当前位置:文档之家› 利用微机监测设备分析、处理信号设备疑难故障实例

利用微机监测设备分析、处理信号设备疑难故障实例

利用微机监测设备分析、处理信号设备疑难故障实例
利用微机监测设备分析、处理信号设备疑难故障实例

利用微机监测设备分析、处理信号设备疑难故障实例

一、道岔故障

1、某站,上行进站、下行出站信号机经常莫明其妙关闭,由于故障发生在瞬间,难以判断故障范围。利用微机监测设备,查询非正常关闭信号报警信息,首先获得上行进站、下行出站信号机非正常关闭信号的时刻,再用微机监测设备提供的“站场回放”功能查询,发现是该站6/8号道岔多次瞬间失去表示,而且与列车经过有关,这样就把故障范围缩小到道岔表示单元电路的室外部分了。经故障处理人员到现场检查,系该道岔X1、X3线在箱合蛇管处磨损造成断续混线所致。

2、某站值班员汇报5/7#道岔反位操纵不到位。值班员同时反映出现了故障电流,但是,故障处理人员到场进行单机试验,转辙机电气特性均达标。通过微机监测模拟量曲线显示功能,再现当时的5/7#道岔动作电流和道岔启动电源电压曲线综合分析得知:5/7#均为四线制双机牵引道岔,单机试验时故障电流达标,而双机同时出现故障电流时因电缆线路压降增大,导致故障电流减少从而使得道岔密贴不了。

3、12#道岔扳不动故障,通过微机监测道岔动作曲线显示功能,再现当时的道岔动作电流曲线,原因是故障电流小。可是,维修工区说当天作过道岔检修,故障电流为何仍偏小?查阅当天的道岔12#ADQJ的动作记录,证实计表人未操纵过道岔,亦未做任何试验,确认是一起漏检漏修造成的故障

二、轨道电路故障

1、自闭轨道电路“闪红轨”曾使某段自闭设备故障率居高不下,无微监设备前无法弄清真实情况,也就很难找到闪红的主要原因。某站在2001年的18天内“闪红轨”达42次,影响行车2次,闪红时间均是3~4秒。通过微监的模拟量曲线功能观察自闭电子盒功出、滤入电压变化曲线及测试波形,发现了该段普遍存在的模拟电缆造成阻抗失配的问题。(有关文章详见18信息有绝缘自动闭塞轨道电路模拟电缆盒内移应注意的两个问题)

四、信号电源屏故障

1、2002年3月3日,某段维修中心检查微机监测报警信息,发现某站有大量控制电源超标报警信息,再使用微机监测远程实时测量功能,测得控制电源电压21V,立即通知信号工区检查,原来是控制电源电容脱焊,控制电源上并联的甲电池组也过放,引起得地控制电源电压过低。信号工立即处理,防止了必将发生的信号故障的发生。

五、控制台、人解盘故障

1、某站在进行跨越正线长调车时,进路上的咽喉道岔轨道道路不能正常解锁,采取区段人工解锁措施也不能奏效,导致两趟旅客列车分别机外停车和站内正线停车的一般事故,信号工区到场后,汇报故障原因不明。局中心通过微机监测设备提供的“站场回放”功能查询当时的车站作业情况,跨越正线长调车时,车列冒进了区间,是造成咽喉道岔轨道道路不能正常解锁的直接原因,回放信息也证实值班员采取区段人工解锁措施(ZRJD亮,相应的人工解锁盘按钮按下)。要求该段派出技术人员现场查证不能人工解锁的真实原因,经查,系用于区段人工解锁的按钮接点接触不良所致,信号维修人员为推卸检修不良的责任,谎报故障原因不明。

六、电缆故障

1、某信号工区,在一次“天窗修”前,用微机监测系统调阅有关设备测试数据,发现大部分信号电缆对地绝缘有为零的记录,便利用“天窗修”机会积极查找设备隐患点,最后查明原因是1DG送端变压器箱内电缆中的一芯接地,经轨道电路交流127V、220V电源造成大部分信号电缆对地绝缘有为零,换上备用芯后,隐患排除。

七、联锁电路故障

1、某站多次反映单机通过,出站列车进路最后一个区段不能正常解锁。通过使用微机监测的历史开关量查询功能,检查电路的动作时序,系18信息自动闭塞分区轨道电路占用响应时间超标造成的不解锁。(有关文章详见《向18信息移频自动闭塞区间发短列车时进路末岔轨道电路不能正常解锁的原因分析》)

十一、车站值班员操作错误故障

1、2002年1月20日某站,检查运统46电务检修作业登记消记信息发现,25天内值班员登记轨道电路不解锁达48条,到底存在什么问题?经微机监测再现,因闭塞分区占用响应时间超标造成的不解锁6次,其余均是车站调车人员和调机作业没有按照6502操作办法进行导致的不解锁。我们把信息通报运输人员,使其明了不解锁原因,使用人员知道了原因,也就知道怎样操作。

2、2002年1月20日凌晨,路局调度所通知:“某站进站信号发生故障,造成某次通过列车晚点”。经调用微机监测记录数据进行数据回放,该次列车进入接近区段已达十余分钟后值班员才办理通过进路,在此之前,一直没有办理通过进路的操作。我们将此情况上报路局,经路局追查,造成通过列车晚点的真正原因是:凌晨值班员、助理值班员均打瞌睡,没有及时办理进路所致,值班员为推卸责任,谎报调度所:“信号开放不了”。以往,此类情况发生后,信号人员累死累活永远也查不清楚、说不清楚,心里不但没底,还要背隐瞒故障原因的“黑锅”。

十二、其他疑难故障

1、2002年1月2日,彬江站K779道口发生火车与汽车相撞事故,事故调查过程中道口工称:道口信号常报警,无法使用而关闭了道口信号设备。通过彬江站微机监测设备再现,确认道口信号此时运用正常。通过再现也证实道口信号电路确实存在误报的隐患,可以说:如果没有微机设备,电务难脱干系、必背黑锅,同时,隐患也找不出来。既不利于使事故责任者接受惩罚,对铁路运输而言也解决不了存在的隐患。

2、一段时间反映管内道口信号故障率较高。我们统计所有道口信号发生故障信息,同时根据故障登记的时间再现相邻站微机监测信息。发现了大部分人都忽视了的站外调车、电力停电、列车停时过长,轨道车在道口信号接近控制点来回运动等造成道口信号频繁“误”报警的情况。不仅查清了问题,为路局制定道口信号使用办法也提供了有力的依据。

故障应急处理方案

故障应急处理方案 1.电源不正确引发的设备故障。电源不正确大致有如下几种可能:供电线路或供电电压不正确、功率不够(或某一路供电线路的线径不够,降压过大等)、供电系统的传输线路出现短路、断路、瞬间过压等。特别是因供电错误或瞬间过压导致设备损坏的情况时有发生。因此,在系统调试中,供电之前,一定要认真严格地进行核对与检查,绝不应掉以轻心。 2.由于某些设备的连结有很多条,若处理不好,特别是与设备相接的线路处理不好,就会出现断路、短路、线间绝缘不良、误接线等导致设备的损坏、性能下降的问题。在这种情况下,应根据故障现象冷静地进行分析,判断在若干条线路上是由于哪些线路的连接有问题才产生那种故障现象。因此,要特别注意这种情况的设备与各种线路的连接应符合长时间运转的要求。 3.设备或部件本身的质量问题。各种设备和部件都有可能发生质量问题,纯属产品本身的质量问题,多发生在解码器、电动云台、传输部件等设备上。值得指出的是,某些设备从整体上讲质量上可能没有出现不能使用的问题,但从某些技术指标上却达不到产品说明书上给出的指标。因此必须对所选的产品进行必要的抽样检测。如确属产品质量问题,最好的办法是更换该产品,而不应自行拆卸修理。 4.设备(或部件)与设备(或部件)之间的连接不正确产生的问题大致会发生在以下几 个方面: ⑴阻抗不匹配。 ⑵通信接口或通信方式不对应。这种情况多半发生在控制主机与解码器或控制键盘等有通信控制关系的设备之间,也就是说,选用的控制主机与解码器或控制键盘等不是一个厂家的产品所造成的。所以,对于主机、解码器、控制键盘等应选用同一厂家的产品。 ⑶驱动能力不够或超出规定的设备连接数量。比如,某些画面分割器带有报警输入接口在其产品说明书上给出了与报警探头、长延时录像机等连接的系统主机连成系统,如果再将报警探头并联接至画面分割器的报警输入端,就会出现探头的报警信号既要驱动报警主机,又要驱动画面分割器的情况。 解决类似上述问题的方法之一是通过专用的报警接口箱将报警探头的信号与画面分 割器或视频切换主机相对应连接,二是在没有报警接口箱的情况时,可自行设计加工信号扩展设备或驱动设备。 5.视频传输中,最常见的故障现象表现在监视器的画面上出现一条黑杠或白杠,并且或向上或向下慢慢 滚动。因此,在分析这类故障现象时,要分清产生故障的两种不同原因。 要分清是电源的问题还是地环路的问题,一种简易的方法是,在控制主机上,就近只接入一台电源没有问题的摄像机输出信号,如果在监视器上没有出现上述的干扰现象,则说明控制主机无问题。接下来可用一台便携式监视器就近接在前端摄像机的视频输出端,并逐个检查每台摄像机。如有,则进行处理。如无,则干扰是由地环路等其它原因造成的。 6.监视器上出现木纹状的干扰。这种干扰的出现,轻微时不会淹没正常图像,而严重时图像就无法观看了(甚至破坏同步)。这种故障现象产生的原因较多也较复杂。大致有如下几种原因: ⑴视频传输线的质量不好,特别是屏蔽性能差(屏蔽网不是质量很好的铜线网,或屏蔽网过稀而起不到屏蔽作用)。与此同时,这类视频线的线电阻过大,因而造成信号产生较大衰减也是加重故障的原因。此外,这类视频线的特性阻抗不是75Ω以及参数超出规定也是产生故障的原因之一。由于产生上述的干扰现象不一定就是视频线不良而产生的故障,因此这种故障原因在判断时要准确和慎重。只有当排除了其它可能后,才能从视频线不良的角度去考虑。若真是电缆质量问题,最好的办法当然是把所有的这种电缆全部换掉,换成符合要求的电缆,这是彻底解决问题的最好办法。

设备事故故障案例分析

一、故障现象: 接调度通知,1#炉倾动有问题,随即晚班电工赶到现场1#炉操作工反映炉子零位有时候不正,倾动有时无动作,电工就打开电脑检修画面,氧枪等待点的信号有,炉子炉前炉后零位信号也都有,打电话通知白班上来,白班一上来马上更换零位接近开关,后恢复正常。 二、故障原因: 1.1#炉零位接近开关失灵是造成此次事故的主要原因 2.值班电工与生产单位协调不力以及信息汇报制度执行不够是 造成此次事故扩大的又一原因 三、处理方法: 1.严格按照定期更换周期对直接影响生产的重要电气元件进行定期更换。 2.对一些设备死角或长期没有更换过的并对生产有影响的更换元件利用检修时间进行更换。

一、故障现象: 调度通知晚班电工2#炉4#振动仓有一振动电机掉下,电工随即赶到现场发现是后新增振动电机(不影响生产)经检查电机发现电机地脚断裂,固定螺丝退出。 二、故障原因: 1.电机地脚断裂,固定螺丝退出是故障的直接原因 2.电机质量差是故障的间接原因 3.白班点检不到位时故障的主要原因 三、处理方法: 1.加强点巡检力度。 2.加强对备件验收的力度。 3.备件不合格的坚决不上线。

2#炉补水阀事故案例 一、故障现象: 电工接调度通知,1#炉汽包水位低报警,氧枪自动提枪,而且不能下枪。于是电工赶到现场,发现2#炉汽包补水阀电机温度很高,而且一开就跳闸,于是就对线路和电机进行测量检查,发现线路正常,电机烧坏。于是马上通知班组人员拿电机过来进行更换,更换完毕后对关到位限位也进行了调整,开到位也检查后反复试车后正常。 二、故障原因: 1.调整限位时发现关到位限位较后导致电机过载是造成此次事 故的主要原因。 2.空开容量过大,导致电机过负荷时不能有效跳闸进行保护。 三、处理方法: 1.规范调限位的程序,在进行调限位时手动盘到位后再往回盘两圈,此点定为限位点。 2.现使用16A的空开,把空开容量降低,改为3A的空开。

微机监测设备的常见故障处理

微机监测设备的常见故障处理 前言:现场电务维护人员不仅要能够运用微机监测系统来获取信号设备的运用信息,也要对微机监测设备本身有一定的了解,并具备一些简单的故障判断和处理技能。在此,将一些微机监测设备常见故障的处理方法向大家做一介绍,以便大家参考。 一、计算机发生?死机?的分析与处理 操作系统崩溃,出现?蓝屏?:主机启动后,出现?蓝底白字?的提示信息,上面为?STOP……?。可以重启工控机,若正常,说明CPU风扇故障,致使CPU散热不良造成;若非CPU风扇故障,则说明操作系统有问题,系统文件丢失或硬盘损坏等,只能重新安装操作系统、;若操作系统运行正常,在监测程序界面中,用鼠标点击某项菜单或菜单切换时,反映缓慢。出现此种现象的原因可能有如下几个方面: (1)操作系统所安装的磁盘剩余空间不足。如果剩余空间较小,及时删除与监测无关的其他文件,也可以再对其进行?磁盘碎片整理?; (2)监测程序所在区,数据占用空间太大,可使用空间不足。可请专业人员适当修正数据存储量,同时再对其进行?磁盘碎片整理?处理。 (3)CPU风扇损坏,只有更换CPU风扇。 二.开机后,主机不能通过自检 开机后,一直?嘀、嘀……?报警,不能进入系统。故障原因为内存条与主板插接不良。 三. 绝缘值不正确 (一)某些电缆微机测试值与摇表测试值不一致,原因如下: 1. 站场是动态的,道岔的转换,信号的开放与关闭,区段的空闲与占用都随时间变化。实际应用中发现道岔定位时绝缘良好,反位

时不好;信号关闭时绝缘良好,开放时不好;区段空闲时绝缘良好,过车时不好;电缆绝缘值亦随天气有关,部分电缆早上、中午测试值变化较大;雨天、晴天绝缘值变化较大。 2. 测电缆绝缘时,防雷设备如没甩掉,将会有很大影响(实际测试时防雷设备必须甩掉)。 在现场遇到测试值不一致时,应检查有无上述情况发生的可能。 (二)电缆绝缘实际测试值正常,而微机测试值全为0兆欧,或全大于20兆欧 微机监测电缆对地绝缘电阻如同摇表摇测,都是将500V电压加到该电缆上测试其对地绝缘电阻。需知,绝缘测试组合E-05-1端子为测试绝缘及电源对地漏流的地线;E-05-2→500V+与E-05-3→500V-之间的500V电压,测试时才有,不测试时则无。当发现绝缘值不对时(比如,都大于10M)可先查看500V是否有(用万用表直流档测量端子E-05-2和E-05-3,或者C0-D2-03-1和C0-D2-03-2之间的电压),若500V没有了,可查看绝缘单元插接是否良好,否则就是绝缘单元坏了;若500V正常,那有可能是大地线没接好(E-05-1),或者开出板(C0-D3)工作不正常,或者是24-环线(每层06-1和C1-D0-B12)没接好。 若测试值全部为0MΩ时,则可能为综合采集机模入板对应路的芯片4051损坏;JY-LL-DS单元中芯片AD202损坏;E-05-2与E-05-3短路或绝缘不好。 若测试值全部大于20M时,则可能为500V单元没有220V输入电压或无500V-输出电压;E-05-1地线断;漏流盒接线端子3接地;E-05-3(500V-)接地或与地线之间绝缘不好;分线盘的地线与微机监测的地线E-05-1不共地。 检查500V单元220V输入电压如图所示(因目前微机监测图纸设计很不规范,下图在工区使用图册中原理图没有,仅在配线图中显示,特别是在设备有问题进行查找时,下图尤为重要):

信号设备故障分析与处理

信号设备故障分析与处理 一、任务在安全的基础上提高运输效率。安全是铁路运输的生命线,是铁路管理水平、人员素质、设备质量、技术装备等的综合反映。作为铁路主要技术装备的铁路信号设备,在保证行车安全、提高运输效率、传递行车信息等方面起到了不可替代的作用。改革开放以来尤其是近几年,铁路部门在积极引进国外先进技术的同时,也自主研发了一大批新技术、新设备,铁路信号设备正在向数字化、网络化、综合化、智能化发展,促进了铁路的提速和扩能,推进了铁路的跨越式发展。 二、素质要求信号工作的好坏直接关系到人民生命财产的安全。信号设备一旦发生故障,将对铁路运输带来直接影响。因此,要处理好信号设备故障,必须要有高度的事业心、强烈的责任感和熟练的业务技能。当信号设备发生故障时,能应急处理,较快地判断出故障的大致范围,查找方法正确,处理方法得当,做到机智、沉着、果断、迅速、准确。要达到这些要求,必须刻苦钻研技术,熟悉设备性能、位置,熟悉电路,熟悉处理方法;必须有实事求是的科学态度。在处理信号设备故障时,既会有成功的经验,也会有失败的教训,

要学会及时总结正反两个方面的经验教训,逐步摸索和积累经验,找出规律,防止信号设备故障的重复发生。1.要熟悉管内设备的分布情况以及电源的配置,电缆走向、端子的使用规律等。2.要熟悉管内设备的原理、性能、规格及技术标准.3.要熟悉管内设备的电路图,跑通电路图、看懂配线图.4.要会正确使用各类工具仪表。5.要遵守处理故障时的有关规定,并按程序进行。6.要能熟练地运用各种查找故障的方法。 三、故障处理方法(一)信号设备故障的分类1、按故障的稳定性分(1)稳定型设备故障。设备故障发生后,设备故障状态下的电气特性保持稳定(电流、电压)。如轨道电路、道岔表示、信号机红灯点灯等。

铁路信号微机监测

目录 第一章概述-------------------------------------------- 1 第二章基本技术条件---------------------------- 3 一模拟量在线监测------------------------------ 3 二开关量在线监测------------------------------ 6 三其他监测内容-------------------------------- 6 四故障报警------------------------------------ 6 五技术要求------------------------------------- 7 第三章监测电路------------------------------------------------- 9 一开关量采集电路------------------------------- 9 二轨道电路的监测------------------------------- 11 三道岔的监测----------------------------------- 12 四灯丝断丝的监测------------------------------- 15 五区间信号点的监测---------------------------- 16 六电源屏的监测--------------------------------- 17 七电缆绝缘的监测------------------------------- 17 八电源对地漏流的监测--------------------------- 18 九熔丝断丝的监测------------------------------- 18 第四章 TJWX-2000型信号微机监测系统功能-------- 20 一测试部分------------------------------------- 20

信号设备故障应急处理预案

信号设备故障应急处理预案 1、编制目的: 为了认真贯彻《中华人民共和国安全生产法》、《中华人民共和国铁路法》、《铁路行车事故处理规则》、《铁路行车救援规则》等法律法规,保障电务设备应急抢险工作及时、迅速、有序、安全的进行,促进各级抢险人员树立大局观念,在确保联锁关系正确和保证安全的前提下,最大限度的减少对运输的影响,积极有序的开展抢险工作,特制定本预案。 2、工作原则: 及时报告原则 各级电务人员接到设备故障或有关时间通知后,在迅速采取措施处理的同时,应立即向段调度汇报,不得拖延及隐瞒不报。 设备及时停用原则 发生一时处理不了设备故障,应立即登记停用,经车站值班员同意后方可进行抢修。 信息畅通原则 发生较大故障时,现场必须有专人收集故障概况及处理进度,并保持预调度的联系,及时反馈有关信息。 统一指挥原则 现场处理人员要服从现场指挥人员的统一指挥,严禁擅自行动,杜绝违章指挥。 安全第一原则

在遇到事故(故障)时,要采取一切应急安全措施和手段,压缩延时,并确保在处理过程中不发生人身安全方面的问题,如更换配线等影响联锁关系时,必须进行实验并确认无误后,方可交付使用。 遵章守纪原则 故障处理过程中,必须严格执行“十二严禁”、“三不动、三不离”等原则和规定,杜绝在处理过程中扩大故障范围和故障性质,杜绝利用违章手段处理故障。 三、故障处理要求: 1、对于计算机联锁、自动闭塞、微机监测等微电子设备故障。本站30分钟内修复,外站及区间1小时内修复。 2、对于信号电缆故障。30分钟内判定电缆故障,1小时内判定故障点,3小时内修复。 3、对于列车挂坏、偷盗及其它原因造成的室外信号设备故障,单项设备时2小时内修复;多项设备故障,工务修复后2小时内修复。 四、故障处理具体措施: 1、依据“先停用,后修复;先试验,后交付”的基本原则,从设备故障停用汇报、调度指挥、人员组成、出动时间、图纸图表、器材器具、交通工具、通信手段、监控办法、处理程序、临时措施到交付使用严格按照段的相关规定执行。 2、故障处理要从保证基本行车条件入手,先恢复基本列车

微机常见故障分析和处理

第7章微机常见故障分析和处理 一、选择题(请选择一个或多个选项) 1.微机加电开机后,系统提示找不到引导盘,可能是(ACD )。 A.主板CMOS中硬盘有关参数的设置错误 B.显示器连接不良 C.硬盘自身故障 D.硬盘连接不良 2.如果一开机显示器就黑屏,故障原因可能是( ACD )。 A.显卡没插好B.显示驱动程序错 C.显示器坏或没接好D.内存条坏或没插好 3.微机运行中突然重新启动,可能出现的问题是( ABC )。 A.CPU B.主板C.软件D.显示器 4.引起内存故障的原因很多,如可能发生( BCD )。 A.内存条温度过高,暴裂烧毁 B.内存条安插不到位,接口接触不良 C.使用环境过度潮湿,内存条金属引脚锈蚀 D.静电损坏内存条 5.下面有关硬盘故障的论述,正确的是( BCD )。 A.硬盘故障不可能影响微机大型应用软件的使用 B.硬盘故障会使微机无法正常启动 C.硬盘故障会使微机找不到引导盘 D.硬盘故障会使微机的数据或文件丢失 6.微机正常使用过程中,出现死机现象,不可能的原因是( ABD )。 A.声卡损坏B.存储器没有安装或检测不到硬件 C.CPU温度过高,散热器工作不良D.检测不到显示器或显卡损坏 7.微机运行一切正常,但是某一应用软件(例如:3D MAX)打不开,或不能使用,引发该 故障的原因可能的是( ABD )。 A.软件被破坏B.感染病毒 C.操作系统有故障D.系统资源严重不足 8.微机组装完成,加电开机后发现系统时间不对,经调试关机后重启还是不对,最可能的 原因是( D )。 A.系统不正常B.内存故障 C.CPU工作不良D.主板CMOS的电池失效 9.引起硬盘故障的原因有很多,可能发生故障的原因有(ABD )。 A.硬盘磁介质损坏,磁道受损B.硬盘主从跳线设置错误 C.温度过高使内部磁盘爆裂D.硬盘排线与主板插座接触不良 10.微机出现“死机”故障,引发该故障的原因可能是( ACD )。 A.计算机感染病毒B.鼠标没有安装 C.内存发生故障D.CPU散热器损坏 11.下面有关内存故障的论述,正确的有(BCD )。 A.内存故障基本不影响微机的正常工作 B.内存故障会使微机无法启动并不断警报 C.内存故障会使微机在启动过程中死机 D.内存故障会使微机启动后,屏幕出现乱码或花屏

微机监测故障处理

微机监测故障处理

常见故障处理方法及实例 1 如何处理采集机故障 1.1 当采集机发生故障时系统将会弹出采集机状态图进行报警,如下图所示采集机上竖线为灰色的表示该采集机故障,如为绿色表示该采集机正常。 1.2 首先观察该采集机的指示灯是否有显示,如果没有则说明电源模块损坏,可进行更换。 1.3 观察该采集机的指示灯显示。如果开关板的工作灯闪烁则说明该开关板故障,如果模拟板的工作灯闪烁则说明该模拟板故障,如果所有工作灯闪烁则是CPU板故障。 1.4 更换故障板。注意:新板的地址开关应与老板保持一致,对于CPU板还应注意原CPU 板上是否有CAN总线电阻跳线,如有应将其移至在新板上。更换完CPU板后必须将该采集机重新设置一遍。 故障实例: 电源电压无法采集,电源采集机灭灯,经检查为电源供电机电源模块故障,更换后恢复。 2 如何处理CAN总线故障 CAN总线的布线在理论上应该是长蛇式,即一头是工控机,另一头是CAN总线尾端的一个采集机(封124Ω终端电阻),用万用表测CAN总线间的阻抗应为60Ω左右(所有采集机应关电)。 但各电务段下属的信号工区在实际施工布线时,有时会布出树形和环形两种CAN总线结构。环形结构本身是一种错误,必须从中间将环断掉,将多余的CAN总线去除,形成开始所说

的长蛇式。 树形结构是在长蛇式基础上从中间分出一至两个“树枝”,这时应找出“枝头”,在这个采集机封124Ω终端电阻,CAN总线阻抗这时应小于66.2Ω。如“枝头”不封电阻,CAN总线有时状态不稳定。 问题1 CAN总线过长(超100米)产生延时,协议发生混乱,使远端采集机无法设置和测试。 解决方法:线尽量取直,剪除多余盘线。 问题2 CAN总线的布线中间断线,从断点靠近工控机的采集机状态正常,断点以远的采集机状态不对,即虽然采集数据的绿灯始终在闪烁,但发射信息的红灯永远不亮。 解决方法:先将所有采集机关电,用万用表的200Ω电阻档测每个采集机后面的CAN总线,顺序是从靠近工控机的采集机向远延伸,先是测量值为120Ω左右,一直找到阻值为无穷大时,即已找到了断点,重新焊接(所有的CPU板要拔出),然后插好CPU板,再用万用表测CAN总线,应为60Ω左右,这时问题应已解决,开采集机条件应能上来。 采集机发数据工控机收不到;或给采集机设置参数, 而采集机不响应。一般这类问题可由三个因素造成: ①采集机母板到端子板的CAN总线接触不良; ②CPU板上的80C250片子损坏; ③CPU板上的8位地址开关个别位有损坏的. 工控机中的CAN总线卡的说明 CAN总线卡上共有四个红绿发光二极管,中间的两个红绿发光二极管是接收灯,即接收到采集机发送来的数据时, 中间的两个发光二极管闪亮;两边的两个红绿发光二极管是发射灯,当工控机向采集机发送指令时,两边的发光二极管闪亮。

城市轨道交通信号设备故障应急解决对策

城市轨道交通信号设备故障应急解决对策 发表时间:2019-07-22T14:59:28.853Z 来源:《基层建设》2019年第12期作者:匡超 [导读] 摘要:城市轨道交通信号设备是保证列车安全运行的关键设备。 云南京建轨道交通投资建设有限公司云南昆明 650228 摘要:城市轨道交通信号设备是保证列车安全运行的关键设备。城市轨道交通标志着现代城市文明的发展,为保证城市轨道交通安全运行,保证人们出行安全,就必须要保证城市轨道交通信号系统的安全可靠。在城市轨道交通建设运行过程中,地铁信号系统的安全关系着地铁的运行安全,关系着现代化城市交通事业的发展。在实际运行中,城市轨道交通信号设备难免会出现故障,一旦出现故障将会影响轨道交通安全,因此,加强城市轨道交通信号设备故障的应急措施,对于保障轨道交通运行的安全具有重要意义。 关键词:城市轨道;信号设备;应急处理措施 引言 近年来,我国城市化进程逐渐加速,而交通问题逐渐成为了城市发展的巨大阻碍。城市轨道交通作为一种新型交通工具,极大缓解了城市交通的压力,不仅为人们出行带来了便捷,而且在城市节能减排方面的贡献同样十分重要。基于地铁交通人流量大,而且又是人们关注的焦点,因此任何涉及安全方面的问题,都不容忽视。为了确保行车安全,地铁运营包含了ATO、ATS和ATC等自动系统,进而能够实时地确保对电子设备信息的控制和处理。然而电子机械故障的发生在所难免,作为一种预案处理机制,地铁一旦出现信号统故障,行车组织就需要及时、高效并有条不紊地应对,以确保信号系统故障下行车的持续安全和稳定。 1城市轨道交通信号控制系统概述 城市轨道交通一般采用移动闭塞制式或准移动闭塞制式实现区间控制。准移动闭塞的基本概念建立在采用轨道电路检测列车位置的基础上。在准移动闭塞制式中,列车只知道自己在轨道电路中所处的准确位置(通过车载里程仪和轨道区段分割点同步确定),而不知道前行列车在轨道电路中的具体位置。 移动闭塞是一种基于通信的列车自动控制系统,列车和地面控制设备之间通过现代通信传输技术,该系统不依靠轨道电路,而是采用交叉感应电缆环线、漏缆、裂缝波导管以及自由空间波(天线)等方式实现车地、地车间双向数据传输,列车主动定位并传给轨旁设备,这样轨旁信号设备可以得到控制区内每一列车连续的位置信息和列车运行其它信息,并据此计算出每一列车的运行权限,并动态更新发送给列车,列车根据接收到的运行权限和自身的运行状态计算出列车运行的速度曲线,车载设备保证列车在该速度曲线下运行。 1.1信号系统构成方式 城市轨道交通系统主要由正线ATC系统与车辆段联锁系统构成。 1.2停车点防护控制 城市轨道交通信号控制系统是轨道交通运行安全的重要保障,在停车点防护控制设计方面,城市轨道交通的安全停车点是根据危险点进行定义的。危险点即列车超越后可能发生危险的临界点,需要在其前方设置安全防护区段。其控制原理是根据对列车速度的检测结果,计算出紧急制动曲线,确保列车不会超越危险点。同时可以在防护区段设定滑行速度值,使列车在制定停车点前停下。 1.3速度检测与超速控制 城市轨道交通信号控制非常重视列车速度检测,并采取超速防护(ATP)措施,对列车行驶速度进行限制。超速防护系统的速度限制功能一般分为两种,即固定限制和临时性限制。其中,固定速度限制功能通过设置最大允许速度,对列车的正常行驶速度进行控制,具体设计值取决于轨道线路参数。临时速度限制功能则是在线路维修和施工时采取的临时限速措施。通过采用超速防护系统,可实现对列车行驶速度的严密监控,一旦其行驶速度超过限制,会立即发出警告,并启动紧急制动措施,确保列车行驶的安全性。 1.4列车运行距离测量控制 列车运行距离测量控制也是轨道交通信号控制的一个重要内容,且与列车速度控制有密切的关系。目前城市轨道交通采用列车行驶速度的自动控制系统,由系统自动完成测速和测距工作。在列车轮轴上安装测速传感器,可以实时测量列车即时行驶速度。通过采用计算机系统进行计算,自动生成速度曲线。 2城市轨道交通信号设备故障概述 轨道交通信号设备可以分为四类:计算机联锁系统设备、列车自动驾驶设备、列车自动防护设备和列车自动监督设备。 计算机联锁系统设备主要分为轨旁设备和车站设备。其中轨旁设备负责实现与轨道有关的机械动作,包括信号机、转辙机等设备。车站联锁设备负责对全线路的信号机和道岔进行控制,包括联锁计算机、各类控制模块和输入输出模块等。列车自动驾驶设备包括自动驾驶CPU、交换机和车载无线天线等用于传输列车的自动控制信息,以此实现轨旁设备和车载设备之间的通信。列车自动防护设备分为车载设备和地面设备两个部分包括轨旁计算机、数据存储单元、编码器和测速雷达等,实现对列车的安全控制。列车自动监督设备包括数据库服务器、通信处理器、ATS中央网络设备等,用于监督各设备的运行情况,显示信号系统运行状态信息。 可以看出,轨道交通信号设备种类多、结构复杂,而且其故障类型多,故障维修困难。根据主要轨道交通信号设备进行故障分类可将故障分为37个大类;根据故障现象分类可将故障分为300个中类;按故障原因分类可将故障分为968个小类。 目前故障处理的总体流程可以总结为:(1)查看列车自动监督设备所显示的报警信息;(2)查看报警点所在位置的设备状态;(3)测量故障点设备的电气参数,并分析故障原因;(4)对故障的电路元件进行维修或替换;(5)在维修完成后对线路进行测试,并对报警信息进行复位;(6)对故障进行统计和收录。 3浅析城市轨道交通信号设备故障应急处理组织方案 随着现代化的发展,城市轨道交通信号系统的应急管理也在朝着综合管理、全过程管理的方向迈进,形成了预防、准备、响应和恢复4个阶段的应急管理处理措施。这4个流程不是相互割裂的,而是动态、连续、牵一发动全身的关系。信号系统故障下,地铁行车存在着极大的安全隐患,因此信号人员与行车指挥配合至关重要。 地铁运行遇到信号系统故障时,列车驾驶员首先要保持冷静,并在第一时间内限速,以确保列车的安全,这样能够及时采取制动措施,有利于防止追尾等重大安全事故的发生。与此同时,列车驾驶员还要高度集中,妥善自如地应用平时模拟的处理方法。各工作人员还要坚持行车组织的基本原则,即先通后复的理念。首先要确保列车能够安全顺利到达站台,之后在通过指挥使停车时间尽量减少,从而推

信号设备非正常情况应急处置.

信号设备非正常情况应急处置 一、25HZ轨道电路故障非正常情况 A非正常情况应急处置流程及措施 (1)室内外故障判断:在送、受端分线盘(或测试表头处)测量电压、电流值来判断。 1.受端无电压、电流,测试送端电压,有电压,故障在室外。 2.受端无电压,电流,测试送端电压,无电压,故障在室内,检查送端电源。 3.受端无电压,有电流,故障为室内短路。重点检查防雷元件(拔下防雷不影响轨道电路工作) 4.受端有电压,电压较正常值略高,室内开路故障。 5.受端有电压,电压为正常值一半(11V左右),室内防护盒(HF3-25等)开路故障。 (2)室外故障判断:不要盲目打开箱盒,就近测量送、受端轨面电压、电流值来判断。 测试结果有6种(含半混线及半断线): 1.无电压、无电流,故障在送电端方向,继续往送电端判断; 2.无电压有电流,故障为短路,(变压器II次电压=电阻电压)故障点在受电端方向,查找电流走向即可找到故障点,优先检查绝缘是否破损。 3.有电压无电流,故障为开路,(变压器II次电压=轨面电压,电阻无电压)故障点在受电端方向,逐段测试电压查即可找到故障点。 4.有电压有电流,电压较平时要低,电流较平时高(轨变箱内电阻压降明显增大),故障为半混线状态。 处理方法: ①检查送受端绝缘; ②用轨道电路诊查仪顺钢轨检查电流,当发现电流变化时即故障点(重点检查轨距杆、道岔安装绝缘); ③检查防腐线与扼流箱绝缘。 5.有电压有电流,电压较平时要高,电流较平时低(轨变箱内电阻压

降明显减小),故障为半断线状态。 处理方法:顺轨道电路逐段测量电压值即可找到断线点,重点检查防 腐线、导接线等连接部位的连接状况。 6.有电压有电流,电压、电流较平时要低,故障点在测试点至送电端 方向,继续测试判断查找。 (3)当故障判断为箱盒内部时可打开箱盒(XB)。 1.检查断路器是否跳闸。 2.检查各部端子连接良好,逐段测试即可找到故障点。 (4)当故障判断为扼流箱时可打开箱盒(BE25)。 1.轨变箱电压已送出,扼流箱无电,故障为扼流箱—轨变箱电缆断线, 倒备用电缆即可。 2.扼流箱有电,轨面无电,故障为防腐线断线。 B非正常情况应急处置注意事项 1.控制台显示全站红光带,一般为电源故障,检查电源屏和轨道屏保险。 2.控制台显示某一个咽喉红光带,检查该咽喉轨道电源及GJ的KZ、KF 保险。 3.控制台显示几个区段同时出现红光带,首先观察是否在同组合架内, 检查本组合零层KF保险是否完好。 4.若相邻两区段同时出现红光带,分线盘送电正常,应重点检查区段 分割绝缘。 5.开路故障应注意检查“三线”,即轨端接续线、道岔跳线和变压器箱 连接线。若从送电端至受电端顺序查找,则电压突然下降之处是故障点; 若从受电端至送电端顺序查找,则电压突然升高之处是故障点。 6.用钳型电流表查找短路故障时,若在同一线路上,电流从某一点突 然变小时,则此点为短路点的其中之一,再从另一线路上查找另一点即可。 7.可能造成红光带的因素:轨道绝缘破损、道岔安装装置短路、钢轨引接线断线(虚接)、电缆故障、道床漏泄过大、瞬间大电流冲击、室内外器材故障等。 8.变压器箱盒损坏需重新配线时,无标准电缆、配线的情况下,可采用非

信号微机监测系统施工开通后的故障处理

信号微机监测系统施工开通后的故障处理 铁路信号微机监测系统是保证行车安全、加强信号设备结合部管理、监测信号设备状态、发现信号设备隐患、分析信号设备故障原因、指导现场维修、反映设备运用质量、辅助故障处理、提高电务段信号设备维护水平和维护效率的重要设备。因此在信号设备大修、改造中要同步装备信号微机监测系统,现重点分析了现场施工开通后发现的监测系统故障和设备缺点借以提高信号微机监测系统的设备质量和运用效果。 标签:微机监测系统;轨道电路电压曲线;道岔电流曲线 在现场施工中任务量大、时间紧,所以在信号设备大修改造中为了确保信号设备的顺利开通,对微机监测系统在施工时所出现施工不认真或者是出现问题时拖延到开通后处理。但是由于微机监测系统是信号维修人员预防设备故障和解决设备问题的必要设备之一,因此在施工后必须对微机监测设备进行认真的调试,确保微机监测数据的准确。下面笔者就近一段时间发现并处理的微机监测系统故障为例,分以下几个方面仅供大家参考。 1 轨道电路电压曲线及相位角方面的故障案例 1.1 平旺站轨道电路日曲线在日常巡视中发现,25DG和31DG曲线在分路时均降为14V左右不归0V,并且两个区段监测电压与实际值相差1-2V左右,观察轨道电路电压相位综合采集器电源、工作和通讯表示灯均正常,并且同一采集器其他区段电压与实际一致,后仔细通过微机监测回放功能查看发现当其中一个区段占用分路时,两个区段均下降至14V左右,又要点进行分路试验,结果相同,判断为两个区段采集线有一根互相交叉,相互影响监测结果。因竣工图中没有微机监测电路配线图,所有按照区段排列位置在微机监测组合数线确定两个区段采集线配线位置,通过摘线试验确定后,联系要点试验倒线后恢复。 注:轨道采集器,一个采集器负责7个区段的采集,哪条采集线是哪个区段,可以通过数线来判断,第一位采集器负责第1至7个区段,第二位采集器负责第8至14个区段,以此类推。由于多数站微机监测电路,竣工图中没有配线图所以处理时需要自己来找线。施工图一般有配线图,有可能的话工区保留施工图备查。 1.2 大南轨道电路监测有大约一半轨道电路相位角不准。经分析原因大南站是由两套电源屏供电的,而微机监测只采集其中一个电源屏110V局部电源做为标准进行相位对比。处理过程:先在微机监测机上查出相位角不对的区段位置,然后在组合内数线查找确认区段采集线位置,制定处理方案。天窗点内,将轨道电路区段采集线物理位置更改,因每个采集器采集7个区段,将两个电源屏供电的两组区段分在不同采集器上,断开相位角不正确的一组区段采集器上的110V 局部电源,然后从另一电源屏引入110V局部电源,将110V局部电源接入这组区段采集器,相位角采集数据恢复。由于调整了6个区段采集线的物理位置所以

信号设备故障处理

信号设备故障处理 一、故障分类 1、按故障数量分类:单一故障和叠加故障。 ①、单一故障:同一性质的电路中只存在一个故障,此类故障现象较为明显,在日常工作中经常发生,故障现象比较容易分析。 ②、叠加故障:同一性质的电路中存在一个以上的故障,此类故障在设备使用中较为少见,在施工及新开通的设备中较为多见。此类故障较复杂,体现出的现象也各不相同,分析起来较复杂。 2、按故障现象分类:非潜伏性故障和潜伏性故障 ①、非潜伏性故障:通过信号设备的自检能力,在发生故障之后能以一定的形式表现出来,比如道岔不动、无表示、轨道电路红灯等。 ②、潜伏性故障:只有在使用该部分电路或器材时,才能发现的故障,不能直接通过自检体现出来,比如方向电路的辅助办理、反向发车表示器断丝,此类故障危害较大。 二、故障处理原则 1、信号设备发生故障时应积极组织修复,有以下三种情况: ①、遇一般故障尚未影响设备使用时,信号维修人员应

在联系登记后会同车站值班员进行试验,判明情况,查找修复。调度集中区段要转为非常站控。 ②、如在试验中发现严重缺陷,危及行车安全一时无法排除,应通知车站值班员(应急值守员),并登记停用。 ③、遇已影响设备使用的故障,信号维修人员应首先登记停用设备,然后积极查找原因、排除故障、尽快回复使用。如不能判明原因。应立即上报,听从上级指示处理(上报现象、处理情况)。 2、当发生与信号设备有关联的机车车辆脱轨、冲突、颠覆等重大事故时,信号维修人员应会同值班站长记录设备状态,派人监视保护事故现场,但不得擅自触动设备,并立即报告电务段,以免影响事故的调查和分析。 3.、发生影响行车的设备故障时,信号维修人员应将接发列车进路的排列情况、调车作业情况、控制台显示情况、列车运行时分、设备位臵状态及故障处理情况作详细记录作为原始记录备查。 三、故障处理程序 信号故障处理程序具体分七个步骤。 1、准备工具仪表,了解情况。当故障发生后,首先要了解故障发生的大概情况,问明是否影响行车,当已影响行车时,通知车务人员采取应急措施如改变进路、引导接车等,并及时向分公司值班室汇报简要情况。准备好必要的工具、

信号设备故障案例汇总

信号设备故障案例 为了提高信号维修人员处理设备故障的业务技能,缩短故障延时,减少对运输正常秩序的干扰,我们收集编写了《信号设备故障案例》手册,供信号技术管理和维修人员学习参考。这是首次将一些典型故障案例收集汇编成册,希各单位在日常维护和故障处理过程中,注意收集资料,踊跃提供典型案例,以便今后定期汇编。 1、某站15#为单动液压提速道岔。操纵动作正常,定位表示正常,反位无表示 原因分析: A、首先,来回扳动试验观察。发现芯轨小表示正常,尖轨反位小表示无,判定是尖轨表示电路故障; B、用MF14型万用表在分线盘对尖轨的X1、X3、X5线测量交直流电压,发现X1、X3和X3、X5间交流电压为110V,高于正常值(60V),而无直流电压,基本判断为室外经二极管的表示电路开路; C、到室外继续查找,此时应注意15#道岔为定位2、4闭合。先在尖轨XB1箱合内测1、2号端子电压,有100V左右交流电压,继续量7、12号端子电压,仍为100V交流电压,说明ZYJ转辙机内表示电路无故障,再到SH6转换锁闭器的HZ24电缆合处量7、12端子电压,发现交直流电压为0,可判断XB1至HZ24的电缆断线,此时可借用临时线或备用芯线来判断是那根芯线断线。经确认XB1箱12号至HZ24的12号端子的电缆芯线断线,更换备用芯线恢复。 提示:故障修复后,应及时修复故障电缆,确保备用电缆完好。 2、某站10/12#道岔定位无表示 原因分析:分线盘测试有交流110V左右电压而无直流电压,判断为室外开路故障,室外检查后发现故障为12#-B机TS-1接点受潮结冰,接触不良,更换接点恢复。

提示:转辙机内部应保持干燥,否则,设备内部潮湿,冬季天气寒冷,极易造成转辙机内部接点结冰接触不良。 3、某站1/3#道岔操定位后无表示 原因分析:电务人员接到通知后到机械室,观察继电器状态,3#道岔芯轨B机无表示,分线盘上测量有交流但无直流电压,另一人立即赶到3#B 机,在HZ-24内测试有电压,经检查,机内TS-1-11#接点接触不良(银接点脱落)。更换后恢复正常。 4、某站14#道岔(为内锁闭道岔)操反位不到底 原因分析:观察控制台电流表显示2.5A,室外检查道岔已密贴,转辙机速动爪已落下,经检查自动开闭器检查柱与柱孔卡死(缺油)。动接点因检查柱卡死而未能转换,造成道岔到位后电机空转。检查柱注油后恢复。 5、某站18/22#复式交分道岔操纵不到位 原因分析:观察控制台电流表显示2.5A,判断为室外机械故障。经检查道岔不密贴,电机空转,尖轨根部活接头处抗劲大轨缝顶死,道岔操不到底,造成道岔无表示。松动尖轨根部螺栓后,故障现象消失。 6、某站1/3#道岔反位至定位操不动 原因分析:同时按下控制台总定和1/3#道岔按钮,道岔反位表示灯不灭,检查室内1DQJ不动作,3DG SJ落下,说明原进路未解锁,但由于光管表示灯坏,白光带不亮,看不出未解锁,造成道岔操不动。由于处理过程忙乱,导致故障延时过长。用人工解锁办法使3DG解锁,道岔操纵正常。 7、某站444/446#道岔(为内锁闭道岔)转换不到位 原因分析:来回操纵该道岔,确认定、反位均无法转换到位,控制台电流表有较大电流,室内分线盘测试X1-X4、X2-X4有直流200V左右电压,X5-X4、X6-X4无直流电压输出,判断为A机动作,B机不动作(双机牵引AT型道岔),检查发现2DQJF接点在四开状态,第2组接点支架断开,继电器接点架与衔铁销子折断,更换2DQJF继电器恢复正常。 8、某站2#道岔发生挤岔事故 原因分析:发生挤岔事故后,检查轨面锈蚀严重,且有一层氧化层,现场测试2DG受电端BZ4二次侧有交流电压15V、楼内分线盘有交流13.5V

微机监测论文

TJWX-2000型铁路微机监测系统常见故障的处理 铁路信号微机监测是电务部门安全的“黑匣子”,是电务部门维修技术的重要突破,是电务设备实现“状态修”的必要手段,也是信号技术向高安全、高可靠和网络化、数字化、智能化发展迈进的重要标志之一。特别是铁路信号微机监测对保障铁路运输的安全与畅通发挥着重要的作用。随着铁路的快速发展,对铁路信号设备维修提出了更高的要求,但是由于铁路微机监测系统在现场的运行中经常会出现一些故障,严重时会影响铁路行车安全,发生事故。因此,铁路电务部门必须要了解和掌握铁路微机监测系统的构成和功能,通过分析故障原因,找出正确的处理方法,及时恢复设备的正常运用,确保行车安全和行车秩序,才能适应铁路高效快速的发展要求。本文主要通过对TJWX-2000型铁路微机监测系统常见故障的分析处理,列出切实可行的故障处理方法,以此提高故障处理效率,确保行车安全。 1、研究TJWX-2000型铁路微机监测系统常见故障处理的重要性 TJWX-2000型信号微机监测系统,是铁道部微机监测二次联合攻关的成果,于2000年10月9日、10日在郑州召开了技术鉴定会,通过了部级鉴定,并在京哈、京沪、京广、陇海、兰新五大干线推广使用。该系统是由北京全路通信信号研究设计院、郑州辉煌公司、沈阳铁路信号工厂等多家单位联合开发的信号设备微机监测网络系统。用于铁路、城市地铁信号设备的实时监测,将获得的信息通过下层的CAN网及上层广域网送至电务段、分局或路局,供有关人员查寻、分析、统计、汇总,为做出及时、正确的维修决策提供科学依据,是铁路信号维修管理现代化的必备设备,将为铁路信号维修体制实现“故障修”到“状态修”的改革提供技术基础。在铁路信号专家、维护人员和科研开发人员的共同努力下,TJWX系统不断优化、升级,已形成了包括硬件、软件、网络通信等在内的系列产品,除了具有铁道部《信号微机监测基本技术原则》所要求的功能外,可针对不同地区、不同设备制式和资源进行动态配置,使TJWX系统达到最佳的性价比。 实际应用中的TJWX系统集现场总线技术、传感技术、计算机网络技术和数据通信技术为一体,在软件模块化结构的基础上,又实现了硬件“积木式”结构设计,具有机柜式集中安装和小分机分散安装两种方式,充分适应了现场的安装空间。系统体系上采用高可靠隔离技术使系统的安全性、稳定性、抗干扰能力、可靠性都上了一个新台阶。它的广泛应用必将使铁路信号设备的维护、管理水平提高到一个新的层次。 铁路微机监测系统能实时、动态、准确、量化地反映信号设备的运用质量、结合部设备状态,并具有状态信息储存、重放、查询和报警功能。当电气特性超标或违章作业进行局部接点封连时均能按照等级及时报警。这对于防止违章作业,分析判断故障,特别是对瞬间发生、时好时坏的“疑难杂症”故障,或结合部难以界定的复杂故障的分析提供了重要的手段和依据。同时,由于对设备的运用状态能做到“心中有数”,“超标报警”,超前防范,防范未然,能使设备运用质量始终处于受控状态,科学地指导现场合理维修,避免

电气设备经典故障案例分析和处理

电气设备经典故障案例分析与处理 (培训讲义涂永刚) 一、供配电系统经典故障: 案例1:一二线煤磨变压器跳停故障 1、故障经过:2010年8月7日,当班操作员反映一二线煤磨系统掉电,电气人员来到电力室发现煤磨变压器跳停,高压柜分闸,综保显示故障信息‘4’,即速断,经仔细检查发现变压器下属设备低压柜处一二线煤磨照明空开上端保险进线线路短路损坏所致,随即将变压器所属高压柜退出停电挂牌,对损坏线路进行更换,并对整排低压柜母排进行了清灰处理,随即恢复变压器送电; 2、原因分析:①保险上端接线松动,接触电阻增大发热,是致使线路短路的原因之一;②照明线路空开下端负载分布不均,其中一相电流很大,致使保险上端发热损坏,导致短路。 3﹑防措施:①对电力室所有保险和接线情况进行全面检查、梳理、整改,避免松动现象再次出现;②对电力室所有照明电源三相电流分布情况用钳形电流表进行测量,避免电流分布不均,且电气人员在处理照明故障时禁止随意调换电源。 案例2:海螺A线窑尾窑尾控制系统掉电 1、故障经过:2010年1月25日下午 1:30分,中控操作员发现A 线窑跳停,整个窑尾系统无信号,随即通知电气相关人员检查。电气人员接到后在现场发现PC柜模块全部失电,检查PC柜UPS电源进线没有电,判断为UPS电源断路器故障,到B线原料电力室检查发现去A线窑尾电力室的断路器已经分断。现场拆掉负载,用摇表测量后确认电缆有一相对地,判断为从UPS去PC柜的电源线短路。随后加装临时电源,对PC柜进行了送电恢复生产。26日在对电缆沟抽水后进行电缆检查,电缆沟中间发现有接头,检查完好。随后在A线原料电缆沟出口处发现潜水泵下面的电缆皮损坏,铜丝裸露浸泡在水中对

计算机常见故障及处理方法

计算机常见故障及处理方法 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

计算机在使用了一段时间后,或多或少都会出现一些故障。总结出计算机使用和维护中常遇到的故障及简单的排除方法介绍给大家。也许有人会认为:“既然不是搞计算机专业维修的,当然不可能维修计算机!”这倒不一定。况且如果只是遇到一点小小的故障,就要请专业的维修人员来维修,不免有些“劳民伤财”。只要根据这里的计算机故障处理方法,就可以对简单的故障进行维修处理。 一、电源故障 电源供应器担负着提供计算机电力的重任,只要计算机一开机,电源供应器就不停地工作,因此,电源供应器也是“计算机诊所”中常见的“病号”。据估计,由电源造成的故障约占整机各类部件总故障数的20%~30%。所以,对主机各个部分的故障检测和处理,也必须建立在电源供应正常的基础上。下面将对电源的常见故障做一些讨论。 故障1:主机无电源反应,电源指示灯未亮。而通常,打开计算机电源后,电源供应器开始工作,可听到散热风扇转动的声音,并看到计算机机箱上的电源指示灯亮起。 故障分析:可能是如下原因: 1.主机电源线掉了或没插好; 2.计算机专用分插座开关未切换到ON; 3.接入了太多的磁盘驱动器; 4.主机的电源(Power Supply)烧坏了; 5.计算机遭雷击了。 故障处理步骤: 1.重新插好主机电源线。 2.检查计算机专用分插座开关,并确认已切到ON。 3.关掉计算机电源,打开计算机机箱。 4.将主机板上的所有接口卡和排线全部拔出,只留下P8、P9连接主板,然后打开计算机电源,看看电源供应器是否还能正常工作,或用万用表来测试电源输出的电压是否正常。 5.如果电源供应器工作正常,表明接入了太多台的磁盘驱动器了,电源供应器负荷不了,请考虑换一个更高功率的电源供应器。 6.如果电源供应器不能正常工作或输出正常的电压,表明电源坏了,请考虑更换。 故障2:电源在只向主板、软驱供电时能正常工作,当接上硬盘、光驱或插上内存条后,屏幕变白而不能正常工作。 故障分析:可能是因为电源负载能力差,电源中的高压滤波电容漏电或损坏,稳压二极管发热漏电,整流二极管已经损坏等。

相关主题
文本预览
相关文档 最新文档