当前位置:文档之家› 往复式压缩机论文

往复式压缩机论文

武汉工程大学

离心式压缩机喘镇问题分析

【摘要】离心压缩机是一种速度式压缩机,由于较其他压缩机来说,离心压缩机存在排气量大,效率高,结构简单,体积小,气体不受油污染以及正常工况下运转平稳、压缩气流无脉动等特点,广泛用于各种工艺流程中,用来输送空气、各种工艺气体或混合气体,并提高其压力。是工业生产中的关键设备。本篇文章就离心压缩机喘振产生的原因和危害做简要的分析,并介绍一些预防及解决喘振的措施,供大家参考。

【关键词】离心压缩机;喘振;原因;危害;措施

随着经济社会的不断发展,我国对工业的要求也越来越严谨,离心压缩机作为速度式压缩机的佼佼者,应用范围极为广泛,例如在石油、化工、冶金、动力、制冷等行业已经得到广泛的应用。因此,离心压缩机的安全可靠运行对工业生产有着非常重要的意义。但是,离心压缩机也存在这一定的隐患,由于他对气体的压力、流量、温度变化比较敏感,因此较容易发生喘振现象。而喘振是离心压缩机固有的一种现象,在离心压缩机的使用中具有较大的危害性,是压缩机损坏的主要原因之一。

离心压缩机的工作原理

电动机带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,并以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。

离心式压缩机的喘振机理

当离心式压缩机的流量减少或增加到一定值时都会出现气流不稳定工况,因而相应地有最大流量限和最小流量限,大量理论研究和实验表明,压缩机的气流不稳定工况总是与通流部分各元件气流的严重脱离密切相关的。压缩机运行中出现不稳定工况,性能将大大恶化,在喘振下运行会出现严重的振动,机器不能正常工作,甚至被破坏。

离心压缩机工作的基本原理是利用高速旋转的叶轮带动气体一起旋转而产生离心力,从而将能量传递给气体,使气体压力升高,速度增大,气体获得了压力能和动能。在叶轮后部设置有通流截面逐渐扩大的扩压元件(扩压器),从叶轮流出的高速气体在扩压器内进行降速增压,使气体的部分动能转变为压力能。可见,离心压缩机的压缩过程主要在叶轮和扩压器内完成。当离心压缩机的操作工况发生变动,而偏离设计工况时,如果气体流量减小则进人叶轮或扩压器流道的气流方向发生变化,气流向着叶片的凸面(工作面)冲击,在叶片的凹面(非工作面)的前缘部分,产生很大的局部扩压度,于是在叶片非工作面上出现气流边界层分离现象,形成旋涡区,并向叶轮出口处逐渐扩大。气量越小,则分离现象越严重,

气流的分离区域就越大。由于叶片形状和安装位置不可能完全相同及气流流过叶片时的不均匀性,使得气流的边界层分离可能先在叶轮(或叶片扩压器)的某个叶道中出现,当流量减少到一定程度,随着叶轮的连续旋转和气流的连续性,这种边界层分离现象将扩大到整个流道,而且气流分离沿着叶轮旋转的反方向扩展,以至叶道中形成气流旋涡,从叶轮外圆折回到叶轮内圆,此现象称为旋转脱离,又称为旋转失速。发生旋转脱离时叶道中气流通不过去,级的压力突然下降,排气管内较高压力的气体便倒流回级里来。瞬间,倒流回级中的气体补充了级流量的不足,叶轮又恢复正常工作,重新把倒流回来的气体压出去。这样又使级中流量减小,于是压力又突然下降,级后的压力气体又倒流回级中来,如此周而复始,在系统中产生了周期性的气流振荡现象,这种现象称为“喘振”。

喘振现象通常具有如下宏观特征:

(1)压缩机工作极不稳定

(2)喘振有强烈的周期性气流噪声,出现气流吼叫声。

(3)机器强烈振动,机体、轴承等振幅急剧增加。

喘振的实质

喘振又叫“飞动”,是离心压缩机的实际工作流量到一定程度时,气流进入叶片的方向与叶片进口角度不一致,即冲角i>0,这时在叶片的非工作面产生气体分离(旋转分离)。

当冲角达到某一值时,旋转分离区域联成一片,占据流道。压缩机不再排气,管路中气体就会倒回来,弥补流量不足,经叶轮压缩重新流出。这一股气打出后,流量又没了,气体又倒回来。这样周而复始的改变流向,机器和管线中就会产生“低频高振幅”的压力脉动,并发出如“牛吼叫”般的噪音。这实际上是气流在交替倒流和排气时产生的强大的气流冲击。这种冲击引起机器强烈的振动,如不及时采取措施,将使压缩机遭到严重破坏。这就是“喘振”。

影响、产生喘振的因素

(1)流量

从图中可以看出,随着流量的减少,压缩机的出口压力逐渐增大,当达到该转速下最大出口压力时,机组进入喘振区,压缩机出口压力开始减小,流量也随之减小,压缩机发生喘振。

从曲线可看出,流量减小是发生喘振的根本原因,在实际生产中尽量避免压缩机在小流量的工况下运行。一般认为,压缩机在最小流量下应低于设计流量60%。

(2)入口压力

如图所示,压缩机的入口压力P1>P2>P3,在压缩机恒压的运行工况下,入口压力越低,压缩机越容易发生喘振,这也是入口过滤器压差增大时,要及时更换滤网的原因。

(3)入口温度

如图所示,恒压恒转速下进行的离心式压缩机在不同入口气体温度时的运行曲线,从曲线上可以看出在恒压运行工况下,气体入口温度越高,越容易发生喘振。因此,对同一台离心式压缩机来说,夏季比冬季更容易发生喘振。

(4)转速

透平式驱动的压缩机,往往根据外界不同流量要求而运行在不同转速下,从图可以知道,在外界用气量一定的情况下,转速越高,越容易发生喘振。

压缩机突然从高转速跌至低转速时,也会引起喘振。

(5)气体相对分子质量

如图所示,离心压缩机在相同转速、不同相对分子质量下恒压运行的曲线,从曲线中可以看出,在恒压运行条件下,当相对分子质量M=20的气体发生喘振时,相对分子质量为M=25和M=28的气体运行点还远离喘振区。因此,在恒压运行工况下,相对分子质量越小,越容易发生喘振

防止喘振的措施

出现喘振的原因是压缩机的流量过小,小于压缩机的最小流量,或者管网的压力高于压缩机所提供的排压,造成气体倒流,产生大幅度的气流脉动。对流量过小引发的喘振来说,最直接最有效的方法就是打开防喘振控制阀,增加压缩机流量。压缩机出口压力与管网不匹配引发的喘振,多见于压缩机的开停车操作中:在开车时,应该是先升速后升压;在停车时,应该是先降压后降速。

常用措施:

a 将一部分气体经压缩机出口阀放空。此法浪费大,且只能用于空压机、氮压机、CO2压缩机等无毒性气体。

b 将部分气体由旁路送往压缩机吸入段。广泛采用,多采用带温度调节的防喘振线,并配备防喘振控制系统。

c 转动进口导叶,转动扩压器叶片或者调速等调节方法。

d 设计时尽可能使压缩机有较宽的稳定工作区域,设计先进的防喘振控制系统e根据压缩机性能曲线,控制防喘裕度

结束语

喘振是离心式压缩机固有的特性,具有较大的危害。喘振现象的发生取决于管网的特性曲线和离心压缩机的特性曲线。喘振形成的原因在于倒流与供气的周

期性地交替进行。应当结合生产实践,逐步弄清喘振的机理,掌握喘振的主要影响因素,熟悉常见的喘振实例,采取有效的防喘振控制措施,提高离心压缩机抗喘振性能和运行可靠性。压缩机的控制在化工企业中是相当重要的,而喘振是离心式压缩机固有的特性,具有较大的危害。因此,抗喘振控制系统研究是离心式压缩机的一个重要研究课题,只有充分认识和理解其中的利弊,才会对于改进和优化压缩机的控制掺存在较大的意义,随着科技的进步和发展,相信更加合理和先进的控制方案将会随时出现,克制离心压缩机喘振现象的发生,提高离心压缩机抗喘振性能和运行可靠性。

参考文献

[1] 庞琳,离心压缩机喘振的预防及解决措施,《中国高新技术企业》,2010

[2] 何龙,张瑞妍,离心式压缩机防喘振研究[J],压缩机技术,2009

[3] 荐保志,离心式压缩机喘振分析及解决措施[J],中小企业管理与科技,2009

空气压缩机毕业设计_说明

第一章、空气压缩机简介 (2) 第一节、空气压缩机的作用和类型 (3) 一、作用 (3) 二、类型 (3) 第二节、回旋式空气压机泵体的结构和工作原理 (5) 一、泵体组成的零部件 (5) 二、回转式空气压缩机工作原理 (7) 第二章、空气压缩机的三维造型及装配 (9) 第一节、轴承座的三维设计 (9) 第二节、曲轴的三维设计 (14) 第三节、空气压缩机泵体重要零部件的设计过程 (14) 1.1设置工作目录 (14) 1.2曲轴的绘制 (14) 第四节、泵体的装配 (21) 第三章、轴承的加工工艺 (23) 第一节、生产纲领 (23) 第二节、零件结构公用分析 (24) 第三节、确定毛坯 (25) 第四节、选择设备及工艺装备 (27) 第五节、工序设计及工艺文件的填写 (27) (一)、工序设计 (27) (二)、填写工艺文件 (29) 1、填写机械加工工艺过程综合卡 (29) 2、填写指定工序的机械加工工序卡 (29)

第一章、空气压缩机简介 空气压缩机(英文为:air compressor)是气源装置中的主体,它是将原动机(通常是电动机)的机械能转换成气体压力能的装置,是压缩空气的气压发生装置。空气压缩机的种类空气压缩机的种类很多,按工作原理可分为容积式压缩机,速度式压缩机,容积式压缩机的工作原理是压缩气体的体积,使单位体积气体分子的密度增加以提高压缩空气的压力;速度式压缩机的工作原理是提高气体分子的运动速度,使气体分子具有的动能转化为气体的压力能,从而提高压缩空气的压力。 我国的空气压缩机行业的市场规模均为8%以上的增速增长,2010-2011年增长率甚至超过了28%,市场规模扩迅速。然而,在规模如此巨大的市场上,过去很长一段时间由外资企业掌握绝大部分市场。2009年度,我国空气压缩机行业共有生产企业近400家,其中资企业数量接近90%,实现销售收入总额约为60亿元,占全行业的40%;外资

往复活塞式压缩机设计毕业设计(论文)

1 引言 空气压缩机是指压缩介质为空气的压缩机,主要作用是为生活、生产提供源源不断地、具有一定压力的压缩空气。作为一种工业装备,压缩机广泛应用于石油、化工、天然气管线、冶炼、制冷和矿山通风等诸多重要部门;作为燃气涡轮发动机的基本组成元件,在航空、水、陆交通运输和发电等领域随处可见;作为增压器,已成为当代内燃机不可缺少的组成部件。在诸如大型化肥、大型乙烯等工艺装置中,它所需投资可观,耗能比重大,其性能的高低直接影响装置经济效益,安全运行与整个装置的可靠性紧密相关,因而成为备受关注的心脏设备[1]。 压缩机按工作原理可分为容积式和动力式两大类;按压缩级数分类,可分为单级压缩机、两级压缩机和多级压缩机;按功率大小分类,可分为微小型压缩机、中型压缩机和大型压缩机。按压缩机的结构形式可分为立式、卧式和角度式。而且角度式又可分为L型、V型、W型、扇形和星型等。不同形式的压缩机具有其鲜明的特点,根据其工作原理的不同决定了其不同的适用范围[2]。 空气压缩机的选择主要依据气动系统的工作压力和流量。起源的工作压力应比气动系统中的最高工作压力高20%左右,因为要考虑供气管道的沿程损失和局部损失。如果系统中某些地方的工作压力要求较低,可以采用减压阀来供气。空气压缩机的额定排气压力分别为低压(0.7MPa~1.0MPa)、中压(1.0MPa~10MPa)、高压(10MPa~100MPa)和超高压(100MPa以上),可根据实际需求来选择。常见使用压力一般为0.7~1.25MPa[3]。 空气压缩机应用范围极为广泛,且由资料显示国内需求量呈上升趋势,是中小型工业用压缩机一个庞大的族群。中、小型微型工业用往复活塞式压缩机有着相同的传动部件基础上变换压缩级数和气缸直径,迅速派生出多品种变形产品的便利条件。不仅其容积流量、排气压力变化多端,通过适当调整部分零部件材质还可以压缩多种气体,大为扩展服务领域[4]。 活塞式压缩机与其他类型的压缩机相比,特点是 (1)压力范围最广。活塞式压缩机从低压到超高压都适用,目前工业上使用的最高工作压力达350MPa,实验室中使用的压力则更高。 (2)效率高。由于工作原理不同,活塞式压缩机比离心式压缩机的效率高很多。而回转式压缩机由于高速气流阻力损失和气体内泄漏等原内,效率亦较低。 (3)适应性强。活塞式压缩机的排气量可在较广泛的范围内进行选择;特则是在较小排气量的情况下,要做成速度型,往往很困难,甚至是不可能的。此外,气体的重度对压缩机性能的影响也不如速度型那样显著,所以同一规格的压缩机,将其用于不同介质时,较易改造[5~7]。 根据机械部JB1407-85《微型往复活塞式空气压缩机基本参数》规定,额定排气压力分为0.25MPa、0.4MPa、0.7MPa、1.0MPa、1.25MPa和1.4MPa几个档

空气压缩机论文中英文对照资料外文翻译文献

毕业设计外文资料翻译 附件1:外文资料翻译译文 一维多级轴流压缩机性能的解析优化 摘要 对多级压缩机的优化设计模型,本文假设固定的流道形状以入口和出口的动叶绝对角度,静叶的绝对角度和静叶及每一级的入口和出口的相对气体密度作为设计变量,得到压缩机基元级的基本方程和多级压缩机的解析关系。用数值实例来说明多级压缩机的各种参数对最优性能的影响。 关键词 轴流压缩机 效率 分析关系 优化 1 引言 轴流式压缩机的设计是工艺技术的一部分,如果缺乏准确的预测将影响设计过程。至今还没有公认的方法可使新的设计参数达到一个足够精确的值,通过应用一些已经取得新进展的数值优化技术,以完成单级和多级轴流式压缩机的设计。计算流体动力学(CFD )和许多更准确的方法特别是发展计算的CFD 技术,已经应用到许多轴流式压缩机的平面和三维优化设计。它仍然是使用一维流体力学理论用数值实例来计算压缩机的最佳设计。Boiko 通过以下假设提出了详细的数学模型用以优化设计单级和多级轴流涡轮:(1)固定的轴向均匀速度分布(2)固定流动路径的形状分布,并获得了理想的优化结果。陈林根等人也采用了类似的想法,通过假设一个固定的轴向速度分布的优化设计提出了设计单级轴流式压缩机一种数学模型。在本文中为优化设计多级轴流压缩机的模型,提出了假设一个固定的流道形状,以入口和出口的动叶绝对角度,静叶的绝对角度和静叶及每一级的入口和出口的相对气体密度作为设计变量,分析压缩机的每个阶段之间的关系,用数值实例来说明多级压缩机的各种参数对最优性能的影响。 2 基元级的基本方程 考虑图1所示由n 级组成的轴流压缩机, 其某一压缩过程焓熵图和中间级的速度三角形见图2和图3,相应的中间级的具体焓熵图如图4,按一维理论作级的性能计算。按一般情况列出轴流压缩机中气体流动的能量方程和连续方程,工作流体和叶轮的速度。在不同级的轴向流速不为常数,即考虑i j u u ≠,i j c c ≠ (i j ≠) 时的能量和流量方程。在

往复式压缩机论文

0序言 压缩机是用来提高气体压力和输送气体的机械,属于将原动机的动力能转变为气体压力能的工作机。它的种类多、用途广,有“通用机械”之称。目前,除了活塞式压缩机,其他各类压缩机机型,如离心式、双螺杆式、滚动转子式和涡旋式等均被有效地开发和利用,为用户在机型的选择上提供了更多的可能性。随着经济的高速发展,我国的压缩机设计制造技术也有了长足进步,在某些方面的技术水平也已经达到国际先进水平。 1压缩机现状及趋势 1.1往复式压缩机的技术现状及发展趋势 在石化领域,往复式压缩机主要是向大容量、高压力、低噪声、高效率、高可靠性等方向发展;不断开发变工况条件下运行的新型气阀,提高气阀寿命;在产品设计上,应用热力学、动力学理论,通过综合模拟预测压缩机在实际工况下的性能;强化压缩机的机电一体化,采用计算机自动控制,实现优化节能运行和联机运行。 在动力领域,活塞式压缩机目前占有主要市场。但随着人们对使用环境及能耗、环保等方面要求的提高,螺杆和涡旋空气压缩机开始占有一定的市场。 在制冷空调领域,往复式制冷压缩机作为一种传统的制冷压缩机,适用于制冷量较广范围内的制冷系统。虽然目前它的应用还比较广泛,但市场份额正逐渐减小。 目前冰箱(包括小型冷冻与冷藏装置)制冷系统的主机仍以往复式压缩机为主。经过多年设计改进和技术进步,往复式冰箱压缩机效率大大提高。同时在与环境保护密切相关的制冷剂替代技术上也取得了可喜的进步。进一步提高往复式冰箱压缩机的效率、降低系统噪声是它的主要发展方向。 1.1.1线性(直线)压缩机 线性压缩机是往复式压缩机的一种型式,由于电动机的直线运动可以直接带动活塞的往复运动,从而避免了曲柄连杆机构的复杂性和由此带来的机械功耗。线性压缩机关键技术是压缩机油路系统的设计、电动机线性位移极限点的有效控制,以及相应的防撞技术。 1.1.2斜盘式压缩机 斜盘式压缩机也是往复式压缩机的一种变型结构,主要用于车用空调系统。经过几十年的发展,斜盘式压缩机已经成为一种非常成熟的机型,在车用空调压缩机市场占有 70% 以上的份额。但它的效率低于回转式压缩机,且体积较大。

压缩机毕业设计

四川理工学院毕业设计 0.42/150型空气压缩机 学生:田虎 学号:08011010318 专业:过程装备与控制工程 班级:2008.3 指导教师:唐克伦 四川理工学院机械工程学院 二O一二年六月

摘要 往复式压缩机是工业上使用量大、面广的一种通用机械。立式压缩机是往复活塞式压缩机的一种,属于容积式压缩机,是利用活塞在气缸中运动对气体进行挤压,使气体压力提高。 热力计算、动力计算是压缩机设计计算中基本,又是最重要的一项工作,根据任务书提供的介质、气量、压力等参数要求,经过计算得到压缩机的相关参数,如级数、列数、气缸尺寸、轴功率等,经过动力计算得到活塞式压缩机的受力情况。活塞式压缩机热力计算、动力计算的结果将为各部件图形以及基础设计提供原始数据,其计算结果的精确程度体现了压缩机的设计水平。 关键词:活塞式压缩机; 热力计算; 动力计算;气缸;曲轴

Abstract Reciprocating compressor is a common type machine, used in the industry .V- type of piston compressors is a kind of reciprocating compressor, belong to the compressor , utilize the pistons in the cylinder moving to squeeze on the gas ,squeezed the gas pressure. Thermal calculation and dynamical computation is basic of compressor design’ calculation, is also an important woke, according to medium, displacement, pressure of task-book, by calculating getting related parameters of compressors, such as levels, columns, size of cylinder, shaft power, by dynamical computation getting stressed status of a piston type compression, due to reduce the vibration is very important. heat calculation and dynamical computation of the piston type compressor, which is providing design data. The calculations reflect exactly the design level of the compressor. Keywords: piston compressor; thermal calculation; dynamical computation; cylinder; cranksh

空气压缩机全套设计毕业论文

空气压缩机全套设计毕业论文 1 引言 空气压缩机是指压缩介质为空气的压缩机,主要作用是为生活、生产提供源源不断地、具有一定压力的压缩空气。作为一种工业装备,压缩机广泛应用于石油、化工、天然气管线、冶炼、制冷和矿山通风等诸多重要部门;作为燃气涡轮发动机的基本组成元件,在航空、水、陆交通运输和发电等领域随处可见;作为增压器,已成为当代内燃机不可缺少的组成部件。在诸如大型化肥、大型乙烯等工艺装置中,它所需投资可观,耗能比重大,其性能的高低直接影响装置经济效益,安全运行与整个装置的可靠性紧密相关,因而成为备受关注的心脏设备[1]。 压缩机按工作原理可分为容积式和动力式两大类;按压缩级数分类,可分为单级压缩机、两级压缩机和多级压缩机;按功率大小分类,可分为微小型压缩机、中型压缩机和大型压缩机。按压缩机的结构形式可分为立式、卧式和角度式。而且角度式又可分为L型、V型、W型、扇形和星型等。不同形式的压缩机具有其鲜明的特点,根据其工作原理的不同决定了其不同的适用范围[2]。 空气压缩机的选择主要依据气动系统的工作压力和流量。起源的工作压力应比气动系统中的最高工作压力高20%左右,因为要考虑供气管道的沿程损失和局部损失。如果系统中某些地方的工作压力要求较低,可以采用减压阀来供气。空气压缩机的额定排气压力分别为低压(0.7MPa~1.0MPa)、中压(1.0MPa~10MPa)、高压(10MPa~100MPa)和超高压(100MPa以上),可根据实际需求来选择。常见使用压力一般为0.7~1.25MPa[3]。 空气压缩机应用范围极为广泛,且由资料显示国内需求量呈上升趋势,是中小型工业用压缩机一个庞大的族群。中、小型微型工业用往复活塞式压缩机有着相同的传动部件基础上变换压缩级数和气缸直径,迅速派生出多品种变形产品的便利条件。不仅其容积流量、排气压力变化多端,通过适当调整部分零部件材质还可以压缩多种气体,大为扩展服务领域[4]。 活塞式压缩机与其他类型的压缩机相比,特点是 (1)压力范围最广。活塞式压缩机从低压到超高压都适用,目前工业上使用的最高工作压力达350MPa,实验室中使用的压力则更高。 (2)效率高。由于工作原理不同,活塞式压缩机比离心式压缩机的效率高很多。而回转式压缩机由于高速气流阻力损失和气体内泄漏等原内,效率亦较低。 (3)适应性强。活塞式压缩机的排气量可在较广泛的范围内进行选择;特则是在较小排气量的情况下,要做成速度型,往往很困难,甚至是不可能的。此外,气体的重度对压缩机性能的影响也不如速度型那样显著,所以同一规格的压缩机,将其用于不同介质时,较易改造[5~7]。

压缩机的论文要点

制冷压缩机——活塞式制冷压缩机 作者:骆超超 陈泱任 李承祥 学校:制药与材料工程学院班级:尖峰班

目录 1.引言。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2.制冷系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 2.1制冷技术的历史现状发展趋势。。。。。。。。。。。。。。。。。。。。。3 2.2制冷技术的应用。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 3.制冷压缩机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 3.1.制冷压缩机的分类。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 4.活塞式压缩机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 5 4.1分类。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 4.2基本结构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 4.3工作原理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 4.4操作规程。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 4.5常见故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 4.6维护保养。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 4.7最新技术发展。。。。。。。。。。。。。。。。。。。。9 5. 结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 6.参考文献。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11

活塞式压缩机毕业设计

活塞式压缩机毕业论文 目录 第1章绪论 ................................................................................................................. II 1.1 课题的目的 ................................................................................................ II 1.2 背景 ............................................................................................................ II 1.3 课题内容及意义 ........................................................................................ V 第2章活塞式压缩机简介 ......................................................................................... V II 2.1 活塞式压缩机概述以及相关参数 .......................................................... V II 2.2 活塞式压缩机分类及结构 ....................................................................... I X 2.3 活塞式压缩机的工作原理 ........................................................................ X 2.4 活塞式压缩机在石油化工工业中的应用 ............................................... X I 第3章曲轴有限元分析 ........................................................................................... XIII 3.1 对曲轴进行有限元分析的重要性 ........................................................ XIII 3.2 曲轴相关力学计算 ................................................................................ XIV 3.3 曲轴的有限元分析 ................................................................................ XXI 3.4 小结 ...................................................................................................... XXV 第4章连杆有限元分析 ........................................................................................ XXVI 4.1 对连杆进行有限元分析的重要性 ..................................................... XXVI 4.2 连杆相关力学计算 ............................................................................. XXVI 4.3 连杆的有限元分析 .......................................................................... XXXIV

空调压缩机毕业设计

西安航空技术高等专科学校 第1章空调压缩机简介 1.1空调压缩机简介 空调压缩机是空调系统的核心部件。随着人们对生活舒适性的要求越来越高,各种新式空调系统不断出现,这也推动了空调压缩机制造技术的不断进步。从目前空调压缩机的发展趋势来看,结构紧凑、高效节能以及微振低噪等特点是空调压缩机制造技术不断追求的目标。 1.1.1 空调压缩机功能 空调压缩机的功能是借助外力(例如发动机动力)维持制冷剂在制冷系统内的循环,吸入来自蒸发器的低温、低压的制冷剂蒸气,压缩制冷剂蒸气使其温度和压力升高,并将制冷剂蒸气送往冷凝器,在热量吸收和释放的过程中,就实现了热交换。简单的说,空调压缩机相当于一个冷热源的交换工具。 1.1.2 空调压缩机种类 压缩机的主要分类如下图所示: 空调压缩机一般采用容积式结构,容积式又分为回转式和往复式,往复式制冷压缩机作为一种传统的制冷压缩机,适用于制冷量较广范围内的制冷系统。虽然目前它的应用还比较广泛,但市场份额正逐渐减小。

旋转式压缩机具有较少的机械部件,且其马达直接固定于壳体,与传统的往复式压缩机相比,尺寸紧凑,重量轻。其尺寸和重量几乎只有后者的一半,这就使房间空调器有可能做得更轻巧,旋转式压缩机的价格也低于往复式。 1.2 滚动转子式压缩机结构及工作过程 滚动转子式压缩机是一种容积型回转式压缩机,气缸工作容积的变化,是依靠一个偏心装置的圆筒形转子在气缸内的滚动来实现的。 1.2.1滚动转子式压缩机的结构及特点 目前,生产和使用中的滚动转子式压缩机基本上可分为中等容量的开启式压缩机和小容量的全封闭式压缩机,其中,大中型滚动转子式压缩机适用于冷库,小型滚动转子式压缩机多用于冰箱和家用空调器中。下面主要介绍小容量的全封闭滚动转子式压缩机的结构和特点。 1) 滚动转子式压缩机的结构:目前广泛使用的滚动转子式压缩机主要是小型全封闭式,通常有卧式和立式两种,如(图a和图b)所示,前者多用于冰箱,后者在空调器中常见。

活塞式空气压缩机开题报告资料

西安科技大学高薪学院 毕业设计《论文》开题报告 课题: 活塞式空气压缩机 院(系、部):机电信息学院 专业班级:机械0903 姓名:惠玉 学号:0901140324 指导老师:张水泉 日期:2012年7月9日

西安科技大学高新学院毕业设计(论文)开题报告 题目:活塞式空气压缩机的结构原理及故障排除选题类型:实践应用 1.课题研究的现状和意义 现状:活塞式空气压缩机是生活应用和工业中使用最多最常见的一种空气压缩机.它广泛地应用于化工,机械矿山,石油,交通运输,建筑,航海等各领域,由于石油化工工业的蓬勃发展,各类烬累气体的压缩机日趋增多,空压机在石油化工业中显得尤为重要。它的使用几乎遍及生活的各个部门,量大面宽.随着我国经济建设蓬勃发展, 空压机的使用由城市到农村, 随时到处可见. 空压机种类繁多, 型式多样, 小到汽车 , 拖拉机用的气泵,大到开山挖矿用的大型空压机,价值由于空压机的适用范围不同达到几千元到几十万元不等. 由于活塞式空气压缩机总体处于质量稳定,大批量廉价市售状态,由生活与国情决定,它的市场需求一直处于稳定的状态. 意义:1)通过课程研究,培养我们理论与实际结合的设计思想,总结大学四年里所学的知识.这样的实践过程可使我们在以后工作中,能更快速地提高专业技术; 2) 综合性地运用几年内所学知识去分析,解决一个问题.使自己的实践动

手,动笔能力得到锻炼; 3) 为以后进入工作岗位对产品的研发以及制造,改进打下基础; 4) 掌握文献检索,资料查询的基本方法以及获取新知识的能力. 2.课题要解决的问题或研究的基本内容 基本内容:1)对活塞式空压机的用途、结构、工作原理、性能特点进行了详述; 2)对压缩机的曲柄连杆结构进行了简介; 3)对空压机的在应用中遇到的一些故障进行检测与排除。 3.课题研究拟采用的手段和工艺路线 课程设计方法:1)学会独立思考,继承和创新设计时,要认真阅读参考资料,学习他人的设计成果和经验。应根据具体的设计条件和要求,独立思考,大胆地进行改进和创新只有这样,才能做出高质量的设计。2)全面考虑机械零件部件的强度、刚度、工艺性、实用性、经济性和维护等要求 工作路线:1)市场调查2)资料搜集3) 设计准备了解设计任务书,明确设计要求,工作条件,设计内容的步骤;通过查阅有关设计资料, 参观实物或模型等,了解设计对象的性

化工机械往复式压缩机维修与保养【论文】

化工机械往复式压缩机维修与保养 关键词:往复式压缩机;维修保养;故障诊断;优化措施 随着国内经济社会和科技水平的不断发展,工业化脚步持续迈进,化工领域的生产模式也逐渐完成了向机械自动化的转型。其中,具有代表性的往复式压缩机,由于具有高压比、压力范围广、热效率高、可靠性高等特点,适用于出口压力较低、对流量小的实际生产环境,目前在石油化工、炼油以及天然气输送中应用广泛。往复式压缩机属于容积式压缩机,主要由气缸、曲柄滑块机构、气阀、活塞等部件构成,通过持续的吸气和排气交替过程,实现压缩机静压力的全面提高。然而,压缩机中的繁多部件、复杂结构和落后的总控系统,使得在实际化工生产运用过程中,极易导致机械零件磨损及其后续故障,也为检修工作的开展带来阻碍。往复式压缩机维修与保养的技术直接决定了设备运行的可靠性,为了提高机组运行的可靠性、保障生产装置长期稳定运行、总体提升企业经济效益,需要制定科学合理的维修和保养计划。基于此,本文就化工机械往复式压缩机的维修与保养进行简要分析。

1往复式压缩机常见故障及诊断方法 往复式压缩机的常见故障可以分为流体性质及其热力性能和机械性质的及其动力性能两大类,例如气阀故障、密封故障、活塞故障、轴承轴瓦故障等。数据统计结果显示,导致压缩机组异常的主要原因中气阀故障占到四成,是最常见的故障成因,由于受压不均造成的填料泄露、活塞环、支撑环原件损坏占到30%,以及其他工艺问题。其中,合理地选择和使用低粘度的润滑剂,既能起到润滑原件、延长气阀和汽缸使用寿命的作用,又能降低压缩机比功率,从而达到节能的目的。振动是往复式压缩机工艺设计中的难题,当管道内气体遇到弯头、管阀产生激振,这种压力脉动使得管道发生振动。当气体压力脉动过大或者管道内部发生激烈共振时,振动幅度将超过机械承受范围,造成原件磨损和噪声。目前,用于诊断往复式压缩机的技术主要包括振动法和数据库分析,前者是通过特定的仪器测定压缩机汽缸内侧压力信号,推测气阀故障及原件磨损情况,后者则是基于大量的数据建立信息库,利用评定参数对可能存在的隐患进行测评和预估。这两种诊断方法结合先进技术,实现了无需拆卸仪器即可完成对故障原因和异常位置的确定,大大提升化工生产效率。具体到实际生产操作中,根据诊断的方式具体又分为以下三种:(1)人工直接诊断。经验丰富的检修人员可以通

压缩机论文

活塞压缩机的维护检修与常见故障分析 压缩机是将低压气体提升高压气体和输送气体的机械,属于将动能转变为气体压力能的工作机。它的种类多、用途广,有“通用机械”之称。空所压缩机的种类很多,按工作原理可分为容积式压缩机、速度式压缩机;目前最常用的是活塞式压缩机,本文主要论述了活塞压缩机的拆卸、活塞压缩机主要零部件维修、活塞压缩机的维护、常见故障分析与应对措施以及目前先进的诊断与故障分析方法。从而延长其使用寿命,提高活塞压缩机的安全性与经济性。 活塞压缩机维护检修、故障分析空气压缩机简称压缩机或空压机,是用来提高气体压力和输送气体的机械设备。从能量的观点来看,压缩机属于将原动机的动力能转变为气体压力能的机器。压缩机在运转过程中,无法避免会出现一些故障,如果故障不及时发现并处理,就有可能会造成重大事故。 一、活塞压缩机维护检修 1、活塞压缩机维护保养 为保证压缩机处于良好的运行,延长机器的使用寿命,必须进行良好的维护保养。通过维护保养,能全面掌握机器的状况,可以及时发现问题,排除故障,改善机器的工作状况,即使出观故障,也便于判断和处理。活塞式压缩机维护保养一般分为日常维护和三级保养。 (1)日常维护

日常维护是操作人员必须履行的工作,也是确保压缩机正常运转的条件之一。日常维护主要内容有: 1)、做好日常巡检工作。 日常巡检工作中要注意设备的“看、听、摸、闻”,所谓“看”,就是勤看各指示仪表,如各级压力表、油压表、温度计、油温表等,注意润滑情况,如注油器、油箱和各润滑点,以及冷却水流动情况等。所谓“听”就是勤听机器运转的声音,如气阀、活塞、十字头、曲轴及轴等部位的声音是否正常等。所谓摸就是勤摸各关键部位,观察压缩机的温度变化和振动情况。如冷却后排水温度、油温、运转中机件温度和振动情况等,从而及早发现不正常的温升情况。所谓“闻”就是通过设备周围气味的变化及早发现设备因异常高温而产生的变化。(这部分是在以前工作中的设备巡检规章制度) 2)、做好定期作业工作 定期作业是保证机器正常运转的关键环节,对于易损件众多的活塞式压缩机更是如此。定期作业应该按照设备的《定期作业规程》来严格执行,其内容应该包括设备的日常定期清洁工作,如进气滤清器的清洗,油过滤器的清洗;定期检查工作,如曲柄销、十字头销间隙的测量;定期易损件更换工作,如进排气阀阀片的更换与修磨;定期润滑工作等等。3)、做好润滑工作 润滑工作不仅包括油品,还包括油的及时分析检测工作,很多压缩机故障都是由于油品质量达不到要求造成的。做好润滑工作可以有效的提高压缩机工作效率。

空气压缩机设计(借鉴材料)

1引言 毕业设计是学完所有课程后应用四年所学到的课本知识及课外的知识而进行的综合性、开放性的训练,是培养学生工程意识和创新能力的重要环节,也是考查学生四年学习成果的重要途径。此次毕业设计的主要内容是通过对活塞式压缩机热力性能和动力性能的计算,完成压缩机的校核和选型工作。通过近两个月的设计过程,对于我掌握过程流体机械选型基本方法、基本步骤和基本原则起到了明显的效果,达到了预期的训练目的。同时,通过毕业设计环节,使我的计算机应用能力得到了提高,培养了我的设计能力和解决实际问题的能力。 毕业设计要求学生正确运用和查阅与本课题相关的设计标准、规范、手册、图册等技术资料,独立的进行理论计算、结构计算、绘制工程图样、编写设计说明书等。掌握机械设计的基本要求、基本方法、基本步骤,为走向工作岗位打下坚实的基础。 V-0.17/8空气压缩机设计的主要任务是了解空气压缩机的基本原理与结构类型,着重了解和掌握活塞式空气压缩机的基本原理、组成结构、材料、制造加工工艺、冷却润滑方式等。 1.1设计参数 题目:V-0.17/8空气压缩机设计 排气压力=0.8MPa 吸气压力Ps=0.1MPa 排气量Q=0.17m3/min 转速n=2840r/min 1.2 空气压缩机的结构及工作原理 空气压缩机是气源装置中的主体,它是将原动机(通常是电动机)的机械能转换成气体压力能的装置,是压缩空气的气压发生装置。空气压缩机的种类很多,按工作原理可分为容积式压缩机,速度式压缩机,容积式压缩机的工作原理是压缩气体的体积,使单位体积内气体分子的密度增加以提高压缩空气的压力;速度式压缩机的工作原理是提高气体分子的运动速度,使气体分子具有的动能转化为气体的压力能,从而提高压缩空气的压力。本机属于容积式空气压缩机。

往复式压缩机论文

武汉工程大学 离心式压缩机喘镇问题分析 【摘要】离心压缩机是一种速度式压缩机,由于较其他压缩机来说,离心压缩机存在排气量大,效率高,结构简单,体积小,气体不受油污染以及正常工况下运转平稳、压缩气流无脉动等特点,广泛用于各种工艺流程中,用来输送空气、各种工艺气体或混合气体,并提高其压力。是工业生产中的关键设备。本篇文章就离心压缩机喘振产生的原因和危害做简要的分析,并介绍一些预防及解决喘振的措施,供大家参考。 【关键词】离心压缩机;喘振;原因;危害;措施 随着经济社会的不断发展,我国对工业的要求也越来越严谨,离心压缩机作为速度式压缩机的佼佼者,应用范围极为广泛,例如在石油、化工、冶金、动力、制冷等行业已经得到广泛的应用。因此,离心压缩机的安全可靠运行对工业生产有着非常重要的意义。但是,离心压缩机也存在这一定的隐患,由于他对气体的压力、流量、温度变化比较敏感,因此较容易发生喘振现象。而喘振是离心压缩机固有的一种现象,在离心压缩机的使用中具有较大的危害性,是压缩机损坏的主要原因之一。 离心压缩机的工作原理

电动机带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,并以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。 离心式压缩机的喘振机理 当离心式压缩机的流量减少或增加到一定值时都会出现气流不稳定工况,因而相应地有最大流量限和最小流量限,大量理论研究和实验表明,压缩机的气流不稳定工况总是与通流部分各元件气流的严重脱离密切相关的。压缩机运行中出现不稳定工况,性能将大大恶化,在喘振下运行会出现严重的振动,机器不能正常工作,甚至被破坏。 离心压缩机工作的基本原理是利用高速旋转的叶轮带动气体一起旋转而产生离心力,从而将能量传递给气体,使气体压力升高,速度增大,气体获得了压力能和动能。在叶轮后部设置有通流截面逐渐扩大的扩压元件(扩压器),从叶轮流出的高速气体在扩压器内进行降速增压,使气体的部分动能转变为压力能。可见,离心压缩机的压缩过程主要在叶轮和扩压器内完成。当离心压缩机的操作工况发生变动,而偏离设计工况时,如果气体流量减小则进人叶轮或扩压器流道的气流方向发生变化,气流向着叶片的凸面(工作面)冲击,在叶片的凹面(非工作面)的前缘部分,产生很大的局部扩压度,于是在叶片非工作面上出现气流边界层分离现象,形成旋涡区,并向叶轮出口处逐渐扩大。气量越小,则分离现象越严重,

压缩机文献综述

1 文献综述 空气压缩机按工作原理可分为容积式压缩机,往复式压缩机,离心式压缩机。现在常用的空气压缩机有活塞式空气压缩机,螺杆式空气压缩机,离心式压缩机以及滑片式空气压缩机,涡旋式空气压缩机。 往复活塞式压缩机是利用活塞在气缸内作往复运动,使容积减小而提高气体压力并输送气体的机械,在石油、化工、机械、采矿、制冷、制药、冶金、建筑、土木、食品和国防等工业部门得到广泛应用[1]。 1.1 活塞压缩机的特点 活塞式压缩机与其他类型的压缩机相比,特点是:1)压力范围最广。活塞式压缩机从低压到超高压都适用。2)效率高。由于工作原理不同,活塞式压缩机比离心式压缩机的效率高得多。而回转式压缩机由于高速气流阻力损失和气体内泄漏等原因,效率亦较低。3)适用性强。活塞式压缩机的排气量可在较广泛的范围内进行选择,特别是在叫小的排气量的情况下,要做成速度型,往往很困难,甚至是不可能的。此外,气体的重度对压缩机性能的影响,亦不如速度型那样显著,所以同一规格的压缩机,将其用于压缩不同介质时,较易改造。 活塞式压缩机的主要缺点是;外形尺寸和重量较大,需要较大的基础,气流有脉动性,以及易损零件较多[2]。 1.2 微型活塞压缩机主要参数 中华人民共和国机械工业部部标准规定了微型往复活塞空气压缩机的基本参数,适用于额定功率不超过15kw的电动机或相当功率的内燃机配套的风冷、单作用一般用微型往复活塞空气压缩机,其公称容积流量(公称排气量)小于2.5m3/min,额定排气压力不超过14bar[14.28kgf/cm2] [3]。 1.21 压缩级数与额定排气压力 标准JB1407-85规定 压缩级数为一级、二级。 驱动电动机额定功率(kW)系列:0.75,1.1,1.5,2.2,3,4,5.5,7.5,11,15。 排气压力(MPa)系列:0.25,0.4,0.7,1.0,1.25,1.4。 1.22 气缸直径 标准JB1407-85所规定的微型空气压缩机气缸直径(mm)系列:20,40,45,50,55,56,60,65,71,75,90,100,115,125,135[4]。 1.23 规定工况 一级吸气压力为1.0bar[1.02kgf/cm2](绝压),吸气温度为20℃,相对湿度为零,

往复式压缩机活塞杆载荷分析及其应用

49 往复式压缩机作为石化行业的大型机组,是一种使用量大,涉及面广的通用机械。由于往复式压缩机运动零件多,激励源多,干扰大,同时存在曲轴的旋转运动和活塞杆的直线运动2种形式,在不同的使用条件下会表现出不同的故障问题。例如活塞杆断裂、连杆小头衬套烧损等问题与活塞杆载荷大小及方向关系密切,对活塞杆载荷计算能够间接地分析往复机气阀泄漏问题。因此,活塞杆载荷的核算与分析是往复活塞压缩机设计的一项重要工作,在故障诊断中可以作为一项分析依据。 1?反向角理论分析 往复式压缩机在任何运行状态下,活塞杆及所有传动部件都受压力或拉力,与十字头相连结的十字头销压在连杆小头衬套的一侧,而另一侧与衬套有微微的脱离,出现了间隙。润滑油在压力作用下充分流入间隙,使十字头销和连杆小头衬套得到润滑和冷却。如果只受拉力或者压力,十字头销总压在连杆小头衬套的一侧,受压一侧将始终没有与衬套脱离,也就没有间隙,因此就得不到润滑和冷却。在活塞杆往复运动过程中,活塞杆受力的方向必须改变,使连杆小头衬套两侧轮流得到冷却和润滑,这就是“负荷反向”[1]。负荷反向使得活塞受力正负交替,且必须保持一定时间,这个反向作用持续时间所对应的曲柄角度,称为反向角[2]。如果没有活塞杆负荷反向或足够大的反向角,十字头销及连杆小头衬套会在短暂的运行时间里产生高温损伤。 当曲轴处于任意转角时,气体力F g 、往复惯性力I 和往复摩擦力F r 合成的综合活塞力F p 。当综合活塞力指向气缸侧时十字头销紧压在连杆小头衬套的气缸侧,如图1所示。十字头销和连杆小头衬套在曲轴侧得到润滑和冷却;当综合活塞力反向指向曲轴侧时,十字头销紧压在连杆小头衬套的曲轴侧,十字头销和连杆小头衬套在气缸侧得到润滑和冷却,如图2所示。可见,只有当反向角足够大时,才能让十字头销和连杆 小头衬套两侧得到充分的润滑和冷却。 图1?综合活塞力指向气缸侧 图2?综合活塞力指向曲轴侧 2?应用实例2.1?诊断步骤 基于活塞杆载荷分析的往复式压缩机故障诊断过程可以按照以下步骤进行: (1)活塞杆受力分析。利用状态监测系统采集的数据可以得到曲轴旋转一周时活塞杆所受的气体力、往复惯性力及综合活塞力3条负载曲线。该过程需要准确测量缸内压力和曲轴转角,这是确保综合活塞力准确的关键。 (2)故障诊断。通过曲柄转角—受力曲线图,读出反向角的大小。通过反向角的大小和受力情况对往复式压缩机进行故障诊断[3]。 2.2?测取压力信号及曲轴转角 综合活塞力主要来自气缸内的气体压力。所以压力信号的准确程度直接关系到最终的分析结果。符合API618标准生产的压缩机都会在压缩缸两端预留压力测试孔。目前使用的压缩机由于年代较早,并未预留压力测试端口。为了能够监测缸内动态压力,得到压缩机的真实示功图和真实性能,并以此进行活塞杆受力分析,以实际生产工艺的压力、气体组分等参数为 往复式压缩机活塞杆载荷分析及其应用 蔡国娟?山崧 中国石油化工股份有限公司天津分公司 天津 300270 摘要:介绍了反向角的定义,提出一种基于活塞杆载荷分析的往复式压缩机故障诊断方法。通过反向角和活塞杆受力曲线判断十字头销和衬套的润滑状态,并根据活塞杆所受拉力及压力的大小变化分析气阀的工作状态。通过诊断实例验证了此方法的有效性。 关键词:往复式压缩机?活塞杆?载荷 反向角?泄漏 Load?Analysis?and?Application?of?Reciprocating?Compressor?Piston?Rod Cai?Guojuan,Shan?Song Tianjin Branch ,China Petrochemical Co.,Ltd.,Tianjin 300270 Abstract:The?definition?of?reverse?angle?is?introduced,and?a?fault?diagnosis?method?for?reciprocating?compressor?based?on?piston?rod?load?analysis?is?proposed.?The?lubrication?state?of?the?cross?pin?and?bushing?is?judged?by?the?reverse?angle?and?the?force?curve?of?the?piston?rod.?The?working?state?of?the?valve?is?analyzed?according?to?the?variation?of?the?tension?and?pressure?on?the?piston?rod.?The?validity?of?this?method?is?verified?by?a?diagnosis?example. Keywords:reciprocating?compressor;Piston?rod;load;Reverse?angle;Leak (下转第61页)

天然气压缩机毕业设计

摘要 往复式压缩机是工业上使用量大、面广的一种通用机械。立式压缩机是往复活塞式压缩机的一种,属于容积式压缩机,其是利用活塞在气缸中的运动对气体进行挤压使气体压力提高。热力计算、动力计算是压缩机设计计算中基本又是最重要的一项工作,根据任务书提供的介质、气量、压力等参数要求经过计算得到压缩机的相关参数如级数、列数、气缸尺寸、轴功率等以及经过动力计算得到活塞式压缩机的受力情况。活塞式压缩机热力计算、动力计算的结果将为基础设计及整体设计提供原始数据,其计算结果的精确程度体现了压缩机的设计水平。 关键词:活塞式压缩机,热力计算,动力计算,整体设计

NATURAL GAS COMRRESSOR GRADUATION DESIGN ABSTRACT Reciprocating compressor is a common type machine, used in the industry . Vertical compressors is a kind of reciprocating compressor, belong to the compressor , utilize the pistons in the cylinder moving to squeeze on the gas ,squeezed the gas pressure.Thermal calculation and dynamical computation is basic of compressor design’calculation, is also an important woke, according to medium, displacement, pressure of task-book, by calculating getting related parameters of compressors, such as levels, columns, size of cylinder, shaft power, by dynamical computation getting stressed status of a piston type compression. Heat calculation and dynamical computation of the piston type compressor, which is providing the design data of foundation design and the overall design.The calculations reflect exactly the design level . KEYWARDS:piston compressor,thermal calculation,dynamical computation,the overall design

相关主题
文本预览
相关文档 最新文档