反射光。两根光纤熔合后的端部是工作端也称传感探头,截面为半圆分布即D 型结构。由光源发出的光传到端部出射后再经被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电压信号。 图5-1 反射式光纤位移传感器示意图 传光型光纤反射式位移传感器的发射调制方法,可用等效分析法来分析。首先,画出接收光纤关于反射体的镜像,然后计算出该镜像接收光纤在发射光纤纤端光场中所接收到的光强值,最后将该光强值乘以反射体的反射率R ,作为传感器的最后输出光强。如图5-2中的a 图所示。 接收光纤的镜像坐标即它的等效坐标位置为F (2z ,d ),这里z 为发射接收光纤的端面与反射体之间的距离,d 为发射光纤轴心到接收光纤轴心之间的距离,由此可以获得接收光纤接收到的光强为: ]] )/(1[exp[])/(1[)(2 2/30202222/3020c c tg a z a d tg a z RI z I θζσθζσ+-?+= 其中,0I 为光源的光强,σ为表征光纤折射率分布的相关参数,对于阶跃折射率光纤,它的值为1,0a 为光纤的纤芯半径,ζ为光源种类及光源与光纤耦合情况有关的调制参数, c θ为发射光纤的最大出射角。此函数的曲线形状如图5-2中的b 图所示。 reflector

几种气体传感器的研究进展

一、前言 1964 年,由Wickens 和Hatman 利用气体在电极上的氧化还原反应研制出了第一个气敏传感器,1982年英国Warwick 大学的Persaud 等提出了利用气敏传感器模拟动物嗅觉系统的结构,自此后气体传感器飞速发展,应用于各种场合,比如气体泄漏检测,环境检测等。现在各国研究主要针对的是有毒性气体和可燃烧性气体,研究的主要方向是如何提高传感器的敏感度和工作性能、恶劣环境中的工作时间以及降低成本和智能化等。 下面简单介绍各种常用的气体传感器的工作原理和一些常用气体传感器的最新的研究进展。 二、气体传感器的分类和工作原理 气体传感器主要有半导体传感器(电阻型和非电阻型)、绝缘体传感器(接触燃烧式和电容式)、电化学式(恒电位电解式、伽伐尼电池式),还有红外吸收型、石英振荡型、光纤型、热传导型、声表面波型、气体色谱法等。 电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;非电阻式半导体气敏元件则是根据气体的吸附和反应使其某些特性发生变化对气体进行直接或间 接的检测。 接触燃烧式气体传感器是基于强催化剂使气体在其表面燃烧时产生热量,使传感器温度上升,这种温度变化可使贵金属电极电导随之变化的原理而设计的。另外与半导体传感器不同的是,它几乎不受周围环境湿度的影响。电容式气体传感器则是根据敏感材料吸附气体后其介电常数发生改变导致电容变化的原理而设计。 电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质又分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯—比尔(Lambert-Beer)吸收定律,通过光强的变化测出气体的浓度:

国内外光纤传感器的发展现状

国内外光纤传感器的发展现状 2011-6-29 8:25:44 讯石光通讯咨询网作者:iccsz 摘要:本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。 本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。前者报道了光纤光栅、分布式光纤传感技术以及光纤传感网的发展,这些是目前的研究热点;后者介绍了光层析成像技术、智能材料、光纤陀螺及惯性导航系统、工业工程类传感器(其中包括电力工业用高电压、大电流传感器,利用光纤的弹光效应和FBG器件的应力传感器等)。最后介绍了新型光纤材料与器件、氟化物玻璃光纤,碳涂覆光纤、以及正在研究中的蜂窝型波导光纤、液晶光纤等。 一、引言 随着密集波分复用DWDM技术、掺铒光纤放大器EDFA技术和光时分复用OTDR技术的发展和成熟,光纤通信技术正向着超高速、大容量通信系统的方向发展,并且逐步向全光网络演进。在光通信迅猛发展的带动下,光纤传感器作为传感器家族中年轻的一员,以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,已迅速成长为年成交额超过10亿美金,并预计将于2010年拥有超过50亿美金市场的产业。每年由美国光学工程师学会(OSA)主办的光纤传感国际会议(OFS)及时报道着光纤传感领域的最新进展,并对光纤传感及其相应技术进行有益的研讨。 当前,世界上光纤传感领域的发展可分为两大方向:原理性研究与应用开发。随着光纤技术的日趋成熟,对光纤传感器实用化的开发成为整个领域发展的热点和关键。由于光纤传感技术并未如光纤通信技术那样迅速地获得产业化,许多关键技术仍然停留在实验室样机阶段,距商业化有一定的距离,因此光纤传感技术的原理性研究仍处于相当重要的位置。由于很多光纤传感器的开发是以取代当前已相当成熟,可靠性和成本已得到公认,并已经被广泛采用的传统机电传感系统为目的,所以尽管这些光纤传感器具有如电磁绝缘、高灵敏度、易复用等诸多优势,其市场渗透所面临的困难和挑战是可想而知的。而那些具有前所未有全新功能的光纤传感器则在竞争中占有明显优势,FBG和其它的光栅类传感器就是一个最好的例证。当前的原理性研究热点集中于光纤光栅(FBG和LPG)型传感器和分布式光纤传感系统两大板块。 FBG型光纤传感器自发明之日起,已走过了原理性研究和实验论证的百家争鸣阶段。目前成熟的FBG制作工艺已可形成小批量生产能力,而研究的焦点也转向解决高精度应用,完善解调和复用技术,以及降低成本等几个方向上。另一方面,由于光纤传感器具有将传输与传感媒质合而为一的特性,使得沿布设路径上的光纤可全部成为敏感元件,因此,分布式传感成为光纤传感器与生俱来的优点。 对于光纤传感技术的应用研究主要有以下四大类:光(纤)层析成像技术(OCT,OPT)、智能材料(SMART MATERIALS)、光纤陀螺与惯导系统(IFOG,IMIU )和常规工业工程传感器。另外,由于光纤通信市场需求的带动以及传感技术的特殊要求,新型器件和特种光纤的研究成果也层出不穷。 目前,我国的光纤传感器研究大多数集中于大专院校和科研单位,仍然未完成由实验室向产品化的过渡。其中,比较成熟的技术包括:清华大学光纤传感中心与总后合作研制开发的光纤油罐液位与温度测量系统,已经安装运行数年;北京航空航天大学与总装合作研制的光纤陀螺系统,目前指标为0.2°/hr ;中国计量学院研制的分布式光纤传感系统,已有产品报道;华中理工大学与广东某公司联合研制的强电压、大电流传感系统。此外,在广东、深圳等地,还建立了许多光纤无源器件生产厂

光纤传感技术

光纤传感器的应用与发展趋势 学生:王超 学号:1049721103105 专业:物理电子学 光在传输过程中,光纤易受到外界环境的影响,如温度、压力等,从而导致传输光的强度、相位、频率、偏振态等光波量发生变化,通过监测这些量的变化可以获得相应的物理量,这就是光纤传感技术。该技术是随着光纤及通信技术的发展而逐步发展起来的一门崭新技术。密集波分复用D W D M 技术、掺铒光纤放大器EDFA 技术和光时分复用OTDR 技术的不断发展成熟,使得光纤传感技术以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,获得了飞速的发展,各种光纤传感器系统层出不穷。 光纤传感器系统的原理 由于光纤不仅作为光波的传播介质,而且光波在光纤中传播时,光波的特征参量( 振幅、相位、偏振、波长等) 会因外界因素(温度、压力、应变、电场、位移等)间接或直接的发生变化,从而可将光纤用作传感元件探测物理量。根据光纤在传感器中的作用,光纤传感器可分为功能型、非功能型、拾光型三大类。 1、功能型光纤传感器中光纤不仅作为导光介质也是敏感元件,光在光纤内受到被测量物理量的调制。它的特点是结构紧凑、灵敏度高,但它须用特殊光纤和先进的检测技术,因此成本高。光纤陀螺即是典型的功能型光纤传感器。 2、非功能型光纤传感器中光纤仅起导光作用,光照到非光纤型敏感元件上受被测量物理量调制。因其无需特殊光纤及特殊技术,易实现、成本低,但灵敏度也相应较低,常用于灵敏度要求不太高的场合。目前的光纤传感器大多是该类型的。 3、拾光型光纤传感器中光纤作为探头,接收由被测对象辐射的光或被其反射、 散射的光。如光纤激光多普勒速度计、辐射式光纤温度传感器等。 光纤传感器的特点 由光纤传感器的原理我们可以很容易理解它有如下几个特点: (1 )光纤具有宽波长范围、低衰减的特性,光源、检测器和光学元件的选择余地大,可以适用于不同的应用场合。

反射式光纤位移传感器特性实验

仪器与电子学院实验报告 (操作性实验) 班级: 学号: 学生姓名: 实验题目:反射式光纤位移传感器特性实验 一、实验目的 1)掌握反射光纤位移传感器工作原理; 2)掌握反射光纤位移传感器静态特性标定方法。 二、实验仪器及器件 光纤、光电转换器、光电变换器、电压表、支架、反射片、测微仪。 三、实验内容及原理 反射式光纤位移传感器的工作原理如图3所示,光纤采用Y 型结构,两束多模光纤一端合并组成光纤探头,另一端分为两束,分别作为接收光纤和光源光纤,光纤只起传输信号的作用。当光发射器发生的红外光,经光源光纤照射至反射体,被反射的光经接收光纤至光电转换元件将接收到的光信号转换为电信号。其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到位移量。 图1 反射式光纤位移传感器原理及输出特性曲线 四、实验步骤 1、观察光纤结构:本仪器中光纤探头为半圆型结构,由数百根光导纤维组成,一半为光源光纤,一半为接收光纤。 2、将原装电涡流线圈支架上的电涡流线圈取下,装上光纤探头,探头对准镀铬反射片( 即

电涡流片)。 3、振动台上装上测微仪,开启电源,光电变换器Vo端接电压表。旋动测微仪,带动振 动平台,使光纤探头端面紧贴反射镜面,此时Vo输出为最小。然后旋动测微仪,使反射镜面离开探头,每隔0.5mm取一Vo电压值填入下表,作出V—X曲线。 4、根据所测数据求出平均值后,在坐标纸上画出输出电压-位移特性曲线(分前坡和后坡), 计算灵敏度S=,并在坐标纸上画出V—X关系线性、灵敏度、重复性、迟滞曲线。 五、实验测试数据表格记录 表1 六、实验数据分析及处理 1、线性度: 图2 线性曲线

甲烷气体检测传感器模组

甲烷气体检测传感器模组 甲烷气体检测传感器模组产品适用于各种环境和特殊环境中的甲烷气体浓度和泄露,在线检测及现场声光报警,对危险现场的作业安全起到了预警作用,此仪器采用进口的电化学传感器和微控制器技术,具有信号稳定,精度高,重复性好等优点,防爆接线方式适用于各种危险场所,并兼容各种控制器,PLC,DCS等控制系统,可以同时实现现场报警和远程监控,报警功能,4-20mA标准信号输出,继电器开关量输出。 甲烷气体变送器产品特性: ①进口电化学传感器具有良好的抗干扰性能,适用寿命8年。 ②采用先进微处理技术,响应速度快,测量精度高,稳定性和重复性好。 ③检测现场具有具有现场声光报警功能,气体浓度超标即时报警,是危险场所作业的安全保障。 4现场带背光大屏幕LCD显示,直观显示气体浓度,类型,单位,工作状态等。 5独立气室,更换传感器无须现场标定,传感器关键参数自动识别。 6全量程范围温度数字自动跟踪补偿,保证测量准确性。 甲烷气体变送器技术参数: 检测气体:空气中的甲烷气体 检测范围:0~100ppm,0~200ppm,0~1000ppm,0~1000ppm,0~5000ppm,100%LEL可选。 分别率:0.01ppm(0~100ppm);0.1ppm(0~1000ppm);1ppm(0~10000ppm以上);0.1LEL. 工作方式:固定式连续工作,扩散式,管道式,流通时,泵吸式可选。 检测误差:≦1%(F.S) 响应时间:≦10S 输出信号:电流信号输出4-20MA 报警方式:2路无源节点信号输出,报警点可设置。 工作环境:-20℃~50℃(特殊要求:(-40℃~+70℃) 相对湿度:≦90%RH 工作电压:DC12~30V 传感器寿命:3年 防爆形式:探头变送器及传感器均为隔爆型。 防爆等级:Exd II CT6

光纤传感中的光学原理及效应

第1章:光纤传感中的光学原理及效应 1.1光学反射原理 分为镜面反射和漫反射 基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 1.2光学折射原理 镜面反射和漫反射情况

1.3光学吸收原理 选择吸收:介质对某些波长的光的吸收特别显著 郎伯比尔(Lambert-Beer)定律: Lambert-Beer 定律是吸收光度法的基本定律,表示物质对某一单色光吸收的强弱与吸光物质浓度和厚度间的关系。 当气体浓度、光程均很小的时候,可以近似为: 1.4光学多普勒效应 θ cos 11f f 0 2 20 0c u c u -= 雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据

反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。 1.5声光效应 超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅 。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称之为声光效应。 利用声光衍射效应制成的器件,称为声光器件。声光器件能快速有效地控制激光束的强度、方向和频率,还可把电信号实时转换 为光信号。此外,声光衍射还是探测材料声学性质的主要手段。 主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q 开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 1.6磁光效应 具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 1.7电光效应 电光效应:指某些晶体的折射率因外加电场而发生变化的一种效应,当光波通过此介质时,其传输特性就受到影响而改变。 +++=20bE aE n n (6-3) 在上式中, a E 是一次项,由该项引起的折射率变化,称为线性电光效应或泡克耳斯(Pockels )效

光纤传感技术读书笔记

题目光纤传感技术读书笔记学院(系): 专业班级: 学生姓名: 指导教师:

摘要:主要阐述了光纤传感技术的原理、特点及国内外的发展情况,介绍了在 实际测量中的一些具体应用。提出了我国光纤传感技术存在的问题,指出了今后的发展的方向,为光纤传感技术的深入研究提供了有益的参考 关键词:光纤传感技术;测量精度;光纤传感器 1 前言 自1966年高昆博士提出光纤传输的理论,以及1969年日本平板波利公司制出200dB/KM梯度光纤以来,光纤传感技术取得了飞速发展,而且已经形成了独立的光通讯产业形成。由于它独特的优点,决定了可实现某些特殊条件下的测量工作,比常规检测技术具有诸多优势,是传感技术发展的一个主导方向。光纤传感技术代表了新一代传感器的发展趋势。光纤传感器产业已被国内外公认为最具有发展前途的高新技术产业之一,它以技术含量高、渗透能力强、市场前景广等特点为世人所瞩目。 2 光纤与光纤传感器的原理 光纤的结构由纤芯,包层,涂覆层,护套组成。光缆的结构由12×12的光纤阵列,光纤带,纸,聚乙烯内壳,聚烯烃双绞线,聚乙烯外壳,抗应变的钢索组成。而光纤传感器通常由光源、传感光纤、传感元件或调制区、光检测等部分组成。其传光原理是利用了光的全反射原理,将被测参量转换为光信号参数的变化。众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等)。这些参量在光纤传输中都可能会受到外界影响而发生改变,特别是温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,都会使这些参量发生相应变化。光纤传感器就是根据这些参量随外界因素的变化关系来检测各相位物理量的大小。 从结构上来讲,光纤传感器与电类传感器对比,光纤传感器的调制参量是振幅,相位。而电类传感器是电阻,电容,电感等。光纤传感器的传输信号为光,而电类传感器的传输信号为电。传输介质也有了很大的不同,光纤传感器的传输介质是光纤,光缆,而电类传感器的介质是电线,电缆。由结构的对比可见,光纤传感器与电类传感器是并行互补的一类新型传感器。 从应用上来讲,光纤传感器与传统传感器相比有其独特的优点,即非接触式测量、抗干扰力强、灵敏度高、体积小、重量轻、柔性好,而且测量对象广泛。因此,在传感器行业中,光纤传感器越来越显示出它的优势。它将替代传统的机械接触式传感器及电容非接触式传感器。机械接触式传感器磨损被测表面,这就限制了测量精度。电容非接触式传感器的抗电磁干扰力差,使得其适用范围受到限制。 3 光纤传感器的调制技术以及光信号的解调技术 光纤传感器的调制技术有四种,(1)强制调制,(2)相位调制,(3)偏振态调制,(4)频率调制。 强制解调有1)利用小的线位移或角位移进行强度调制;2)反射式强度调制;

浅谈反射式强度型光纤传感器

大学物理实验 光纤技术专题实验 学院 班级 学号 姓名 教师张丽梅 首次实验时间2012年9月17日

浅谈反射式强度型光纤传感器 摘要:本文通过物理实验的经历和收获和查阅相关资料,简要地论述了反射式强度型光纤传感器的工作原理,以及国内外对该类传感器研究现状,指出其存在的问题和解决方法。 关键词:反射式光纤传感器,反射面,强度调制,研究,发展趋势 1引言 通过光纤技术专题实验,我对光纤的结构和一般性质,光纤的耦合、传输及传感特性有了一定的了解,尤其是在做第三个实验“光纤传感”时,对反射式强度型光纤传感器产生了浓厚的兴趣。通过查阅资料等手段,写下了这篇浅显的论文。 2反射式强度型光纤传感器及其原理 反射式强度型光纤传感器(RIM-FOS:Reflective Intensity Modulated Fiber Optic Sensor)具有原理简单、设计灵活、价格低廉等特点,并已在许多物理量

( 如位移、转速、振动等) 的测量中获得成功应用。其结构原理如图1。 图2 与传统传感器是以机- 电测量为基础相比,,光纤传感器则以光学测量为基础。从本质上分析, 光就是一种电磁波, 其波长范围从极远红外的1nm 到极远紫外线的 10nm。电磁波 的物理作用和生物化学作用主要因其中的电场而引起。因此, 在讨论光的敏感测量时必须考虑光的电矢量E 的振动。通常用下式表示:E=Asin( ωt+")

式中A—电场E 的振辐矢量; ω—光波的振动频率;"— 光的相位; t—光的传播时间。由上式可见, 只要使光 的强度、偏振态( 矢量A的方向) 、频率和相位等参量 之一随波测量状态的变化而变化, 或者受被测量调制, 那么, 我们就有可能通过对光的强度调制、偏振调制、频率调制或相位的调制等进行解调, 获得我们所需要 的被测量的信息。最简单的反射式强度型光纤传感 ( RIMFOS)由光源、发送光纤、接收光纤、反射面以及 光电探测器组成.在图一中S 为光源, D 为检测器。光 源S 发出的光经发送 光纤束全反射传播, 到达反射面( 被测物) , 射 进入接收光纤束再次全反射传播到达检测器D, 测器D 输出相应的电信号U0。 U0=f( d) 在光纤芯半径r、光纤的数值孔径NA、反射面、 检测器已确定情况下, 输出电压U0 只是位移d 的函数。所以通过分析输出电压U0, 可以得到相应位移d的数值, 这样可以实现非接触微小位移的精密测量。

反射式光纤传感器原理操作步骤

五、注意事项 1.不得随意摇动和插拔面板上的各种元器件,以免造成实验仪不能正常工作。 2.光纤传感器弯曲半径不得小于5㎝,以免折断。 3.旋动螺旋测微丝杆尾帽中出现咔咔声表示不能继续前进,不能超过其量程。 4.在使用过程中,出现任何异常情况,必须立即关机断电以确保安全。 5.不得用手触摸反射面,以免影响实验结果。 六、实验操作 1)光路与机械系统组装调试实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 图3 光纤传感器安装示意图 2.将发射和接收部分接入电路,探测器输出信号处理电路不接调零电路,输出端U0接入电路板上电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.选择智能可调档位200mv或者2v档位。 5.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 6.关闭电源。 2)发光二极管驱动实验1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把发射部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 3)光电探测器PD接收实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把接收部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 4)光纤位移传感器输出信号放大处理实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.将发射和接收部分接入电路,探测器输出信号处理电路接调零电路,输出端U0接入电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面某一距离后维持不动,调节增益旋钮,观察电压表显示变化,并分析。 5.关闭电源。 5) 光纤位移传感器输出信号误差补偿电路 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座 7

气体传感器综述

光纤气体传感器综述 摘要综述了气体传感器的基本种类,论述了国内外各类气体传感器的工作原理、特点及发展状况。 关键词传感器检测气体光纤 传感器是将某种信号,按一定规律转换成另一种信号的器件和装置。传感技术是获取信息的工具。这是一项迅速发展的高技术,是构成现代信息技术的主要技术之一,是检测原理、材料科学、工艺加工三要素的最佳结合。在发达国家,传感技术被列为核心技术之一。 气体传感器是一种把气体中的特定成分检测出来,并转换成电信号的器件,人们很早就开始了气体传感器的研究,将其用来对有毒、有害气体的探测,对易爆、易燃气体的安全报警。对人类生产生活中所需了解的气体进行检测、分析研究等,使得它在工业生产和日常生活中起到耳目的作用。 光纤传感技术是一项正在发展中的具有广阔前景的新型高技术。由于光纤本身在传递信息过程中具有许多特有的性质,如光纤传输信息时能量损耗很小,给远距离遥测带来很大方便。光纤材料性能稳定,不受电磁场干扰,在高温、高压、低温、强腐蚀等恶劣环境下保持不变.所以光纤传感器从问世到如今,一直都在飞速发展。各种新思路、新结构、新工艺的光纤传感器,如雨后春笋,不胜枚举。这里我们仅就光纤气体传感器进行讨论。 1 气体传感器现状 有关资料表明,1992年中国的气体传感器产量为50万,而1990年、1991年分别为200万和近400万,世界的气体传感器需求量也逐年增加。 气体传感器是利用被测气体的物理化学性质来检测气体的,分为物理性和化学性两种。物理性的传感器是通过电流、电导、光的折射率等物理量的变化来检测的;而化学性传感器是通过化学反应、电化学反映引起物理量的变化来检测的。 2 气体传感器分类 2.1 半导体气体传感器 半导体气体传感器是利用气敏元件同气体接触,使半导体性质变化,以此来检测特定气体的成分或浓度。优点是在低浓度区(300)仍对可燃性气体和某些毒性气体(甲烷)有 较高灵敏度;体积小,结构简单,成本低,使用方便 [1]。 2.1.1 电导式传感器 传感器保持一定温度,当被测气体接触传感元件后,在传感元件表面形成吸附,使其电导率发生变化。被测气体浓度与传感元件的电阻值之间有一定的关系,因此可对气体浓度加以探测。此类传感器主要用来对可燃性气体浓度和低浓度毒气的检测,高浓度范围内测量精度不高,受周围环境影响大。 2.1.2 热导式传感器 传感元件(金属氧化物)吸附气体后,电导率和热导率变化,致使元件温度变化,由此检测气体浓度。稳定性好,通常组成惠斯登电桥来检测[2]。 2.1.3 氧化锡气体传感器 氧化锡掺杂不同,则可检测不同气体。利用氧化锡烧结体吸附还原性气体时电阻值减小的特性,可检测还原气体是否存在,同时可实现可燃性气体(如CH4,CO等)的漏气报警。2.1.4 氧化锌气体传感器 ZnO一种研究时间较长、应用水平较高的半导体氧化物气敏材料。一维ZnO纳米材料

光纤甲烷气体传感器

光纤甲烷气体传感器 摘要:基于甲烷气体近红外吸收的机理, 研究一种易于实现的光纤甲烷气体传感器。分析了半导体激光器的调制特性和谐波检测的基本原理, 建立了传感器的数学模型。系统采用分布反馈式半导体激光器做光源, 加入参考光路和参考气室, 使光源输出的中心波长锁定在气体的吸收峰上, 通过光源调制实现对甲烷气体浓度的谐波检测,提出实施改进方案,同时大气和工业污染中的其他气体分子的含量也可通过调换光源及相应的光学器件采用类似的方法测量。 关键字: 甲烷;近红外吸收;谐波检测;DFB 半导体激光器; 1. 引言 甲烷是一种易燃易爆气体,是沼气、天然气和多种液体燃料的主要成分。其在大气中的爆炸下限为4. 9 % ,上限为15. 4 %。在煤矿井下瓦斯气体中,甲烷所占的比重最大,在80 %以上。在我国煤矿安全事故中,瓦斯爆炸造成的伤亡占所有重大事故伤亡人数50 %以上。实时监测甲烷气体的浓度、防止爆炸,对于工矿安全运行、人身安全有着至关重要的作用。目前,甲烷气体的监测主要采用的化学传感器和电子探测器,化学敏感元件容易受到表面污染,需要定期更换, 而且易受其他气体的干扰, 长时间工作时存在零点漂移和灵敏度变化, 会直接影响监测系统的可靠性,而电子传感器则需要防爆装置,还需要定期检验和校正。光纤甲烷气体传感器是应用介质对光吸收而使光产生衰减这一特性的吸收型光纤气体传感器具有传输功率损耗小,传输信息容量大,抗电磁干扰能力强,且耐高温、高压、腐蚀,绝缘、阻燃、防爆,易于实现远距离实时遥测和良好的气体选择性等特点。本文采用分布反馈式半导体激光器(DFB LD) ,其中心波长在1. 66 μm ,并与二次谐波检测技术相结合,实现了对甲烷气体的谐波检测。 2.基本原理 2.1 检测原理 当一束光强为I0 的平行光通过充有气体的气室时,如果光源光谱覆盖一个或多个气体吸收线,光通过气体时发生衰减,根据Beer-Lambert 定律,输出光强I ( t)与输入光强I0 ( t)和气体浓度之间的关系为: 0()()e x p [()]I t I t f C L α=- (1) 式中: α( f )为气体吸收系数, 即气体在一定频率f 处的吸收线型; L 为吸收路径的长度; C 为气体浓度。 对式(1) 进行变换,得: 0() 1 ln ()()I t c f I t α= (2) 所以通过检测输入光强和输出光强的变化,加上已知的光程,就可以测得气体的浓度值。 谐波检测技术被广泛地用于微弱信号检测。其基本原理是通过高频调制某个依赖于频率的信号,使其“扫描”待测的特征信号,然后在信号处理系统中,以调制频率或调制频率的倍数作为参考信号,用锁定放大器记录下要得到的信息,这一特征信息具有调制信号的一系列谐波信息。 将式(1) 展开为傅里叶级数序列,它的一次谐波( f )和二次谐波信号(2 f ) 的系数分别为:

工业级甲烷CH4气体传感器NC-300S(英文)

Technical Information (C a t a l y t i c T y p e G a s S e n s o r) Model NC-300S (Single Header Type) For Industrial Application 深圳市深国安电子科技有限公司 地址:广东省深圳市龙华新区牛栏前大厦C507 蒋小姐:134 2876 2631 电话:86 755-85258900 网址:www.singoan.com www.singoan.com.cn www.shenguoan.com

1.General Catalytic type gas sensor NC series were developed for industrial applications, and NC-300S is a single header type gas sensor for general combustible gases. Shape, supply voltage and current are compatible with other sensor, however reliability, repeatability, stability and responsibility are quite superior to others, additionally the durability in strict circumstance are quite excellent. Features and typical applications are as follows. 2.Features and applications 1)Features ?Good stability ?Excellent repeatability and detection accuracy ?Good linearity against gas concentration ?Quick response ?Down sizing for design flexibility of gas alarm or detector 2)Applications ?Fixed type gas alarm or detector for general combustible gases ?Gas densitometer 3.Ratings 1)Supply voltage to sensor AC 2.0 +/- 0.1V(50-60Hz) DC 2.0 +/- 0.1V 2)Current (when 2.0V is supplied) AC 300 +/- 20mA(50-60Hz) DC 300 +/- 20mA 3)Ambient temperature and humidity in operation Temperature -20 - +60 degree C Humidity Less than 95%RH (without dew condensation) 4)Ambient temperature and humidity in storage Temperature -30 - +70 degree C Humidity Less than 99%RH (without dew condensation) 5)Detection range 0 – around 60%LEL Lower accuracy over 60%LEL (Except acetylene) 4.Specification 1)Zero offset value in air 0 +/- 30mV (without trimming resistor) 2)Minimum sensitivity 40mV/1% of methane 3)Response time Less than 8 sec. at T90 Less than 3 sec. at T50 4)Linearity Effectively linear to 60%LEL 5)Detection accuracy +/- 1%LEL 深圳市深国安电子科技有限公司 地址:广东省深圳市龙华新区牛栏前大厦C507 蒋小姐:134 2876 2631 电话:86 755-85258900 网址:www.singoan.com www.singoan.com.cn www.shenguoan.com

光纤传感器的应用和发展

文章编号:100320794(2004)0820009202 光纤传感器的应用和发展 马天兵,杜 菲 (安徽理工大学,安徽淮南232001) 摘要:主要阐述了光纤传感器的原理、特点及国内外的发展情况,介绍了在实际测量中的一些具体应用。提出了我国光纤传感器存在的问题,指出了今后发展的方向,为光纤传感器的深入研究提供了有益的参考。 关键词:光纤传感器;测量精度;传感技术 中图号:T N253文献标识码:A 1 前言 自20世纪70年代以来,光纤传感器取得了飞速发展。由于它独特的优点,决定了可实现某些特殊条件下的测量工作,比常规检测技术具有诸多优势,是传感技术发展的一个主导方向。光纤传感技术代表了新一代传感器的发展趋势。光纤传感器产业已被国内外公认为最具有发展前途的高新技术产业之一,它以技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人所瞩目。 2 光纤传感器的原理 光纤传感器通常由光源、传输光纤、传感元件或调制区、光检测等部分组成。众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等)。这些参量在光纤传输中都可能会受外界影响而发生改变,特别如温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,都会使这些参量发生相应变化。光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小。 光纤传感器与传统传感器相比有其独特的优点,即非接触式测量、抗干扰力强、灵敏度高、体积小、重量轻、柔性好,而且测量对象广泛。因此,在传感器行业中,光纤传感器越来越显示出它的优势。它将替代传统的机械接触式传感器及电容非接触式传感器。机械接触式传感器磨损被测表面,这就限制了测量精度。电容非接触式传感器的抗电磁干扰力差,使得其实用范围受到限制。 3 国内外光纤传感器的发展概况 由于光纤传感器应用的广泛性及其广阔的市场,其研究和开发在世界范围内引起了高度的重视,各国家更是竟相研究开发并引起激烈的竞争。 美国是研究光纤传感器起步最早、水平最高的国家,在军事和民用领域的应用方面,其进展都十分迅速。在军事应用方面,研究和开发主要包括:水下探测的光纤传感器、用于航空监测的光纤传感器、光纤陀螺、用于核辐射检测的光纤传感器等。这些研究都分别由美国空军、海军、陆军和国家宇航局(NAS A)的有关部门负责,并得到许多大公司的资助。美国也是最早将光纤传感器用于民用领域的国家。如运用光纤传感器监测电力系统的电流、电压、温度等重要参数,监测桥梁和重要建筑物的应力变化,检测肉类和食品的细菌和病毒等。日本和西欧各国也高度重视并投入大量经费开展光纤传感器的研究与开发。日本在20世纪80年代便制定了“光控系统应用计划”,该计划旨在将光纤传感器用于大型电厂,以解决强电磁干扰和易燃易爆等恶劣环境中的信息测量、传输和生产过程的控制。20世纪90年代,由东芝、日本电气等15家公司和研究机构,研究开发出12种具有一流水平的民用光纤传感器。西欧各国的大型企业和公司也积极参与了光纤传感器的研发和市场竞争,其中包括英国的标准电讯公司、法国的汤姆逊公司和德国的西门子公司等。 我国在20世纪70年代末就开始了光纤传感器的研究,其起步时间与国际相差不远。目前,已有上百个单位在这一领域开展工作,如清华大学、华中理工大学、武汉理工大学、重庆大学、核工业总公司九院、电子工业部1426所等。他们在光纤温度传感器、压力计、流量计、液位计、电流计、位移计等领域进行了大量的研究,取得了上百项科研成果,其中相当数量的研究成果具有很高的实用价值,有的达到世界先进水平。每年发表的论文、申请的专利也不少。但与发达国家相比,我国的研究水平还有不小的差距,主要表现在商品化和产业化方面,大多数品种仍处于实验室研制阶段,不能投入批量生产和工程化应用。 4 光纤传感器的应用 光纤传感器的应用范围很广,几乎涉及国民经济的所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年 ? 9 ?  2004年第8期 煤 矿 机 械

反射式光纤位移传感器实验

反射式光纤位移传感器实验报告 一、实验内容 1、按照光路图搭建各类光学元件 2、用螺丝固定两侧推平移平台,侧推平移台装在滑块上,然后采用 FC=FC对接法兰连接半导体激光输出接口与塑料反射式传感光纤,塑 料反射式光鲜FC端口与功率计感应端口通过光纤法兰座固定。 3、塑料反射式传感光纤螺纹端夹持固定可调棱镜支架中,并调节可调 棱镜支架的调节旋钮使出射的光路与导轨平行。 4、调节反射镜与反射式光纤跳线之间距离,使得反射端紧贴反射镜, 调节旋钮使得反射光与入射光重合达到反射镜与光路垂直,直到显示 的功率接近0值。 5、固定反射镜与可调棱镜的位置,旋转沿光轴方向(导轨方向)xuan 转侧推平移台尺杆,使反射镜远离光纤发光端,并记录位移-功率值数 据并绘制实验图,在曲线图中线性最好的那一段可作为实际位移传感 器应用。 二、实验结果 三、实验分析 如图,线性较好的第一段(即位移在0-0.3mm间)满足线性化,可作为实际位移传感应用。反射式光纤位移传感器是一种传输型光纤传感器。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电

转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

TGS2611用于检测甲烷的气体传感器

TGS2611 用于检测甲烷的气体传感器 * 低功耗 * 对甲烷气体灵敏度高* 使用寿命长、成本低 * 应用电路简单 特点: 应用: * 家用气体泄漏报警器* 便携式气体检测仪 * 对气体设施进行泄漏检测 TGS2611对甲烷气体具有很高的灵敏度,由于其对挥发性的酒精 (居住环境常见的干扰气体)灵敏度很低,因而对于家庭用气体泄漏报警器来说是一种理想的传感器。由于敏感素子体积很小,TGS2611的加热器电流仅需56mA ,传感器的检知部被收纳于标准的TO-5金属封装中。 TGS2611-C00不但体积小,而且响应性十分优异。是气体泄漏检测仪的最佳选择。 TGS2611-E00中加装了可消除酒精等干扰气体影响的滤罩,具有对甲烷气体极高选择性的灵敏特性。尤其适用于针对气氛复杂、要求严格的家庭环境进行检测的器具,是家用气体泄漏检测仪最理想的传感器。 下图所示在标准试验条件下(参见背面)测出具有代表性的灵敏度特性曲线。纵坐标表示传感器电阻比 Rs/Ro ,Rs 与Ro 的定义如下: Rs = 传感器在各种浓度气体中的电阻值Ro = 传感器在5000ppm 甲烷中的电阻值 重要提示: 费加罗传感器的使用条件将因不同客户的具体运用不同而不同。费加罗强烈建议在使用前咨询我们的技术人员,尤其是当客户的检测对象 气体不在列表范围时,对于未经费加罗专业测试的任何使用,费加罗不承担任何责任。 Rs/Ro Rs/Ro 灵敏度特性: R s /R o R s /R o

REV.11/17 规格: 结构以及尺寸: 管脚连接: 1: 加热器 2: 传感器电极 (-) 3: 传感器电极 (+) 4: 加热器 功耗值(P S )可通过下式求出: 传感器电阻(R S )可根据V OUT (V RL )的 测定值用下式求出: (V C - V RL )2 R S V C V RL R S = ( - 1) x R L P S = 在此产品规格书中所显示的都是传感器的典型特性,实际的传感器特性因产品不同而不同,详 情请参阅各传感器唯一对应的规格表。 TGS2611-C00 TGS2611-E00

光纤气体传感器TDLAS及相关技术

常用气体检测技术比较 气体检测仪从检测机理上可分为热催化、光干涉、气敏半导体、电化学、红外吸收等几大类,其中市场以热催化组件为主导。

主要气体检测技术性能比较

Beer-Lambert 定律 Beer-Lambert 定律描述,电磁辐射与原子和分子间的相互作用是光谱遥感探测污染物成分以及特性的基础,根据环境中痕量气体成分在紫外、可见和红外光谱的特征吸收性质来反演其浓度。可调谐二极管激光光谱吸收技术作为光学遥感方法的一种,是用几百米到几公里,甚至更长的光程代替了传统试验室中的取样池,采用检测激光光束的透射谱,即使光束从待测气体的一侧入射通过污染气体,在另一端出射用探测器接收的方法。发射器与接收器间的距离确定了光程(大气的折射率近似为1.0),测量原理基于Beer-Lambert 定律。 在Beer-Lambert 定律中,一些基本概念如下: 透射率(纵坐标--透射光谱):0()()100% () I T I γγγ= ? 吸光度(纵坐标--吸光光谱): 1() ()lg I A γγ= 波长和波数的关系:波长(u m )?波数(1 cm -)=10000 0()()exp(()) I I C L λλσλ=-?? 其中,()I λ为为透射光谱强度;0()I λ为激光的初始强度;()σλ则表示在波长入处的分子吸收系数,C 即为吸收物质的浓度,L 为总的光程。 进一步,根据实际应用要求,将上面的公式改进为: 0()()exp(()())I I P S T C L λλφλ=-??? 其中,()S T 为谱线的线强度,只与温度有关,单位(cm-2Mpa),可以运用HITRAN 数据库直接进行计算得出;P 为气体的总压,单位Mpa;()φλ为线性函数,表示被测吸收谱线的性质与温度、压强和气体的种类等有关。 可调谐二极管激光吸收检测技术 可调谐二极管激光吸收光谱技术(Tunable Diode Laser AbsorptionSpectroscopy TDLAS )是一种吸收光谱技术,通过分析测量光束被气体的选择吸收获得气体浓度。具体来说,半导体激光器发射出特定波长的激光束穿过被测气体时,被测气体对激光束进行吸收导致激光强度产生衰减,激光强度的衰减程度与被测气体含量成正比,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。分布反馈(DFB )激光器的波长可以被温度和电流调谐,一般用温度调谐把激光器的波长稳定在气体吸收峰附近,再用电流调谐方法使激光器的波长扫描气体吸收峰。 近年来可调谐半导体激光器在气体分析中逐渐成熟起来,其单线光谱分析技术具有许多独特的优点。与传统红外光谱技术相比,TDLAS 气体分析技术的特点是所采用的半导体激光光源的光谱宽度远小于气体吸收谱线的展宽。例如半导体分布反馈激光器(DFB-LD )的光谱线宽(<10MHz ),远小于气体吸收线宽(几十MHz~几百MHz )。因此采用单模激光器的TDLAS 技术具有非常高的光谱分辨率,可以对气体吸收谱的某一特定谱线进行分析,获得被测气体浓度(常被称为单线光谱分析技术)。TDLAS 技术的特点主要表现为:恶劣环境适应能力强;克服了背景气体、粉尘的吸收干扰,测量精度高;不需采样预处理系统,节省了样气预处理的时间和样气在管道内的传输时间,响应速度快,可实现工业过程实时在线管理。九十年代后,由于光通讯发展的需要,半导体激光器和光纤元件发展迅速,性能大大提高,室温工作、长寿命(>50,000 小时)、单模特性和较宽波长范围的半导体激光器被大量地生产出来并投入市场,一些高灵敏度的光谱技术如频率调制(frequency

相关主题
文本预览
相关文档 最新文档