当前位置:文档之家› 纳米材料功能

纳米材料功能

纳米材料功能
纳米材料功能

纳米材料功能及发展

纳米材料是指材料显微结构中有一相的一维尺度在100nm以内的材料。纳米材料平均粒径微小、表面原子多、比表面积大、表面能高,其性质显示出独特的小尺寸效应、表面效应等特性,许多常规材料不的性能。纳米材料其超凡的特性,引起了人们越来越的关注,不少学者纳米材料将是21世纪最有前途的材料,纳米技术将21世纪的主导技术。

当材料的尺寸纳米级,材料便会奇异的物理性能:

1、尺寸效应

当超细微粒的尺寸与光波波长、德布罗意波长超导态的相干长度或投射深度等物理特征尺寸或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会,如铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却了1000倍。若将纳米粒子添加到聚合物中,不但可以聚合物的力学性能,甚至还可以赋予其新性能。2、表面效应

微粒尺寸的减小,微粒中表面原子与原子总数之比将会,表面积也将会增大,从而引起材料性能的,这纳米粒子的表面效应。

纳米微粒尺寸d(nm)包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,纳米粒子粒径的减小,表面原子所占比例急剧。表面原子数增多,原子配位及高的表面能,使表面原子高的活性,很容易与其它原子。若将纳米粒子添加到高聚物中,不饱和性质的表面原子就很容易同高聚物分子链段物理化学作用。

3、量子隧道效应

微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也隧道效应,它们可以穿越宏观系统的势垒而产生,这称为纳米粒子的宏观量子隧道效应。它的对基础及应用,如导电、导磁高聚物、微波吸收高聚物等。

纳米碳材料:

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873 K~1473 K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。

纳米高分子材料:

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。

纳米复合材料:

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方

面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。

纳米材料在生物医学应用中的前景

用纳米材料进行细胞分离

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。

纳米抗菌药及创伤敷料:

Ag +可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。智能—靶向药物:

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化

材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20 nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。

纳米材料用于介入性诊疗:

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗

材料的颜色不仅限粒径而变,而具有随角度变色的效应。在汽车的装饰喷涂业中,将纳米Tio2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面色彩多样化。

在化工方面的应用:

化工业影响到人类生活的方方面面,如果在化工业中采用纳米技术,将更显示出独特畦力。在橡胶塑料等化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米Sio2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。最近又开发了

食品包装的TiO2.纳米TiO2能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有利污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。

其他生活方面的应用:

纳米技术正在悄悄地渗透到老百姓衣、食、住、行各个领域。化纤布料制成的衣服虽然艳丽,但因摩擦容易产生静电,因而在生产时加入少量金属纳米微粒,就可以摆脱烦人的静电现象。不久前,关于保温被、保温衣的电视宣传,提到应用了纳米技术。纳米材料可使衣物防静电、变色、贮光,具有很好的保暖效果。冰箱、洗衣机等一些电器时间长了容易产生细菌,而采用了纳米材料,新设计的冰箱、洗衣机既可以抗菌,又可以除味杀菌。紫外线对人体的害处极大,有的纳米微粒却可以吸收紫外线对人体有害的部分,市场上的许多化妆品正是因为加入了纳米微粒而具备了防紫外线的功能。传统的涂料耐洗刷性差,时间不长墙壁就会变的班驳陆离,纳米技术应用之后,涂料的技术指标大大提高,外墙涂料的耐洗刷性提高很多,以前的电视、音响等家电外表一般都是黑色的,被称为黑色家电,这是因为家电外表材料中必须加入碳黑进行静电屏蔽。如今可以通过控制纳米微粒的种类,进而可控制涂料的颜色,使黑色家电变成彩色家电。

纳米材料研究的现状:

自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料,至今已有20多年的历史,但真正成为材料科学和凝聚态物理研究的前沿热点是在80年代中期以后。从研究的内涵和特点大致可划分为三个阶段。

第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。

第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。

第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。国际上,把这类材料称为纳米组装材料体系或者称为纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝和管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系,基保包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。纳米颗粒、丝、管可以是有序或无序地排列。

总之,在未来生活中,纳米技术将带给我们无限的舒心与时尚,使人类的生存的条件更加优越。

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

纳米材料应用特点

超细微粒、超细粉末,这些其实都是纳米材料的别称。它具有自己的一些性能特点,同时应用范围较广,例如生物医药、能源环保、化工等等行业。本文就给大家详细介绍一下。 一、应用 由于纳米颗粒粉体具有电、磁、热、光、敏感特性和表面稳定性等性能,显著不同于通常颗粒,故其具有广泛的应用前景。经过多年探索研究,已经在物理、化学、材料、生物、医学、环境、塑料、造纸、建材、纺织等许多领域获得广泛应用。下面为大家例举几个纳米材料的应用实例。 (1)纳米材料的用途十分的广泛,比如目前在许多医药领域使用了纳米技术,这样能使药品生产非常的精细,它直接利用原子或者分子的排布制造一些有特殊功能的药品。由于纳米材料所使用的颗粒比较小,所以这种药品在人体内的传输是相当方便的,有些药品会采用多层纳米粒子包裹,这种智能药物到人体后可直接并攻击癌细胞或者对有损伤的组织进行修复。纳米技术也可以用来监测诊少量血液,通过对人体中的蛋白质的分析诊断出许多种疾病。 (2)在家电方面,选用那么材料制成的产品有许多的特性,如具有抗菌性、防腐抗紫外线防老化等的作用。在电子工业方面应用那么材料技术可以从扩大其

产品的存储容量,目前是普通材料上千倍级的储器芯片已经投入生产并广泛应用。在计算机方面的应用是可以把电脑缩小成为“掌上电脑”,使电脑使用起来更为方便。在环境保护领域未来将出现多功能纳米膜。这种纳米膜能够对化学或生物制剂造成的污染进行过滤,从而改善环境污染。在纺织工业方面通过在原始材料中添加纳米ZnO等复配粉体材料,再通过经抽丝、织布,然后能够制成除臭或抗紫外线辐射等特殊功能的服装,这些产品可以满足国防工业要求。 (3)纳米材料技术现在已广泛应用于遗传育种中,该技术能够结合转基因技术并且已经在培育新品种方面取得了很大的进展。这种技术是通过纳米手段将染色体分解为单个的基因,然后对它们进行组装,这种技术整合成的基因产品的成功率几乎可以达到100%。经过实践证明,科研人员能够让单个的基因分子链展现精细的结构,并可以通过具体的操纵其实现分子结构改变其性能,从而形成纳米图形,这样就能使人们可以在更小的世界范围内、更加深的一种层次上进行探索生命的秘密。 (4)纳米材料技术在发动机尾气处理方面的应用,目前有一种新型的纳米级净水剂有非常强的吸附能力,它是一般净水剂的20倍左右。纳米材料的过滤装置,还能有效的去除水中的一些细菌,使矿物质以及一些微量元素有效的保留下来,经过处理后的污水可以直接饮用。纳米材料技术的为解决大气污染方面的问题提供了新的途径。这种技术对空气中的污染物的净化的能力是其它技术所不可替代的。 二、特点 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

纳米材料物理

纳米材料的基本效应 纳米材料的特殊性能是由于纳米材料的特殊结构,使之产生四大效应,即尺寸效应(量子尺寸效应、小尺寸效应)/表(界)面效应/量子效应(宏观量子隧道效应、库仑堵塞与量子隧穿)/介电限域效应,从而具有传统材料所不具备的物理、化学性能。 宏观尺度的金属材料在高温条件下,其能带可以看作是连续的。 (久保理论) 对于纳米金属颗粒来说,低温下能带的离散性会凸现出来。相邻电子能级之间的间隔d将随颗粒体积V的减小而增加。量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。 能带理论表明,金属费米能级附近电子能级一般是连续的,这一点只有在高温或宏观尺寸情况下才成立。对于只有有限个导电电子的超微粒子来说,低温下能级是离散的,对于宏观物体包含无限个原子(即导电电子数N→∞),由久保公式可得能级间距d→0,即对大粒子或宏观物体能级间距几乎为零;而对纳米微粒,所包含原子数有限,N值很小,这就导致d有一定的值,即能级间距发生分裂。当能级间距大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须要考虑量子尺寸效应,这会导致纳米微粒磁、光、声、热、电以及超导电性与宏观特性有着显著的不同。

Ag的电子数密度n = 6 × 1022/cm3,由公式 当T=1K时,能级最小间距d/kB=1,代入上式,求得d=20nm。根据久保理论,当d>kB时才会产生能级分裂,出现量子尺寸效应.由此得出,当粒径d<20nm,Ag纳米微粒变为 非金属绝缘体,如果温度高于1K,则要求d << 20nm才有可能变为绝缘体。这里应当指出,实际情况下金属变为绝缘体除了满足d>kB外,还需满足电子寿命>h/d的条件。实验表明,纳米Ag的确具有很高的电阻,类似于绝缘体,这就是说,纳米Ag满足上述两个条件。 Shift to higher energy in smaller size Discrete structure of spectra Increased absorption intensity

纳米材料新进展及应用

纳米材料应用的新进展 来源:全球电源网 世界上已经研制成功四种贮氢合金材料:即稀土镧镍系、铁一钛系、镁系以及钒、铌、锆等多元素系合金材料。但它们全都是非纳米材料。最近几年世界各国在大力开发纳米贮氢电极材料,一系列纳米贮氢材料不断问世。它们的进展为更好利用氢能带来了福音。目前开发的主要材料系列有镁镍合金、碳纳米管和纳米铁钛合金。三种纳米材料的开发已经形成热潮。美洲和欧洲国家开发工作最集中的是镍金属氢化物电池用的镁镍合金和碳纳米管,其次是燃料电池用的铁钛合金及碳纳米管。包括中国在内的亚洲国家开发纳米镁镍合金主要是针对镍金属氢化物电池的应用,开发纳米铁钛合金及碳纳米管主要是针对燃料电池的应用。在开发金属氢化物储氢方面,过去的主要问题是贮氢量低,成本高及释氢温度高。现在在开发纳米储氢材料过程中这些问题仍是值得注意的问题。本文介绍目前科研人员针对上述问题开发纳米储氢材料方面的进展。1 镁镍合金开发继续升温镁系贮氢合金是最具开发前途的贮氢材料之一,所以目前开发最热的是镁镍合金。镁镍合金成本低,其贮氢质量高,若以CD ( H )代表合金贮氢的质量分数, 理论上纯镁的质量分数为7.6% ,而稀土LaNi5 的只有1.4% ,钛系TiFe 只为1.9%。这就是形成镁系合金开发热潮的原因。以前主要使用熔铸法和快速凝固法生产镁合金。能够体现出高技术的发展水平是现在的机械研磨技术。也就是先在600 C以上使镁与镍形成合金,经过检测确定是Mg2Ni合金以后,然后进行机械研磨。目前普遍用机械研磨法生产多元纳米贮氢合金、纳米复合贮氢合金。新型纳米镁镍合金同稀土系、钛系和锆系贮氢材料相比具有许多优点。镁系合金中最典型的是Mg2Ni 合金。其氢化物Mg2NiH4 合金贮氢量为3.6%。1.1 代换镁的金属呈增加趋势国内外制备传统镁系合金采取的措施是添加铝、铁、钴、铬、钒、锰、铜、钛及镧等元素来替换镁,使其形成多元镁镍合金。第二种是将 纯镁粉与低稳定性的贮氢合金复合。第三种是把镁系合金与别的合金混合制成复 合贮氢材料。最后就是将负极浸入铜、镍-硼或镍-磷等镀液里,使镀上一层金属膜,镀

关于磁性纳米材料的研究应用

关于磁性纳米材料的研究应用 文献综述 姓名:于辉 学号:2013155048 学院:理学院 专业:材料化学 年级:2013级

关于磁性纳米材料的研究应用 【前言】 磁性纳米材料的应用可谓涉及在机械,电子,光学,磁学,化学和生物学领域的应用前景,纳米科学技术的诞生将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题。 下一世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性设计出顺应世纪的各种新型的材料和器件,通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品[1]。磁性纳米材料将成为纳米材料科学领域一个大放异彩的明星,在新材料,能源,信息,生物医学等各个领域发挥举足轻重的作用。 磁性纳米材料由于其独特的磁学性能、小尺寸效应,在化学设计与合成、表面功能化方法,及其在核磁共振成像、磁控治疗、磁热疗和生物分离等领域都有应用[2]。

【磁性纳米材料的发展历程和现状】 (一)关于磁性纳米材料 纳米材料又称纳米结构材料,是指在三维空间中至少有一维处于纳米尺度范围内的材料(1-100nm),或由它们作为基本单元构成的材料,是尺寸介于原子、分子与宏观物体之间的介观体系,因此,纳米磁性材料的特殊磁性可以说是属于纳米磁性,而纳米磁性材料和纳米磁性又分别是纳米科学技术和纳米物性的一个组成部分。 (二)关于颗粒磁性的研究 颗粒的磁性,根据磁畴理论与实验表明:当磁性微粒处于单畴尺寸时,矫顽力将呈现极大值[3]。铁磁材料,在应用上,可以作为高矫顽力的永磁材料和磁记录材料。由于颗粒磁性与其尺寸有关,若尺寸进一步减小,颗粒将在一定的温度范围内将呈现出超顺磁性。利用微粒的超顺磁性,提出了磁宏观量子隧道效应的概念,并研制成了磁性液体。非晶态磁性材料的诞生为磁性材料增添了新的一页,也为纳米微晶磁性材料(纳米微晶软磁材料、纳米复合永磁材料)的问世铺平了道路。(三)磁性纳米材料的特点和制备方法[4] 磁性纳米材料有量子尺寸效应、小尺寸效应、宏观量子隧道效应的特点。 制备方法: <1>磁流体的制备方法 物理法:研磨法、热分解法、超声波法。 化学法:化学沉淀法、水热法。 <2>磁性微粒的制备方法 分散法、单体聚合法。 <3>纳米磁性微晶的制备方法 非晶化法、深度塑性变形法。 <4>纳米磁性结构复合材料的制备方法 溶胶-凝胶法、化学共沉淀法、磁控溅射法和激光脉冲沉积法。 (四)磁性纳米材料的应用范围[4] 磁记录方面的应用、纳米永磁材料方面的应用、纳米软磁材料方面的应用、纳米吸波材料领域的应用、生物医学领域的应用、金属有机高分子磁性材料方面的应用。

发光功能化的纳米材料的应用探讨.docx

发光功能化的纳米材料的应用探讨纳米材料在实际应用中,其主要特点是比表面积大、化学反应活性强以及具有良好的尺寸效应,能够和生物体产生特殊的相互作用。在生物标记以及分析检测中则主要是作为生物探针应用,同时纳米技术、生物技术以及分析技术的良好结合,也进一步促进了功能性纳米材料的发展及应用。本文则从发光功能化角度,对纳米材料的发展及应用探讨。 1纳米材料在电化学和电化学发光生物传感中的应用 其中将CdTe量子点作为标志物的免疫传感器,能够同时测定人IgG抗原作为模型蛋白的荧光及电化学。首先借助于聚阳离子电解质PDDA能够在导电玻璃上将金胶纳米粒子在ITO芯片上被成功吸附,之后在金胶纳米离子上固定羊抗人IgG抗体,再实施封闭处理之后芯片则能够和检测出现抗原反应,并和量子点标记的鼠抗人IgG抗体反应。在以上反应结束后可以进行荧光及电化学方式检测。其中电致化学发光则是有效结合电化学和化学发光的检测方法,应用也比较广泛。量子点特点则为荧光特性独特以及生物相容性好,在其应用过程中将硫基乙酸作为稳定剂,则能够成功合成水溶性Cds纳米晶体。在对进行分析过程中,发现水溶液中会出现电致化学发光行为。采用自组装方式和纳米金放大技术相结合,在金电极上修饰Cds纳米晶,则能够构建新型ECL免疫传感器,主要是在低浓度脂蛋白检测中应用。这一材料在实际应用中具有良好的电化学发光以及生物相容性,能够进一步构建量子点电化学发光免疫传感器,主要应用在人免疫球蛋白灵敏

性检测工作中。 2纳米材料在聚合物电致发光中的应用 聚合物电致发光在应用中主要优势为:主动发光,并且效率高、宽视角、能耗低、厚度小、操作简单等等,在照明及平板显示领域中具有良好的应用发展前景,目前已经在全世界科学界及工业界得到普遍关注。聚合物电致发光二极管的首次研究则是在19XX年,英国机剑桥大学首次报道关于聚对苯乙烯的聚合物电致发光二极管,在采用溶液法将聚合物前驱体进行成膜之后,放置在2500C真空高温环境中进行处理,最终为均匀、致密的PPV薄膜,器件的阴阳极分别是Al 和ITO,在<14V电压环境下则能够实现外量子效率0.05%黄绿光发光。PPV则属于是难溶性共轭聚合物,在其处理过程中一定要选用前驱体方式进行旋涂成膜,在操作过程中工艺复杂,同时薄膜质量也比较差。在19XX年美国加州大学则提出可通行的甲氧基异辛氧基对聚对苯乙烯进行取代,能够在ITO上旋涂MEH-PPV溶液成膜,从而实现发光层,即将金属Ca作为阴极则能够得到1%橘红色发光二极管,这一工艺在操作中简单,同时具有高发光率聚合物电致发光二极管。19XX年则进一步采用柔性塑料基底则可弯曲聚合物电致发光二极管,从而呈现出聚合物电致发光二极管最为迷人一面。在近些年来,世界对聚合物电致发光材料及期间的研究一直都比较重视,并取得显著进步,但是就目前而言不管是聚合物电致发光器件稳定性还是效率上均还有进步空间,因此还需要进一步加大研究。 3纳米材料在化学发光免疫分析中的应用

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米材料的形貌控制.(DOC)

纳米材料的形貌控制 1 概述 纳米材料是指材料的三维尺寸中至少有一维处于纳米尺度(1-100 nm),或由纳米尺度结构单元构成的材料。随着纳米材料尺寸的降低,其表面的晶体结构和电子结构发生了变化,产生了如小尺寸效应、表面效应、量子尺寸效应等宏观物质所不具有的特殊效应,从而具有传统材料所不具备的物理化学性质。纳米材料的尺度处于原子簇和宏观物质交界的过渡域,是介于微观原子或分子和宏观物质间的过渡亚稳态物质,它有着与传统固体材料显著不同的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应[1],表现出奇异的光学、磁学、电学、力学和化学特性。 1.1 纳米材料的特性 1.1.1 量子尺寸效应 当粒子的尺寸下降到某一临界值时,其费米能级附近的电子能级由准连续变为离散能级,并且纳米半导体微粒存在不连续的最高被占据的分子轨道和最低未被占据的分子轨道能级,使得能隙变宽的现象,称为纳米材料的量子尺寸效应。当能级间距大于磁能、热能、静电能或超导态的凝聚能时,量子尺寸效应会导致纳米颗粒光、电、磁、热及超导电性能与宏观性能显著不同。量子尺寸效应是未来光电子、微电子器件的基础。 1.1.2 小尺寸效应 当纳米材料的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等外部物理量的特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米颗粒表面层附近的原子密度减小,从而导致其光、电、磁、声、热、力学等物质特性呈现出显著的变化:如熔点降低;磁有序向磁无序态,超导相向正常相的转变;光吸收显著增加,并产生吸收峰的等离子共振频移;声子谱发生

改变等,这种现象称为小尺寸效应。纳米材料的这些小尺寸效应为实用技术开拓了新领域。 1.1.3 表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变化而急剧增大后引起的材料性质上的变化。随着材料尺寸的减小,比表面积和表面原子所占的原子比例将会显著增加。例如,当颗粒的粒径为10 nm时,表面原子数为晶粒原子总数的20%,而当粒径为l nm时,表面原子百分数增大到99%。由于表面原子数增多,原子配位不足及高的表面能,使这些原子易与其他原子相结合以降低表面能,故具有很高的化学活性。这种表面原子的活性不但能引起纳米粒子表面输运和构型的变化,也会引起电子能级和电子自旋构象的变化,从而对纳米材料的电学、光学、光化学及非线性光学性质等产生重要影响。通过利用有机材料对纳米材料表面的修饰和改性,可以得到超亲水和超疏水等性能可调的纳米材料,可以广泛的应用于民用工业。 1.1.4 宏观量子隧道效应 量子物理中把微观粒子具有的贯穿势垒的能力称为隧道效应。近年来的研究发现一些宏观量,如超微颗粒的磁化强度,量子相干器件中的磁通以及电荷等也具有隧道效应,它们可以穿越宏观系统的势垒而发生变化。故称为宏观量子隧道效应。对宏观量子隧道效应的研究对基础及应用研究都有着重要意义。宏观量子隧道效应与量子尺寸效应一起都将会是未来微电子、光电子器件的基础。此外,纳米粒子还具有其它的一些特殊性质,如库伦阻塞与量子隧穿及介电限域效应等。 1.2 纳米材料特性对材料性能的影响 1.2.1 电学性能 电学性能发生奇异的变化,是由于电子在纳米材料中的传输过程受到空间维度的约束而呈现出量子限域效应。纳米材料晶界上原子体积分数增大,晶界部分

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

功能磁性纳米材料的构建及诊疗应用基础-东南大学

2017年高等学校科学研究优秀成果奖(科学技术)推荐项目公示材料(自然奖) 1、项目名称:功能磁性纳米材料的构建及诊疗应用基础 2、推荐奖种:高等学校科学研究优秀成果奖自然科学奖 3、推荐单位(专家):东南大学 4、项目简介: 磁性纳米材料因其丰富的磁学特性和良好的生物相容性,在生物医学领域有广泛的应用前景。如何构建生物医用磁性纳米材料,解决其控制制备的关键科学问题并建立相关标准,发现磁性纳米材料新的生物效应,并解决其在生物医学应用中核心科学问题,是实现临床实际应用的挑战和迫切需求。经过多年研究取得了如下重要科学发现: 1. 系统研究了磁性纳米材料的控制制备及表面修饰,研究成果发表在Coll. Surf. A与Nanoscale Res. Lett.,共计被SCI正面他引260篇次。研制出10L纳米 -Fe2O3弛豫率国家标准物质(GBW(E)130387),教育部组织的科技成果鉴定认为该标准物质填补了国内外空白,对磁共振成像造影剂研制、生产及临床应用具有重要意义。提出了一种交变磁场诱导磁性纳米颗粒组装的新机制,制备得到具有各向异性磁热效应的水凝胶,结果发表在Angew. Chem. Int. Ed.、Adv. Mater.等专业期刊上,被同行认为“交变磁场组装磁性纳米颗粒是过去十几年

来除了静磁场控制组装以外首次提出的新的组装方式和机制”,“首次制备具有各向异性磁热效应的磁性水凝胶”,“在未来的临床热疗中具有重要应用前景”。 2. 发现了磁性纳米材料的pH依赖双模拟酶活性与促成骨新效应,为发展新型诊疗技术提供了重要基础。发现氧化铁纳米颗粒具有pH依赖双模拟酶活性,揭示了其在酸性条件下(如细胞溶酶体)的类过氧化物酶活性以及中性条件下(如细胞质)类过氧化氢酶活性。结果发表在ACS Nano并被亮点报道,被同行认为是“开拓性的工作”,促进了类酶纳米材料的发展。进一步通过纳米氧化铁颗粒表面修饰普鲁士蓝壳层,极大地提高了其类酶活性和生物检测的灵敏度,结果在J. Mater. Chem.发表后被同行评价为“构建的纳米结构模拟酶具有极好的电化学稳定性和更高的催化活性”,最近还被载入普通高等学校规划教材《酶工程》第三版中。还发现磁性纳米纤维支架在外加静磁场中可以显著促进成骨细胞分化,该策略在Nanoscale期刊发表后被国际上多家实验室应用,并且被评价为“磁性纳米纤维复合材料为骨组织缺损修复提供了一种有潜力的治疗策略”。 3. 创新构建了组装磁性纳米颗粒的复合超声微气泡,实现了增强的超声/磁共振双模态成像,深入探讨了磁性纳米颗粒与聚合物膜材分子的组装调控及释放机制,发展了超声调控类酶磁性纳米颗粒无损、高效传输进入细胞质的技术,为量化调控复合材料以及声能控制磁性微气泡药物精准靶向输运奠定了基础。结果发表在Biomater.、Small、ACS Appl. Mater. Interfaces等期刊,被同行评价为“这一令人兴奋的结果在未来疾病的双模态诊疗中极具潜力”。 10篇代表论文被SCI他引837篇次,其中被影响因子 7的期刊论文他引181篇次。培养全国百篇优博2名、国家自然科学基金杰出青年1名、教育部新世纪优秀人才2名,并且连续两期牵头国家重大科学研究计划项目研究(973首席科学家),并分别以良好和优秀成绩通过验收。

功能化纳米材料研究与蛋白质选择性富集分离技术

功能化纳米材料研究与蛋白质选择性富集分离技术 蛋白质组学以大规模分析细胞或生物体内的蛋白质为目的,主要开展表达蛋白质组学和功能蛋白质组学两类研究工作。生物体内蛋白质种类繁多,性质复杂,数量庞大,尤其是蛋白质翻译后修饰,对现行的蛋白质组学研究方法和技术提出了许多挑战。因此,发展蛋白质研究新技术与新方法,对于解决生物学、疾病诊断和治疗等方面的科学问题有着重大的意义。 功能化纳米材料在科学发展的各个领域都有着广泛应用,相对于普通材料而言,它们具有极大的比表面积和极高的表面活性,特别适于生物医学领域的应用。针对蛋白质组学研究中面临的磷酸化和糖基化蛋白质高效选择性富集方面的热点难点问题,将功能化材料与蛋白质分析结合起来,开展了一系列研究工作,发展了一些基于功能化材料的磷酸化和糖基化蛋白质组学研究新技术新方法。与IMAC相比,磁性纳米新材料具有更高的选择性,并且对低pH溶液、盐类、其它低分子污染物有更高的耐受性。我们先后研究合成了TiO2、ZrO2、Ga2O3等金属氧化物包覆的磁球,并成功用于磷酸化肽段的富集。同时还合成了Fe3O4@C@Ta2O5和Fe3O4@C@SnO2磁球用于磷酸化肽段的富集,展现了优越的富集选择性。同时,我们还研究了糖肽和糖蛋白的富集鉴定新方法。首先合成了纳米级金粒子,然后通过高温煅烧将这些纳米金颗粒烧结到MALDI-QIT-TOF-MS靶板上,再利用金和巯基之间的相互作用在这些纳米金颗粒表面修饰上巯基苯硼酸,用来选择性富集糖基化的肽或者蛋白质。进而发展了利用“三明治”固定方法在硼酸纳米磁性微球表面固定了凝集素蛋白(Con A),并将其用于糖基化蛋白的分离富集。球表面直接固定Con A相比,利用上述“三明治”方法固定的Con A量提高了三倍。Con A纳米磁球、硼酸磁球和商品化的Con A磁球用来进行人肝癌细胞株7703细胞裂解液中糖蛋白的分离富集。利用Con A纳米磁球共鉴定了包含184个糖基化位点在内的172条糖肽,这些糖肽共对应 1

纳米材料的热学特性

纳米材料的热学特性 【摘要】:纳米材料的应用及其广泛,涉及到各个领域。本文将从纳米材料的热容,晶格参数,结合能,内聚能,熔点,溶解焓,溶解熵及纳米材料参与反应时反应体系的化学平衡等方面对纳米材料的热学性质的研究进行阐述,并对纳米材料热学的研究和应用前景进行了展望。 【关键词】:纳米材料热学特性发展前景 【正文】: (一)纳米材料 纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l 5 ~5 0 %。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。 纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。 (二)热学特性 一热容 1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小,二.晶格参数,结合能,内聚能 纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。结合能的确比相应块体材料的结合能要低。通过分子动力学方法,模拟Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对 晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。 三纳米粒子的熔解热力学 熔解温度是材料最基本的性能,几乎所有材料的性能如力学性能,物理性能以及化学性能都是工作温度比熔解温度( T /Tm )的函数,除了熔解温度外,熔解焓和熔解熵也是描述材料熔解热力学的重要参量;熔解焓表示体系在熔解的过程中,吸收热量的多少,而熔解熵则是体系熔解过程中熵值的变化。几乎整个熔解热力学理论就是围绕着熔解温度,熔解熵和

纳米材料的基本效应

第二章纳米材料的基本效应 §第一节表面效应 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒子尺寸的减小而大幅度的增加,粒子的表面能及表面张力也随着增加,从而引起纳米粒子物理、化学性质的变化。 纳米粒子的表面原子所处的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和性质,因而极易与其他原子相结合而趋于稳定,具有很高的化学活性。 1、比表面积的增加 比表面积常用总表面积与质量或总体积的比值表示。质量比表面积、体积比表面积 (G代表质量,m2/g) (V代表颗粒的体积;m-1) 当颗粒细化时,粒子逐渐减小时,总表面积急剧增大,比表面积相应的也急剧加大。 如:把边长为1cm的立方体逐渐分割减小的立方体,总表面积将明显增加。

随着粒径减小,表面原子数迅速增加。这是由于粒径小,总表面积急剧变大所致。例如,粒径为10nm时,比表面积为90m2/g, 粒径为5nm时,比表面积为180m2/g, 粒径下降到2nm时,比表面积猛增到450m2/g。 这样高的比表面,使处于表面的原子数越来越多,同时表面能迅速增加。 2. 表面原子数的增加 由于粒子尺寸减小时,表面积增大,使处于表面的原子数也急剧增加.

3.表面能 由于表层原子的状态与本体中不同。 表面原子配位不足,因而具有较高的表面能。 如果把一个原子或分子从内部移到界面,或者说增大表面积,就必须克服体系内部分子之间的吸引力而对体系做功。 在T和P组成恒定时,可逆地使表面积增加dA所需的功叫表面功。 颗粒细化时,表面积增大,需要对其做功,所做的功部分转化为表面能储存在体系中。 因此,颗粒细化时,体系的表面能增加.。 由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。

纳米材料的特性和应用

纳米材料的特性和应用 摘要本文简要介绍了纳米材料的分类及特性,并对纳米材料在化工、生物医学、环境、食品等领域的应用进行了综述,最后对纳米材料的发展趋势进行了展望。关键词纳米材料;分类;特性;应用;发展 1 引言 有科学家预言, 在21 世纪纳米材料将是“最有前途的材料”, 纳米技术甚至会超过计算机和基因学, 成为“决定性技术”。国际纳米结构材料会议于1992 年开始召开(两年一届) , 并且目前已有数种与纳米材料密切相关的国际期刊。德国科学技术部预测到2010 年纳米技术市场为14 400 亿美元, 美国政府自2000 年 克林顿总统启动国家纳米计划以来, 已经为纳米技术投资了大约20 亿美元。同时, 欧盟在2002~2006 年期间将向纳米技术投资10 多亿美元。日本2002 年的纳米技术开支已经从1997 年的1. 20 亿美元提高到7. 50 亿美元。 2 纳米材料及其分类 纳米材料(nano- material)又称为超微颗粒材料,由纳米粒子组成。粒子尺寸范围在1-100 nm 之间,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。根据三维空间中未被纳米尺度约束的自由度计,将纳米材料大致可分成四种类型,即零维的纳米粉末(颗粒和原子团簇)、一维的纳米纤维(管)、二维的纳米膜、三维的纳米块体。 3 纳米材料的特性1 3.1 小尺寸效应 当纳米晶粒的尺寸与传导电子的德布罗意波长相当或更小时, 周期性的边界条件将被破坏, 使其磁性、内压、光吸收、热阻、化学活性、催化性及熔点等与普通粒子相比都有很大变化。如银的熔点约为900℃, 而纳米银粉熔点仅为100℃, 一般纳米材料的熔点为其原来块体材料的30%~50%。 3.2 表面效应 纳米晶粒表面原子数和总原子数之比随粒径变小而急剧增大后所引起的性质变化。纳米晶粒的减小, 导致其表面热、表面能及表面结合能都迅速增大, 致使它表现出很高的活性,如日本帝国化工公司生产的T iO2平均粒径为15 nm , 比

磁性纳米材料的化学合成_功能化及其生物医学应用

第25卷第2期大学化学2010年4月 今日化学 磁性纳米材料的化学合成、功能化 及其生物医学应用 侯仰龙 (北京大学工学院先进材料与纳米技术系北京100871) 摘要从纳米材料的生长动力学模型出发,讨论磁性纳米材料的控制合成原理。总结磁性纳米材料的化学设计与合成、表面功能化及其在核磁共振成像和多模式影像等方面的应用研究最新 进展。 磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。近年来,随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。本文将从纳米磁学开始,回顾磁性材料的基本概念、化学设计与合成、表面功能化及其在生物医学领域的潜在应用[1]。 1纳米磁学 在磁场中,铁磁体的磁化强度M或磁感应强度B与磁场强度H的关系可用曲线来表示。当外磁场作周期变化时,铁磁体中的磁感应强度随磁场强度的变化而形成一条闭合线,即磁滞回线,图1(a)为铁磁物质磁滞现象的曲线。一般说来,铁磁体等强磁物质的磁化强度M(或B)不是磁场强度H的单值函数而依赖于其所经历的磁状态。以磁中性状态为起始态,当磁状态沿起始磁化曲线磁化时,此时磁化强度逐渐趋于饱和,曲线几乎与H轴平行,将此时的磁化强度称为M s。此后若减小磁场强度,则从某一磁场强度开始,M随H的变化偏离原先的起始磁化曲线,M的变化落后于H。当H减小至0时,M并未同步减小到0,而存在剩余磁化强度 M r 。为使M减至0,需加一反向磁场,称为矫顽力H c 。反向磁场继续增大时,磁体内的M将沿 反方向磁化到趋于饱和(M s),反向磁场减小至0再施加正向磁场时,按相似的规律得到另一支偏离反向起始磁化曲线的曲线。当外磁场完成如上变化时,铁磁体的磁状态可由图1(a)所示的闭合回线描述。当温度高于居里点时,磁性材料将变成顺磁体,其磁性很容易随周围磁场的改变而改变。如果温度进一步提高,或者磁性颗粒的粒度很小时,即便在常温下,当尺寸达到临界畴时,材料中电子的热运动将逐渐占主导作用,热运动引起的扰动能超过磁能,使得原有的磁有序发生无序化,该现象称为超顺磁现象,如图1(b)所示,此时材料矫顽力和剩磁为0。对于纳米颗粒的超顺磁转变温度,称为B loc k i n g温度。其磁学性质随尺寸的变化,如图2所示,与块体磁性材料的多畴结构相比,纳米颗粒具有单畴结构,当颗粒尺寸小于临界畴尺寸时,纳米颗粒的磁自旋将无序排列。在单畴区域,矫顽力随着颗粒尺寸的增加而增加,在颗粒 1

相关主题
文本预览
相关文档 最新文档