当前位置:文档之家› 循环冷却水系统智能化节能技术应用

循环冷却水系统智能化节能技术应用

循环冷却水系统智能化节能技术应用
循环冷却水系统智能化节能技术应用

循环冷却水系统智能化节能技术应用

发表时间:2018-04-17T11:07:39.397Z 来源:《电力设备》2017年第33期作者:邬士波

[导读] 摘要:伴随着经济的快速发展,我国资源随之变得越来越少,因此,近年来,我国各个行业开始重视节能技术的应用。

(国电康平发电有限公司辽宁沈阳 110500)

摘要:伴随着经济的快速发展,我国资源随之变得越来越少,因此,近年来,我国各个行业开始重视节能技术的应用。例如,循环冷却水系统运用的节能技术则是通过使用大数据技术来收集循环水系统在运行过程中产生的数据,进而,结合循环水系统最优运转参数而形成的。然而,目前我国循环水系统在运行过程中仍然存在着一定问题,因此,本文将通过研究循环水系统在运行过程中存在的主要问题,进而,延伸至循环水系统的优化措施。

关键词:节能技术;存在问题;优化措施;循环水系统

近年来,我国大力推行可持续发展经济以及节能减排,在这种大趋势下,我国各个行业只有顺应时代的变化才能获得更好的发展。对于循环水系统而言,水泵的耗电量将达到整体的百分之十左右,甚至有些设计不合理的水泵的耗电量将达到整个循环水系统的百分之四十,这无疑将造成大量的电能浪费,而且,这也将大大地增加企业的营业成本。由此可见,研究循环水系统智能化节能技术是十分有必要的。

一、循环水系统的基本概念

循环水系统的应用范围较为广泛,目前,主要应用于蒸汽轮机、燃气轮机等机械设备中。在机械设备内安装循环水系统的作用主要是为了防止机械过热,机械设备在运行过程中往往会产生较高的温度,如果没有及时降温的话,不仅将会大大地影响机械设备的运行效率,甚至将对机械设备内部零件造成损坏。由于不同的机械设备对水压力的要求不同,为此,循环水系统主要分成低压系统以及高压系统这两类。低压系统的应用范围较小,只能冷却机械设备的一部分组成部分。而主要的组成部分则是由高压系统负责冷却。循环水系统主要是通过自然风来冷却冷却塔内的水,而后,利用回水沟将冷却塔内的水运输到吸水池,通过水泵产生的压力将冷却水运输到整个系统,从而,对整个机械设备进行冷却,使设备能够正常运行。

二、当前我国循环水系统的弊端

2.1节能效果不理想

未应用节能技术的循环水系统不仅将耗费大量的电能,而且,由于水泵的运行效率与整个循环系统的运行效率常常出现不平衡现象,这无疑将大大地影响循环水系统的工作效率,导致我国大部分循环水系统的运行效率低于70%。除此之外,水泵对于循环水系统的运行而言是十分重要的,然而,有些企业没有注意泵吸入口管路的长短,导致蝶阀比较靠近泵,从而,使水泵在运行过程中将出现浊气以及较大的噪音。并且,由于一组水泵往往需要为多个凝气冷却系统工作,导致循环水泵在使用过程中常常出现流量需求出现不稳定。除此之外,流量需求也将受外界温度的影响而不断改变,为此,相关工作人员需要迅速测定流量的需求,这将耗费大量的能源。由此可见,传统的循环水系统节能效果较差。

2.2自动化程度不理想

目前,我国已开始使用集中控制技术来加强对循环水系统的控制,然而,集中控制系统只能收集电流、水位等参数以及机械设备的开关,却无法收集流量、温度等参数。为此,需要人工测量温度、电能等重要系数。这是由于目前我国使用的控制系统的自动化程度较低,使系统无法全面分析循环水系统在运行过程中各个参数之间的关系,这将导致工作人员无法准确掌握循环水系统的运行状况。

三、加强循环水系统节能化技术应用的相关措施

3.1加强对数据的利用

随着大数据时代的到来,人们逐渐意识到数据的重要性。在循环水系统优化过程中也是如此,应加强对循环水系统在优化过程中的信息收集,从而,使相关工作人员能够找到循环水系统能源消耗、温度以及水位等参数之间的平衡点,从而,找出最优的设计方案。循环水系统优化过程主要如下图所示,只有通过不断的系统优化,才能设计出节能、高效的循环水系统。由下图可知,在设计过程中,应加强对每一阶段的数据采集以及数据分析,找出对循环水系统能耗影响较大的因素,进而,有针对性地进行系统优化,这将大大地提高循环水系统设计的成功率。并且,加强对大数据技术的利用也将大大地增强循环水系统的自动化能力,使循环水系统能够自动计算出各个参数之间的关系,从而,使系统能够自动调整自身运行状况,这不仅能够大大地提升循环水系统的运行效率,而且,也将有效降低循环水系统发生故障的几率。

3.2加强设备优化

循环水系统内耗能较大的主要是电机以及水泵,为此,应加强对循环水系统内部设备的优化设计,从而,大大降低循环水系统需要消耗的能源。对于水泵,目前,我国已研发出高效节能低汽蚀余量水泵,高效节能低汽蚀余量水泵不仅能够大大地提高循环水系统的运行效

循环冷却水培训教材

循环xx培训教材 工业生产过程中,往往会产生大量热量,使生产设备或半成品(气体或液体)温度升高,必须及时冷却,以免影响生产的正常运行和产品质量。因水的热容量大,水是吸收和传递热量的良好介质,常用来冷却生产设备和产品。冷却水系统一般可分为直流水系统和循环水系统。 水通过换热器后即排放的称直流系统。若厂区附近水源充足且直接排放而不影响水体时,可采用直流系统。 循环冷却水系统又分为封闭式循环冷却水系统和敞开式循环冷却水系统。 冷却水在完全封闭的、由换热器和管路构成的系统中进行循环时称密闭式循环系统。在密闭式循环系统中,冷却水所吸收的热量一般借空气进行冷却,在水的循环过程中除渗漏外并无其它水量损失,也无排污所引起的环境问题,系统中含盐量及所加药剂几乎保持不变,故水质处理较单纯。但密闭式循环冷却水存在严重的腐蚀剂腐蚀产物问题。密闭式循环系统一般只用于小水量或缺水地区。 冷水流入换热器将热流体冷却,水温升高后,利用其余压流入冷却塔内进行冷却,冷却后的水再用水泵送入换热器循环使用,此系统称为敞开式循环冷却水系统。这种敞开式循环冷却水,由于在循环过程中要蒸发掉一部分水,还要排出一定的浓缩水,故要补充一定的新鲜水(通常称为补水),以维持循环水中的含盐量或某一离子含量在一定值上。 敞开式循环冷却水系统是应用最广泛的系统,也是水质处理技术最复杂的系统。 一水的冷却原理 循环水的冷却是通过水与空气接触,由蒸发散热、接触散热和辐射散热三个过程共同作用的结果。 1蒸发散热水在冷却设备中形成大小水滴或极薄水膜,扩大与其空气的接触面积和俄延长接触时间,使部分水蒸发,水气从水中带走气化所需的热量,从而使水冷却。

PLC冷却水泵节能循环控制系统

目录 摘要 (2) 前言 (3) 第一章实际中的应用 (4) 第二章主要任务 (6) 第三章具体设计要求 (7) 第四章系统软件设计 (8) 4 . 1设备名称 (8) 4 . 2控制方案 (8) 4.2.1 控制功能 (8) 4.2.2 具体控制方案 (9) 4.2.3 PLC输入、输出分配表 (10) 4.2.4 控制综合接线 (11)

4.2.5 变频器参数设置…………………. .11 4.2.6 软件设计 (13) 总结…………………………………………. . 14 致谢词………………………………………. . 15 参考文献……………………………………... 16 中央空调冷却水循环节能控制系统设计摘要 在现代工厂企业、办公大楼、商厦、酒店等环境中,中央空调系统是不可缺少的,因此,中央空调的节能也是有待解决的关键技术问题。中央空调系统除主机的耗能外风机、冷冻、冷却泵进行调节,这

就需要有较好的自动控制模块。现在,随着电力电子技术、微电子技术的发展,应用变频调节技术与PLC自动控制系统可以大幅度节约电能和提高系统的自动程度,并使系统具有运行可靠、结构简化、维护维修方便等优点。 本文简单阐述了中央空调系统的工作原理,并具提研究冷却水循环控制系统在节能方面的自动控制模块。主要对冷却水进出温差和进水温度进行混合控制,最终使中央空调冷却水循环节能控制系统达到节能的目的。 中央空调系统足大型建筑物小町缺少的配套设施之一,其电能的消耗非常大。由变频器、PLC构成的控制系统应用在中央空调的冷却水泵的节能改造中,使冷却水泵能随宅调负荷的变化而自动变速运行,达到显著节能效果。 关键词:PLC自动控制系统;自动控制;设计。 前言

电厂循环冷却水系统中的问题解决知识讲解

电厂循环冷却水系统中的问题解决 2011年7月31日 FJW提供 1.概述 电厂的循环水冷却处理系统是由以下几部分组成:①生产过程中的热交换器;②冷却构筑物(冷却塔);③循环水泵及集水池。该系统是利用冷却水进行降温和水质处理。冷却水在冷却生产设备或产品的过程中,水温升高,虽然其物理性状变化不大,但长期循环使用后,水中某些溶解物浓缩或消失、尘土积累、微生物滋长,造成设备、管道内垢物沉积或对金属设备管道腐蚀。因此,必须对其进行降温和稳定处理等解决方案,才能使循环水系统正常进行,使上述问题得到解决或改善。 2.敞开式循环冷却水系统存在的问题 2.1循环冷却水系统中的沉积物 2.2.1沉积物的析出和附着 一般天然水中都含有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。 在直流冷却水系统中,重碳酸盐的浓度较低。在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应 Ca(HCO3)2=CaCO3↓+CO2↑+H2O 冷却水在经过冷却塔向下喷淋时,溶解在水中的CO2要逸出,这就促使上述反应向右进行。 CaCO3沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。不同的水垢其导热系数不同,但一般不超过1.16W/(m.K),而钢材的导热系数为46.4-52.2 W/(m.K),可见水垢形成,必然会影响换热器的传热效率。 水垢附着的危害,轻者是降低换热器的传热效率,影响产量;严重时,则管道被堵。 2.2设备腐蚀 循环冷却水系统中大量的设备是金属制造的换热器。对于碳钢制成的换热器,长期使用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。 2.2.1冷却水中溶解氧引起的电化学腐蚀 敞开式循环冷却水系统中,水与空气能充分的接触,因此水中溶解的氧气可达饱和状态。当碳钢与溶有氧气的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳

工业循环冷却水系统设计规范标准

《》 条文说明 1总则目录 1.01为了控制工业循环冷却水系统由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规。 1.02本规适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。 1.03工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1 总则全文 1.0.1本条阐明了编制本规的目的以及为了达到这一目的而执行的技术经济原则。 在工业生产中,影响水冷设备的换热器效率和使用寿命的因素来自两个方面,一是工艺物料引起的沉积和腐蚀;二是循环冷却水引起的沉积和腐蚀。后者是本规所要解决的问题。 因循环冷却水未加处理而造成的危害是很严重的,例如,某化工厂,原来循环水的补充水是未经过处理的深井水,每小时的循环量9560t。由于井水硬度大、碱度高,每运行50h后,有50%的碳酸盐在设备、管道沉积下来,严重影响换热器效率。据统计,空分透平压缩机冷却器,在运转3个月后,结垢厚度达20㎜。打气减少20%。该厂不少设备、在运转3个月后,必须停车酸洗一次,不但影响生产,而且浪费人力、物力。为了防止设备管道产生结垢,该厂在循环水中直接加入六偏磷酸钠、EDTMP和T—801水质稳定剂之后,机器连续3年运行正常。虽然每年需要增加药剂费用2万元,但综合评价经济效益还是合算的。又如某石油化工厂,常减压车间设备腐蚀与结垢现象十分严重,Φ57×3.5面碳钢排管平均使16-20个月后,垢厚达15-40㎜。后经投加聚磷酸盐+膦酸盐+聚合物的复合药剂进行处理,对腐蚀、结垢和菌藻的控制取得了良好的效果。每年可节约停车检修费用约60万元,延长生产周期增产的利润约70万元。减少设备更新费用约4.7万元。现将该厂水质处理前后的冷却设备更新情况列表如下: 某厂冷却设备更新情况统计(单位:台)表1 从上述情况可以看出,循环冷却水采取适当的处理方法,能够控制由水质引起的

工业循环冷却水处理系统

工业循环冷却水处理系统 一、概述 循环冷却水在使用之後,水中的Ca2+、Mg2+、Cl-、SO42-等离子,溶解固体和悬浮物相应增加,空气中污染物如灰尘、杂物、可溶性气体以及换热器物料泄露等,均可进入循环冷却水,使循环冷却水系统中的设备和管道腐蚀、结垢,造成换热器传热效率降低,过水断面减少,甚至使设备管道腐蚀穿孔。 循环冷却水系统中结垢、腐蚀和微生物繁殖是相互关联的,污垢和微生物粘泥可以引起垢下腐蚀,而腐蚀产品又形成污垢,要解决循环冷却水系统中的这些问题,必须进行综合治理。 采用水质稳定技术,用物理与化学处理相结合的办法控制和改善水质,使循环冷却水系统中的腐蚀、结垢、生物污垢得到有效的解决,从而取得节水、节能的良好效益。臭氧产品已在国内电子、电力、饮料、制药行业广泛应用,质量达到国外同行业90年代水平。投入产出比的可比效益为:1:2-1:10以上,节约能源,提高设备使用效率,延长设备的使用寿命和运行的安全性,减少环境污染。 臭氧可以作为唯一的处理药剂来替代其它的处理冷却水处理剂,它能阻垢、缓蚀、杀菌、能使冷却水系统在高浓缩倍数甚至在零排污下运行,从而节水节能,保护水资源;同时,臭氧冷却水处理不存在任何环境污染。国外应用臭氧进行循环水处理已经取得了成功,而我国在这个领域却是空白。 二、系统工艺 循环水冷却通常分为密闭式循环水冷却系统和敞开式循环水冷却系统。密闭式循环水冷却系统中,水是密闭循环的,水的冷却不与空气直接接触。敞开式循环水冷却系统,水的冷却需要与空气直接接触,根据水与空气接触方式的不同,可分为水面冷却、喷水冷却池冷却和冷却塔冷却等。 敞开式循环水冷却系统可分为以下3类: 1.压力回流式循环冷却系统 此种循环水系统一般水质不受污染,仅补充在循环使用过程中损失的少量水量。补充水可流入冷水池,也可流入冷却构筑物下部。冷水池也可设在冷却塔下面,与集水池合并。 补充水→ 冷水池→ 循环泵房→生产车间或冷却设备→冷却塔 压力回流式循环冷却系统

冷却循环水系统节能优化及应用

冷却循环水系统节能优化及应用 发表时间:2019-05-23T11:41:58.167Z 来源:《防护工程》2019年第3期作者:王鑫 [导读] 随着我国改革开放不断地深入开展,工为发展的速度也在不断地加速,冷却水在工业中的用量不断地加大,其比例达到了解80%以上,已成了举足轻重的、不可忽视的重要部分。 大庆石化公司水气厂水处理车间黑龙江大庆市 163714 摘要:随着我国改革开放不断地深入开展,工为发展的速度也在不断地加速,冷却水在工业中的用量不断地加大,其比例达到了解80%以上,已成了举足轻重的、不可忽视的重要部分。因此,在工业不断发展的过程中,必须首先研究和处理好冷却水循环问题,充分考虑节约能源的现实问题。冷却水是工业生产中不可缺少的重要资源,如果我们能够在节能和循环利用方面做得更加科学,不仅能够对当前不太乐观的资源环境进行很好地保护,同时还能为企业甚至国家与社会节约不少的支出。 关键词:冷却循环水系统;节能优化;应用 近年来,我国经济快速发展,工业化程度越来越高,工业用水消耗量也越来越大,为了提高工业用水的利用率,减少水的消耗,循环水系统应用日益广泛。工业冷却循环水系统的设计对于工业的建设起着非常重要的作用,它不仅直接影响企业的用水效果,而且还与经济效益、环保密切相关。 1冷却循环水系统低效率与高能耗原因剖析 第一,作为批量生产的工业制成品,泵是按一定规格型号系列组织设计制造的,泵的特性曲线只有设定的若干条,而管路特性曲线却是千变万化,对某一特定管路,在泵的设计选型时,就不能保证水力效率高,也不能保证工作点正好落在泵的高效率区间内。 第二,在现实情况下设计者往往凭经验,而不是根据管路特性曲线选泵,常常过于保守,以致严重依赖阀门调节运行,管路与泵匹配存在问题。同时,对已投入运行装置的管路特性曲线,也很少有人对其实施有效检测,管路与泵是否匹配从无评判,对泵的匹配进行有效调整则更少。 第三,循环水系统都存在多种工况运行,泵站一般有数台泵组成,组合形式又有并联、或并联加二级串联等形式。那么,如何做好泵组搭配以保证应各种工况要求所扬送的流量尽可能合理、运行效率都处于高效区,这对设计过程及运行管理过程中都是非常重要课题,但目前对多泵组合泵站的设计普遍缺少节能优化,运行管理过程也缺少必要的节能技术手段,能耗的经济性处于盲目状态。 第四,因设计、改造或运行原因导致系统管网各回路的管路特性曲线差异较大,存在因某局部阻力偏高而导致整体压头升高等现象。 第五,当然引起高能耗的原因还有很多,如冷却塔及系统相关换热设备换热效能低下增加泵送流量,未能按负荷变化(和气候变化)有效调节流量增加水送能耗。 2节能优化技术的基本原理 工业冷却循环水节能优化系统是以水为介质进行工艺流程中能量的互换。通过分析整个系统中能量互换的效率,利用阀门技术对整个循环系统中的单一单位进行系统优化控制,并研究系统的利用效率,判断当前系统的能量利用效率,然后再结合工业生产流程,提出一种能够提升循环水系统中能量的利用效率的方案。 工业冷却循环水系统中的应用技术主要有几下几种:精确采集系统内换热设备、泵站等的运行参数;优化整个管网的换热网络和建立水力数字模型;准确分析管网内的水流、阻力及水泵运行效率;正确使用节能泵、水力调节平衡装置等一系列具有针对性的节能产品。 在工业冷却水循环系统中,操作人员可通过阀门控制水泵的水量。将冷却温度严格控制在规定范围内,智能阀门始终处于常开的位置且能够实现智能化调节,在完成控制的同时还要减小水泵的输出功率,使机组能够最大限度地发挥作用,达到节能的效果。泵阀一体的智能节能技术在实现终端平衡后还可降低管网的阻尼,使管网中泵阀的张开角度满足工艺要求。在此过程中,该技术可将所有信息数据完整地反馈到计算机系统中,操作人员可根据这些数据进行变频操作。在这种互联网阀门技术的控制下,循环水系统数据的实时监测得以实现。 3工业冷却循环水系统节能优化技术的改造 3.1改造内容 通过在工业冷却循环水系统中应用优化技术,使得工业循环水系统的工作效率得到大幅增加,而且还能够更多的应用于工业冷却循环水系统的改造项目当中。节能优化技术在改造项目的实施过程中得到顺利应用,能够从根本上实现节能优化,相比传统的冷却循环水系统,效率可提升至30%~60%,整体效果非常可观。 常见的工业冷却循环水系统有合成氨循环水系统以及高炉鼓风机透平拖动装置冷却系统,其中合成氨循环水系统主要的改造方面为换热网络以及配水管网,解决了纯碱厂和加氯车间的水资源不平衡问题,主要改造设备有调节装置、高效节能泵、循环在线监测以及能源管理系统。高炉鼓风机透平拖动装置冷却系统的改造内容为换热网络以及配水管网,解决供水总管止回阀阻力存在异常的问题,对原泵站的高效节能泵的参数、叶轮水力模型等方面进行优化和设计,主要改造的设备有可编程控制器计量系统、止回阀以及高效节能泵。 3.2改造实施 改造的具体实施根据具体情况进行实施,针对上述的两种常见的冷却循环水系统的改造时,首先要对冷却循环水系统进行检测,获取当前系统在运行状态下的所有参数,进而实现对所有系统进行有效的控制,分析系统存在的缺陷,采取方案进行有效优化。 系统运行参数的获取主要是通过采集系统来实现的,根据采集系统的运行状态、负荷等方面的状态信息进行更有效收集,并能够及时、有效的给予监测并将信息回馈给系统,以便于能够在最佳的状态下获取整个系统的信息。实施改造的基本原理为变频调速对风机和水泵的转速控制,可以更好的减少功率的消耗。 4工业冷却循环水系统节能优化技术的应用 4.1中国石油天然气股份有限公司某石化分公司 中国石油天然气股份有限公司某石化分公司水汽厂处理能力3000m3/h的钢结构大型冷却塔,近年来冷却效果逐年下降,收水器老化变形,使大量的循环水漂出塔外,造成水和药剂大量损失。该厂实施了循环水系统优化技术改造,合理优化生产工艺,采用管式闭路配水取

工业循环冷却水系统处理的重要性

工业循环冷却水系统处理的重要性 循环水的使用及水处理的重要性 用水来冷却工艺介质的系统,我们称作冷却水系统,通常可分为以下两种类型:直流冷却水系统和循环冷却水系统。其中,循环冷却水系统目前已被广泛地应用于各行各业之中,比如,石油化工、电力、冶金、医药、纺织、机械、电子等等传统工业企业中的工艺用循环冷却水系统,及各楼宇的中央空调用循环冷却水系统。 最早使用的是直流冷却水系统,冷却水仅仅通过换热设备一次,用过后水就被排放掉。这种系统虽然投资少、操作简便,但它的用水量却很大,冷却水的操作费用也大,不符合节约使用水资源的要求,目前基本都改成了循环冷却水系统(除了海水中还在使用的直流冷却水系统),即冷却水用过后不立即排放掉,而是收回循环再用。从直流水系统到循环水系统,水资源的节约非常可观,例如:一个年产30万吨的合成氨工厂,如采用直流水系统,每小时用水量约25000T,而改成循环水系统,并以3倍的浓缩倍数运行,则每小时耗水量只需约550T。 冷却水循环后遇到什么问题? 腐蚀:冷却水在循环使用中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的,水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循 环后易带来的问题之一。 结垢:水在运行中蒸发(尤其是在冷却塔的环境中),使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙或其它盐类在传热面上结垢析出的倾向增加,这是问题之二。 生物污垢:冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其孢子,使系统的污泥增加;冷却塔内的光照、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。 冷却水循环后,冷却水补充水量可大幅度降低,节约了用水,这是我们所希望的。但水循环后突出的腐蚀、结垢和生物污垢等问题如不解决,生产装置的长周期、满负荷、安全稳定运行是难以保证的,那么采用循环水后所期望的经济、技术效益不仅不能充分发挥,而且将给企业带来许多危害——严重的沉积物的附着、设备腐蚀和微生物的大量滋生,由此形成的黏泥污垢堵塞管道或各种材料及设备严重受损等问题,会威胁和破坏工厂的安全生产;而由于各种沉积物使换热设备的水流阻力加大,水泵及相关设备的能耗大幅增加,传热效率降低,从而降低产品品质或生产效率,这一切都可能造成极大的经济损失,例如:电厂出现此类问题,必然使凝汽器凝结水的温度升高、真空度下降,严重影响汽轮机的出力和电厂的发电量,并且大幅增加能耗(有一个经验数值:发电机组真空度每下降1%,多耗燃料原油0.8%)。 所以,必须要选择一种科学合理、全面有效且经济实用的循环冷却水处理方案,使上述问题得到妥善解决或改善,水处理就是通过水质处理的办法来解决以上问题。如能真正做好水处理,不但能保证保质保量、安全生产,而且还能通过大幅降低能耗、节约材料、节约用水来降低生产成本,直接创造可观的经济效益,例如在电厂,就可以提高汽轮机凝汽器的真空度,一般可提高7~8%,提高汽轮机的功率,提高电负荷5~6%,增加发电能力;如应用在低压锅炉炉内处理,不但可将水处理运行费用从仅使用炉外处理方式时的0.5元/吨降到0.3元/吨左右,而且据统计,可使每台2t?h-1的锅炉节煤约5%;现代工业一般水冷换热器在未进行水处理时的寿命为2年左右,经水处理后的寿命可达7~8年,检修费和检修工作量可降低90%,一个小型化工厂由此节约的检修费即可达50万元。 科学合理且全面完整的化学水处理方案

循环冷却水系统和开式冷却水系统概述

循环冷却水系统和开式冷却水系统概述 第一节概述 机组的循环冷却水来自凝汽器循环水进口管和矿井水升压泵出口管,经旋转滤网过滤后,向机房内布置标高较低的被冷却设备提供冷却水。正常运行中,机组循环冷却水由循环水提供,夏季可由矿井水升压泵提供温度较低的补充水做为冷却水源。循环冷却水系统各用户回水因压力较低,汇集后排至循环水塔池内。 设备规范如下: 第二节系统用户 循环冷却水系统用户有:汽轮机润滑油冷油器,闭式水冷却器,电动给水泵电机空冷器,电动给水泵润滑油冷油器,电动给水泵工作油冷油器,汽泵前置泵机械密封冷却器,汽泵机械密封冷却器,小机润滑油冷油器,凝结水泵电机轴承冷却器,发电机定子冷却水冷却器,真空泵循环液冷却器。 三、系统运行 1、投运 ①选择循环水或矿井水升压泵出水做为水源,开相应来水电动门; ②开旋转滤网进口门,旋转滤网排气门对滤网进行注水; ③空气放净后,开旋转滤网出口门,循环冷却水管道排空气门进行管道排空; ④管道空气排净后,根据需要投入循环冷却水用户。 2、运行维护 正常运行中,旋转滤网在投入运行后,检测前后压差在0.05MPa时开启下部排污电磁阀,并转动上部步进电机使滤网内各滤芯得到反冲清洗。 3、系统停运 当确认系统无用户时,可关闭水源电动门将系统停运。冬季停运后应放尽管道存水进行防冻处理。 开式冷却水系统 第一节概述 机组的开式冷却水来自凝汽器循环水进口管和矿井水升压泵出口管,经旋转滤网过滤后,由两台开

式冷却水泵送至机房内布置较高的被冷却设备和锅炉侧各用户。各用户回水因压力较高,汇集后排至循环水回水管道排至水塔。 第二节系统运行 1、投运(水源选择及排空气、投运时的用户选择) ①选择循环水或矿井水升压泵出水做为水源,开相应来水电动门; ②开旋转滤网进口门,旋转滤网排气门对滤网进行注水; ③空气放净后,打开旋转滤网出口门、开冷泵入口门和出口门、开式冷却 水管道排空气门进行管道排空; ④管道空气排净后,关闭开冷泵出口门,部分投入开式水用户(),启动一 台开冷泵正常后,根据需要投入开式冷却水用户。 2、运行维护(包括滤网排污) 正常运行中,旋转滤网在投入运行后,检测前后压差在0.05MPa时开启下部排污电磁阀,并转动上部步进电机使滤网内各滤芯得到反冲清洗。 开冷泵运行中应注意压力,声音,振动正常,备用泵备用良好,开式冷却水母管压力正常。 3、系统停运 当确认系统无用户时,可停运开式冷却水泵,关闭水源电动门后将系统停运。冬季停运后应放尽管道存水进行防冻处理。 第三节系统运行注意事项 1、切泵注意事项(防逆止门不严引起倒流) 切换开冷泵时,先启动备用泵,检查备用泵运行正常后,停运运行开冷泵。当运行泵出口门关闭后,投入备用,查出口门开启正常,泵出口压力为其入口压力(确认其出口逆止门严密),切换开冷泵完毕。 2、两台泵均故障时的应对措施 两台开冷泵同时故障时,应立即开启两台开冷泵出口门,利用泵入口

循环水冷却塔节能技改分析

循环水冷却塔节能技改分析 冯浩周世祥 (山西鲁能河曲发电有限公司036500) 摘要:本文主要通过分析发电厂循环水冷却塔在各种运行工况下对机组循环水温度的影响,经过对循环水冷却塔运行方式的调整和部分设计参数进行改造,达到提高发电厂机组循环热效率、节约能源的目的。 关键词:循环水冷却塔;节能;技改 1引言 山西鲁能河曲发电公司位于山西省西北部河曲县境内,一期工程安装2×600MW二台机组,汽轮机为东方汽轮机厂生产的亚临界、一次中间再热、单轴三缸四排汽、冲动凝汽式,汽轮机型号为N600-16.7/538/538-1;锅炉为哈尔滨锅炉厂生产的亚临界、中间一次再热、强制循环、平衡通风、单炉膛、悬吊式、燃煤汽包炉;发电机为东方电机厂生产的全封闭、自然通风、强制润滑、水--氢--氢冷却、圆筒型转子、同步交流发电机。 2循环水冷却塔的设计 2.1 循环水冷却塔基本设计参数 每台机组配套一座7000m2自然通风双曲线冷水塔,塔高130米,冷却塔进风口标高9.0米,塔池底部直径104米。冷却塔采用虹吸式竖井配水设计,分内外区,内区安装有¢38mm的XPH(XPZ)改进型喷头1920个;外区安装有¢40 mm及¢42mm的XPH(XPZ)改进型喷头4576个。冷却塔配水系统的设计是按两台循环水泵全年一个冷却倍率运行。冬季时采取关闭内区配水,启用防冻管的运行方式。全年平均运行冷却水温为20℃左右。冷却塔填料采用两层塑料填料,厚1.0米,经热力计算,夏季P=10%的气象条件下冷却塔出水水温29.14℃。按汽轮机最大连续工况设计,循环水温度20℃,高背压为5.61kPa,低背压为4.27kPa。循环水量60800m3/h,总水阻小于57kPa,额定工况的排汽量,冷却倍率采用50,循环水进水温度20℃,循环水温升10.4℃。 2.2循环水冷却塔的防冻设计 由于我公司地处北部较寒冷地区,冬季运行时必须采取了以下防冻措施: 2.2.1关闭内围配水的压力沟,只利用外围配水。 2.2.2在进风口上缘内侧沿壳壁装设防冻管。 2.2.3在进风口悬挂玻璃钢挡风板。 2.2.4为避免冷态循环,设置旁路管把热水直接送入水池。 2.2.5淋水填料和除水器均采用PVC塑料材质。 329

基于MCGS中央空调冷却水循环系统(超详细)

目录 摘要 (2) 前言 (2) 1.设计准备 (3) 1.1设计内容与要求 (3) 1.2设计思路 (4) 1.3 具体设计及实现功能 (4) 2.系统报警记录与参数设置 (4) 2.1 报警定义设置 (4) 2.1.1 冷却塔储水容量的报警定义设置 (4) 2.1.2 冷却塔出水温度报警定义的设置 (5) 2.2报警显示的设置 (6) 2.3报警数据的设置 (7) 2.4报警参数设置 (9) 3.历史数据报表和历史曲线的设置 (10) 3.1历史数据报表的设置 (10) 3.2 历史曲线的设置 (11) 4.运行与调试 (14) 4.1 系统运行 (14) 4.2 系统调试 (14) 4.2.1调试中出现的问题 (14) 4.2.2 解决方案 (14) 5.设计总结 (15) 参考文献 (16) 答谢 (17) 附录 (18)

基于MCGS中央空调冷却水循环系统演示 摘要冷却水循环系统是中央空调系统中的重要组成部件,它直接影响到中央空调供冷、供热功能的实现效果,所以对它准确的测试与处理要求很高。 本设计研究了基于MCGS组态环境在中央空调冷却水循环系统中得应用。利用组态软件MCGS设计了冷却水循环系统监控界面,提供了直观、清晰、准确的冷却水循环系统的运行状态,进而为控制运行、维修和故障诊断提供了多方面的可能性,充分提高了系统的工作效率。 关键词中央空调、冷却水循环、MCGS Abstract The cooling water circulation system is a key component in the central air conditioning system, it directly affects the central air-conditioning cooling and heating function to achieve the effect, so it is accurate testing and demanding. This design study Based on MCGS environment have central air-conditioning cooling water circulation system applications. Configuration software MCGS design of the cooling water circulation system monitoring interface provides an intuitive, clear, accurate operational status of the cooling water circulation system, and thus provide a wide range of possibilities for the control of the operation, maintenance and troubleshooting to fully enhance the system efficiency. Key words central air conditioning, cooling water circulation, MCGS 前言

工业循环冷却水处理设计规范2007

工业循环冷却水处理设计规范 中华人民共和国国家标准 GB50050--2007 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment 中华人民共和国建设部 关于发布国家标准《工业循环冷却水处理设计规范》的公告 中华人民共和国建设部公告第742号 现批准《工业循环冷却水处理设计规范》为国家标准,编号为GB50050-2007,自2008年5月1日起实施。其中,第3.1.6(2、4、5、6)、3.1.7、3.2.7、6.1.6、8.1.7、8.2.1、8.2.2、8.5.1(1、2、3、4、5、6、7)、8.5.4条(款)为强制性条文,必须严格执行。原《工业循环冷却水处理设计规范》GB50050-95同时废止。本标准由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 二〇〇七年十月二十五日 1 总则 1.0.1 为了贯彻国家节约水资源和保护环境的方针政策,促进工业冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和使用年限,减少排污水对环境的污染,使工业循环冷却水处理设计做到技术先进,经济实用,安全可靠,制定本规范。 1.0.2 本规范适用于以地表水、地下水和再生水作为补充水的新建、扩建、改建工程的循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应不断地吸取国内外先进的生产实践经验和科研成果,积极稳妥地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,还应符合国家有关现行标准和规范的规定。 2 术语、符号 2.1 术语 2.1.1 循环冷却水系统Recirculating Cooling Water System 以水作为冷却介质,并循环运行的一种给水系统,由换热设备、冷却设备、处理设施、水泵、管道及其它有关设施组成。 2.1.2 间冷开式循环冷却水系统(间冷开式系统)Indirect Open Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与大气直接接触散热的循环冷却水系统。2.1.3 间冷闭式循环冷却水系统(闭式系统)Indirect Closed Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与冷却介质也是间接传热的循环冷却水系

循环水系统节能管理参考

化工企业循环冷却水系统 节能管理及技术改造参考意见 (讨论稿) 第一章总则 第一条为进一步规范循环冷却水系统科学建设及节能改造,提高循环水系统用能效率,制定本指导意见。 第二条本意见所指循环水系统为间接冷却开放式循环冷却水系统(以下简称循环水系统)。循环水系统由于设计富余量大、与装置改造不匹配、运行不合理等因素,存在能源消耗高的问题。 第三条本指导意见适用于有循环冷却水系统的化工企业。 第二章细则 第四条企业应定期对循环水系统进行用能分析,用能分析报告是循环水系统节能改造的基础。可通过建立循环水系统目标函数优化模型,进行循环水系统优化核算。实现换热网络、输水管网、水泵、冷却塔等各系统合理“配置合理、协调运行”。结合根据用能状况分析报告首先采用

通过管理手段解决存在问题,仍还有优化空间的再选择相应节能技术实施改造。 第五条管理措施 ㈠主体装置改造后与循环水场不匹配,宜实施循环水场间整合改造,优化供水系统。对特殊需求用户,宜考虑单独供水。 ㈡应根据装置负荷、季节和气温变化情况,及时调节水泵、风机运行方式和阀门开度,做好水平衡工作。 ㈢根据换热器换热效果及换热要求,调节用水量,使循环水冷却设备进、出水温差达到设计值。 ㈣对于热负荷变化大的冷却塔,可采取调整风机叶片角度等方式,保证冷却效果。 ㈤对已有节能设施加强维护、保证正常运行。 第六条节能改造技术 ㈠系统扬程过剩改造 循环水系统扬程高于用水系统正常需求时,在用水侧管网优化基础上,应核算循环水系统实际需求、消除水泵富裕扬程,降低循环水单位电耗。 宜进行循环水泵换型,适用条件:一是循环水系统需求压力低于水泵供出压力,表现为循环水系统运行不正常,水泵进、出口阀门不能全开,否则水泵电机易超负荷;二是已进行过循环水送水管网摸底及优化后,对供水扬程

冷却水控制系统说明书新版

冷却水控制系统操作说明书

一、控制系统说明 1.冷却水控制系统是冷却水换热并经降温,再循环使用的给水系统。主要由冷却设备、水泵和管道组成。有节约大量工业用水的作用。 2.冷却水控制柜具有操作循环泵,冷却风机,电磁阀的启动和停止,故障报警,故障切换等功能。可以通过人机界面和远程实时监控系统的运行状态。 3..控制柜本身有防雨罩,具有防雨功能 4.控制柜本身带有保护功能: 短路保护:采用施耐德智能电源转换开关,当发生短路时自我保护不会将电源烧毁; 电机过热:当电机运转过程中,出现发热时影响电机PTC 阻值,使其阻值越来越大,这时热敏电阻继电器通过其阻值变化来判断电机此时的温度,当检测到电机温度异常或时,停止低温泵输出并在文本显示器上出现相应提示,且对应循环泵故障指示灯亮。重置按钮可以进行复位操作。 过载保护:通过热过载继电器保护限制电机工作电流,当电机电流大于额定值一定时间时,热过载继电器报警动作,并停止低温泵输出,在文本显示器上有相应提示,通过热过载继电器复位键进行复位;

二、安装说明 1.运输:柜体到达现场后,请用叉车或吊车平稳的将柜体运 到柜体所需安装的基础台(槽钢或水泥台)上。运输过程中,柜体不应受碰撞,以免骨架变形,或者薄面板碰凹,表面涂层 受撞伤,影响外观。 2.安装:本控制柜属于落地式安装。安装完毕后打开箱体, 将电源引入,电机按照图纸连接,电磁阀控制由端子引出。 安装完毕后,要检查电机与控制柜的绝缘性,机械传动是否 正常。 3.环境要求: 现场环境温度应控制在-10°~50°这个范围内 现场的防护等级要求为IP55 无导电尘埃和破坏绝缘介质的气体或蒸汽。 无剧烈震动或冲击 良好通风环境 4.当以上条件均符合后,接通电源,观察电机运转是否正常,转速方向,转速高低和转速大小等。 三、工作原理 该电控柜由西门子S7-200作为主控制器。现场各种模拟量信号(压力、温度信号)由变送器(安置于现场〉转换为4-20mA的电流信号,经PLC的AD釆集模块,送入CPU进行处理。CPU对实时信号和设定信号比较,并作相应报警处理,同时监控整个系统流程。文本显示器

工业循环水国标word版本

工业循环水国标

中华人民共和国标准 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment GB50050-95 主编部门:中华人民共和国化学工业部 批准部门:中华人民共和国建设部 施行日期:1995年10月1日 中国计划出版社 1995年北京 目次 1总则 2术语、符号 2.1术语 2.2符号 3循环冷却水处理 3.1一般规定 3.2敞开式系统设计 3.3密闭式系统设计 3.4阻垢和缓蚀 3.5菌藻处理 3.6清洗和预膜处理 4旁流水处理 5补充水处理 6排水处理 7药剂的贮存和投配 8监测、贮存和化验 附录A水质分析项目表 附录B本规范用词说明 附加说明 附:条文说明 1总则 1. 01为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。 1. 02本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。 1. 03工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1. 04工业循环冷却水处理设计应在不断地总结生产实践经验和科学试验的基础上,积极慎重地采用新技术。 1. 05工业循环冷却水处理设计除应按本规范执行外,尚应符合有关现行国家标准、规范的规定。 2术语、符号 2.1术语

2.1.1循环冷却水系统Recirculating cooling water systemc 以水作为冷却介质,由换热设备,水泵、管道及其它关设备组成,并循环使用的一种给水系统。 2.1.2敞开式系统Open system 指循环冷却水与大气直接触冷却的循环冷却水系统。 2.1.3密闭式系统Closed system 指循环冷却水不与大气直接触冷却的循环冷却水系统。 2.1.4药剂Chemicals 循环冷却水处理过程中使用的各种化学物质。 2.1.5异状养菌数学课Count of heterotrophic bacteria 按细菌平皿计数法求出每毫升水中的异养菌个数. 2.1.6粘泥Slime 指微生物及其分泌的粘液与其它有机和无机的杂质混合在一起的粘浊物质。2.1.7粘泥量Slime content 用标准的浮游生物网,在一定时间内过滤定量的水,将截留下来的悬浊物放入量筒内静置一定时间,测其沉淀后粘泥量的容积,以mg/m3表示。 2.1.8.污垢热阻值Fouling resistance 表示换热设备传热面上因沉积物而导致传热效率下降程度的数值,单位为m2.k/w。 2.1.9腐蚀率Corrosion rate 以金属腐蚀失重而算得的平均腐蚀率,单位为mm/a。 2.1.10系统容积System capacity volume 循环冷却水系统内所有水容积的总和。 2.1.11浓缩倍数Cycle of concentration 循环冷却水的含盐浓度与补充水的含盐浓度之比值。 2.1.12监测试片Monitoring test coupon 放置在监测换热设备或测试管道上监测腐蚀用的标准金属试片。 2.1.13预膜Prefilming 在循环冷却水中投加预膜剂,使清洗后的换热设备金属表面形成均匀密致的保护膜的过程。 2.1.14间接换热Indirect heat exchange 换热介质之间不直接接触的一种换热形式。 2.1.15旁流水Side stream 从循环冷却水系统中分流部分水量,按要求进行处理后,再返回系统。 2.1.16药剂允许停留时间Permitted retention time of chemicals 药剂在循环冷却水系统中的有效时间。 2.1.17补充水量Amount of makeup water 循环冷却水系统在运行过程中补充所损失的水量。 2.1.18排污水量Amount of blowdown 在确定的浓缩倍数条件下,需要从循环冷却水系统中排放的水量。 2.1.19热流密度Heat load intensity 换热设备的单位传热面每小时传出的热量。以W/m2。 2.2符号 编号符号含义

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

循环冷却水系统中的余热利用探讨_杨琦

80  给水排水 Vol .35 N o .2 2009 循环冷却水系统中的余热利用探讨 杨 琦 (华东建筑设计研究院有限公司,上海 200002) 摘要 明确了循环冷却水系统余热利用的目的,介绍了冷却水余热利用的两种主要方法。对余热利用的形式进行了比较和分析,从综合的角度提出了间接利用方式较直接利用方式更有优势。 关键词 循环冷却水系统 余热利用 间接利用 直接利用 冷凝热回收 节能 建筑节能是现代建筑设计的要求,循环冷却水系统中的余热利用有利于达到节能减排的目的。统计数据表明,我国建筑能耗的总量逐年上升,在能源消费总量中所占比例已从20世纪70年代末的10%上升到近年的27.8%。建筑最大的耗能是采暖和空调,据统计我国在采暖和空调上的能耗约占建筑总能耗的55%,而宾馆中循环冷却水系统的能耗约占空调系统总能耗的10%。因此,探讨循环冷却水系统中的余热利用有重要的现实意义。1 目的和可行性 循环冷却水系统中余热利用的目的是在满足空调系统正常运行的情况下,充分利用系统的多余热量,起到节能减排的作用。节能减排是在保证使用功能基础上提出的,因此,系统的余热利用应以满足空调系统功能为前提。 循环冷却水的余热利用也是空调水冷冷水机组中冷凝热回收利用的一种方式。在空调系统中,通常水冷冷水机组冷凝热可达制冷量的1.15~1.3倍。大量的冷凝热未加以利用通过冷却塔直接排入大气,不仅造成了巨大的能量浪费而且对环境造成了热污染。这部分热量对空调系统本身而言是需要释放的,而建筑在空调状态下还是有系统需要热量供应的。因此,利用循环冷却水的余热是可行的。2 冷却水余热利用的方法 从冷却水利用的角度出发,其利用的方法主要可分为直接式和间接式两种。从空调冷凝热的回收角度出发,有冷却水热回收与排气热回收两种方式。余热利用的热量可用于制备生活热水。2.1 直接式 冷却水余热利用的直接方法是在循环冷却水系统中增设热交换器将冷却水的热量交换出来(见图1)。直接式从冷却水出水中回收了部分热量,其利用的热水出水温度小于冷却水的出水温度,但冷水机组的制冷量与COP 基本不变,换热效率较低。 对冷凝热回收而言,利用的是空调冷凝器侧排出的37℃高温水,来加热制备生活热水,属于间接利用冷凝器的热量。 图1 循环冷却水的直接利用方式运行示意 2.2 间接式 冷却水余热利用的间接方法是从冷凝器中分出一路制冷剂,一部分通过循环冷却水系统冷却,一部分通过热回收器直接与自来水换热制备生活热水(见图2)。它需要增加专用的热回收冷凝器(又称排气热回收的冷水机组),在冷凝器中增加热回收管束以及在排气管上增加换热器。从压缩机排出的高温、高压制冷剂气体优先进入热回收冷凝器中,将热量释放给被预热的水,冷凝器的作用是将多余的热量通过冷却水释放到环境中,也称为双冷凝器热回收技术。间接式在余热利用中可产生温度较高的热水,常称为空调冷凝热免费热水供应系统(HRWH )。 对冷凝热回收而言,这种方法属于直接利用热量,又可分为两种,一种是只利用压缩机出口蒸汽显 DOI :10.13789/j .cn ki .w we1964.2009.02.028

相关主题
文本预览
相关文档 最新文档