当前位置:文档之家› 求解非线性等式约束优化问题的共轭梯度投影算法

求解非线性等式约束优化问题的共轭梯度投影算法

求解非线性等式约束优化问题的共轭梯度投影算法
求解非线性等式约束优化问题的共轭梯度投影算法

用外点法求解非线性约束最优化问题

题目:用外点法求解非线性约束最优化问题 学院信息管理学院 学生姓名余楠学号 81320442 专业数量经济学届别 2013 指导教师易伟明职称教授 二O一三年十二月

用外点法求解非线性约束最优化问题 摘要 约束最优化问题是一类重要的数学规划问题。本文主要研究了用外点罚函数法对约束非线性规划问题进行求解。对于一个约束非线性规划用罚函数求解的基本思路是通过目标函数加上惩罚项,将原约束非线性规划问题转化为求解一系列无约束的极值问题。本文最后利用c语言编程得到满足允许误差内的最优解。 本文主要对一个约束非线性规划问题的实例,首先利用上述迭代的方法,计算出各迭代点的无约束极值问题的最优解。然后应用c语言编程,得到精确地最优解,需迭代四次次才使得ε≤0.001,得到的最优解为* X=(333 .0)T。 .0, 666 关键词:外点罚函数法非线性规划约束最优化迭代最优解

一、背景描述 线性规划的目标函数和约束条件都是决策变量的线性函数,但如果目标函数或约束条件中含有决策变量的非线性函数,就称为非线性规划。非线性规划与线性规划一样,也是运筹学的一个极为重要的分支,它在经济、管理、计划、统计以及军事、系统控制等方面得到越来越广泛的应用。 非线性规划模型的建立与线性规划模型的建立类似,但是非线性规划问题的求解却是至今为止的一个研究难题。虽然开发了很多求解非线性规划的算法,但是目前还没有适用于求解所有非线性规划问题的一般算法,每个方法都有自己特定的适用范围。 罚函数法是应用最广泛的一种求解非线性规划问题的数值解法,它的基本思路是通过目标函数加上惩罚项,将原约束非线性规划问题转化为求解一系列无约束的极值问题。这种惩罚体现在求解过程中,对于企图违反约束的那些迭代点,给予很大的目标函数值,迫使这一系列无约束问题的极小值点无限的向可行集(域)逼近,或者一直保持在可行集(域)内移动,直到收敛于原来约束问题的极小值点。 外点法的经济学解释如下:若把目标函数看成“价格”,约束条件看成某种“规定”,采购人员在规定的范围内采购时价格最便宜,但若违反了规定,就要按规定加收罚款。采购人员付出的总代价应是价格和罚款的综合。采购人员的目标是使总代价最小,当罚款规定的很苛刻时,违反规定支付的罚款很高。这就迫使采购人员在规定的范围内采购。数学上表现为罚因子足够大时,无约束极值问题的最优解应满足约束条件,而成为约束问题的最优解。 二、基础知识 2.1 约束非线性优化问题的最优条件 该问题是一个约束非线性优化问题,利用外点罚函数法求解该问题,约束非线性优化问题的最优解所要满足的必要条件和充分条件是我们设计算法的依据,为此有以下几个定理。

应用matlab求解约束优化问题

应用matlab求解约束优化问题 姓名:王铎 学号: 2007021271 班级:机械078 上交日期: 2010/7/2 完成日期: 2010/6/29

一.问题分析 f(x)=x1*x2*x3-x1^6+x2^3+x2*x3-x4^2 s.t x1-x2+3x2<=6 x1+45x2+x4=7 x2*x3*x4-50>=0 x2^2+x4^2=14 目标函数为多元约束函数,约束条件既有线性约束又有非线性约束所以应用fmincon函数来寻求优化,寻找函数最小值。由于非线性不等式约束不能用矩阵表示,要用程序表示,所以创建m文件其中写入非线性不等式约束及非线性等式约束,留作引用。 二.数学模型 F(x)为目标函数求最小值 x1 x2 x3 x4 为未知量 目标函数受约束于 x1-x2+3x2<=6 x1+45x2+x4=7 x2*x3*x4-50>=0 x2^2+x4^2=14 三.fmincon应用方法 这个函数的基本形式为 x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) 其中fun为你要求最小值的函数,可以单写一个文件设置函数,也可是m文件。 1.如果fun中有N个变量,如x y z, 或者是X1, X2,X3, 什么的,自己排个顺序,在fun中统一都是用x(1),x(2)....x(n) 表示的。 2. x0, 表示初始的猜测值,大小要与变量数目相同 3. A b 为线性不等约束,A*x <= b, A应为n*n阶矩阵。 4 Aeq beq为线性相等约束,Aeq*x = beq。 Aeq beq同上可求 5 lb ub为变量的上下边界,正负无穷用 -Inf和Inf表示, lb ub应为N阶数组 6 nonlcon 为非线性约束,可分为两部分,非线性不等约束 c,非线性相等约束,ceq 可按下面的例子设置 function [c,ceq] = nonlcon1(x) c = [] ceq = [] 7,最后是options,可以用OPTIMSET函数设置,具体可见OPTIMSET函数的帮助文件。 四.计算程序

无约束优化方法程序

无约束优化方法---鲍威尔方法 本实验用鲍威尔方法求函数f(x)=(x1-5)2+(x2-6)2 的最优解。 一、简述鲍威尔法的基本原理 从任选的初始点x⑴o出发,先按坐标轮换法的搜索方向依次沿e1.e2.e3进行一维搜索,得各自方向的一维极小点x⑴ x⑵ x⑶.连接初始点xo⑴和最末一个一维极小点x3⑴,产生一个新的矢量 S1=x3⑴-xo⑴ 再沿此方向作一维搜索,得该方向上的一维极小点x⑴. 从xo⑴出发知道获得x⑴点的搜索过程称为一环。S1是该环中产生的一个新方向,称为新生方向。 接着,以第一环迭代的终点x⑴作为第二环迭代的起点xo⑵,即 Xo⑵←x⑴ 弃去第一环方向组中的第一个方向e1,将第一环新生方向S1补在最后,构成第二环的基本搜索方向组e2,e3,S1,依次沿这些方向求得一维极小点x1⑵,x2⑵,x3⑵.连接 Xo⑵与x3⑵,又得第二环的新生方向 S2=x3⑵-xo⑵ 沿S2作一维搜索所得的极小点x⑵即为第二环的最终迭代点 二、鲍威尔法的程序 #include "stdafx.h" /* 文件包含*/ #include

#include #include #define MAXN 10 #define sqr(x) ((x)*(x)) double xkk[MAXN],xk[MAXN],sk[MAXN]; int N,type,nt,et; //N--变量个数,type=0,1,2,3 nt,et--不等式、等式约束个数 double rk; double funt(double *x,double *g,double *h) { g[0]=x[0]; g[1]=x[1]-1; g[2]=11-x[0]-x[1]; return sqr(x[0]-8)+sqr(x[1]-8); } double F(double *x) { double f1,f2,ff,fx,g[MAXN],h[MAXN]; int i; fx=funt(x,g,h); f1=f2=0.0; if(type==0 || type==2)for(i=0; i1.0e-15)?1.0/g[i]:1.0e15;

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

五种最优化方法

五种最优化方法 1.最优化方法概述 最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法: 3)是一种函数逼近法。 原理和步骤 3.最速下降法(梯度法) 最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 最速下降法算法原理和步骤 4?模式搜索法(步长加速法) 简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的 是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。

模式搜索法步骤 5.评价函数法 简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min (f_1(x),f_2(x),…,f_k(x)) .g(x)<=o 传统的多目标优化方法本质是将多目标优化中的各分目标函数, 经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权 求合法介绍。 线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼。种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 遗传算法基本流程 的就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤

用混沌搜索求解非线性约束优化问题

2000年8月系统工程理论与实践第8期 文章编号:1000-6788(2000)08-0054-04 用混沌搜索求解非线性约束优化问题 骆晨钟,邵惠鹤 (上海交通大学自动化系,上海200030) 摘要: 提出了一种用混沌搜索求解非线性约束优化的新方法.利用罚函数思想将约束问题无约束 化,再利用混沌的内在随机性与遍历性进行求解.算例仿真结果表明,算法简单实用,性能良好,是解 决非线性约束优化问题的有效途径. 关键词: 混沌;精确罚函数;非线性约束优化 中图分类号: T P301.6 Chaos Search M ethod for Nonlinear Constrained Optimization LU O Chen-zhong,SHAO Hui-he (Departm ent o f A ut omat ion,Shang hai Jiao tong U niver sity,Shanghai,200030) Abstract: A new method based on chao s sear ch for no nlinear constr ained optimizatio n is developed.T he optim izatio n pr oblem is first unco nstrained by virt ue o f no n-differen- tiable ex act penalty functio n,and is fur ther so lv ed making use o f the erg odicity and in- tr insic randomness of chao s.Simulatio n instances sho w that the new metho d is simple and effect ive.Chaos sear ch is a new w ay to solve pr actical nonlinear constra ined opti- mization pr oblems. Keywords: cha os;ex act pena lty function;no nlinear co nst rained optimizatio n 1 引言 对于有约束的非线性规划问题,已经开发出有许多有效算法,如罚函数方法,广义既约梯度法(G RG),逐次二次规划法(SQP)等.特别是SQ P方法在工程领域的大规模优化问题求解中获得了许多成功的应用.但是,上述方法都是基于梯度寻优的思想,要求目标函数和约束条件连续、可微,且往往只能得到局部极值点. 这里提出用混沌解决约束非线性优化问题的新方法.混沌作为崭新的交叉学科,其理论与应用受到包括控制界在内的广泛关注.混沌是存在于非线性动力学系统中的一种较为普遍的现象,混沌系统具有一些独特的动力学性质[1,2].比如,混沌系统具有初值敏感性,初始条件的微小变化会引起输出结果无法估计的巨大差异;混沌是确定性系统自发产生的不稳定现象,使系统在持久性动力性态上表现出类似随机的复杂行为,这种性质被称为内在随机性;某些混沌系统可以在特定范围内按自身规律不重复地遍历所有状态,因此又具有遍历性. 利用混沌进行优化方法的研究是混沌应用的一个新领域.混沌优化方法无须优化问题具有连续性和可微性,又可以在一定范围内遍历求解,有利于找到全局最优解,因此可以克服传统优化方法的缺点.文献[3]提出用混沌载波搜索的优化方法,文献[4]采用混沌搜索与共轭梯度法结合的混合算法,取得了较好的效果.目前关于混沌优化方法研究还比较少,对于有约束的非线性优化的研究就更少.本文将混沌用于带 收稿日期:1998-12-21

五种最优化方法

精心整理 五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3 4 1.2 2. 2.1 1 2 3 2.2 3. 3.1 1 2 3 3.2 4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降

方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤 5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min(f_1(x),f_2(x),...,f_k(x)) s.t.g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。 6.1遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。 种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 6.2遗传算法基本流程 遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤 步1在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;

MATLAB非线性优化fmincon

精心整理 active-set and sqp algorithms不接受用户提供的海塞矩阵,对拉格朗日的海塞矩阵提供一个拟牛顿的近似值; 目标函数估值次数与迭代次数? 优化成功或失败 1、 (1 数( (2 如果 就会导致无限次徒劳的迭代。DiffMaxChange和DiffMinChange选项能影响求解器的改善,它们控制求导估计中有限差分的步长。 (3)从不同的初始点重新开始求解 (4)检查目标函数和约束函数的定义

举个例子,可以检查目标函数和非线性约束函数在某些特定点处返回正确的值。不可行的点不一定导致函数的错误。 (5)对问题进行中心化和标准化 当每个坐标轴对目标函数和约束函数有相同的影响时,求解器更能可靠的运行,对每个坐标轴方向乘以合适的量使得每个坐标轴的影响相同,在特定的坐标轴 (6 (7 2 在可 (1 通过求解一个线性规划问题来找到一个满足界约束和线性约束的点。 i)定义一个目标函数是常值0的线性规划问题 f=zeros(size(x0));%assumesx0istheinitialpoint ii)求解这个线性规划问题看是否有一个可行点 xnew=linprog(f,A,b,Aeq,beq,lb,ub);

iii)如果有可行点xnew,用xnew作为初始点去求解原始问题 iv)如果没有可行点,那说明原始模型建的不好,检查界约束和线性约束。(2)检查非线性约束 在保证界约束和线性约束是可行的之后,检查非线性约束: i)设置目标函数为0,然后求解优化问题,如果能找到一个可行点xnew,令 ii) a. 足。 b. 3 (1)原问题可能确实无界,即存在一系列满足问题约束的点xi,使得limf(xi)=–∞。 (2)检查原问题建模正确,求解器是最小化目标函数,如果想得到最大化,将目标函数乘以-1. (3)试着标准化或中心化原问题。

MATLAB非线性优化fmincon

M A T L A B非线性优化 f m i n c o n Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

active-setandsqpalgorithms不接受用户提供的海塞矩阵,对拉格朗日的海塞矩阵提供一个拟牛顿的近似值; 目标函数估值次数与迭代次数? 优化成功或失败 一、求解失败 1、在到达迭代次数阈值或目标函数估值次数阈值时,求解器没有最小化目标到要求的精度,此时求解器停止。接下来,可以尝试以下方法: (1)设置‘Display’为‘iter’,查看每步的迭代信息,这些信息包括:目标函数(Fvalorf(x)orResnorm)是否是下降的;检查约束越界(Maxconstraint)是否是递减趋向于0;查看一阶优化是否是递减趋向于0;查看置信域半径(Trust-regionradius)是否下降趋向于一个小的值。若其中至少一种情况为是,就表示结果是不断改善的。如果结果是不断改善的,可以采取下边的措施:设置MaxIter、MaxFunEvals比默认值大的值,默认值可以在优化工具箱或求解器的函数参考页的优化表中查看;从最后计算出的点开始重新求解。如果结果没有改善,尝试以下其他的方法。 (2)放松精度 如果TolX或TolFun太小,当求解器达到一个最小值时可能也不会识别到,这就会导致无限次徒劳的迭代。DiffMaxChange和DiffMinChange选项能影响求解器的改善,它们控制求导估计中有限差分的步长。 (3)从不同的初始点重新开始求解 (4)检查目标函数和约束函数的定义 举个例子,可以检查目标函数和非线性约束函数在某些特定点处返回正确的值。不可行的点不一定导致函数的错误。

Matlab的fmincon函数(非线性等式不等式约束优化问题求解)

fmincon函数优化问题 fmincon解决的优化模型如下: min F(X) subject to: A*X <= B (线性不等式约束) Aeq*X = Beq (线性等式约束) C(X) <= 0 (非线性不等式约束) Ceq(X) = 0 (非线性等式约束) LB <= X <= UB (参数x的取值范围) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) fmincon是求解目标fun最小值的内部函数 x0是初值 A b线性不等式约束 Aeq beq线性等式约束 lb下边界 ub上边界 nonlcon非线性约束条件 options其他参数,对初学者没有必须,直接使用默认的即可 优化工具箱提供fmincon函数用于对有约束优化问题进行求解,其语法格式如下:x=fmincon(fun,x0,A,b) x=fmincon(fun,x0,A,b,Aeq,beq) x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub) x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2,...) [x,fval]=fmincon(...) [x,fval,exitflag]=fmincon(...) [x,fval,exitflag,output]=fmincon(...)

关于非线性约束最优化方法-乘子法

非线性约束最优化方法 ——乘子法 1.1 研究背景 最优化理论与方法是一门应用性相当广泛的学科,它的最优性主要表现在讨论决策问题的最佳选择性,讨论计算方法的理论性质,构造寻求最佳解的计算方法,以及实际计算能力。伴随着计算数学理论的发展、优化计算方法的进步以及计算机性能的迅速提高,规模越来越大的优化问题得到解决。因为最优化问题广泛见于经济计划、工程设计、生产管理、交通运输、国防等重要领域,它已受到政府部门、科研机构和产业部门的高度重视。然而,随着人们对模型精度和最优性的要求所得到的优化命题往往具有方程数多、变量维数高、非线性性强等特点,使得相关变量的存储、计算及命题的求解都相当困难,从而导致大规模非线性优化很难实现。因此,寻求高效、可靠的大规模非线性优化算法成为近年来研究的热点。 本文讨论的问题属于非线性约束规划的范畴,讨论了其中的非线性等式约束最优化问题方面的一些问题。 1.2非线性约束规划问题的研究方法 非线性约束规划问题的一般形式为 (NPL ) {}{} m in (),, s.t. ()0,1,2,...,, ()0,1,2,...,n i i f x x R c x i E l c x i I l l l m ∈=∈=≤∈=+++ 其中,(),()i f x c x 是连续可微的. 在求解线性约束优化问题时,可以利用约束问题本身的性质,

但是对于非线性约束规划问题,由于约束的非线性使得求解这类问题比较复杂、困难。因此,我们将约束问题转化为一系列无约束优化问题,通过求解一系列无约束优化问题,来得到约束优化问题的最优解。我们用到的几类主要的方法有:罚函数法、乘子法以及变尺度法。 传统上我们所提出的非线性约束最优化方法一般都遵循下列三个基本思路之一 1 借助反复的线性逼近把线性方法扩展到非线性优化问题中来 2 采用罚函数把约束非线性问题变换到一系列无约束问题 3 采用可变容差法以便同时容纳可行的和不可行的X 矢量 其中源于思路2 的乘子罚函数法具有适合于等式及不等式约束不要求初始点为严格内点,甚至不要求其为可行点对自由度的大小无任何要求等特点。 1.3乘子法 罚函数法的主要缺点在于需要惩罚因子趋于无穷大,才能得到约束问题的极小点,这会使罚函数的Hesse矩阵变得病态,给无约束问题的数值求解带来很大问题,为克服这一缺点,Hestenes和Powell 于1964年各自独立地提出乘子法。所谓乘子法是:由问题的Lagrange 函数出发,考虑它的精确惩罚,从而将约束优化问题化为单个函数的无约束优化问题,它同精确罚函数法一样,具有较好的收敛速度和数值稳定性,且避免了寻求精确罚函数法中关于罚参数阈值的困难,它们一直是求解约束优化问题的主要而有效的算法。 考虑如下非线性等式约束优化问题:

有约束优化问题

分数: ___________ 任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业四 学生姓名: 学号: 提交时间:

一、问题重述 形如下式的寻优问题称为无约束最优化问题,这类问题的最优解称为约束最优解。 min f(x).. (x)0,i 1,...p h (x)0,j 1,...q 0,0i j s t g p q ??≤=?? ==? ?>>? 约束优化问题的最优性条件是,在满足灯饰和不等式约束条件下,其目标函数值最小的点所必须满足的条件。 约束优化设计问题求解方式有两种,间接法和直接法。直接法是在满足不等式约束的可行设计区域内直接搜索问题的最优解和最小值,常用的方法有随机方向法、复合形法。间接法是将优化问题转化为一系列无约束优化问题来求解,常用的方法有内惩罚函数法、外惩罚函数法以及混合惩罚函数法。 本次作业以为例,介绍无约束最优化问题的寻优方法。 二、算法原理 复合形法是求解约束非线性寻优问题的一种重要的直接方法。 复合形法的核心在于可行域内构造的不断逼近最优点的复合形。每次迭代,计算各顶点的目标函数值,找到目标函数值最大的顶点(称最坏点),然后按相应的原则求出目标函数可行的下降点,以此代替最坏点,构成新的复合形。复合形每改变一次,各个顶点就向最优点移动一步,直至满足终止条件,找到最优点。 复合形法的顶点数K 通常取12n K n +≤≤,其中n 表示搜索环境的维度。初始图形的顶点是由设计者确定或者随机产生的,但一定要保证在可行域内。如果随机产生的初始点没有在可行域内,可以通过以下步骤将其调入可行域内。 (1)计算在可行域内点的初始点集中心X (s); (2)将可行域外的点向X (s)靠拢,每次前进间距的一半,直至进入可行域内。 复合行法的终止条件可以有以下几种形式,满足终止条件后,可将最后复合形的好点及其函数值作为最优解输出。 (1)各顶点与好点函数值之差的均方根小于误差限; (2)各顶点与好点的函数之差平和小于误差限; (3)各顶点与好点函数值差的绝对值之和小于误差限。

第三章 无约束最优化方法

第三章无约束最优化方法 本章内容及教学安排 第一节概述 第二节迭代终止原则 第三节常用的一维搜索方法 第四节梯度法 第五节牛顿法 第六节共轭方向法 第七节变尺度法 第八节坐标轮换法 第九节鲍威尔方法 第一节概述 优化问题可分为 无约束优化问题 有约束优化问题 无约束最优化问题求解基于古典极值理论的一种数值迭代方法,主要用来求解非线性规划问题 迭代法的基本思想:

所以迭代法要解决三个问题 1、如何选择搜索方向 2、如何确定步长

3、如何确定最优点(终止迭代) 第二节 迭代终止准则 1)1K K X X ε+-≤ 111/2 21K K K K n i i i X X X X ε++=??-=-≤???? ∑() 2) 11()()()() () K K K K K f X f X f X f X or f X ε ε ++-≤-≤ 3)(1)()K f X ε+?≤ 第三节 常用的一维搜索方法 本节主要解决的是如何确定最优步长的问题。 从初始点(0)X 出发,以一定的步长沿某一个方向,可以找到一个新的迭代点,其公式如下: (1)(0)00(2)(1)11(1)() K K k k X X S X X S X X S ααα+=+=+= + 现在假设K S 已经确定,需要确定的是步长k α,就把求多维目标函数的极小值这个多维算过程中,当起步点和方向问题,变成求一个变量即步长的最优值的一维问题了。即 (1)()min ()min ()min ()K K K k k f X f X S f αα+=+= 由此可见,最佳步长*K α由一维搜索方法来确定 求*k α,使得()()()()()()min K K K K f f X S αα=+→ 一、一维搜索区间的确定 区间[,]a b 应满足 ()(*)()f a f f b α><

无约束最优化直接方法和间接方

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最

求多变量有约束非线性函数 的最小值

9.2.5.2 相关函数介绍 fmincon函数 功能:求多变量有约束非线性函数的最小值。 数学模型: 其中,x,b,beq,lb,和ub为向量,A和Aeq为矩 阵,c(x)和ceq(x)为函数,返回标量。f(x), c(x), 和ceq(x)可以 是非线性函数。 语法: x = fmincon(fun,x0,A,b) x = fmincon(fun,x0,A,b,Aeq,beq) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2, ...) [x,fval] = fmincon(...) [x,fval,exitflag] = fmincon(...) [x,fval,exitflag,output] = fmincon(...) [x,fval,exitflag,output,lambda] = fmincon(...) [x,fval,exitflag,output,lambda,grad] = fmincon(...) [x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...) 描述: fmincon 求多变量有约束非线性函数的最小值。该函数常用于有 约束非线性优化问题。 x = fmincon(fun,x0,A,b) 给定初值x0,求解fun函数的最小值x。 fun函数的约束条件为A*x <= b,x0可以是标量、向量或矩阵。 x = fmincon(fun,x0,A,b,Aeq,beq) 最小化fun函数,约束条件为 Aeq*x = beq 和 A*x <= b。若没有不等式存在,则设置A=[]、b= []。 x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) 定义设计变量x的下界lb和 上界ub,使得总是有lb <= x <= ub。若无等式存在,则令Aeq= []、beq=[]。

无约束最优化方法可变单纯形算法(simplex)Nelder-Mead

无约束最优化方法可变单纯形法(simplex)Nelder-Mead 可爱的馒头 本程序是用C++编写的,从编写的算例来看,应该是没有问题的。所采用的原理和步骤是参考华南理工大学出版社蒋金山等编写的最 优化计算方法第8章第三节可变单纯形法。欢迎各位批评指正。 #include #include #include int i,j; double d[3][100]={{0,1,0,0},{0,0,1,0},{0,0,0,1}},f[100];//d[][]为单纯形的顶点,本算例中未知数个数为3,则顶点个数为4 double g,h,l,q,s=1,t=2,u=0.5,v=0.0001,y=0;//s为反射系数,t为扩展系数,u为压缩系数,v为允许误差 int o,F,r,D,e,lj=0,N=4;//N为顶点的个数,o为最大值点的位置,F为最小值点的位置,r为次大值点的位置 void function1(int e)//求解函数f[e] { f[e]=(d[0][e]-3)*(d[0][e]-3)+2*(d[1][e]+2)*(d[1][e]+2)+(d[2][e]-4)*(d[2][e]-4);//函数为f=(x1-3)^2+2(x2+2)^2+(x3-4)^2,求其最小值 } void function2() { while((++lj)<100)//最大迭代次数 { for(i=0,g=f[i];if[i+1]) { h=f[i+1];F=i+1; } else if(i==0) F=i; } for(i=0,l=f[i];i

无约束优化方法(最速下降法_牛顿法)

第四章 无约束优化方法 ——最速下降法,牛顿型方法 概述 在求解目标函数的极小值的过程中,若对设计变量的取值范围不加限制,则称这 种最优化问题为无约束优化问题。尽管对于机械的优化设计问题,多数是有约束的, 无约束最优化方法仍然是最优化设计的基本组成部分。因为约束最优化问题可以通过 对约束条件的处理,转化为无约束最优化问题来求解。 为什么要研究无约束优化问题? (1)有些实际问题,其数学模型本身就是一个无约束优化问题。 (2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。 (3)约束优化问题的求解可以通过一系列无约束优化方法来达到。 所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。 根据构成搜索方向所使用的信息性质的不同,无约束优化方法可以分为两类。 一:间接法——要使用导数的无约束优化方法,如梯度法、(阻尼)牛顿法、变尺度 法、共轭梯度法等。 二:直接法——只利用目标函数值的无约束优化问题,如坐标轮换法、鲍威尔法单纯 形法等。 无约束优化问题的一般形式可描述为: 求n 维设计变量 []12T n n X x x x R =∈L 使目标函数 ()min f X ? 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 无约束优化问题的求解: 1、解析法 可以利用无约束优化问题的极值条件求得。即将求目标函数的极值问题变成求方 程 0)(min *=X f

的解。也就是求X*使其满足 解上述方程组,求得驻点后,再根据极值点所需满足的充分条件来判定是否为极小值 点。但上式是一个含有n个未知量,n个方程的方程组,在实际问题中一般是非线性 的,很难用解析法求解,要用数值计算的方法。由第二章的讲述我们知道,优化问题 的一般解法是数值迭代的方法。因此,与其用数值方法求解非线性方程组,还不如用 数值迭代的方法直接求解无约束极值问题。 2、数值方法 数值迭代法的基本思想是从一个初始点) 0(X 出发,按照一个可行的搜索方向)0(d ρ搜索,确定最佳的步长0α使函数值沿)0(d ρ方向下降最大,得到)1(X 点。依此一步一步地重复数值计算,最终达到最优点。优化计算所采用的基本迭代公式为 ),2,1,0()()()1(Λρ=+=+k d X X K K K K α (4.2) 在上式中, ()K d r 是第是 k+1 次搜索或迭代方向,称为搜索方向(迭代方向)。 由上面的迭代公式可以看出,采用数值法进行迭代求优时,需要确定初始点)(k X 、搜索方向)(k d ρ和迭代步长K α,称为优化方法迭代算法的三要素。第三章我们已经讨论了如何在搜索方向)(k d ρ上确定最优步长K α的方法,本章我们将讨论如何确定搜索方向)(k d ρ。 最常用的数值方法是搜索方法,其基本思想如下图所示: 0)(0)(0)(*2*1*=??=??=??n x X f x X f x X f M

非线性最优化计算方法与算法

毕业论文 题目非线性最优化计算方法与算法学院数学科学学院 专业信息与计算科学 班级计算1201 学生陶红 学号20120921104 指导教师邢顺来 二〇一六年五月二十五日

摘要 非线性规划问题是一般形式的非线性最优化问题。本文针对非线性规划的最优化问题进行方法和算法分析。传统的求解非线性规划的方法有最速下降法、牛顿法、可行方向法、函数逼近法、信赖域法,近来研究发现了更多的求解非线性规划问题的方法如遗传算法、粒子群算法。本文对非线性规划分别从约束规划和无约束规划两个方面进行理论分析。 利用最速下降法和牛顿法两种典型算法求解无约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。另外给出了阻尼牛顿法,探讨其算法的收敛性和稳定性,求解无约束非线性规划比牛顿法的精确度更高,收敛速度更快。惩罚函数是经典的求解约束非线性的方法,本文采用以惩罚函数法为核心的遗传算法求解有约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。并改进遗传算法,给出适应度函数,通过变换适应度函数,提高算法的收敛性和稳定性。 关键词:非线性规划;最速下降法;牛顿法;遗传算法

ABSTRACT Nonlinear programming problem is the general form of the nonlinear optimization problem. In this paper, we carry on the analysis of the method and algorithm aiming at the optimization problem of nonlinear programming. The traditional methods of solving nonlinear programming problems include steepest descent method, Newton method, the feasible direction method, function approximation method and trust region method. Recent studies found more method of solving nonlinear programming problems, such as genetic algorithm, particle swarm optimization (pso) algorithm. In this paper, the nonlinear programming is analyzed from two aspects: the constraint programming and the unconstrained programming. We solve unconstrained condition nonlinear programming problem by steepest descent method and Newton's method, and get the optimal value through MATLAB. Then the convergence and stability are discussed. Besides, the damped Newton method is furnished. By discussing the convergence and stability of the algorithm, the damped Newton method has higher accuracy and faster convergent speed than Newton's method in solving unconstrained nonlinear programming problems.Punishment function is a classical method for solving constrained nonlinear. This paper solves nonlinear programming problem with constraints by using genetic algorithm method, the core of which is SUMT. Get the optimal value through MATLAB, then the convergence and stability are discussed. Improve genetic algorithm, give the fitness function, and improve the convergence and stability of the algorithm through transforming the fitness function. Key words:Nonlinear Programming; Pteepest Descent Method; Newton Method; GeneticAlgorithm

相关主题
文本预览
相关文档 最新文档