当前位置:文档之家› Fluent建模教程

Fluent建模教程

Fluent建模教程
Fluent建模教程

目录

1.理论知识

1.1Gambit软件的介绍

1.2Fluent软件的介绍

1.3Exceed.13+Gambit.V

2.4.06+Fluent.6.3安装介绍

2.建模过程

2.1Gambit 启动

2.2建立几何模型

3.网格划分

3.1划分网格

3.2检查网格划分情况

3.3设置边界类型

3.4输出网格文件

4.计算求解

4.1检查网格并定义长度单位

4.2设置计算模型

4.3设置流体材料属性

4.4设置边界条件

4.5求解初始化

4.6设置残差监视

4.7保存case文件

4.8求解计算

4.9保存计算结果

5.后期处理

5.1读入case和data文件

5.2显示网格

5.3创建相关面

5.4计算各单电池获得的质量流率

5.5绘制图表

6.参考链接

第一章理论知识

1.1Gambit软件的介绍

GAMBIT是为了帮助分析者和设计者建立并网格化计算流体力学(CFD)模型和其它科学应用而设计的一个软件包。GAMBIT通过它的用户界面(GUI)来接受用户的输入。GAMBIT GUI简单而又直接的做出建立模型、网格化模型、指定模型区域大小等基本步骤,然而这对很多的模型应用已是足够了。

面向CFD分析的高质量的前处理器,其主要功能包括几何建模和网格生成。由于GAMBIT本身所具有的强大功能,以及快速的更新,在目前所有的CFD前处理软件中,GAMBIT稳居上游。

GAMBIT软件具有以下特点:

☆ACIS内核基础上的全面三维几何建模能力,通过多种方式直接建立点、线、面、体,而且具有强大的布尔运算能力,ACIS内核已提高为ACIS R12。该功能大大领先于其它CAE软件的前处理器;

☆可对自动生成的Journal文件进行编辑,以自动控制修改或生成新几何与网格;

☆可以导入PRO/E、UG、CATIA、SOLIDWORKS、ANSYS、PATRAN等大多数CAD/CAE软件所建立的几何和网格。导入过程新增自动公差修补几何功能,以保证GAMBIT与CAD软件接口的稳定性和保真性,使得几何质量高,并大大减轻工程师的工作量;

☆新增PRO/E、CATIA等直接接口,使得导入过程更加直接和方便;

☆强大的几何修正功能,在导入几何时会自动合并重合的点、线、面;新增几何修正工具条,在消除短边、缝合缺口、修补尖角、去除小面、去除单独辅助线和修补倒角时更加快速、自动、灵活,而且准确保证几何体的精度;

☆G/TURBO模块可以准确而高效的生成旋转机械中的各种风扇以及转子、定子等的几何模型和计算网格;

☆强大的网格划分能力,可以划分包括边界层等CFD特殊要求的高质量网格。GAMBIT中专用的网格划分算法可以保证在复杂的几何区域内直接划分出高质量的四面体、六面体网格或混合网格;

☆先进的六面体核心(HEXCORE)技术是GAMBIT所独有的,集成了笛卡尔网格和非结构网格的优点,使用该技术划分网格时更加容易,而且大大节省网格数量、提高网格质量;

☆居于行业领先地位的尺寸函数(Size function)功能可使用户能自主控制网格的生成过程以及在空间上的分布规律,使得网格的过渡与分布更加合理,最大限度地满足CFD分析的需要;

☆GAMBIT可高度智能化地选择网格划分方法,可对极其复杂的几何区域划分出与相邻区域网格连续的完全非结构化的混合网格;

☆新版本中增加了新的附面层网格生成器,可以方便地生成高质量的附面层网格;

☆可为FLUENT、POLYFLOW、FIDAP、ANSYS等解算器生成和导出所需要的网格和格式。

1.2Fluent软件的介绍

CFD商业软件介绍之一——FLUENT

通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转换与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。

FLUENT软件具有以下特点:

☆FLUENT软件采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法;

☆定常/非定常流动模拟,而且新增快速非定常模拟功能;

☆FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。其局部网格重生式是FLUENT所独有的,而且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题;

☆FLUENT软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术;

☆FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的;

☆FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。另外用户还可以定制或添加自己的湍流模型;

☆适用于牛顿流体、非牛顿流体;

☆含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射;

☆化学组份的混合/反应;

☆自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型;

☆融化溶化/凝固;蒸发/冷凝相变模型;

☆离散相的拉格朗日跟踪计算;

☆非均质渗透性、惯性阻抗、固体热传导,多孔介质模型(考虑多孔介质压力突变);

☆风扇,散热器,以热交换器为对象的集中参数模型;

☆惯性或非惯性坐标系,复数基准坐标系及滑移网格;

☆动静翼相互作用模型化后的接续界面;

☆基于精细流场解算的预测流体噪声的声学模型;

☆质量、动量、热、化学组份的体积源项;

☆丰富的物性参数的数据库;

☆磁流体模块主要模拟电磁场和导电流体之间的相互作用问题;

☆连续纤维模块主要模拟纤维和气体流动之间的动量、质量以及热的交换问题;

☆高效率的并行计算功能,提供多种自动/手动分区算法;内置MPI并行机制大幅度提高并行效率。另外,FLUENT特有动态负载平衡功能,确保全局高效并行计算;

☆FLUENT软件提供了友好的用户界面,并为用户提供了二次开发接口(UDF);

☆FLUENT软件采用C/C++语言编写,从而大大提高了对计算机内存的利用率。

1.3Exceed.13+Gambit.V

2.4.06+Fluent.6.3安装介绍

1)将压缩包解压为三个文件夹到D盘,如图1-1所示。

图1- 1压缩包解压文件

2)安装环境exceed.13

i.如图1-2所示,双击应用程序Msetup进行安装。

图1- 2 文件夹exceed.13

ii.弹出窗口如图1-3所示,点击install exceed。

图1- 3 exceed.13安装iii.弹出窗口如图1-4所示,点击personal installation。

图1- 4 exceed.13安装

iv.弹出窗口如图1-5所示,选择english,点击OK。

图1- 5 exceed.13安装

v.剩余步骤按照提示操作直至安装结束。

3)安装gambit

i.在解压缩后的文件夹内,双击应用程序gambit-install-2.4.6,

如图1-6所示。

图1- 6 gambit解压缩文件夹

ii.弹出对话框如图1-7所示。依次按照提示点击next。

图1- 7 gambit安装

iii.将安装文件保存到D盘,如图1-8所示。(与此前安装的exceed,以及此后将要安装的fluent都置于同一个根目录下,以免运行时报错。)

图1- 8 gambit安装

依次按照提示点击next,直至安装结束。

iv.将图1-6内所示的拷贝到D:\fluent.Inc\license。将

拷贝到D:\Fluent.Inc\gambit2.4.6。(勾掉选项,不要对server name进行设定) v.安装结束,重启电脑。

4)安装fluent

i.打开已解压缩的文件夹,双击进

行安装。

ii.按照提示点击next,同样将其安装到D:\fluent.Inc。如图1-9所示。

图1- 9 fluent安装

iii.安装结束之后,将fluent解压缩后的文件夹内的拷贝到D: Fluent.Inc\license。

iv.重启电脑,安装成功。

第二章建模过程

2.1Gambit启动

1)双击桌面的Gambit 2.4.6 快捷方式,如图2-1;弹出对话框,如图2-2,单击Run,启

动Gambit软件,窗口布局如2-3所示。

图2- 1 启动GAMBIT 图2- 2 Gambit Startup 对话框

图2- 3 Gambit 窗口布局

2.2建立几何结构

1)建立气道部分

操作步骤:

i.operation →geometry →volume ,弹出创建立方体的对话框,在

对应的width(X)、depth(Y)、height(Z)内填入相应数据,如图2-4 所示。

图2- 4立方体设置对话框

点击apply,所创建的立方体如图2-5所示。

图2- 5单条气道

可以按下鼠标左键来转动图形,按下右键上下拖动可以缩放图形。

ii.点击,弹出对话框,点选copy=16,z=-6,其他设置不变,结果如图2-6所示。

图2- 6 copy volumes 界面

首先在的黄色区域单击左键,再按住shift键,左键点击已画出的立方体模型,模型变成红色,同时黄色区域内自动显示所选模型的编号,如

,最后点击apply,得到界面如图2-7所示。

图2- 7气道部分

iii.构建气道的导流部分

如步骤a)所示,设置参数如图2-8,得到界面如图2-9。

图2- 8分流部分设置图2- 9创建分流部分

接着,移动刚创建的长方体。

首先确定相关点的坐标,步骤如图2-10所示。

图2- 10确定相关点的坐标图2- 11提取点的代号

按住shift,左键点击模型上任一点,黄色区域会自动提取点的代号,如图2-11所示。

点击apply,主界面下方transcript将显示该点的坐标,如图2-12所示。

图2- 12 显示该点的坐标

将与移动模型所需的点的坐标记录好之后,便可以开始移动模型了。

相关参数设置如图2-13。

图2- 13模型移动参数设置图2- 14导流部分图

按住shift键,左键点选刚创建的模型,该模型变成红色,表明已点选成功,同时,图2-13黄色区域内将显示出相应的模型编号。点击apply,得到界面如图2-14所示。

点击左边刚移动的模型,将其映射到X轴正向。设置参数,如图2-15所示。

图2- 15导流部分映射(a)图2- 16导流部分映射(b)

点击图中define按钮,弹出对话框,如图2-16所示。

选择X negative,点击apply。弹回到2-16界面,再次点击apply。得到界面如图2-17所示。

图2- 17气道部分模型

iv.构建气道主管部分

步骤如d)所示,相关尺寸设置如图2-18所示。

将刚生成的长方体按照图2-19所示参数进行移动,得到结构如图2-20。

图 2- 20 主管inlet1部分结构 图 2- 21 创建主管inlet1剩余结构

同样的方法再一次建立一个长方体,参数为width(x)=10, depth(y)=4.5, height(z)=23。 如图2-21所示。

将a 点移动到b 点,参数如图2-22,得到模型如图2-23所示。

图 2- 22 移动a 点到b 点 图2- 23 主管inlet1结构

复制主管部分。按住shift 键,左键连续点击上步所构建的主管部分,两个部件都变成红色,表示已选定,相关参数设置如2-24所示。

图 2- 24 主管复制并移动图 图2- 25 主管inlet 建立完成

点击apply ,得到界面如图2-25所示。

按照2-16所示的映射方式,将刚构建的三个主管映射到另外一侧,得到界面如图2-26所示。

图 2- 26 单电池完整2D 视图

按住左键,转动模型,可以看到各个部分的情况。 将所有部件合为一体。步骤如图2-27所示。

图2- 27合并各部件图2- 28合并步骤3对话框

步骤3点击之后,弹出对话框,如图2-28所示。

完成步骤2后,主界面上所有部件全部变为红色,表明已全部选中。点击2-27中的apply,所有部件合为一体。如图2-29所示。

图2- 29单电池完整3D视图

至此,单电池气道模型构建结束。

另附一些视图效果的处理。

在整个操作界面的右下角global control,如图2-30所示。按住右键点击,弹出菜单,选择,得到模型的三维视图。

图2- 30 global control

回到global control 菜单,点击,弹出菜单special display attributes,相关设置如图2-31所示。

图2- 31 special display attributes设置

得到没有显示点的实体模型,如图2-32所示。

图2- 32单电池3D实体模型视图

v.堆叠单电池,形成含有十层单电池的电堆。

操作如图2-33所示。

图2- 33堆叠10层单电池

执行完1-5步之后,左键点击黄色区域,再按住shift键,左键点击所构建的单电池,选定需要复制的部件之后,执行第6步,得到界面,如图2-34所示。

图2- 34 10层电堆结构图

执行图2-27,图2-28所示步骤,将十层单电池合为一体。并且执行图2-30以及图2-31所示步骤,得到界面如图2-35所示。

Fluent经典问题及解答

Fluent经典问题及解答 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼)

fluent经典问题整理

网格质量与那些因素有关? 网格质量本身与具体问题的具体几何特性、流动特性及流场求解算法有关。因此,网格质量最终要由计算结果来评判,但是误差分析以及经验表明,CFD计算对计算网格有一些一般性的要求,例如光滑性、正交性、网格单元的正则性以及在流动变化剧烈的区域分布足够多的网格点等。对于复杂几何外形的网格生成,这些要求往往并不可能同时完全满足。例如,给定边界网格点分布,采用Laplace 方程生成的网格是最光滑的,但是最光滑的网格不一定满足物面边界正交性条件,其网格点分布也很有可能不能捕捉流动特征,因此,最光滑的网格不一定是最好的网格。对计算网格的一个最基本的要求当然是所有网格点的Jacobian必须为正值,即网格体积必须为正,其他一些最常用的网格质量度量参数包括扭角(skew angle)、纵横比(aspect ratio、Laplacian)、以及弧长(arc length)等。通过计算、检查这些参数,可以定性的甚至从某种程度上定量的对网格质量进行评判。Parmley等给出了更多的基于网格元素和网格节点的网格质量度量参数。有限元素法关于插值逼近误差估计的理论,实际上也对网格单元的品质给出了基本的规定:即每个单元的内切球半径与外切球半径之,应该是一个适当的,与网格疏密无关的常数。 实体与虚体的区别 在建模中,经常会遇到实体、实面与虚体、虚面,虚体的计算域也可以进行计算并得到所需的结果。那么它们的区别是什么呢? 对于求解是没有任何区别的,只要你能在虚体或者实体上划分你需要的网格。关键是看你网格生成的质量如何,与实体虚体无关。 gambit的实体和虚体在生成网格和计算的时候对于结果没有任何影响,实体和虚体的主要区别有以下几点: 1.实体可以进行布尔运算但是虚体不能,虽然不能进行布尔运算,但是虚体存在merge,split 等功能。 2.实体运算在很多cad软件里面都有,但是虚体是gambit的一大特色,有了虚体以后,gambit 的建模和网格生成的灵活性增加了很多。 3.在网格生成的过程中,如果有几个相对比较平坦的面,你可以把它们通过merge合成一个,这样,作网格的时候,可以节省步骤,对于曲率比较大的面,可能生成的网格质量不好,这时候,你可以采取用split的方式把它划分成几个小面以提高网格质量。 在Fluent中进行非稳态(unsteady)计算时如何设置步长?

基于Fluent的三通管数值模拟及分析

第40卷第2期 当 代 化 工 Vol.40,No. 2 2011年2月 Contemporary Chemical Industry February,2011 收稿日期: 2010-08-17 作者简介: 魏显达(1983-),男,硕士,黑龙江北安人,2007年毕业于大庆石油学院电子信息工程,研究方向:塔顶流出系统的腐蚀与防 基于 Fluent 的三通管数值模拟及分析 魏显达,王为民, 徐建普 (辽宁石油化工大学石油天然气工程学院, 辽宁 抚顺 113001) 摘 要:Fluent 软件作为流体力学中通用性较强的一种商业CFD 软件应用范围很广。通过利用Fluent 计算流体动力学(CFD)的软件,对石油工业系统中常见的三通管内部流体进行了模拟分析,得到了三通管内在流体流动时的速度、压力和温度场分布图,为石油管道中的流体输送提供了理论依据。 关 键 词:Fluent;三通管;模拟分析;分布图 中图分类号: TQ 018 文献标识码: A 文章编号: 1671-0460(2011)02-0165-03 Numerical Simulation and Analysis of Fluid in Three-way Connection Pipe Based on Fluent Software WEI Xian-da ,WANG Wei-min ,XU Jian-pu (Institute of Petroleum and gas engineering , Liaoning Shihua University, Liaoning Fushun 113001,China ) Abstract : As a commercial CFD software with good universality, the Fluent software has been used extensively. In this paper, Simulation analysis on fluid in the three-way connection pipe of the oil industry was carried out by the software of fluid mechanics computation .Then distribution graphs of velocity , pressure and temperature of fluid in the three-way pipe were gained ,which can offer theoretical basis on fluid transportation in the petroleum pipeline. Key words : Fluent three-way ;Connection pipe ;Simulation analysis ;Distribution graphs Fluent 是目前国际上比较流行的商用CFD 软件包,在美国的市场占有率为60%,广泛应用于流体、热传热和各种化学反应等有关工业。软件包括前处理器(利用Gambit 进行物理建模、网格划分和划定边界层条件)、求解器(根据专业条件不同,采用不同的求解器,并规定物性、外部工作环境和进行数值迭代)和后处理器(把一些数据可视化,满足用户的特定要求)。 三通管在石油工业中应用广泛,采用传统的设计开发方法,存在经济成本高,研发周期长等缺陷,耗费大量的人力、物力 [1-2] 。应用CFD 软件,能够在 相对较短的设计周期内,较低的成本运行下,准确模拟流动具体过程,如速度场、压力场和温度场等的时变特性等。CFD 技术已经成为不可缺少的设计手段。 本文利用Fluent 的超强数值计算和分析能力对三通管道内原油流动时的速度、压强和温度场进行了数值模拟和分析,为石油管道中的流体输送提供了可靠的理论依据。 1 数学模型的建立和分析 输油管道管中,原油在三通管内的流动属于湍流,简化方程管道内的流体流动满足质量守恒、动量守恒、能量守恒、状态方程等。 连续性方程(连续性方程式质量守恒定律在流体力学中的表现形式)在直角坐标系下表示为((1)方程) [3-5] : 0)()()(=??+??+??+??z y x t z y x νννρρρρ (1) 式中:V x ,V y ,V z 是速度矢量ν在x 、y 和z 轴方向的分量,t 是时间,ρ是密度。 最常用的湍流求解模型是标准k -ε湍流模型。它需要求解湍动能k ((2)方程)和耗散率ε((3)方程),具体如下所示: Y G G x x M b k i t i k t k ?+++??+??=ρεσμρ μ)[(d d (2) K K k t C G C G C x x b K i t i εμρεσμερεεε2 231)(])[(d d ?++??+??= (3)

Fluent动网格----layering个一个简单实例(作者Snow)

Fluent动网格----layering个一个简单实例我这几天看了点动网格技术方面的东西,在学习过程中发现这方面的例子很少,自己也走了一些弯路。现在还好,弄明白了一些,能够应付现在我的工作。为了让更多学习者快速了解动网格,我打算尽量把我学习心得在这里和大家分享,这里给出一个layering的一个简单例子。 1.Gambit画网格 本例很简单,在Gambit里画一个10*10的矩形,网格间隔为1,也就是有100个网格,具体见下图。都学动网格的人了,不至于这个不会做! 这里需要注意一个问题:设置边界条件的时候,一定要把要移动的边单独设定,本例中一右边界作为移动的边,设成wall就可以,这里再后面需要制定。 2.编写UDF #include "udf.h" #include "unsteady.h" #include "stdio.h" #include "stdlib.h" /************************************************************/ real current_time = 0.0 ; Domain * domain ; Thread * thread ; real NV_VEC( origin ),NV_VEC( force ),NV_VEC( moment ) ; /************************************************************/ DEFINE_CG_MOTION(throttle,dt,vel,omega,time,dtime) { current_time = CURRENT_TIME ; vel[0] = 30; Message("time=%f omega=%f\n",current_time) ; }

FLUENT基础知识总结

======== FLUENT基础知识总结 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单。 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit 对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格,fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域。所以,用fluent 做的比较复杂一点的流场(除了经典的几个基本流场)其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的,这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级,我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去,但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算一般用fluent是不适合的。 我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡,也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛速度快,但是低速流场计算,其大多数的着眼点在于对流场结构的探索,所以计算得到的

基于FLUENT软件的混合器内部流场数值模拟

基于FLUENT的混合器内部流场数值模拟 摘要:本文通过使用FLUENT软件的标准k-ε湍流模型对冷热水混合器进行三维 数值模拟,分析其内部流场变化情况。通过对液体分布器内部流场的分析模拟,能真实反映混合器内部的复杂流动,准确反映混合器内部温度、速度流场,对混合器的设计有很好的指导作用,为混合器的设计提供理论依据。 关键词: CFD;FLUENT;冷热水混合器;三维数值模拟 1.引言: 1.1 混合器应用背景 工程热水恒温混合器,是为适应中央热水工程向大型化、自动化个人性化发展的技术要求而研发的,是为太阳能热水工程和各种生活热水器供水系统专门配套的一种全自动洗浴水恒温控制设备。广泛适用于宾馆、饭店、学校、医院、厂矿、机关及洗浴中心、游泳池等大中小型生活热水系统。由于混合器的广泛使用,混合器内的各个流场也受到内流研究者的广泛关注。 1.2 FLUENT软件背景 FLUENT是美国FLUENT公司开发的集流场、燃烧和热、质量传输以及化学反应于一体的商业CFD软件,也是目前国内外使用最多、最流行的商业软件之一。FLUENT软件的最大特点是具有专门的几何模型制作软件Gambit模块,并可以与CAD连接使用,同时备用很多附加方程添加接口,使用了目前较先进的离散技术和计算精度控制技术,如多层网络法、快速收敛准则以及光滑残差法等,数学模型的离散化合软件计算方法处理较为得当。实际应用中发现,该软件在模拟单相流动或进出口同向或方向流动时,可以得到较好的模拟结果,且具有一定的计算精度。FLUENT软件包主要具有常用的6种湍流数学模型、辐射数学模型、化学物质反应和传递流动模型、污染物质形成模型、相变模型、多相模型、流团移动模型、多孔介质、多孔泵模型等。 FLUENT软件的核心部分是纳维—斯托克斯(Navier-Stokes)方程的求解模块。用压力校正法作为低速不可压流动的计算方法,包括SIMPLE、SIMPLEC、PISO 三种算法,采用有限体积法离散方程,其计算精度和稳定性都要优于传统编程中使用的有限差分法。而对于可压流动采用耦合法,即将连续性方程、动量方程以及能量联立求解。FLUENT软件主要由前处理、求解器以及后处理3大模块组成。采用自行研发的GAMBIT前处理软件来建立几何形状及生成网格,然后由FLUENT 进行求解。 2.控制方程和数值模拟 2.1 控制方程与标准k-ε湍流模型 本文主要分析冷水和热水分别在混合器的两侧沿水平切线方向流入,在容器混合后经过下部渐缩管道流入等径的出流管,然后流入大气。

fluent全攻略(探索阶段)

GAMBIT使用说明 GAMBIT是使用FLUENT进行计算的第一个步骤。在GAMBIT 中我们将完成对计算模型的基本定义和初始化,并输出初始化结果供FLUENT的计算需要。以下是使用GAMBIT的基本步骤。 1.1定义模型的基本几何形状 如左图所示的按钮就是用于构造模型的基本几何形状的。当按下这个按钮时,将出现 如下5个按钮,它们分别是用以定义点、线、面、体的几何形状的。 值得注意的是我们定义这些基本的几何元素的一般是依照以下的顺序: 点——线(两点确定一线)——面(3线以上确定一面)——体(3面以上确定体)对各种几何元素的操作基本方式是:首先选中所要进行的操作,再定义完成操作所要的其他元素,作后点“APPL Y”按钮完成操作。以下不一一重复。 下面我们分别介绍各个几何元素的确定方法: 1.1.1点的操作 对点的操作在按下点操作按钮后进行(其他几何元素的操作也是这样)。点有以下几种主要操作 定义点的位置按钮,按下后出现下面对话框 Coordinate Sys.:用以选择已有坐标系中进行当前操 作的坐标系 Type:可以选择3种相对坐标系为当前坐标系:笛卡 儿坐标、柱坐标、球坐标。 以下通过在Global 中直接输入点的x、y、z值定义点, 注意这里的坐标值是绝对坐标值,而Local中输入的是相 对坐标值,一般我们使用绝对坐标值。 Label:为所定义的点命名。 在完成以上定义后就可以通过进行这个点 的定义,同时屏幕左半部的绘图区中将出现被定义的点。 用关闭此对话框。 查看所有点的几何参数按钮(在以后的操作中也可以查看其他元素的几何参数) 在Vertices栏中选择被查询的点,有两种选择方式(其他几 何元素的选择与此类似): ①按住shift键的同时用鼠标左键取点

Fluent经典问题及答疑2

Fluent经典问题及答疑2 51 对于出口有回流的问题,在出口应该选用什么样的边界条件(压力出口边界条件、质量出口边界条件等)计算效果会更好?(#42) 52 对于不同求解器,离散格式的选择应注意哪些细节?实际计算中一阶迎风差分与二阶迎风差分有什么异同?(#69) 53 对于FLUENT的耦合解算器,对时间步进格式的主要控制是Courant数(CFL),那么Courant 数对计算结果有何影响?(#43) 54 在分离求解器中,FLUENT提供了压力速度耦和的三种方法:SIMPLE,SIMPLEC及PISO,它们的应用有什么不同?(#44) 55 对于大多数情况,在选择选择压力插值格式时,标准格式已经足够了,但是对于特定的某些模型使用其它格式有什么特别的要求? (#60) 56 计算流体力学中在设定初始条件和边界条件的时候总是要先选择一组湍流参数,并给出其初值。如何选择并给出这些初值呢?有什么经验公式或者别的好的办法吗?(#73) 57 讨论在数值模拟过程中采用四面体网格计算效果好,还是采用六面体网格更妙呢?(#70) 58 如何将自己用C语言编辑的程序导入到FLUENT中?在利用UDF编写程序时需注意哪些问题?(#157) 59 在UDF中compiled型的执行方式和interpreted型的执行方式有什么不同?(#72) 60 在用gambit的时候,导入pro/e的stp文件后,在消去最短边的时候,有些最短边不能消去,其是空间线段,用面merge的方法和连接点的方法都不行,请问该怎么消去这类短边?(#144) 61 FLUENT help和GAMBIT help能教会我们(特别是刚入门的新手)学习什么基本知识?(#126) 62 FLUENT如何做汽车外流场计算的模拟?并且怎么可以得到汽车的阻力系数和升力系数?(#170) 63 FLUENT模拟飞行器外部流场,最高MA多少时就不准确了?MA达到一定的程度做模拟需注意哪些问题?(#125) 64 在用gambit建模,保存成*.msh文件时总是出现No entity的错误:Continuum Entity fluid does not contain any valid entity and is not written! Boundary Entity wall does not contain any validentity and is not written! 不知道是什么问题?产生的原因是什么?如何解决?(#150) 65 在做燃烧模拟的时候,入口燃料温度定义为蒸发/离解开始时的温度(也就是,为离散相材料指定的蒸发温度“Vaporization Temperature”),这是指水分蒸发温度吗?一般是多少?(#196) 66 在计算煤粉燃烧时遇到这样的问题: Warning: volatile + combustible fraction for lignite is greater than 1.0shell conduction zones 如何解决? 67 FLUENT控制方程是无因次的还是有因次的?如果是无因次的,怎么无因次的? 68 做飞机设计时,经常计算一些翼型,可是经常出现计算出来的阻力是负值,出现负值究竟是什么原因,是网格的问题还是计算参数设置的问题?(#71) 69 FLUENT中的Turbulent intensify是如何定义的?该值应该是小于等于100%,可是我的计算中该值达到400%,不知为何? 70 边界条件中湍流强度怎么设置:入口边界条件中的湍流强度和出口边界条件中的回流湍流强度怎么设置?是取默认值10%吗?(#135) 71 关于Injection中的Total Flow rate:injection 选surface,此时选了好几个面(面积不一定完全相同,但颗粒的入口速度相同),那Total Flow Rate 是指几个面的总流量还是某一个面的啊?只能处理完全相同的面吗?(#160) 72 FLUENT中能不能做插值:在ansys中的模型节点坐标和FLUENT中模型的节点坐标不一致,能

基于Fluent的换热器流场模拟

第1章绪论 (2) 1.1换热器的分类 (2) 1.2 换热器研究与发展 (3) 1.2.1换热器发展历史 (3) 1.2.2 换热器研究及发展动向 (3) 1.2.3 国外新型换热器技术走向 (4) 第2章管壳式换热器 (9) 2.1 管壳式换热器结构 (9) 2.2 管壳式换热器类型 (9) 2.3 换热器的安装、使用及维护 (10) 2.3.1换热器的安装 (10) 2.3.2 换热器的清洗 (10) 2.3.3换热器的维护和检修 (12) 2.3.4换热器的防腐 (13) 2.4 换热器的强化 (14) 2.4.1管程的传热强化 (14) 2.4.2 壳程的传热强化 (16) 第3章流体传热的研究方法 (17) 3.1 传热学的常用研究方法 (17) 3.2数值模拟的求解过程 (17) 第4章基于Fluent的管壳式换热器的数值计算 (20) 4.1 Fluent简介 (20) 4.2 基于Fluent的三角形排列的换热器流畅模拟 (21) 结论 (31)

第1章绪论 换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器,广泛应用于化工、石油化工、动力、医药、冶金、制冷、轻工业等行业。随着节能技术的飞速发展,换热器的种类越来越多。 1.1换热器的分类 换热器作为传热设备随处可见,在工业中应用非常普遍,特别是耗能量十分大的领域。随着节能技术的飞速发展,换热器的种类开发越来越多。适用于不同介质、不同工况、不同温度、不同压力的换热器结构和形式亦不相同,换热器种类随新型,高效换热器的开发不断更新,具体分类如下。 (1)冷、热流体热量交换的原理和方式 基本上可分三大类:间壁式、混合式和蓄热式。 间壁式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流进行换热。间壁式换热器根据传热面的结构不同可分为管式、板面式和其他型式。管式换热器以管子表面作为传热面,包括蛇管式换热器、套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等;其他型式换热器是为满足某些特殊要求而设计的换热器,如刮面式换热器、转盘式换热器和空气冷却器等。 混合式换热器是通过冷、热流体的直接接触、混合进行热量交换的换热器,又称接触式换热器。由于两流体混合换热后必须及时分离,这类换热器适合于气、液两流体之间的换热。例如,化工厂和发电厂所用的凉水塔中,热水由上往下喷淋,而冷空气自下而上吸入,在填充物的水膜表面或飞沫及水滴表面,热水和冷空气相互接触进行换热,热水被冷却,冷空气被加热,然后依靠两流体本身的密度差得以及时分离。 在蓄热式换热器中,冷热两种流体依次交替地流过同一换热表面而实现热量交换,固体表面除了换热以外还起到蓄热的作用:高温流体经过时,固体避免吸收并积蓄热量,然后释放给接着流过的低温流体。这种换热器的热量传递过程是非稳态的。 三种类型中,间壁式换热器应用最为广泛。 (2)表面的紧凑程度 换热器还可以按照表面的紧凑程度而区分为紧凑式换热器(compact heat exchanger)与非紧凑式换热器(non-compact heat exchanger)。紧凑的程度可以用水力直径(d h,hydraulic diameter,也称当量直径,流动界面积的4倍除以湿周长)来区别,或者用每立方米中的传热面积β来衡量:当β>700m2或者d h <6mm时,称为紧凑式换热器。当β>3000m2或者100m μ15000m2或者100m μ

FLUENT菜鸟入门-不可不知的50个经典问题

Fluent必知的一些基本概念! 连续性方程不收敛是怎么回事? 在计算过程中其它指数都收敛了,就continuity不收敛是怎么回事 这和Fluent程序的求解方法SIMPLE有关。SIMPLE根据连续方程推导出压力修正方法求解压力。由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场的变化,从而导致该方程收敛缓慢。 你可以试验SIMPLEC方法,应该会收敛快些。 湍流与黏性有什么关系? 湍流和粘性都是客观存在的流动性质。 湍流的形成需要一定的条件,粘性是一切流动都具有的。 流体流动方程本身就是具非线性的。 NS方程中的粘性项就是非线性项,当然无粘的欧拉方程也是非线性的。 粘性是分子无规则运动引起的,湍流相对于层流的特性是由涡体混掺运动引起的。 湍流粘性是基于湍流体的parcel湍流混掺是类比于层流体中的分子无规则运动,只是分子无规则运动遥远弱些吧了。不过,这只是类比于,要注意他们可是具有不同的属性。粘性是耗散的根源,实际流体总是有耗散的。 而粘性是制约湍流的。 LANDAU说,粘性的存在制约了湍流的自由度。 湍流粘性系数和层流的是不一样的,层流的粘性系数基本可认为是常数,可湍流中层流底层中粘性系数很小,远小于层流时的粘性系数;而在过渡区,与之相当,在一个数量级;在充分发展的湍流区,又远大于层流时的粘性系数.这是鮑辛内斯克1987年提出的。 1 FLUENT的初始化面板中有一项是设置从哪个地方开始计算(compute from),选择从不同的边界开始计算有很大的区别吗?该怎样根据具体问题选择从哪里计算呢?比如有两个速度入口A和B,还有压力出口等等,是选速度入口还是压力出口?如果选速度入口,有两个,该选哪个呀?有没有什么原则标准之类的东西? 一般是选取ALL ZONE,即所有区域的平均处理,通常也可选择有代表性的进口(如多个进口时)进行初始化。对于一般流动问题,初始值的设定并不重要,因为计算容易收敛。但当几何条件复杂,而且流动速度高变化快(如音速流动),初始条件要仔细选择。如果不收敛,还应试验不同的初始条件,甚至逐次改变边界条件最后达到所要求的条件。 2 要判断自己模拟的结果是否是正确的,似乎解的收敛性要比那些初始条件和边界条件更重要,可以这样理解吗?也就是说,对于一个具体的问题,初始条件和边界条件的设定并不是唯一的,为了使解收敛,需要不断调整初始条件和边界条件直到解收敛为止,是吗?如果解收敛了,是不是就可以基本确定模拟的结果是正确的呢? 对于一个具体的问题,边界条件的设定当然是唯一的,只不过初始化时可以选择不同的初始条件(指定常流),为了使解的收敛比较好,我一般是逐渐的调节边界条件到额定值("额定值"是指你题目中要求的入口或出口条件,例如计算一个管内流动,要求入口压力和温度为10MPa和3000K,那么我开始叠代时选择入口压力和温度为1MPa和500K(假设,这看你自己问题了),等流场计算的初具规模、收敛的较好了,再逐渐调高压力和温度,经过好几次调节后最终到达额定值10MPa和3000K,这样比一开始就设为10MPa和3000K收敛的要好些)这样每次叠代可以比较容易收敛,每次调节后不用再初始化即自动调用上次的解为这次的初始解,然后继续叠代。即使解收敛了,这并

Ansys Workbench Fluid Flow(FLUENT)经典问题

1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢? 学习任何一个软件,对于每一个人来说,都存在入门的时期。认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。 由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件,第一,具有流体力学的基础,第二,有FLUENT 安装软件可以应用。然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。如果身边有懂得FLUENT 的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。 https://www.doczj.com/doc/8614442661.html,/dvbbs/viewFile.asp?BoardID=61&ID=1411 A.理想流体(Ideal Fluid)和粘性流体(Viscous Fluid): 流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。粘性的大小依赖于流体的性质,并显著地随温度变化。实验表明,粘性应力的大小与粘性及相对速度成正比。当流体的粘性较小(实际上最重要的流体如空气、水等的粘性都是很小的),运动的相对速度也不大时,所产生的粘性应力比起其他类型的力如惯性力可忽略不计。此时我们可以近似地把流体看成无粘性的,这样的流体称为理想流体。十分明显,理想流体对于切向变形没有任何抗拒能力。这样对于粘性而言,我们可以将流体分为理想流体和粘性流体两大类。应该强调指出,真正的理想流体在客观实际中是不存在的,它只是实际流体在某些条件下的一种近似模型。 B.牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid): 日常生活和工程实践中最常遇到的流体其切应力与剪切变形速率符合下式的线性关系,称为牛顿流体。而切应力与变形速率不成线性关系者称为非牛顿流体。图2-1(a)中绘出了切应力与变形速率的关系曲线。其中符合上式的线性关系者为牛顿流体。其他为非牛顿流体,非牛顿流体中又因其切应力与变形速率关系特点分为膨胀性流体(Dilalant),拟塑性流体(Pseudoplastic),具有屈服应力的理想宾厄流体(Ideal Bingham Fluid)和塑性流体(Plastic Fluid)等。通常油脂、油漆、牛奶、牙膏、血液、泥浆等均为非牛顿流体。非牛顿流体的研究在化纤、塑料、石油、化工、食品及很多轻工业中有着广泛的应用。图2-1(b)还显示出对于有些非牛顿流体,其粘滞特性具有时间效应,即剪切应力不仅与变形速率有关而且与作用时间有关。当变形速率保持常量,切应力随时间增大,这种非牛顿流体称为震凝性流体(Rheopectic Fluid)。当变形速率保持常量而切应力随时间减小的非牛顿流体则称为触变性流体(Thixotropic Fluid)。 C.可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid):

Fluent经典问题及答疑

Fluent经典问题及答疑 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT 是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼) 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响?(#28)

Fluent学习经典教材列举

G. Falkovich, Fluid Mechanics: A Short Course for Physicists L.D. Landau and E.M. Lifshitz, “Fluid Mechanics” - a classic G.K. Batchelor, “An Introduction to Fluid Dynamics” - complements Landau G.B. Whitman; “Linear and Nonlinear Waves” - yet another great one J. Lighthill; “Waves in Fluids” - excellent and accessible U. Frisch; “Turbulence-The Legacy of A.N. Kolmogorov” – classic book on urbulence ala’ K41 A. Townsend; “The Structure of Turbulent Shear Flow” –classic book on urbulence in real systems 上面诸位推荐流体力学教材若干,我另外推荐一本可能更侧重计算流体力学(CFD)的书:Computational Methods for Fluid Dynamics 2002 Joel Henry Ferziger, Milovan Peri? 这本书不算太旧,作者是斯坦福计算流体力学专业的教授,公认的计算流体力学方面的专家,springer出品,质量应该不会太差。 推荐几本我自己学的书吧。我个人非常反感将流体力学讲成数学课的做法。 基础书: 1.Frank White, Fluid Mechanics 2.J.D. Anderson, Computational Fluid Dynamics 3.吴子牛,空气动力学 4.朱克勤,许春晓,粘性流体力学 进阶书: 1.Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics 2.D.C. Wilcox, Turbulence Modelling for CFD 3.Pope, Turbulent Flows 我来说一下,也是一个参考,也希望大家尽快上手,免得走弯路。 当初我在学习的时候(现在我依然在学习),看过很多计算流体力学和流体力学的书,当初我还分不清什么是计算流体力学和流体力学,有限体积有限差分,于是我把有关流体力学和计算流体力学的书都买了(下载)。 但我做的是计算流体力学——有限体积法的相关基础内容。如果你和我做的一样的内容: 1. 计算流体力学而非流体力学; 2. 有限体积法而非有限差分; 3. 需要获取普适性理论而非湍流、燃烧等; 推荐以下: 初级:《数值传热学》,中文。 初级:An Introduction to Computational Fluid Dynamics The Finite Volume Method 2nd Edition 中级:Computational Methods for Fluid Dynamics 这三本书已经没有必要评论。真正看过的都懂得。红色那本书我购入4本原版,赠送给我工作室的相关人员(好吧作为发起者目前没有经营收入,只能以书籍表示大家的支持)

FLUENT推荐书目

2004-06 FLUENT流体工程仿真计算实例与应用韩占忠王敬兰小平北京理工大学出版社 第一章流体力学基础与fluent简介 第二章二维流动与传热的数值计算 第一节冷、热水混合器内部二维流动 第二节喷管内二维非定常流动 第三节三角翼的可压缩外部绕流 第四节三角翼不可压缩的外部绕流(空化模型应用) 第五节vof模型的应用 第六节组分传输与气体燃烧 第三章三维流动与传热的数值计算 第一节冷、热水混合器内的三维流动与换热 第二节粘性流体通过圆管弯头段的三维流动 第三节三维稳态热传导问题 第四节动网格问题 第五节叶轮机械的mixing plane模型 2004-09 计算流体动力学分析CFD软件原理与应用王福军清华大学出版社(偏重理论)

第1章计算流动力学基础知识 第2章基于有限体积法的控制方程离散 第3章基于SIMPLE算法的流场数值计算 第4章三维流模型及其在CFD中的应用 第5章边界条件的应用 第6章网格的生成 第7章FLUENT软件的基本用法 第8章CFD综合应用实例 2007-02 FLUENT技术基础与应用实例王瑞金张凯王刚清华大学出版社 第1章Fluent概述 第2章流体力学基础知识 第3章流体力学数值模拟基础 第4章Fluent软件介绍 第5章速度场的计算 第6章温度场的计算 第7章多相流模型 第8章凝固和融化模型 第9章可动区域中流动问题的模拟 第10章动网格模型 第11章UDF和UDS 第12章Fluent并行计算 第13章Tecplot软件

2008-07 Fluent高级应用与实例分析江帆,黄鹏清华大学出版社 第1章 CFD基础 第2章Fluent基本介绍 第3章Gambit的使用 3.3建模及网格划分实例 3.3.1 二维轴对称维多辛斯基曲线喷嘴 3.3.2三维贯通管 第4章通用后处理Tecplot使用入门 4.5.6绘制三维流场图 第5章多相流基本模型 5.4气穴影响 5.5选择通用多相流模型 5.6设置一般的多相流问题 5.6.10包含体积力 5.6.15可压缩VOF和混合模型计算的输入 5.6.16凝固/熔解VOF计算的输入 第6章多相流计算实例 6.1沉淀池活性污泥沉降的计算 6.2泄洪坝气固液三相流的计算 第7章动网格计算方法概述 第8章UDF使用指南 8.3.2查询多相组分的宏 8.5.3 UDF的VC++编译 8.5.4编译相关问题 第9章动网格计算实例 9.1悬浮生物载体在移动床运动的模拟 9.2齿轮泵的动态模拟 第10章滑移网格基础 第11章滑移网格的计算实例 11.1 转笼生物反应器的内部流场计算 11.2车辆交会的动态模拟 11.3滑移网格模型和动网格模型计算比较 11.3.4转笼生物反应器计算结果上的区别 第12章UDF的高级用法

相关主题
文本预览
相关文档 最新文档