当前位置:文档之家› 采用D类功放IC的FM收音读卡音箱PCB Layout布线注意事项

采用D类功放IC的FM收音读卡音箱PCB Layout布线注意事项

采用D类功放IC的FM收音读卡音箱PCB Layout布线注意事项
采用D类功放IC的FM收音读卡音箱PCB Layout布线注意事项

采用D类功放IC的FM收音读卡音箱PCB Layout布线注意事项

文章来源:更新时间:2011-9-15 22:41:00

调频(FM)接收机在读卡迷你音箱和便携式播放器中已经开始广泛应用了,它能提供极佳的音质、讯号稳定性和抗噪声能力。近来FM接收机已开始出现在更多的行动和个人媒体播放器等市场应用中,为了电池续航力,在后级功率放大器选用上,D类功放IC与FM收音的结合是不可避免的趋势。关于带FM 收音的插卡式(便携)音箱,大致总结了关于此类系统的总体框架。相关模块已尽可能多的列出,可根据具体系统实际情况删减。

图1 带FM收音功能读卡音箱结构框图

上述模块相关芯片型号列举:

MCU (Mp3 Decoder): 炬力ATS2503,山景AU6850C,建荣AX2000,士兰SC3680,凌阳

FM: RDA5807, PL102RT-S, KT0830EG

Memory: EEPROM, 24C02, 256×8 bits

Flash, W25×16, 16M bits

Power: Li Bat Charger, EUP8054, CYT4054

DC-DC升压,ME2108, CE8301, TP8350, LP3120

采用D类功放IC的读卡音箱PCB Layout布线注意事项:

1、D类功放IC音频输入方式

MCU (MP3 Decoder), FM输出的Audio信号基本为单端信号(如果是差分信号输入方式,可抑制大量差模噪声),需考虑此类系统的噪声问题。包括地线处理、整体布局的考虑对噪声的影响以及pop声的抑制考虑等。

(1)输入方式。如果采用差分方式,可滤除共模噪声,所以有较佳的噪声抑制能力。

图2 D类功放IC差分输入原理图

(2)电源、地线处理。

数字地与模拟地的隔离,D类功放IC PGND与AGND的隔离(由于PVDD、PGND处受内部功率管频繁开关而受干扰,有一定噪声)都会有一定的作用;

地环路产生的噪声,比如电源与音源同为PC机提供,PC机上较大噪声会引入,此时采用差分输入切断地环路会有很大效果;

PVDD与PGND间至少需添置一个尽量靠近这两个引脚的1uF电容;

另外,外部电源、DC-DC电源、锂电池充电等也会容易引入噪声,亦需谨慎处理。特别是如果采用漏电较大的电源,会引起较大的电流声。

(3)单独的外部audio输入、FM的audio输出、MCU的audio输出等需要可靠调节,防止混乱,而相互间的噪声串扰也需注意。

(4)若采用软件控制D类功放IC的Mute管脚,可彻底消除pop声,比如,上电时使功放芯片一直启动MUTE功能,等稳定后(200ms以后),再关闭MUTE功能即可。断电时,先启动MUTE功能,再掉电,即在电路可能产生POP声的时候使电路均处于MUTE状态,所以POP声不会被放大。

(5)在信号输入端对GND加一个1KΩ电阻可以明显降低系统电流声及Pop声。连接方式见下图:

图3

2、影响FM收音效果的各种因素

(1)需考虑D类功放IC的EMI辐射,并采取相关措施抑制;把由功放到扬声器的走线长度缩到更短,更粗,尽量少弯角。必要时,将其引线换成屏蔽线,屏蔽网接地,或在输出端加铁氧体磁珠或电感滤波器。

(2)需考虑FM收音芯片或模块的抗干扰程度,需熟悉相关芯片性能特性并采取相关抵抗措施。

A、FM收音的天线应尽量远离功放芯片,特别是功放芯片的输出端;

B、天线与FM收音芯片Fin之间的RF信号走线应尽可能短,良好屏蔽;

C、外围元器件的摆放,需尽量参考该芯片的相关建议或指导,如电源去耦电容、信号传输线或接口及附带元件、磁珠、晶振、LC谐振选频回路等等

(3)其他可能的EMI干扰源抑制,包括整体布局的考虑对此性能的影响。

A、电源也是EMI问题的来源,DC-DC、开关电源等开关频率、纹波的影响,甚至电缆线长度、位置等都会有影响,所以旁路电容和去耦电容的放置比较重要;

B、地也是容易引入噪声而引起EMI问题的原因之一,比如地环路,系统较复杂时,数字电路与模拟电路应分区隔开;合适地进行布线以便可以预测电流走向;数字电路如LCD刷屏、Memory的时钟线等也可能是EMI问题的重要来源;

C、通常,如果由外接耳机地线当做天线,这时候,耳机的其他线也会成为干扰源对天线产生干扰,通常的处理时在其他线串上磁珠,其应尽量摆放在靠近耳机接口处。

D、电路板的连接器亦可能引起EMI问题,较多的连接器时,有必要为连接器提供适当滤波;

E、晶振是重要的干扰源之一,其位置的摆放,摆放处的屏蔽等措施也需要注意。

3、Power电源问题

电源的提供有多种方式,包括

(1)USB port的直接供给;

(2)外部5V或可接受电压值的直流电源直接供给;

(3)上述两种电源给Li电池充电后供电;

(4)锂电池或①②种方式,加升压稳压电路供电。

需综合考虑实际情况、成本问题、便携程度几个方案的优劣与对功放的影响程度等因素综合考量选择哪种方式。

A、比如,不稳定或设计不良的DC-DC升压稳压电路可能产生较大纹波(十几V的Vp-p,大大超过

芯片的承受能力)使得功放芯片在工作时(特别是驱动未加保护措施的喇叭)容易受到强大的电源波动而使输出端损坏。

B、电源与音源

4、散热问题

D类功放IC其封装底部一般会带有一个散热裸焊盘。该焊盘提供一个从管芯到PCB的导热通路,从而降低了封装热阻,一般使用一个大焊盘并通过多个孔将散热裸焊盘连接到地平面。裸焊盘是IC散热的主要途径,芯片底部的裸焊盘、PCB及其覆铜层构成了D类放大器的主要散热通道。将裸焊盘焊接在一个较大的覆铜区域,应尽可能扩大该覆铜区域与D类放大器及其它器件之间的覆铜面积,这些连线须具有相同电位。连线应尽可能宽,每个通路都会影响到系统的整体散热能力。与裸焊盘连接的覆铜区域应通过多个过孔连接到PCB另一层的覆铜区。在满足系统信号通路限制的条件下,应尽量扩大由过孔连接的另一层的覆铜面积。另外,尽可能加宽器件的所有引线,是改善器件散热的另一途径。虽然IC引脚不是主要的散热通道,只能提供少量散热(最多可以改善10%的散热能力),但却可以从根本上解决系统的散热问题,使系统的热性能指标达到可以接受的水平。如果系统工作在较高的环境温度下,可能需要添加额外的散热器,以改善PCB的散热能力。为了获得最佳性能,散热器的热阻必须保持在最小值。借助芯片底部的裸焊盘,具有最低热阻的通道位于PCB的底层。IC顶部对于器件散热没有明显影响,因此,不是安装散热器的理想位置。

pcb布局布线技巧经验大汇总

PCB电路板布局、布线基本原则 一、元件布局基本规则 1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开; 2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围 3.5mm (对于M2.5)、4mm(对于M3)内不得贴装元器件; 3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路; 4. 元器件的外侧距板边的距离为5mm; 5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm; 6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm; 7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布; 8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔; 9. 其它元器件的布置: 所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直; 10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm); 11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信号线不准从插座脚间穿过; 12、贴片单边对齐,字符方向一致,封装方向一致; 13、有极性的器件在以同一板上的极性标示方向尽量保持一致。 二、元件布线规则 1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线; 2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil; 3、正常过孔不低于30mil; 4、双列直插:焊盘60mil,孔径40mil; 1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil; 无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil; 5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线

音响系统连接图示

Vip房间音响系统连接图示:

PARTY房间音响系统连接图:

MIC—麦克风总音量ECHO VOL—回声(效果)音量BALANCE—平衡(左右声道的平衡旋钮)TREBEL—音乐的高音BASS—音乐的低音 MIC VOL—麦克风音量(里圈大旋钮是第一,二路麦克风音量旋钮;外圈小旋纽是第三路麦克风的音量旋钮)MIC TREBEL—麦克风高音(里圈大旋钮是第一,二路麦克风高音旋钮;外圈小旋纽是第三路麦克风的高音旋钮)MIC BASS—麦克风低音(里圈大旋钮是第一,二路麦克风低音旋钮;外圈小旋纽是第三路麦克风的低音旋钮)DEALY---延迟repeat----重复rev---混响,残响rev time---混响时间effect----效果Band width----频率带宽

一.麦克风啸叫

二.麦克风没有声音输出 A.检查麦克风开关是否打开。 B.麦克风开关已打开,检查点歌触摸屏上的麦克风音量是否调到了最小。如有将其调到适当音量。 C.检查前级功放的按扭“MIC VOL MIC TREBLE MIC BASS”是否调到了最小。如有将其调到指定位置。 D.检查麦克风线的接头及前级功放后面的麦克风接口是否连接好,如有松动将其接好。 E.如以上都无效,建议换一支麦克风。 备注:如果两支麦克风的其中一支有声音,那么可以按以下步骤排查: 第一步:把没有声音的那只麦克风插到正常的那只麦克风的插座上,如果仍然没有声音,说明这只麦克风有问题,请更换麦克风。 第二步:如果原来没有声音的那只麦克风有声音了,说明麦克风没有问题,应该是麦克风线或者前级的问题;请查看一下这只麦克风的麦克风线是否已经正确插在了前级的麦克风输入端,或者查看麦克风是否有断路或短路;还要 查一下这只麦克风的音量旋钮是否打开了。 第三步:如果以上步骤都正常,请更换前级试一下。

功放与音箱匹配技巧与注意事项

功放与音箱匹配技巧与注意事项 对功放与音响之间的匹配问题,除了音色软搭配之外(音色搭配常说软硬之分,是根据设计者对音色走向的设计和用料,而具有的特征和个性)还有一些技术指标上的硬搭配。软搭配是经验积累和个人爱好以实际感受为主,硬搭配则以数据和基本技术常识来定夺,下列就来简述硬搭配有关方面的问题。 阻抗匹配 1. 真空管功放(胆机)与音箱匹配时,放大器的输出阻抗应与音箱阻抗相等,否则会出现降低输出功率和增大失真等现象。好在大都胆机都有可变输出阻抗匹配接口如4-8-16欧,与音箱阻抗匹配已趋简单。 2. 对于晶体管功放(石机)与音箱阻抗的匹配 A) 音箱阻抗比功放输出阻抗高时,除了输出功率不同程度的降低外,无其它影响。 B) 音箱阻抗比功放输出阻抗低时,输出功率相应成比例增加,失真度一般不会增加或增加一点点可忽略。但匹配时音箱阻抗不能太低,如低至2奥姆(指2只4奥姆音箱并联时),此时只有功放功率富裕量大,并使用性能良好的大功率管和多管并联推挽,一般对这样的功放无影响。反之,一般普通功放富裕量不大,而功放管的pcm、lcm不大,当音量又开得很大时,这时失真会明显增大,严重时机毁箱亡,切切注意。 功率匹配

1、从原则上来讲,音箱额定功率与功放额定功率不一致时,对于功放来说,它的功率大小只与音箱阻抗有关,而与音箱额定功率无关。无论音箱功率与功放功率是否相同,对功放工作无影响,只是对音箱本身安全有关。 2、如果音箱阻抗符合匹配要求,而承受功率比功放功率小,则推动功率充足,听起来很舒服。这就是常说的功放储备功率要大,才能充分地表现出音乐全部内涵,尤其是音乐中的低频部分,表现更为生动、有力。这是一种较好的匹配。 3、如果音箱的额定阻抗大于功放的额定功率,虽然二者都能安全的工作,但这时功率放大器推动功率显得不够,会觉得响度不足,往往出现已经开到饱和状态,失真加剧,仍感到力不从心。这是一种较差的匹配。 按阻尼系数匹配

pcb布局布线基本原则

PCB布局、布线基本原则 一、元件布局基本规则 1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块, 电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路 分开; 2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件, 螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴 装元器件; 3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔, 以免波峰焊后过孔与元件壳体短路; 4. 元器件的外侧距板边的距离为5mm; 5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm; 6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰, 不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装 孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm; 7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布; 8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇 流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接

连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源 线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电 源插头的插拔; 9. 其它元器件的布置: 所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上 极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直; 10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充, 网格大于8mil(或0.2mm); 11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信 号线不准从插座脚间穿过; 12、贴片单边对齐,字符方向一致,封装方向一致; 13、有极性的器件在以同一板上的极性标示方向尽量保持一致。 二、元件布线规则 1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线; 2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil; 3、正常过孔不低于30mil; 4、双列直插:焊盘60mil,孔径40mil; 1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil; 无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil; 5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。 如何提高抗干扰能力和电磁兼容性 在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性? 1、下面的一些系统要特别注意抗电磁干扰: (1) 微控制器时钟频率特别高,总线周期特别快的系统。 (2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。

汽车音响主机的接线功能和接法-汽车音响接线说明-汽车音响主机英文说明

汽车音响主机的接线功能和接法/汽车音响接线说明/汽车音响主机英文说明 响机背上一般有十几到几十根接线,大致说一下功能和接法。无经验的朋友请慎重试接! 1、主电源线(BAT)。 标记:BAT ,+ 或是B + 连接:通过中心保险盒直接接电瓶正极 作用:给主机提供工作电源 判断:一般为黄色(或者红色)粗线;带保险管(或者与机背上保险片的某一脚直通);即使拔掉车钥匙,依旧显示为12V左右。 2、防盗线SAFE(部分车型单独,部分车型与BAT同一条线。多数车型没有)现在的车型已经没有了 标记:SAFE 连接:通过中心保险盒直接接电瓶正极 作用:给主机提供记忆电源。当主机被拔走后,重新接电机器会提示输入密码,起到防盗作用。现在多数已经不配了。原来是西方治安混乱时期有无业青年砸玻璃拆机头卖钱吸毒时的防备。 判断:一般为黄色(或者红色)线;有些带保险管;即使拔掉车钥匙,依旧显示12V左右 3、启动线(ACC) 标记:ACC,或者SW,或者开关符号,或者钥匙符号。 连接:通过车钥匙开关,再连接到电瓶正极 作用:通知主机可以准备工作。钥匙拔掉后主机立即或者延时停止工作。防止车主忘记关机时把电跑光。 判断:一般为黄色(或者红色)线;有些带保险管;拔掉车钥匙电压为0V,拧开车钥匙显示12V左右。 4、地线GND (也称呼为负线或为负电源) 标记:GND,或者—及NC 连接:直接接车体(一般车体又接电瓶负极,被称为负极接地系统,掀开发动机盖可以看到电瓶负极直接连到车架上。极少有正极接地系统的车车,或者音响主机。)。 作用:构成主机的供电回路,与BAT一进一出。

判断:一般为黑色粗线;与车体金属或者主机金属外壳完全相通。 上面4条线一接,主机一般就可以上电了。但要出声,还要接喇叭线。 5、喇叭线SP 喇叭线一般有四对+/- 线,标明FR、FL、RR、RL,意思是FRONT RIGHT(前右)、FRONT LEFT (前左)、REAR RIGHT(后右)、REAR LEFT(后左) 车上喇叭线判断方法:一般成对出现,一条是纯色一条是杂色,往往不用红、黄、黑。比如绿/绿白条纹灰/灰黑条纹等。用一节5号电池瞬间接通这两条线,就会听到特定的喇叭发出劈啪声。 喇叭线接通后,调整主机的前后、左右声场平衡,会发现有无接错。 注意喇叭正负不可接反--- 如果一个喇叭相位反了低音效果会很差。因为反相会导致一个喇叭往外冲时另一个喇叭正好往里冲,低音效果会被互相抵消。有经验的人能根据喇叭大小听出来的,或者调整主机的前后左右平衡,依次只让一个、前排一对、左侧一对等喇叭响,如果发现某种情况下低音比别的情况好,则有可能有喇叭反相了。即使全部接的反相,纸盆运动没有互相抵消,理论上低音音质也会变差。因为信号颠峰纸盆往外冲与往内吸效果还是不同的。专业店面有检测相位仪的。 6、收音机天线。RF 单独一根带屏蔽的比较粗而且硬的线。主机背上有专用插口,一般不和其他插座放一块的。 剩下的是附加线或者特殊功能线了 7、照明线ILLU+(某些机型有) 标记:ILLU,或者小灯符号,或者小太阳符号。 连接:直接接仪表盘照明电源正 作用:打开仪表盘灯或者大灯,主机面板按键会全亮。便于夜间操空。 判断:关掉仪表盘照明,电压为0V,打开仪表盘照明或者大灯,显示12V左右。 8、天线控制线ATN(某些机型有) 标记:ATN,或者小天线的符号。 连接:连接天线电机控制线 作用:升起收音机天线。

使用音响和功放连接线的方法

使用音响和功放连接线的方法 导语:以下就是音响连接步骤介绍。大家在看完本文之后相信会懂得如何去连接。使用音响和功放连接线的方法应该要注意:要用专门的喇叭线连接。功放的L声道(左声道)接到左侧音响上,R声道(右声道)接到右侧的音响上,以人的左右为标准。两只音响的连接线的“+”和“-”都要接正确,否则低音会被抵消掉。 1、首先看看功放和音响的后面,音频线是否齐全;如果没有,就要先到五金店中购买一段,不必太长,否则也会盘起来放在后面。 2、音频线的连接很容易,找一把老虎钳或剪刀也可以,把音频线线头出剥除外表面的胶皮层,露出里面的铜线,一般都是两种颜色:黄铜色和银色。 3、拨好皮,把铜线稍微用手拧几圈使铜线硬度更强些,然后看到功放后面有红色和黑色接线柱,黄铜色的接红色柱;银色的接黑色柱。 4、音频线的另一端同样接到音响后面,有的音响是接线柱式,有的更方便,是卡扣式,用手指压下卡扣,把线捅进去,然后松手,线就被卡扣夹住,很牢固的。 5、两个音响的话,要分别把线接在Left和Right两边,就是左边和右边各接一条线。 6、功放和音响连接好以后,就要给功放输入声音源,声音源一般的情况使用DVD播放机就可以,如果允许的话,也可以使用笔记本等,更加灵活。连接线需要使用两头都是莲花头的音频线两根,DVD

后面插在OUTPUT下的L和R声道输出声音信号,在功放上同样插在L和R上,但是注意是INPUT输入下。这样声音就会从DVD输出到功放,然后再从功放输出到音响了。 7、现在可以打开DVD和功放,应该可以听到声音了。下面是功放前面板的按钮说明,大家可以找一个小的一字螺丝刀,插上麦克风,边说话边慢慢调整旋钮,直到音响适合自己的声音,自己听着舒服就ok。 接线相关文章: 1.耳机转接线是什么 2.耳机转接线有什么用 3.功放和音箱的接线技巧 4.使用音响和功放连接线的方法 5.如何将音响接线调出好声音 6.低音炮接线的技巧

功放与音箱的阻抗匹配

浅析功放与音箱匹配技巧与注意事项 6月2日报道对功放与音响之间的匹配问题,除了音色软搭配之外(音色搭配常说软硬之分,是根据设计者对音色走向的设计和用料,而具有的特征和个性)还有一些技术指标上的硬搭配。软搭配是经验积累和个人爱好以实际感受为主,硬搭配则以数据和基本技术常识来定夺,下列就来简述硬搭配有关方面的问题。 一、阻抗匹配 1、电子管功放(胆机)与音箱匹配时,放大器的输出阻抗应与音箱阻抗相等,否则会出现降低输出功率和增大失真等现象。好在大都胆机都有可变输出阻抗匹配接口如4-8-16欧,与音箱阻抗匹配已趋简单。 2、对于晶体管功放(石机)与音箱阻抗的匹配 ①音箱阻抗比功放输出阻抗高时,除了输出功率不同程度的降低外,无其它影响。 ②音箱阻抗比功放输出阻抗低时,输出功率相应成比例增加,失真度一般不会增加或增加一点点可忽略。但匹配时音箱阻抗不能太低,如低至2欧(指2只4欧音箱并联时),此时只有功放功率富裕量大,并使用性能良好的大功率管和多管并联推挽,一般对这样的功放无影响。反之,一般普通功放富裕量不大,而功放管的pcm、lcm不大,当音量又开得很大时,这时失真会明显增大,严重时机毁箱亡,切切注意。 二、功率匹配 1、从原则上来讲,音箱额定功率与功放额定功率不一致时,对于功放来说,它的功率大小只与音箱阻抗有关,而与音箱额定功率无关。无论音箱功率与功放功率是否相同,对功放工作无影响,只是对音箱本身安全有关。 2、如果音箱阻抗符合匹配要求,而承受功率比功放功率小,则推动功率充足,听起来很舒服。这就是常说的功放储备功率要大,才能充分地表现出音乐全部内涵,尤其是音乐中的低频部分,表现更为生动、有力。这是一种较好的匹配。 3、如果音箱的额定阻抗大于功放的额定功率,虽然二者都能安全的工作,但这时功率放大器推动功率显得不够,会觉得响度不足,往往出现已经开到饱和状态,失真加剧,仍感到力不从心。这是一种较差的匹配。 三、按阻尼系数匹配 对于选一对hi-fi音箱来讲,应有最佳的特定的电阻尼要求(负责任的音箱厂家应该提供此数据,指的是对功放阻尼系数的要求。说清楚点就是如要配此音箱,要求所配的功放阻尼系数要达到多少)。一般情况下,功放的阻尼系数高一点为好,低档功放阻尼系数小于10时,音箱的低频特征,输出特征,高次谐波特征等都会变坏。(家用功放的阻尼数一般在几十至几百之间。) 四、线材的匹配。 进口发烧线、神经线林林总总,贵至万余元,次之也要千元至数千元,(当然也有百元以下的),使用效果那是见仁见智的事。好的线材一般情况下都会改善音响器材中某系不足。它的传输理论说起来太复杂,只能简述了。传输线的材料与结构,决定了三个重要参数,即电阻、电容、电感(还有电磁效应、集肤效应、近接效应、电抗等)别看这些参数微小的差距,会直接影响到音响系统频率特征,阻尼特征,信号速率,相位精度,也及音色取向和声场定位等。它的主要作用是,高速传输(尽可能减小信号损失)、抗震动、防杂讯、抗干扰(主要是无线电波rf1射频干扰和em1电磁波干扰等) 音箱功放匹配原则(摘自网络) 功放与音箱配接四要素功放与音箱配接讲究冷暖相宜、软硬适中,以实现整套器材还原音色

pcb布局布线技巧及原则

pcb 布局布线技巧及原则 [ 2009-11-16 0:19:00 | By: lanzeex ] PCB 布局、布线基本原则 一、元件布局基本规则 1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开; 2. 定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安 装孔周围3.5mm (对于 M2.5)、4mm(对于M3内不得贴装元器件; 3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路; 4. 元器件的外侧距板边的距离为5mm; 5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm; 6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧 贴印制线、焊盘,其间距应大于2mm定位孔、紧固件安装孔、椭圆孔及板 中其它方孔外侧距板边的尺寸大于3mm; 7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布; 8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座

及焊接连接器的布置间距应考虑方便电源插头的插拔; 9. 其它元器件的布置: 所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直; 10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm); 11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信号线不准从插座脚间穿过; 12、贴片单边对齐,字符方向一致,封装方向一致; 13、有极性的器件在以同一板上的极性标示方向尽量保持一致。二、元件布线规则1、画定布线区域距PCB板边w 1mm的区域内,以及安装孔周围1mm内,禁止布线; 2、电源线尽可能的宽,不应低于18mil ;信号线宽不应低于12mil ;cpu 入出线不应低于10mil (或8mil );线间距不低于10mil ; 3、正常过孔不低于30mil ; 4、双列直插:焊盘60mil ,孔径40mil ; 1/4W 电阻:51*55mil (0805 表贴);直插时焊盘62mil ,孔径42mil ;无极电容:51*55mil (0805 表贴);直插时焊盘50mil ,孔径28mil ; 5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。如何提高抗干扰能力和电磁兼容性在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性?

音响悬挂小知识。

量贩式和商务KTV调音师必读知识。 1,什么叫音箱的承受功率? 顾名思义,音箱的承受功率就是指“输入音箱不超过此标示功率就不会损坏,就能承受得了”。音箱的承受功率有几种表述方法,很容易造成使用者的误解,从而不当使用造成音箱的损坏。音箱的参数标注中有的是标注额定功率,也就是长期功率,表示在此功率状态下长期使用不会损坏。工厂检测额定功率是在恒温20℃条件下,用粉红噪声信号连续工作48小时为准。在KTV包房中使用环境比较恶劣,音乐中又包含很多大动态的峰值信号,建议输入功率低于额定功率20%以上使用音箱,将会安全很多。有的音箱参数标注的是峰值功率,这个值是额定功率的3-4倍,例如BMB牌CS-450MKII的功率标注就是峰值功率450W。音箱对峰值功率的承受是有条件限制的,时间设定是1秒钟,反复也只能10次,如果超过就可能损坏,对峰值功率标注的音箱要特别小心使用,建议使用功率不超过峰值功率的1/4。 2;什么是功放的额定输出功率? 功放的额定输出功率是指:“在不失真条件下的长期输出功率(一般指输出失真不超过1%)”,此种状态下功放是安全可靠工作的。其实这里有几个前提条件:其一是要求市电电压为标准的220V,若市电波动,则功放的输出功率也会随之变化;其二是对负载(音箱)有阻抗规定,例如2*150W(8Ω)的功放,在4Ω负载的情况下可能输出功率会达到230W左右。其三工厂在功放的输出功率测试时的环境温度为20℃,在KTV包房中使用时若散热不好,即使是在额定功率条件下工作,都有可能损坏功放,其四功放的额定功率是指不失真输出功率,并不是说功放只能输出这个功率,如果任由功率失真也加大输出(增大音量旋钮),则输出的失真功率是很大的,远远超过额定功率。例如150W(8Ω)的功放在不失真时的最大输出电压应小于35V(功率=电压2/电阻),当失真时,输出电压可能会升到40V,则此时的失真功率会达到402/8=200W。 3;在选用功放和音箱时应该如何匹配功率? 在选择功放和音箱时,我们建议功放额定功率要略大于音箱的额定功率,一般大小20-30%为宜,最起码也要相等,一定不能让功放额定功率小于音箱额定功率,形成“小马拉大车”。小马拉大车会造成整个系统低音表现松软无力,动态和音乐表现层次变差,如果此情况下使用者过多加大低音的音调旋钮或加大音量旋钮,则会造成功放输出失真,即内行人常说的“削波”,造成直流电输出(正常情况下功放的输出波形为交流电正弦波,失真后会“削波”形成近似的直流电)。在有直流电输出的情况下功放已控制不了喇叭,必烧无疑。功放的功率大于音箱功率时,要控制功放的输出不能过大,这样就能保证功放有足够的“功率储备”,有好的动态表现,又不会损坏音箱。 4 ;为什么经常“烧高音喇叭? 高音喇叭是音箱中最薄弱的环节,当有造成音箱损坏的情况发生时,往往首先损坏的是高音喇叭,当然使用不当的也会烧低音喇叭。工厂在设计音箱时,一般在额定功率的前题下保留了一定的余量,例如我厂的CS-450A音箱是双高音设计,配KA2050功放,额定输出功率是150W,分配给高音部份的功率也就是45W左右(一般音乐信号中高音单元分配的功率约为额定输出功率的30%),CS-450A音箱的高音部份有保护灯泡,第一系列分频元件和2只3寸的高音喇叭,真正在150W推动时每只高音喇叭的分配功率不超过15W,而高音喇叭的额定功率是20W,还有25%的富余量。通过我们走访大量的用户后发现,绝大多数“烧喇叭”是使用不当造成的,主要集中在以下几个方面:

PCBLayout布局布线基本规则

布局: 1、顾客指定器件位置是否摆放正确 2、BGA与其它元器件间距是否≥5mm 3、PLCC、QFP、SOP各自之间和相互之间间距是否≥2.5 mm 4、PLCC、QFP、SOP与Chip 、SOT之间间距是否≥1.5 mm 5、Chip、SOT各自之间和相互之间的间距是否≥0.3mm 6、PLCC表面贴转接插座与其它元器件的间距是否≥3 mm 7、压接插座周围5mm范围内是否有其他器件 8、Bottom层元器件高度是否≤3mm 9、模块相同的器件是否摆放一致 10、元器件是否100%调用 11、是否按照原理图信号的流向进行布局,调试插座是否放置在板边 12、数字、模拟、高速、低速部分是否分区布局,并考虑数字地、模拟地划分 13、电源的布局是否合理、核电压电源是否靠近芯片放置 14、电源的布局是否考虑电源层的分割、滤波电容的组合放置等因素 15、锁相环电源、REF电源、模拟电源的放置和滤波电容的放置是否合理 16、元器件的电源脚是否有0.01uF~0.1uF的电容进行去耦 17、晶振、时钟分配器、VCXO\TCXO周边器件、时钟端接电阻等的布局是否合理 18、数字部分的布局是否考虑到拓扑结构、总线要求等因素 19、数字部分源端、末端匹配电阻的布局是否合理 20、模拟部分、敏感元器件的布局是否合理 21、环路滤波器电路、VCO电路、AD、DA等布局是否合理 22、UART\USB\Ethernet\T1\E1等接口及保护、隔离电路布局是否合理 23、射频部分布局是否遵循“就近接地”原则、输入输出阻抗匹配要求等 24、模拟、数字、射频分区部分跨接的回流电阻、电容、磁珠放置是否合理 外形制作: 1、外形尺寸是否正确? 2、外形尺寸标注是否正确? 3、板边是否倒圆角≥1.0mm 4、定位孔位置与大小是否正确 5、禁止区域是否正确 6、Routkeep in距板边是否≥0.5mm 7、非金属定位孔禁止布线是否0.3mm以上 8、顾客指定的结构是否制作正确 规则设置: 1、叠层设置是否正确? 2、是否进行class设置 3、所有线宽是否满足阻抗要求? 4、最小线宽是否≧5mil 5、线、小过孔、焊盘之间间距是否≥6mil,线到大过孔是否≥10mil

浅谈功放与音箱的匹配问题

浅谈功放与音箱的匹配问题 在专业扩声领域里,功放与音箱配置所涉及的方面很多,例如功率匹配、功率储备量匹配、阻抗匹配、阻尼系数的匹配等。在配接时认识到上述几点,可使所用器材的性能得到充分的发挥,达到理想的效果。 1 功率匹配 为了达到高保真聆听的要求,额定功率应根据最佳聆听声压来确定。大家都有这样的感觉:音量小时声音无力、单薄、动态较小、无光泽、低频显著缺少、丰满度差;音量合适时声音自然、清晰、圆润、柔和丰满、有力、动态较大;音量过大时,声音生硬不柔和、毛糙、有刺耳的感觉。因此重放声压级与声音质量有较大关系,规定听音区的声压级最好为80~85 dB(A计权)。可以从听音区到音箱的距离与音箱的特性灵敏度来计算音箱的额定功率与功放的额定功率。 大家都知道,在进行厅堂声学设计时,需要根据一系列计算确定音箱功率,然后再由音箱功率确定功放功率。首先,通常在人耳听域的20 Hz—20 kHz内,集中大量能量的音乐信号一般在中、低频段,高频段能量仅相当于中、低频段能量的1/10,一般音箱高音损失的功率比低音低得多。而功放好比一个电流调制器,它在输入音频信号的控制下,输出大小不同的电流给音箱,使之发生大小不同的声音,在一定阻抗下,可以实现标称功率200W的功放达到400W或几倍的输出,但是功放的失真(THD)将会大大增加,这种失真主要产生在中、低频信号中的高频谐波,其失真越大,高频谐波能量就越大,这些高频失真信号都将随高频音乐信号一同进入高音头,这就是为什么小功率功放推大音箱会发生烧高音头的原因。其次,功放与音箱的功率配置与目标响度以及所使用场合也有一定的关系。在一定目标响度下,应该让音乐信号的动态在每件器材上都能得到充分地保证,如果功放功率太大,其增益设置很小时,响度已达到要求,但这时功放的增益就限制了信号的动态范围。所以,功放功率不能太大,否则,既浪费开支,又会带来响度和音乐动态无法兼顾以及音箱负荷过重的麻烦。 总之,功放的选定必须由音箱决定,在一定的目标响度下,音箱可以比设计值大一些,以备不同用途,而功放的功率应该严格由音箱决定,没有太大的灵活性。功放与音箱功率配

功放和音箱的接线方法

功放和音箱的接线方法 1、功放分定压式与定阻式: 定压功放一般用于公共场合的公共广播,其特点为单声道输出、高电压低电流输出。 定阻功放多用于专业场合,其特点为立体声输出、低电压高电流输出。 2、我们的功放都是定阻式,下面主要讲定阻功放与音箱。 定阻即是指负载的阻抗要与功放输出阻抗相匹配,所以只要你系统中连接的音箱总电阻与功放一致就行了,不管你的音箱串联、并联或者混联都行。 关于串联和并联的电阻计算公式在初中就学了: 串联时:R=R1+R2 并联时:R=1/(1/R1+1/R2) 比如说, 有2只16Ω的音箱,用我们的CS功放(4Ω/8Ω)去推,可以将音箱并联得到8Ω; 有1台16Ω的功放,要推我们的2只E-8(8Ω),可以将音箱串联得到16Ω; 有1台16Ω功放,要推4只16Ω的音箱,可以将其中两只并联,再将另外两只并联,最后把两组音箱串联得到16Ω; 在我们常用的方案里,1台CS2000功放推4只E-8音箱,就是把E-8两两并联,音箱阻抗变为4Ω,功放自适应为4Ω,功率也相应加大了。 本帖最后由SVSZ 于2011-7-22 16:33 编辑

1、先常规解释功放桥接的定义: 桥接模式(bridge mode)是利用功放内部的两个放大电路相互推挽,从而产生更大输出电压的方式,功放设定为桥接模式后,成为一台单声道放大器,只可以接受一路输入信号进行放大,输出端为两路功放输出的正端之间。 桥接的定义说得很清楚了,设置成桥接模式往往是因为功放的功率不够,而桥接模式下功放的输出功率一般为普通模式下的2-3倍。但是在桥接模式下功放只是单声道输出(推一只音箱,比如常用来推一只低音炮)。 2、桥接方法: 将功放的模式开关调至Bridge,然后把音箱线的正极接到功放左声道的正极,音箱线的负极接到功放右声道的正极,咱们SVS各款功放的桥接开关和接线方法详见下图: (CS系列功放桥接开关,按下状态为桥接模式,弹出状态为立体声模式) (H系列功放桥接开关,从上到下依次为立体声、单声道、桥接模式)

PCB布线规则详解

1 电源、地线的处理既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能 下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证 产品的质量。对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作 以表述:众所周知的是在电源、地线之间加上去耦电容。尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是: 地线>电源线>信号线,通常信号线宽为:0.2~ 0.3mm,最经细宽度可达0.05~0.07mm,电源线为 1.2~ 2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) 用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2、数字电路与模拟电路的共地处理现在有许多PCB 不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要

考虑它们之间互相干扰问题,特别是地线上的噪音干扰。数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间 互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。 3、信号线布在电(地)层上在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会 给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。 4、大面积导体中连接腿的处理在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就

音响系统的调试方法和步骤

音响系统的调试方法和步骤: (一)、检查设备运行状况: 1、开关机顺序:开机时一定要先开功放前面的音响设备;而关机时则要先关掉功放然后再关功放以外的音响设备,否则音箱里会产生较大的脉冲声。 2、检查设备是否正常:依次将所有设备电源开关打开,检查下电源方面是否正常;设备在正常通电后还要看看它们的工作状态是否正常,检查一下各周边设备的调节旋钮或按键调整的是否合理、有无异常 (二)、音箱音量的定位:一般的调音顺序都是最后调整功放,因此好多音响师都不怎么重视功放的调整,对他们来说所谓的调整就是把功放音量开关开到最大而已,因为大多数技术文章都强调说一定要把功放的音量开到最大,在此本人不敢苟同,实际上应该根据音箱的分布、用途、建声情况等,对每台功放的音量进行合理的调整!具体的调整顺序如下: 1、打开调音台,播放音乐信号, 把调音台的总音量开到正常演出时的大小。 2、打开相关的周边设备,并把这些周边设备调整到正常的工作、演出状态。 3、先把所有功放的音量开关关到最小的位置,然后再把所有的功放打开。 4、逐一打开功放的音量,一方面检查是不是每一只音箱都有声音、声音是否正常,再有还要在功放上贴上标签方便今后的检查和维护。最后把这台功放的音量调到合适,要一个一个通道的调整,这样才标准,调整好这一台功放的音量后我们可以把这台功放的电源关掉,这样方便下一台功放的调整。接下来按照以上的顺序把所有功放都依次调整一遍。 5、调整好每一台功放音量后,然后我们再把所有功放的电源打开,音量打开,也就是让整个音响系统都处在正常的工作状态,然后出去到声场中听一下每一只音箱是否正常,然后再看情况对相关的设备进行修改性调整。以上就是调整功放音量的简单顺序了,当然功放是在一套音响系统的最后面,调好了功放、定好了每一只音箱的音量,也就基本上调好了功放前面所有音响设备的工作状态了。 (三)、调音台的调整:关于调音台的重要性我已经阐述很多次了,作为一套音响系统的心脏,这个心脏血液循环的如何,直接影响到整个系统的稳定性。 1、调音台的信号输入:在以前的文章里都已经介绍过了,调音台的输入信号大体上分为低阻话筒信号输入和高阻线路信号输入两种。具体来说。现在我们使用的有线动圈话筒和电容话筒是低阻信号,但无线话筒因为经过了话筒接收机放大后有的已经是高阻信号了;而各种音源播放设备如DVD、CD、VCD、LD MD、MP3、录音机等都是高阻信号;而各种乐器如电子琴、电贝司等标准来说是高阻信号,但某些特殊情况下也可以用低阻端口输入。 2、调音台通道增益的调整:要输入到调音台里的音源,我们首先要分清它是低阻还是高阻,然后用标准的信号线正确的连接到调音台上。如果要让每一路音源都达到完美的音质,我们就需要仔细的调整了。调音台每个输入通道的增益是很重要很关键的,好多音响师如果只是把增益简单的看成了是一个音量旋钮就理解错了,其实增益更重要的作用是用来控制输入信号动态范围的,一般增益调到最大不失真时就是最大的有效动态范围了,也是最好的效果状态了。这里我用水的特点来形容一下:调音台的输入通道和输入线路都会有个基本的本底噪声,这个本底噪声就好像是河底里的泥沙,是不可消除的。大家知道,当河水不深的时候,流动的水是泥沙俱下的,这样的水质肯定不好。也就是说如果增益旋钮开的太小、动态范围不足,音源信号就好像是泥沙俱下的流水了,本底噪声就会突现出来,这时的音质肯定不好了;相反当河水比较深的时候,流动的水是比较清的,水质肯定很好,也就是说增益旋钮开的大小合适、动态范围较大,这样音质肯定很好了;当然如果增益开的太大,就好像水势浩大,连河坝都冲垮了,河底都给掀翻了,这就是相当于电平信号大到失真了,这时候当然也谈不上什么音质了,还会对设备造成损害,所以也不是增益越大越好,要有个度,合适才好。我想这样来形容增益的作用,就算是音响初学者也应该能理解了吧。如何简单调整增益这里

调音台、均衡器、压限器、电子分频器、反馈抑制器、延时器、激励器、数字效果器、功放、音箱、正确连接方法

调音台、均衡器、压限器、电子分频器、反馈抑制器、延时器、激励器、数字效果器、功放、音箱、正确连接方法。 一、调音台的连接 提到音响系统,我们当然首先会想到调音台,调音台,会有很多种形容法,最贴切的莫过于把调音台比喻成一个音响系统的心脏了,这个心脏血液循环的如何,直接影响到整个系统的性能。形象来说调音台就像一个大的水处理池,我们把多种音源信号像流水一样输入进这个大水池,然后在水池内对流入的各种水进行合理的处理,最后再从各种不同渠道流出去,整个过程就是这么简单。因此对调音台的连接无非也是:输入和输出两大部分。 (一)、调音台输入部分的线路连接: 调音台的输入信号大体上分为低阻话筒信号输入和高阻线路信号输入两种。其实我们可以把低阻和高阻的区分看成是水压力或水流速度的不同。比如:高阻输入的电平高,就好像水压很大,水流较急,直接输入到调音台这个水池里就合适了,不用在中间加什么环节来调整水压和水流速了;但低阻输入的电平低,就好像水压很低,水流很慢,直接输入到调音台这个水池里就不合适,我们就需要在大水池里加上一台抽水机,把低阻的低水压给它加大,让水流速度加快!所以调音台的低阻输入通道线路里都内置了专门的电路放大器,把低电平放大到合适的电平。这样用水的特点来形容低阻信号和高阻信号大家应该很好理解了。 只有分清高阻、低阻之后才可以选择正确的线材进行相应的连接,大体上调音台输入插口基本可以分为3种: 1、TRS:高阻输入部分通常要用6.35cm TRS立体声接头作平衡输入,尽量不要用6.35 TS 单音(声)接头作非平衡输入,而现在我们用的大部分音源播放设备如:CD、VCD、DVD、

MD、MP3等以及大部分乐器的输出信号通常都是高阻信号。 2、XLR:而低阻通常用XLR卡侬接头作平衡输入,现在大部分的有线话筒通常都要用低阻插口与调音台连接。 3、RCA:如果有的调音台带有TAPE录音输入,那通常是采用RCA莲花接头进行连接。 调音台信号输入部分需要注意的问题:上面已经介绍了调音台的输入信号大体可分为低阻和高阻输入,但如何准确界定某一路信号是属于低阻还是高阻就需要灵活。比如按照标准,电子琴、电贝司、电吉它等属于高阻信号,要用6.35接插头输入到调音台才可以,但有些地方从舞台到调音台之间的连接线太长,线阻大,再加上灯光等系统干扰,让这条信号线的本底噪声已经很大了,即使不输入任何音源信号,在调音台上把这条线路所输入通道的增益开大时都会有很大的本底噪音,就好像上面形容的:这条线就是一条河,现在这条河里的泥沙已经太多了,此时这条线路里杂音很多还是不可改变的,而且线路那边的乐器音量已经开到最大而无法再增加了,也就是河里只能给你放那么深的水了,那怎么办呢?如果用高阻信号输入就等于河里的水没有增加,水质不可以改变,音质当然也没办法改变;如果用卡侬插头从低阻插口输入信号,河里的一点浅水就会经过低阻放大器的放大,这样水深了,水质好了,音质也好了。说起来好像不太真实,大家可以试下。我现在做的好多工程,乐队基本上都是采用卡侬插口从低阻输入,虽然表面看起来不规范,但实际上也是减少乐队噪声的无奈之举。所以我们还是要灵活,在实践中寻找最佳工作方法。 (二)、调音台输出部分的线路连接:

功放与音箱的匹配

功放与音箱的匹配?? ? Body:?讲到功放与音箱的匹配,说法有很多。生产功放厂商说,功放功率一定要大于音箱功率,这样功放有多余功率储备,声音会好听些;音箱厂商说,音箱功率最好要大点?,这样音箱能有较大承受功率,万一系统"回受",这样不至于损坏音箱。消费者不知道如何是好? ? 如果我们完全以理论概念来讲,音箱"额定承受功率"与功放"额定输出功率"要相同。这就好比婴儿吃奶,多了会吐少了会哭,刚好就相安无事。这没什么特别,但看起来简单的道理,里面却有很多不可告人的"秘密"。 ? 首先,音箱的额定功率是多大?说明书上有写:8欧,150WRMS。请问这代表什么?对于一只2分频音箱来说,它是指这只音箱可以承受从功放输出的150W的额定功率。 现在我们做进一步的探讨,这150WRMS是如何分配的呢?因为是2分频,我们假设有一只15寸低音,另一只为1寸驱动器高音,那是否就是150/2,即15寸低音承受75WRMS,1寸驱动器高音承受75WRMS,或者有人说是15寸承受150WRMS,1寸高音也承受150WRMS,很明显这些都不正确。 ? 让我们将话题讲远点?,为什么要2分音? 2分音的目的在于将音频范围有效的分成2频段,因为靠单只扬声器的声音没办法覆盖全音频的信号(在一定声压级范内),例如我们通常知道的分频点,它表示从用低音单元(如15寸)来还音,用高音单元(1寸驱动器高音)来还音?,假设现在音箱已在播放流行音乐,我们简单说低音BASS是从15寸低音出来,而高音"三角铁"是从1寸驱动器出来的,现在大家可能已经看出,15寸低音所承受的功率要远大于1寸驱动器高音所承受的功率。如果这时你觉得你听到的声音很好,那我们告诉你,80%的功率在15寸低音上,只有少于20%的功率是从高音上出来的。这里我们讲,8/2分功率?,其实如果分频点上移或下移,其功率的分配是不同的。800Hz 的分频点,其比例大约为6/4;分频点为,比例大约为9/1。所以:对于2分频的音箱,高音与低音所承受的功率是不同的?,这种不同是随着分频点的改变而改变的,问题又来了,那分频点对于2分频来说是定多少为好呢? 十多年前笔者还是学徒时,?师傅讲:"分频点是800Hz最能反应人的声音特性"。那时,笔者有忙不完的工作,因为大量的高音损坏(当时我们代理PEA VEY,卖得最好的是SP2)在那年代,百威的低音是很好,高音也不错,但是SP2在设计上确实?存在很大错误---将分频点设在800Hz,我想当时只有JBL的工程师在?笑,笑"百威"太理想化。 ? 当时的理论是:以人的声音来讲,800Hz-2KHz是人声最重要的部分,因此我们2

工程师必看PCB布局和走线规则

如果采用过波峰焊的加工工艺,还应确定过波峰焊时PCBA的走动方向 5、2、5、布局操作:一、要依照各模块电路的特性,遵照“先大后小,先难后易”的布置原则, 即重要的单元电路、核心元器件应当优先布局。、二、参考原理图,根据电路的特性安排主要元器件布局。三、要考虑各元件立体空间协调与安规距离的符合 5、2、 6、过锡方向分析,散热分析,风向及风流量考虑 (如:散热片应怎样放、多厚、散热牙 (翼)方向、散热面积多大最利于散热、散热片材质要求、辅助散热、风道方向、PIN脚稳固性、可靠度等) 5、2、7、布局应尽量满足以下要求: 初级电路与次级电路分开布局;交流回路, PFC、PWM 回路,整流回路,滤波回路这四大回路包围的面积尽量小, 各回路中功率元件引脚彼此尽量靠近,控制IC要尽量靠近被控制的MOS管,控制IC周边的元件尽量靠近IC布置5、2、8、电解电容不可触及高发热元件,如大功率电阻,变压器,散热片 5、2、9所有金属管脚不能紧靠在相邻元件本体上,以防过锡时高温使元件管脚烫伤其它元 件外壳而短路或爆裂 5、2、10、发热元件一般应均匀分布,以利于单板与整机的散热,除温度检测元件以外的温度 敏感器件应远离发热量大的元器件 5、2、11、跳线不要放在IC及其它大体积塑胶外壳的元件下,避免短路或烫伤别的元器件。 5、2、12、SMD封装的IC摆放的方向必需与过锡炉的方向成平行,不可垂直,如下图 SOL 5、2、13、SMD封装的IC两端尽可能要预留2、0mm的空间不能摆元件,为了预防两端SMD 元件吃锡不良。如果布局上有困难,可允许预留1、0mm的空间 5、2、14、多脚元件应有第1脚及规律性的脚位标识(双列16PIN以上与单排10PIN以上均 应进行脚位标识)PFC MOS与PWM MOS散热片必须接地,以减少共模干扰 5、2、15、对热敏感元件(如电解电容、IC、功率管等)应远离热源,变压器、电感、整流器 等;发热量大的元件应放在出风口或边缘;散热片要顺着风的流向摆放;发热器件不能过于集中 5、2、16.功率电阻要选用立插封装摆放,以便散热或避免烧坏板子;如果就是卧插封装,作业 时一定要用打KIN元器件 5、2、17、考虑管子使用压条时,压条与周边元件不能相碰或出现加工抵触 5、2、18、贴片元件间的间距: a、单面板:PAD与PAD之间要求不小于0、75mm b、双面板:PAD于PAD之间要求不小于0、50mm c、单面板/双面板:PAD于板边间距要求不小于1、0mm;避免折板边损坏元件(机器分板);

相关主题
文本预览
相关文档 最新文档