当前位置:文档之家› 激光在焊接电弧高速摄像技术中的应用-Word整理

激光在焊接电弧高速摄像技术中的应用-Word整理

激光在焊接电弧高速摄像技术中的应用-Word整理
激光在焊接电弧高速摄像技术中的应用-Word整理

激光焊接电弧高速摄像技术中

提要: 建立了以激光为背景光源的高速摄像系统, 该系统包括焊接平台、焊接设备和摄像装置三部分。介绍了电弧高速摄像的关键技术,包括光路的设计、背景光源的选择和弧光的消除等。利用此系统可在线观测和监控焊接过程。

关键词: 激光应用; 电弧; 高速摄像

焊接电弧及熔滴过渡对焊接质量的影响起决定作用, 因此, 对焊接电弧及熔滴过渡的研究始终是焊接领域的重要课题, 由于电弧燃烧时发出强烈的光,肉眼无法观察, 必须借助于高速摄像机进行观察。本文建立了一套新的电弧高速摄像系统,特点是以激光作为背景光源, 使用方便、成本低。重点介绍了高速摄像关键技术。

1 高速摄像系统组成

高速摄像系统由三部分组成: 焊接平台: 焊接设备: 摄像装置。

1 . 1 焊接平

图 1 HGT - 3 ( A, B) 精密焊接工作台

焊接平台采用已有的成都电焊机研究所的HG T - 3 ( A,B ) 精密焊接工作台, 如图1 所示。该工作台可与 MI G/ MA G焊机、 TIG 焊机、微束等离子焊机组成全自动环缝焊接系统和圆管纵缝焊接系统。在配备专用夹具时, 还可以进行薄板对接焊接。工作台可以对 320 以内的管子进行施焊。实验管材如图 2 所示, 其结构尺寸为16 0 14 245。用三爪卡盘和尾座顶丝将管子对中固定, 调节焊矩位置。通过管子的周向转动, 而焊矩位置固定来达到对管子环焊缝进行施焊的目的。

图 2 实验管材

1 .

2 焊接设备

焊接设备采用北京时代科技股份有限公司的产品: WSM- 400 ( P NE21 - 40 0P) 数控脉冲氩弧焊机。该焊机是基于DSP、模糊控制、波形控制及自适应控制技术的全

数字脉冲氩弧/ 直流氩弧焊机。具有脉冲氩弧、直流氩弧、氩弧点焊、手工焊及简易氩弧焊五种焊接方式。可靠性高, 电流调节范围广( 1 A ~ 400A) 。在结合焊接平台具体操作时 , 将焊机的焊炬夹持在焊接平台的三维调节机构上, 该调节机构可以在 ( x ,y , z ) 三个方向进行调节。这样, 可以通过同心度检测来调整管子和焊炬的相互位置。

1 . 3 摄像装置

常见的高速摄像装置由四部分组成。( 1 ) 光源部分, 由点光源或平行光源组成。本文采用半导体激光器, 波长650nm, 功率小于 80mW。( 2 ) 扩束部分, 由显微目镜及凸透镜组成。( 3) 成像部分, 包括焊丝、成像物镜、小孔光阑、干涉滤光片。( 4) 摄像部分, 采用 Ca n a d i a n P hot oni c Labs 的彩色数字高速摄像机。高速摄像机包括主机和附件。主机型号 PLMS25k , 主要技术指标: CMO S 传感器, 触发方式为脉冲、同步、手动、连续, 操作环境为 Wi ndo ws 2000 兼容 Wi n98/ X P, 分辨率400 400( 500f ps ) / 100 20( 25000f ps) , 曝光时间 1 s/ 24ms, 记录时间 1. 5s - 15s , 电源 220VA C。附件包括镜头, 图像采集卡, 专用驱动软件, 计算机等。

2 焊接电弧高速摄像的关键技术

为了获取高质量的焊接电弧图像, 首先要对焊接电弧及熔滴过渡行为有比较深入的了解; 其次, 要熟悉高速摄像技术; 第三, 拍摄之前要对整个光路进行仔细的调整 1 。

2 . 1 正确选择光路参数

图 3 光路设计示意图

如图 3 所示, 根据试验经验, a、 c 要尽量的小。由于激光的相干性, 光路中的污物容易在底片上产生干涉而形成干涉花纹, 形成较大的光斑, 将严重破坏所摄取的图像质量。b、 d为凸透镜的的焦距, 也就是说, 透镜 1 处于透镜 2 的焦点上,小孔光阑处于透镜 3 的焦点上。c 视情况而定, 一般情况下,放大率选 1 即可, 如果拍摄熔滴过渡, 放大率以 2 3 为宜。

2 . 2 选择激光作为背景光源

由于电弧是一个高亮度辐射光源, 直接取像看不到其内部变化过程, 必须采用背光技术取像。对于背光的要求是,在高速摄像机处所接受的光的强度必须至少强于电弧本身的弧光。通常, 可选用的背光光源有 2 类, 一类是以氙灯、碘钨灯为代表的点光源背光光源; 另一类是以激光为代表的平行光背光光源。图 4 为两种背光光源下的光路示意图。

图 4 不同背光源下的光路示意图

由于背光光源为点光源( 如氙灯、碘钨灯) , 其自身光强与距离的平方成反比, 与电弧类似, 因此, 必须利用反射和透镜聚焦作用, 使光源收敛, 以提高光源的利用率。同时, 其光谱选择性比不上激光, 难以利用滤光片衰减弧光, 滤除弧光的任务完全由小孔光阑来承担。由于背光光源具有一定尺寸, 不能通过透镜严格聚焦于一点, 因此光阑小孔直径也不能太小, 滤除弧光的作用是有限的。加大背光功率, 提高背光/ 电弧光的比值是提高图像效果的首选途径。背光光源为平行光源( 一般为激光) 时, 由于激光为单色平行光源, 可以通过透镜聚焦成一个很小的点, 在光强比的调节上具有独特的优越性。因此, 利用扩束和聚焦作用能够拍出视场较大的、清晰程度较好的画面。由于激光为单色光, 使干涉滤光片的选择比较容易, 可以使在高速摄像成像处所接受的光的强度远高于电弧弧光, 同时还可以用小孔光阑调节弧光与背光的比例。激光为背光不足之处是由于激光的相干性, 光路中的污物 ( 如镜头上的灰尘等) 容易在底片上产生干涉而形成干涉花纹, 形成较大的光斑, 将严重破坏所摄取的图像质量。因此, 以激光为背光时, 镜头污物的清理尤为重要 2 。

图5a TIG 电弧图像( 无背景激光) 图 5 b TIG 电弧图像( 有背景激光)

当不用激光作为背景光源时, 拍摄的图像如图 5a 所示,此时, 只看到钟罩形的电弧图像, 看不到钨极。当采用激光作为背景光源时, 拍摄的图像如图 5 b 所示,

此时 , 除看到钟罩形的电弧图像外, 还可看到钨极的形貌。

2 .

3 利用小孔光阑滤掉弧光

在熔滴过渡高速摄像中, 弧光与背光的亮度应该有一个合适的比例, 如果背光太弱, 熔滴就显示不出来。仅靠调整曝光参数或加滤光片的普通摄影方法无法满足两者的亮度比例要求, 采用小孔光阑技术, 是提升电弧图像清晰度的较好办法。小孔光阑滤掉弧光的原理是, 电弧光的波长分布在从紫外到红外的很宽范围内, 而在某一波长上其强度不一定高。因此 , 功率不大的激光器发出的激光亮度就可能超过电弧中对应波长的弧光。激光为单一波长平行光, 经扩束后为近似平行光束, 当投射到成像物镜上时, 透镜将此平行光束在其焦点位置会聚为一点, 并顺利地通过小孔光阑; 而电弧光则是球面光, 在成像物镜的焦点处则形成一个一定大小的光斑, 其中仅有小孔部分通过光阑, 其余部分被阻挡, 从而达到衰减弧光的目的。同时弧光是球面波, 其强度与距离的平方成反比地迅速衰减, 激光经扩束后是接近平行的光束, 光强几乎与距离无关, 增大拍摄距离, 可使弧光消除得更多。通过上述措施衰减电弧光, 在摄像机中便可获得熔滴过渡的清晰阴影像。图 6a 是没用小孔光阑的图像, 电弧图像清晰可见;图 6b 是利用小孔光阑的图像, 电弧图像被滤掉, 清晰可见钨极及焊丝。图 6 c 是 MI G 焊熔滴过渡, 采用氩气保护焊接铜板, 采用铜焊丝。由图 6c 可以看出下方钟罩形的电弧,冲向熔池的熔滴。

3 高速摄像系统的特点

高速摄像机采用 C MOS 传感器。 C MO S ( Compl eme nt a ryMe t a l O xi de Se mi co ndu c t or) 即互补金属氧化物半导体。它是计算机系统内一种重要的芯片, 保存了系统引导所需的大量资料。从技术的角度比较, C MO S 与 CCD 相比较, 在信息读取方式、速度和电源及耗电量三个方面都具有优势。以前的高速摄影, 拍摄参数多、操作复杂, 必须请专业人员拍摄和冲洗才能达到预期效果, 做一次实验, 需投入较多的人力、物力, 实验成本很高。而本高速摄像系统一次成本投入后, 重复实验的成本很低, 操作简单, 拍摄的图像直接存储到计算机里。

总之, 建立了以激光为背景光源的高速摄像系统, 该系统包括焊接平台、焊接设备和摄像装置三部分。介绍了电弧高速摄像的关键技术, 包括光路的设计、背景光源的选择和弧光的消除等。得到了清晰的高速摄像图片, 满足了焊接试验分析和判断的需要。

激光_电弧复合焊接技术的研究与应用_袁小川

0前言20世纪70年代末,英国学者W M Steen 等率先 利用TIG 和CO 2激光实现了激光-电弧复合焊。近年来,随着电弧焊设备和激光器性能的提高,激光-电弧复合焊技术的发展日益加速,激光-电弧复合焊已成为激光焊接研究的热点方向,德国、美国、日本和瑞典等国家都在该领域做了大量的研究实践工作。激光-电弧复合焊的应用研究主要是针对高速薄板焊接、中厚钢板焊接和铜铝合金等高反射材料的焊接等,涉及的行业包括汽车、造船、航空和石油管道等。 1激光-电弧复合焊接的提出背景、基本原理和复合形式 聚焦激光束由于具有高的热源密度,使其应用于 焊接领域具有速度高、热输入小、变形小、热影响区窄以及接头综合性能好等一系列优点。但是,与其他焊接热源一样,激光焊也有其缺点:设备投资大;能量利用率低;焊前的准备工作要求高;高反射金属焊接困难,接头中容易产生气孔、裂纹、咬边等缺陷。为避免单独激光焊接所存在的问题,研究者便提出了激光与电弧的复合,其出发点是利用电弧焊接的低成本、适用范围宽等特点。随后的研究成果表明,激光-电弧复合热源既综合了上述2种焊接热源的优点,又相互弥补了各自的不足,还产生了额外的能量 协同效应。 激光-电弧复合焊接的原理如图1所示,激光与电弧同时作用于金属表面同一位置,焊缝上方因激光作用而产生光致等离子体云,等离子云对入射激光的吸收和散射会降低激光能量利用率,外加电弧后,低温低密度的电弧等离子体使激光致等离子体被稀释,激光能量传输效率提高;同时电弧对母材进行加热,使母材温度升高,母材对激光的吸收率提高,焊接熔深增加。另外,激光熔化金属为电弧提供自由电子,降低了电弧通道的电阻,电弧的能量利用率也提高,从而使总的能量利用率提高,熔深进一步增加。激光束对电弧还有聚焦、引导作用,使焊接过程中的电弧更加稳定。 在复合焊中,参与复合的激光包括Nd :YAG (钕:钇铝石榴石)激光、CO 2激光;电弧包括TIG 电弧、MIG /MAG 电弧以及等离子弧,利用各种复合 收稿日期:2009-12-09 文章编号:1002-025X (2010)05-0002-06 激光-电弧复合焊接技术的研究与应用 袁小川1,赵 虎2,王平平2 (1.山东中德设备有限公司,山东济南250101;2.山东省冶金地质水文勘察公司,山东济南250101) 摘要:阐述了激光-电弧复合焊接的基本原理和复合形式,归纳了几种激光-电弧复合焊接技术的特点、应用范围和国内外的研究进展,介绍了目前国内外激光-电弧复合焊接技术在汽车、造船、石油化工等制造业中的应用,最后指出激光-电弧复合焊接技术有着非常广泛的应用前景,是今后激光焊接技术的发展趋势,激光-电弧复合焊接机理还有待于进一步研究。关键词:激光-电弧复合焊接;复合形式;研究进展;工业应用中图分类号:TG444.73 文献标志码:B

(整理)摄影与缩微技术基础

摄影与缩微技术基础 摄影:利用针孔或透镜来形成物体反射的影像,并记录下来。 第一章概论 一、原理与基础 1、原理:小孔成像 2、基础:早期是照相机制造技术和感光材料技术;现代受到机密机械、电子技术、数字技术以及计算机技术 二、所谓摄影技术及发展沿革 1、缩微摄影:是在感光材料上记录缩微影像的技术和过程。 2、缩微摄影技术又称文献复制技术,制作(拍摄、冲洗加工、拷贝)、管理和使用缩微品的有关技术统称为”缩微摄影技术” 3、缩微摄影拍摄机有平台式、逆平台式、轮转式,冲洗又被称为“暗室技术” 4、缩微摄影技术是档案与文献管理的一种有效手段,为保护档案原件、提高档案利用率,降低管理费用发挥重要作用。 5、缩微摄影技术系统流程图:资料、拍摄、冲洗、拷贝、输出、存贮、阅读复印检索 6、缩微品只能依靠放大镜、放映机和阅读器才能阅读,依靠缩微复印机放大为复印件 7、丹赛开创了缩微摄影技术,计算机输出缩微胶片记录装置是COM 三、缩微摄影技术特点与作用 1、特点 存储密度大;记录效果好;记录速度快;适用范围广;缩微品规格统一;易于还原拷贝 2、缺陷 无法记录动态信息;阅读时眼睛易疲劳;无原件的美感与质感;不能完全代替原件的凭证作用;阅读时无法加注和批改;一次性投资大;保管条件要求严格 3、作用 缩小保存空间;保护和代替原件;便于长期保管;便于文献收集与交流;提高办公效率 4、摄影技术大致可以分为拍摄技术和暗室技术 5、摄影四要素:光线、色彩、构图、命题 第二章感光材料的形式 一、感光材料的基本结构及类型 1、感光材料是指具有光敏性的材料,见光能分解,经过加工处理后能形成影像的材料 2、感光材料的结构:感光层(加工后成为影像层)+支持体,既可以依据感光层的感光物质,也可以依据支持体对感光材料的分类。 3、感光材料的类型: 银盐感光材料:普通摄影胶片、缩微摄影胶片、干银胶片 非银盐感光材料:重氮片、微泡片、光导热塑胶片、PD胶片 二、缩微品的形式 缩微品是指含有缩微影像的各种信息载体,分为卷式缩微品和片式缩微品 1、卷式缩微品以保存为目的,按装片式分为片盘式、单输盒式、双轴盒式、片式,具有成本低、制作速度快、完整性好、容易转换、便于管理等优点,同时具有不易修改和补充、检索时间长、容易损坏胶片等缺陷。 2、片式缩微品以单张胶片为单位进行管理和使用的散叶片。分为条片、封套片、开窗卡片、

激光-电弧复合焊接技术及其应用.

哈尔滨工业大学 激光-电弧复合焊接技术及其应用 学 XXX 生: XXXXXX 学 号: 班XXXXXX

级: 2013年 月 日 摘要:结合国内外激光-电弧复合焊的研究现状,概括了激光-电弧复合焊的特点、激光电弧复合方式。介绍了激光-电弧复合焊接技术特点、阐述了此技术的原理、优势及其应用前景。 关键词:激光-电弧复合;焊接;应用 激光焊接以其能量密度高、焊接速度快、变形小、熔深大和易实现自动化等优点而被广泛应用于各种结构件的焊接。但是,与其他焊接热源一样,激光焊也有其缺点:设备投资大,能量利用率低,焊前的准备工作要求高,接头中易产生气孔、裂纹、咬边等缺陷。为避免单独激光焊所存在的问题,激光-电弧复合焊是最好的选择。激光-电弧复合焊将激光焊和电弧焊两种工艺相结合,取长补短发挥各自优势,不仅能获得好的焊接质量和生产效益,而且还能降低成本,实现高效、优质的焊接[1]。 0 背景及基本原理 激光电弧复合焊接始于20世纪70年代末,由英国伦敦帝国大学学 者W.M.Steen首先提出,但直到最近几年,由于工业生产的需要,才逐步成为国际焊接界的关注焦点,并得到了广泛重视。目前,作为一种新兴焊接技术,在德国、日本等发达国家已先后进入了工业化应用阶段。 激光-电弧复合焊接的原理如图1所示,激光与电弧同时作用于金属表面同一位置,焊缝上方因激光作用而产生光致等离子体云,等离子云

对入射激光的吸收和散射会降低激光能量利用率,外加电弧后,低温低密度的电弧等离子体使激光致等离子体被稀释,激光能量传输效率提高;同时电弧对母材进行加热,使母材温度升高,母材对激光的吸收率提高,焊接熔深增加。另外,激光熔化金属,为电弧提供自由电子,降低了电弧通道的电阻,电弧的能量利用率也提高,从而使总的能量利用率提高,熔深进一步增加[6]。激光束对电弧还有聚焦、引导作用,使焊接过程中的电弧更加稳定[2]。

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

高速CCD摄像系统及其应用_王军波

收稿日期:2001-05-28 作者简介:王军波,男,1973年出生,硕士,在读博士生 基金项目:国家自然科学基金项目(编号:59975050),清华大学“211”、“985”经费资助. 高速CCD 摄像系统及其应用 王军波,孙振国,陈 强 (清华大学机械工程系,北京 100084) 摘 要:介绍了DA LSA 公司生产的CA —D6型高速CCD 摄像系统的基本组成、工作原理,以 及其在CO 2短路焊接过程及熔滴尺寸检测、压铸充型模拟实验过程检测、激光深熔焊等离子 体形态检测、人体运动分析等科研领域的典型应用。此类应用为“高速CCD 摄像系统原理及 应用”实验课程的教学提供了丰富的素材。 关键词:高速CCD 摄像系统;激光焊接;CO 2焊;压铸充型;人体运动分析 中图分类号:T B853.1+7文献标识码:A 文章编号:1002-4956(2001)06-0016-04 当今世界进入信息时代,以数字化、计算机、通讯、电视和多媒体为主要特征的新的信息革命正在兴起。CCD (Charge Coupled Device )作为近几年新兴的固体成像器件,具有体积小、重量轻、动态范围大、灵敏度高、可靠性好等优点,广泛应用于机器人视觉系统、安全保卫系统、智能交通系统以及Internet 接入装置等领域,为人类探索微观世界和瞬态运动过程作出和提供了丰富的视觉信息。近年来,CCD 摄像机在分辨率、拍摄速度和智能化水平等性能指标上有了质的飞跃。目前国产线阵CCD 器件的分辨率已有128、256、512和1024象素等,面阵CCD 的分辨率也有100×100、120×150和320×256象素等,拍摄速度为每秒钟几十帧。国外线阵CCD 的分辨率已达4096象素以上,面阵CCD 分辨率已达到4096×4096象素以上,而图像摄取速度则可达到每秒钟上千帧,最快的达到每秒钟1万帧(64×64象素)。 本着提高相关课程教学水平,同时服务于科研工作的宗旨,在“211工程”资助下,我系于2000年1月引进了一套高速CCD 摄像系统。许多学生在学习、了解高速CCD 摄像系统的基本组成、工作原理和操作方法后,与其从事的科研工作紧密结合,使得该系统已经在CO 2短路焊接过程及熔滴尺寸检测、压铸充型模拟实验过程检测、激光深熔焊等离子体形态检测、人体运动分析、电弧放电过程检测等众多科研工作中发挥了重要作用。而从这些研究工作中取得的成果又进一步丰富了课程教学内容,为今后的教学工作提供了大量的素材和使用经验。本文着重介绍高速CCD 摄像系统的基本组成及其在科研工作中的典型应用实例,供相关的科研和教学工作人员参考。 16中国科技论文统计源期刊 实 验 技 术 与 管 理 Vol .18 No .6 2001

摄影技术基础论文

摄 影 技 术 基 础 毕 业 论 文 浅谈摄影在当代大学生素质教育中的作用及意义作用 摄影是一种通过图片的形式向人们传达思想的艺术形式,通过画面的表达,人们可以感受到其深刻的内涵和思想,更容易产生共鸣。同时,对于摄影的学习并不是简单掌握拍照的技术,而是科学与艺术相结合,是一种包括应用科学、想象与设计、专业技巧和组织能力的综合过程,摄影人员可以通过对摄影课程的学习,了解

并掌握摄影器材等先进设备,接触到新的科学领域,拓展自己对于知识的范围,同时提高自己的艺术修养。 摄影艺术是培养学生高尚情操、健康心理素质、综合思维能力和高雅审美能力的有效途径,是素质教育创新发展的动力。所以说摄影是高等院校尤其是艺术院校进行素质教育的一个有效途径,是一种崭新的艺术形式,是了解、认识、反映社会现实的形象化手段,也是陶冶情操,裨益心灵,蕴含审美理想,具有审美价值的艺术形式,是与科学技术连结在一起的文化艺术。它既是一门综合技术,更是一门高深的艺术,它在光学、化学、美学的基础上,借助当今的科学技术正以惊人的发展速度征服着世界。摄影艺术的本质特征就是以艺术美的形式来反映自然美和社会美的中介。它是靠光线、影调、线条和色调等构成自己的造型语言,具有较强地空间感、立体感、质感、运动感、节奏感;在现实生活和学习中,具有新鲜、开放、多样、自由、生动、快捷的多种特点。摄影加紧了科学与艺术联合的步伐,让艺术科学化——求真,使科学艺术化——求美。摄影艺术几乎涵括了传统美学的摄影、纪实摄影、抓拍摄影、场景摄影、观念摄影、数字化后制作的摄影、设计功能的摄影,情节剧场化的摄影,相当程度地体现了时代艺术的特点,反映了时代艺术的现实环境面貌。从摄影艺术的内涵来看它涉及到很多学科,从自然科学到社会科学,它具有科学的基因(真实性,准确性,系统性等科学的根本特性),使摄影艺术具有人类科学时代的基本特征。从摄影技术的外延来看,摄影技术、光电数码摄影技术、显微摄影技术、天文摄影技术等等,极大地拓展了人们认识世界的视野,并且将宏观世界和微观世界变为可传播的物质形态,这是时代发展的一个显著特征。摄影艺术能够以它独具特色的表现内容和缜密独到的构思,牢牢地把握住时代的主题,跟上时代的节奏,反映时代的希望,闪耀出时代和谐的光芒,能以对生活的深刻感受和准确捕捉,使摄影作品传递出比单一的表现形式更为丰富的信息,产生出更为强烈的艺术感染力。摄影艺术是时代精神的注入,是社会意义的体现。 现阶段很多高校对于摄影专业的设立十分重视,将它作为一种素质教育的方式和内容, 既可以培养现代大学生的科技活动能力,还是一项美学的引导和教育,

激光电弧复合焊接技术讲解

激光电弧复合焊接技术 Laser-Arc H y brid Weldin g Technolo gy 北京航空制造工程研究所 朱轶峰 董春林 [摘要]介绍了一种激光电弧复合焊接技术, 阐述了此技术的原理、设备、优势及其应用前景。 关键词:激光电弧复合焊接设备应用前景 [ABSTRACT ]A Iaser-arc 1y brid weIdin g tec1-noIo gy is introduced. Its p rinci p Ie , e g ui p ment , advanta g es and a pp Iication p ros p ect are described. Ke y words :Laser-arc h y brid weldin g E g ui p ment A pp lication p ros p ect 激光作为高能束流热源吸引了越来越多工程技术人员的注意, 从去年的第七届阿亨国际焊接会议上可以看出, 激光焊接已经成为国际焊接界的关注热点。而激光电弧复合焊接作为其中的新兴技术引起了工程界、企业界的广泛重视, 在欧美和日本先后有多家汽车制造厂和造船厂斥资投入这方面的研究, 并有厂家率 先进入了工程化应用阶段 [1] 。 1原理 由于激光的能量密度很高 (可高达 107W /cm 2 ,

因此激光焊接的速度快, 焊接深度深, 热影响区小, 可以进行精密焊接。利用聚焦良好的激光束可进行金属、塑料以及陶瓷的焊接, 并已用于印刷、精密机械等行业。 采用深熔焊接技术 (即穿孔焊接 , 大功率的激光束流一次焊接金属材料厚度可达 20mm 以上, 同时具有比较高的焊接速度, 热影响区比较小。由于激光束流比较细小, 因此焊接时对拼接接头的间隙要求比较高 (<0. 10mm , 熔池的搭桥能力 (Ga p Brid g in g AbiIi-t y 比较差, 同时由于工件表面的强烈反射影响了束流能量向工件的传递, 高能激光束导致熔池金属的蒸发、汽化、电离, 形成光致等离子体, 严重影响了焊接过程的稳定性, 因此焊接过程中激光的实际能量利用率极低。以 CO 2激光器为例, 其量子效率为 38%, 电光效率为 15%~20%, 实际激光器运行的总效率 < 20% [2] , 一般认为为激光器输出功率的 3%~30%, 故能源浪费严重。 而弧焊作为一种成熟的金属连接技术已经在工业界得到广泛的应用, 但由于束流能量密度的限制, 相对 于高能束流焊接而言, 弧焊的焊接厚度与焊接速度均

激光塑料焊接技术讲解

激光塑料焊接技术 自从激光问世,人们就开始研究如何把激光作为工具来对材料进行加工。早在上个世纪70年代,汽车工业就开始尝试用激光来进行材料加工。在工业上第一个用激光进行塑料焊接实际应用的是1998年Marquardt公司用半导体激光器批量制造电子汽车钥匙,黑色聚合物(PA)材料的钥匙盖子被焊接到同样是黑色但对激光波长透明的PA钥匙壳上。根据分子结构塑料可分为三种:热塑材料,热固材料和合成橡胶。目前对热塑材料激光焊接的研究和应用比较多, 自从激光问世,人们就开始研究如何把激光作为工具来对材料进行加工。早在上个世纪70年代,汽车工业就开始尝试用激光来进行材料加工。在工业上第一个用激光进行塑料焊接实际应用的是1998年Marquardt公司用半导体激光器批量制造电子汽车钥匙,黑色聚合物 (PA)材料的钥匙盖子被焊接到同样是黑色但对激光波长透明的PA钥匙壳上。 根据分子结构塑料可分为三种:热塑材料,热固材料和合成橡胶。目前对热塑材料激光焊接的研究和应用比较多,下面我们就从三个方面简单讲述针对热塑材料的激光焊接技术和研究进展。 一. 激光焊接的流程和方法 激光对热塑材料的焊接主要是采用激光透射焊接的方法。此方法对被焊接的两种材料性质有一定的要求,也就是上面的热塑层对采用的激光波长是透明的,而下面的热塑层能吸收激光能量。激光束透过透明的上层材料到达下层材料,下层材料的表面因吸收激光能量而熔化,此时在一定的压力下两种材料通过分子联接而被焊接在一起。由于激光是非机械接触的聚焦在下层材料的表面,激光引起的热效应是局域的,所以此方法可避免对被焊接材料的机械和热损伤。目前热塑材料总加工的20%左右是基于激光焊接的。 根据不同的焊接任务和要求激光焊接的流程大致有以下几种。 轮廓焊接掩模焊接准同步焊接同步焊接 轮廓焊接是最简单,目前使用最广的焊接流程。在焊接时激光束通过光学系统和振镜在被焊接的物体上移动或者激光束静止而被焊接物体移动。激光与被焊接物体之间的相互作用时间取决于光束焦点尺寸和移动速度,既而影响焊接时间和效果。轮廓焊接是一种非常灵活的焊接流程,可实现复杂的三维焊接,在包装行业里有广泛的应用。 掩模焊接是一种借助掩模,基于轮廓焊接或着同步焊接方法

激光复合焊在造船中的应用

激光复合焊在造船中的应用激光束焊接以其焊速快、变形小和易实现自动化等优点而广泛应用于结构钢焊接中。电弧激光混合气体保护焊的主要优点是:在焊接较宽根部间隙时,弥合根部间隙能力大大增强,焊接速度大大提高。激光焊和电弧焊长期以来都用于工业生产,在材料连接成形技术领域应用广泛。 根据能量传输的物理过程和所获得的能量流不同,这两种工艺各有各的应用领域。激光焊是通过一个光导纤维电缆或反射镜,将能量以高能红外相干辐射的方式从激光源传输到加工工件。电弧焊是通过弧柱,使热量以高能电流的方式传递到工件。激光辐射得到的焊接热影响区非常窄且热影响区的深宽比(深焊效应)很大。由于激光焊工艺的聚焦直径很小,致使它的间隙弥合能力较低,但从另一个方面来说,激光焊可以达到很高的焊接速度。电弧焊工艺能量密度较低,但它能在工件表面形成较大的焦点,焊接速度较低。 将这两种工艺相结合,取长补短,发挥各自优势,不仅能获得较好的质量优势和生产效益,而且降低了成本。这种复合焊接工艺在造船业中受到青睐。另外不能忽视的原因是,该工艺焊缝容许的公差大、焊接速度较高,且能够达到良好的机械性能指标。 自20世纪70年代以来,人们就已经知道了如何将激光焊与电弧焊合并成一个混合焊接工艺,但是此后很长一段时间都没有开展进一步的研究工作。目前,研究者已将注意力转移到该课题,并试图在激光焊和电弧焊的复合焊工艺中将两者的优势结合起来。然而,在早期激光光源设备还未被证明适合于工业应用;如今,在很多制造企业,激光光源设备已成为标准设备了。 我们将激光焊与其他焊接工艺结合称之为“复合”焊接工艺。这意味着激光束和电弧同时作用于一个焊接区,相互影响,相互支持。 研究目的之一在于弄清楚该复合工艺特性对焊接性能有多大提高。运用CO2激光/电弧(GMAW熔化极气体保护焊)复合焊工艺的一个典型领域是造船业。本文主要展示和讨论复合焊在造船领域的应用前景。 1 激光束焊接工艺的注意事项 激光束焊不仅需要较高的激光功率,而且需要高品质的光束,才能获得理想的“深焊效应”。有效光束可根据所需的聚焦直径大小进行调节。每单位长度的能量E非常低,所以焊接变形小,也无需太大的焊后矫正。当采用激光焊接大型工件时,如同采用先进的自动弧焊一样,离线编程、焊缝跟踪以及自适应焊接控制都是必须的。 焊缝最大根部间隙约为0.1-0.2mm时,焊接可以不添加焊丝。但在焊接更大的间隙时则需要添加材料。因此,在造船中运用添加焊丝的方式通常可将接头弥合能力提高到0.4mm。对于工业应用来说,1

高速摄像机的发展历程

高速摄像技术的发展可由摄像速度(帧频)及其综合特性来描述。 19世纪60年代初期,随着磁记录技术的发展,产生了一代运动分析系统。但它的商业化是在70年代,由于当时技术水平的局限,系统满画幅只能达到120幅/s的摄像速度。 二代运动分析系统于1979年由NAC公司推出,其摄像速度为200幅/s。这在技术上是一个很大的进步,因为HSV-200型高速摄像系统可记录彩色图像,并且能记录很长的时间。 1980年Koda公司推出了三代运动分析系统———SP2000系统。这种革命性的设备,以2000幅/s或12000幅/s(分区)的速度把黑白图像记录在宽12.7mm的高密度磁带上。虽然其摄像速度很多年都保持最高,但磁带上的图像处理起来却比较麻烦。 1986年运动分析系统获得了重大的技术进步,主要标志产品KodakEktapro1000运动分析系统,其摄像速度为1000幅/s和6000幅/s。虽然其速度比SP2000低,但有较多的优势:低成本,高性能的磁带传输系统,双摄像机操作,GPIB控制接口,磁带宽12.7mm,当记录16通道的图像信息时,传输速度为7.62m/s。允许两台摄像机的图像在同一屏幕上分开显示,并可设定不同的摄像频率。二者的图像隔行插入,可使500幅/s摄像机提供1000幅/s的速度。磁记录技术在第三代运动分析系统中得到了应用,但在基于磁带的运动分析系统中,这种技术存在着固有的记录限制。这种运动分析系统不仅记录时间有限,而且在磁带回放过程中,无法准确定位记录的位置。 因为这些记录设备是机电式的,从启动到实际记录图像,以及停机时都有一个时间延迟,在应用中局限性很大。

四代高速摄像系统是一种全新的图像记录系统,它以固体存储器作为存储介质。1990年,Kodak生产的EktaproEM高速摄像系统,把数字图像存储在动态随机存储器(DRAM)中,这与以往通过记录长时间图像数据来捕获事件的传统方式不同。DRAM技术表明在大部分的应用中,不需要太长的记录时间。DRAM技术采用独特图像获取方法进行图像处理,提高了图像质量,并可连续不断地对图像实时记录。经过20年的发展,DRAM已提高了其存储密度,降低了每幅图像存储的成本。 五代高速摄像系统在分辨率、帧频、彩色/黑白图像质量方面都得到提高。五代高速摄像系统有三种代表产品Kodak EktaproHS4540、KodakEktaproHi Spec、KodakEktapro1000HRC。HS4540记录的速度为(4500~40500)幅/s。Hi Spec是一种抗冲击的运动分析系统,在恶劣环境下记录速度为1000幅/s。摄像头可承受高达40g的冲击。HRC在分辨率为(512×384)像元时,可以1000幅/s的速度记录彩色和黑白图像,这个系统的分辨率是以往高速摄像的4倍。 六代高速摄像系统功能齐全,并为用户提供了更好的机动性和稳定性。其中KodakEktaproRo、NAC MemeramCi、NAC MemrecamCCS、RedlakeMotionscope500、KodakEktaproMo TionCorder都是典型的六代分析系统。KodakEktaproMo图像传感器是一个性能卓越、功能齐全的摄像系统,专门为在特殊的应用环境下代替胶片摄影机而设计,其体积小,重量轻;接受移动PCMCI A硬盘或闪存,来从DRAM存储器中获得图像;记录的图像一直保留,直至下载到计算机中。以前的高速摄像系统一直都和图像处理器相连,而R

比较CMT与激光电弧复合焊接铝

比较CMT与其他电弧模式的激光电弧复合焊接在焊接铜时的异同 作者:Jan Frostevarg & Alexander F. H. Kaplan & Javier Lamas 摘要:本文中,研究了三种不同模式的激光- 电弧气保焊,即标准、脉冲和冷金属过渡(CMT)模式。该脉冲模式比标准模式更受控并且对工件的热输入更小,从而可以焊接薄板。在CMT 方式利用可控送丝和表面张力促使熔滴过渡,也因此热输入量相对于其他模型更小一些,不会出现咬边,飞溅也少于其他模式。这项研究比较了复合焊接的 3种电弧弧模式,在CMT的允许限度内选择中低焊丝的沉积速率。通过扫描和高速成像研究焊缝。该研究表明,激光匙孔的出现减小了三者间的熔滴过渡的差异。匙孔的产生对融化和凝固过程的影响。以及不同电弧形式的主要优点和缺点 1引言 激光电弧复合焊接[1-4],LAHW,图1中所示。将高功率激光与电弧复合集中于同一个熔池,一般间隔在0-8mm。相同的处理区域内,通常由0-分离,与自制激光焊相比,复合焊8毫米。相比于自主激光焊接,LAHW用焊丝填充焊缝,在电弧作用下形成焊缝外观。针对熔化极气保焊我们可以提出很多不同的技术。在他们之中的通用标准(也被称为“自然”)电弧模式与各种熔滴过渡模式(如喷雾,短路或球形)取决于电流和送丝速率。LAHW是最常见的是GMA脉冲弧焊模式,保持一脉一滴的形式向熔池进行熔滴过渡[5,6]。 最近,另一个更可控,短弧模式技术已经得到开发利用,通过控制送丝过程和表面张力进行熔滴过渡。焊丝被送进和回抽的方式去替代恒速送丝。这技术被称为冷金属过渡,CMT[7]。这个过程的优点在于,降低丝沉积的成本,熔滴传递而不是飞入熔池,因此只需要融化焊丝的电功率即可。在传统的弧焊中,对CMT 模式是用来焊接薄板,它也常常能有更高的焊接速度以较少的热输入和更好的整体焊接质量(更少的飞溅和咬边)与其他电弧模式相比。最近,CMT已用于LAHW 去焊接单程2毫米厚的铝板[8],1毫米的钢板和多道焊15毫米钢[9,10]。 焊接质量和抗疲劳性能主要由表面成型决定[11,12],这导致由电弧,熔滴过渡和激光匙孔所造成的电动复杂流体流动,由于电弧模式,焊接设备和参数选择,焊接过程可能会变得不稳定,从而导致不平整的表面[14,15]。对LAHW基本的理解仍处于初期阶段;但是从X射线成像,我们发现在焊接的方向上熔池被拉长了。高速成像(HSI)可以研究钢和铝的熔滴过渡和匙孔情况。根据缺口宽度,对不同的焊接情况进行了分类,自动对焦影响熔滴飞行,传热和传质[18,19]。我们可以估计出电弧力[19],但它随着焊缝的设置和电弧模式而变化。

塑料激光焊接工艺

塑料激光焊接工艺 1.激光的波长 在金属材料的激光焊接工艺中,一般采用YAG或者CO2激光作为光源,塑料焊接也不例外。随着半导体材料工业的快速发展,半导体激光作为光源也渐渐得到了应用。 三者之中,由于易于获得较大功率,前两者在传统的材料加工工业中的使用较为普遍;而由于塑料激光焊接对光源功率大小要求不高,但对可控性和易操作性要求较高,因此半导体激光在塑料焊接中也很有用武之地。 CO2、Nd:YAG和半导体激光三种光源的波长、最大功率、最小聚焦直径等参数的典型值如下所列: 1.CO2激光:波长较长,为10.6微米,属远红外波段,一般情况下塑料材料对这一波长的吸收情况好。目前最大输出功率达50kW,转化效率约10%,最小聚焦直径约0.2~0.7mm。焊接塑料时热作用区深度较深,适合于需要焊接较厚的塑料材料。CO2激光不能用光纤传输,只能$&* 透镜反射镜组成的光学系统来构建刚性传输光路,从而影响激光头的操作性。 2.Nd:YAG激光:波长较短,为1.06微米,属近红外区波长,不易被塑料吸收。最大输出功率6kW,转化效率为3%,最小聚焦直径0.1~0.5mm。Nd:YAG激光的特点是聚焦区域小,可以方便地通过光纤传输来构建光路,可将激光头装到机器人手臂上,实现焊接过程的数控和精密自动化;另一方面可以较好地透过上层的待焊接材料,到达下层待焊接材料或者中间层而被吸收,从而实现焊接。 3.半导体激光:波长0.8~1.0微米,最大输出功率6kW,转化效率30%,最小聚焦直径0.5mm。由于其输出输出功率较小,适用于焊接激光功率要求较低的场合,如小型塑料器件的精密焊接。半导体激光能量转化效率高,易于实现激光器的小型化和便携化。 2.塑料材料 能够被激光焊接的塑料均属于热塑性塑料。理论上,所有热塑性塑料都能够被激光焊接。 塑料激光焊接技术对被焊接塑料的要求为:在热作用区内的材料,要求对激光光波的吸收性好;不属于热作用区部分的材料,则要求对光波的透过性好,尤其在对两件薄塑料件进行叠焊时更是如此。一般向热作用区塑料中添加吸收剂可以达到目的。目前能够使用激光焊接的单种成分塑料包括: PMMA――聚甲基丙烯酸甲脂(有机玻璃),PC塑料,ABS塑料, LDPE-低密度聚乙烯塑料,HDPE-高密度聚乙烯塑料,PVC-聚氯乙稀塑料,Nylon 6-尼龙6,Nylon 66-尼龙66,PS-PS树脂,等等。 上述各种塑料制成的塑料件,如模制的塑料品、塑料板、薄膜、人造橡胶、纤维甚至纺织物都可以作为被焊接的对象。由于激光焊接具有传统焊接不具备的热作用区小、控制精确容易的特点,因此上述各种单体材料之间也可以进行焊接。 3.吸收剂 吸收剂的应用是塑料激光焊接工艺中非常重要的工艺。如前所述,塑料激光焊接的本质是将热作用区的待焊接塑料融化,随后冷却自然实现塑料件的接合。让塑料融化需要使塑料件吸收足够的激光能量。塑料自身能够以较高吸收率吸收激光能量自然最好,但一般在不添加吸收剂的情况下,塑料对光波的吸收性不是很好,吸收效率很低,融化效率不理想。 通常理想的吸收剂是碳黑,碳黑能够将红外波长的激光能量基本全部吸收,从而大大提高塑料的热吸收效果,使得热作用区的材料融化更快、效果更好。一些其他颜色的染料也能够起到相同的吸收光波的效果。 英国焊接学会(TWI,The Welding Institute)研制出了一种对可见光透明的染料。用这种染料做吸收剂,可以得到透明的塑料焊缝。碳黑在吸收红外波段的激光光波的同时,也吸收可见光波,这也是碳黑看起来为黑色的原因,用碳黑作吸收剂会使激光焊接焊缝颜色变深,与母材颜色不同。TWI研制出的对可见光透明的染料只吸收红外波段的电磁波,不吸收可见光,因此看起来焊缝仍然是透明的。 很多情况下,塑料焊接要求成品美观、精致,因此相比碳黑,对可见光透明的染料吸收剂非常受青睐。 添加吸收剂的方法有3种:一是直接向待焊接材料中渗入吸收剂,这样应该将渗过吸收剂的塑料件放在下面,而把没有渗吸收剂的塑料件放在上面,让激光光波通过;二是向塑料件待焊接的表面渗吸收剂,这样只有被渗透了吸收剂的一部分塑料将成为热作用区而被融化;三是在两块待焊接塑料件的接触处喷涂上或者印刷上吸收剂。4.其他参数 与金属焊接不同,塑料激光焊接需要的激光功率并不是越大越好。焊接激光功率越大,塑料件上的热作用区就越大、越深,将导致材料过热、变形、甚至损坏。应该根据需要融化的深度来选择激光功率。 塑料激光焊接的速度比较快,一般得到1mm厚焊缝的焊接速度可达20m/min;而采用高功率的CO2激光器焊接塑料薄膜,最高速度可以达到750m/min。

高速摄像中照明技术简介

在极短的时间内,使像面得到满足传感器要求的目标曝光或目标和背景感光反差比是高速动目标摄像的突出特征和成功的关键。所以,摄像速度高到一定程度,配置照明光源是必不可少的,更甚者照明系统同时起快门的作用,例如序列脉冲闪光摄影。否则,只有设法使拍摄物自发光。 合适的像面曝光或目标和背景感光反差比是保证得到高质量图像所需的光 能量。它既直接和记录介质的特性、曝光时间、入射到靶面上的照度有关,又和目标的亮度、摄影镜头的透过率,相对孔径等有关。还与被摄对象的表面光吸收、反射特征及照度角分布有关。 光源是指能够产生光辐射的辐射源,一般分为天然光源和人工光源。天然光源是自然界中存在的辐射源,如太阳、天空、恒星等,它属于连续照明光源。人工光源是人为将各种形式的能量(热能、电能、化学能)转化成光辐射能的器件,其中利用电能产生光辐射的器件称为电光源。实际使用的人工光源有两种,即连续照明光源和序列高能量脉冲光源。序列脉冲光源必须同摄像系统的画幅同步。 于是,照明方案的制定,应结合具体试验及像机性能的实际情况,紧抓住像面所需照度和待测物体表面特征而展开,直至追踪选择到合适的照明光源和方法。

1.间歇式照明光源 间歇式照明光源主要包括以下几种。 (1)一次性闪光灯(Expendable flash bulbs) 一次性闪光灯在高速摄像系统应用的比较普遍,具有曝光时间适中、能量高、体积小,价位低等特点。精确的闪光时间对事件和摄影机都是重要的,它广泛地应用在野外的弹道摄影中。多个闪光管控制系统可使多个灯管同时闪光,或顺序闪光,如果有足够的灯管,则闪光的时间可持续几秒长的时间。 (2)电子闪光灯 电子闪光灯的闪光时间可小到毫秒级,可作为摄像系统的快门,具有体积小、可携带等特点。由于其闪光的发射角大,发光面积大,不适合于阴影摄影和纹形摄影。

2018年自学《摄影技术基础》试题及答案

2018年自学《摄影技术基础》试题及答案 论述: 1.举例论述影响光源的强度变化的因素。 答:一,天气( 1 )晴天,光源强度最大( 2 )薄云蔽日( 3 )阴云蔽日( 4 )乌云密布;二,时间,中午强度最大;三,季节,夏天最大;四,地域,纬度小强度大、海拔高强度大 2.结合实例论述冬季摄影器材的保护措施? 答:一机身和镜头要注意防寒;二注意相机镜头上雾气的产生;三相机电池在寒冷情况下的电量 3.影响景深的主要因素? 答:( 1 )光圈的大小:当镜头焦距不变,物距不变的情况下,光圈越大,景深越小;光圈越小,景深越大。( 2 )焦距的长短:当光圈不变,物距不变的情况下,镜头焦距越短,景深越大;焦距越长,景深越小。( 3 )物距的远近:当光圈,焦距不变的情况下,被摄体离相机越远景深越大;离相机越近,景深越小。 4.举例说明反光能力的强弱,及与亮度的关系。 答:景物的反射与吸收成反比。这种特性与其表面的结构和色调有很大关系。反光能力越强,亮度越大,反光能力越弱,亮度越小, 5.人像摄影如何消除眼镜上的反光? 答:室外改变拍摄地点或人物方向;室内主灯要高一点。辅助灯不要放在正面,光线要柔和、稍暗。必须正面用光的,可使头稍稍左右转动,或稍稍调整拍摄角度。升高机位。用反射光为主光源。尽

可能避开明亮的反光体。 6.答出色彩的三个基本要素?并结合彩色摄影说明其重要性? 答:一色相;二明度;三色纯度 7.论述太阳光由哪七种单色光组成,其中哪三种是三原色光? 答:红橙黄绿青蓝紫;三原色:红绿蓝 8.什麽是消色体?哪些物体是消色体? 答:黑白灰 9.什麽叫畸变? 答:被摄景物中没有通过镜头光轴的直线经成像后变成曲线的像差称畸变。 简答: 1.景深: 答:当镜头对准某景物聚焦后,在该景物前后一定距离范围内的景物,也能在焦平面上结成比较清晰的影像。这个结像清晰景象空间的纵长距离深度,叫做景深。 3.说出4种135相机的品牌名称: 答:尼康、佳能、宾得、徕卡 5. 你家是否有相机?什麽类型? 答:略 6. 冬天在北方摄影,最好使用什麽类型的相机?为什麽? 答:机械相机,因为机械快门的耐寒度较高。 9.什麽是轮廓光?在摄影作品中起什麽作用?

[电弧,激光,特点]机械激光―电弧复合焊接的技术特点及作用

机械激光―电弧复合焊接的技术特点及作用 近年来,随着激光设备和电弧设备性能的提高,机械激光-电弧复合焊接技术也成为了研究的重点,因而需要深入了解激光-电弧复合焊接技术的发展背景,总结技术特点延伸实际应用,让激光-电弧复合焊接技术在实际需求中发挥重要作用。 一、机械激光-电弧复合焊接技术的发展背景 机械激光-电弧复合焊接技术是为了满足特定材料的加工焊接要求,综合利用机械激光焊接和电弧焊接的优势,将其物理性能和能量传输性能以恰当的方式融合到一起,形成的一种科学先进的技术手段。将电弧焊接和激光焊接技术取长补短的结合起来形成的激光-电弧复合焊接技术具有经济、高效的特点,解决了许多材料的加工要求,实现了优质的焊接。 电弧焊接是应用最早且在材料技术上运用较普遍的焊接的技术,将电能转换为热能完成金属之间的连接,分为非熔化极电弧焊接和熔化极电弧焊接,但是由于电弧能力分布密度特性,导致焊接速度较慢,焊接的深度和熔度较浅,造成材料容易焊接变形,并且生产效率较低。激光焊接可以利用高达107W/cm2的能量密度形成小孔和等离子体时的热加工,激光焊接速度比较快,材料变形较少,通过较少的热输入量形成深度比大的良好焊接效果,从而实现精密焊接。但是也存在着一定的缺点,即焊接接头的间隙要求较高、焊接过程的稳定性和激光能量的利用率较差、焊接厚度较高的材料成本过高。 为顺应时代发展,综合焊接需求,针对电弧焊接和激光焊接的优劣,在20世纪70年代末,英国伦敦帝国大学对复合焊接工艺进行了研究,提出了电弧与激光焊接结合的工艺概念,随后英国学者和美国等科学研究者利用了激光配合一定量的辅助电弧,形成了现如今激光-电弧复合焊接的技术工艺,解决了焊接熔深浅问题和生产成本过高的问题,有效的提升了能量的利用率,提高了焊接的生产效率。 二、激光-电弧复合焊接的原理 激光―电弧复合焊接技术在工作时,激光及电弧同时作用在金属表面的一点上。在激光的作用下,焊缝的上方会产生一定的等离子体云,这种等离子体云会吸收及散射进行射入过程中的激光,从而降低了激光能量的功能。在原有基础上加上电弧后,能够产生一定量的低温低密度的电弧等离子,从而起到稀释激光等离子体的作用,进一步提升了激光能量的传输效率。外加电弧还可以在进行焊接的同时实现对母材进行加热,母材温度的升高能够提升对激光的吸收效率,从而增加焊接熔深。而且激光作用能够降低电弧通道的电阻,也能够加深该项技术的熔深。 三、机械激光-电弧复合焊接技术的特点 (一)提高了焊接过程的稳定性 激光焊接时,等离子体形成较多的带电粒子,带电粒子会主动吸收电弧,压缩电弧的根部使电弧稳定燃烧,既增加了焊接的稳定性,使得电弧不随意飘逸同时提升了电弧的能量利用率。

塑料的激光焊接

塑料的激光焊接 摘要:塑料激光焊接的特点与金属材料的激光焊接有较大的不同。本文论述了塑料激光焊接的基本原理、所用的激光设备,焊接工艺以及塑料激光焊接在工业生产中的应用。塑料激光焊接的工艺涉及焊接吸收剂、激光波长、被焊材料的特性和要求、加工系统控制软件等等。 关键词:塑料激光焊接工艺应用 一、前言 自上世纪60年代问世以来,激光以其相干性好、能量密度高、准直性好等优异特性,在现代工业的各个方面得到了广泛的应用。在材料加工领域,激光用来进行金属材料的切割、焊接、表面相变硬化、合金化、熔覆、打孔、打标、辅助切削、直接制造、快速成形、清洗及微细加工等等。利用激光来焊接金属材料有许多优越性:方便快捷、焊缝小、焊接影响区域小,对原材料性质和形态的改变均很小;易于实现数控控制,可以焊接形状特殊的工件;激光能量集中、作用时间短,可以焊接薄板、金属丝等传统焊接工艺难以加工的材料以及精密、微小、排列密集、受热敏感的材料,等等。激光焊接在金属材料加工中的应用越来越普遍,正逐步从特种加工转变为常规加工工艺。 随着石油的大规模开采使用和石油化工工业的高速发展,塑料作为一种工程材料,成本低廉、获取方便(石油炼化工业的产品)、加工成型技术简单快捷、成品重量轻、物理特性优良、能提供各种工程性能,其应用非常广泛。塑料作为钢铁、铝、镁等金属和其他一些非金属材料在工程上的替代品,在工业制造和日常生活中的使用都越来越普遍。 当前,激光所能够焊接的材料,除了传统的金属材料之外,其范围正在逐步扩大,在例如陶瓷等非金属材料上的使用也越来越多;而塑料作为有机材料的代表之一,也被用来作为激光焊接的对象,能够用激光实现焊接的塑料必须是热固性的。20世纪70年代,激光开始被应用到塑料焊接上;但直到20世纪90年代,才取得了大规模的工业应用[1]。见于文献报道的最早激光塑料焊接应用是在1972年,使用100瓦的CO2激光光源,以每秒10毫米的速度焊接聚乙烯薄板(最大厚度为1.5毫米)。 直到目前,由于激光器技术的限制以及塑料材料本身固有的强度低、耐热性差、易变形等特点,在塑料工业中,激光作为焊接工具还不是非常普遍;塑料激光焊接

激光复合焊

激光复合焊工艺在造船厂的应用 在金属连接技术工艺里一方面要求焊接速度高变形小,另一方面要有很好的焊缝搭桥能力,而传统单一的激光焊接工艺是不可能解决上述问题的。本文主要介绍激光--MIG复合焊相对与其他焊接技术的优势及其在船舶工业的应用,这是一种高质高效、新型的焊接方法。 前言 随着焊接技术的不断研究和创新,一种高质高效的焊接技术在船舶工业的制造的领域中得到不断的应用,这是一种新型的,特殊的焊接方法--激光-- MIG 复合焊。我们知道在金属连接技术工艺里一方面要求焊接速度高变形小,另一方面要有很好的焊缝搭桥能力。大家知道传统单一的激光焊接工艺是不可能解决上述问题的。 毋庸质疑激光焊和熔化极气体保护焊工艺的开发应用已经有着很长的时间了并且它们在材料连接技术里有着广泛的应用领域。激光复合焊就是将这两种焊接技术(激光焊接和电弧焊接)有机的结合起来,从而获得了优良的综合性能,在提高焊接质量和生产工艺性的同时,改善了成本效益比。目前,激光复合焊已在船舶工业上取得了令人瞩目的成绩,并且这种技术的经济性也是非常诱人的。尤其重要的是,激光复合焊的焊接精度高,可以获得非常好的机械/工艺性能。复合焊的激光电源可以选配不同的激光源,目前主要研究的是将:CO 2 激光,YAG激光,光纤激光与GMAW工艺的复合。怎样使用焊缝跟踪系统的激光复合焊小车,进行长焊缝的焊接,被提到研究日程。 1、 简介 优质高效,低变形和易实现自动化装配,激光焊在钢结构件的焊接上具有广阔的前景。激光电弧复合焊接技术可提高焊缝搭桥能力,则对间隙较大时的焊接有着重大的意义。激光焊和熔化极气体保护焊工艺的开发应用已经有着很长的时间了,在工业领域和材料连接技术领域已被广泛的应用,两种焊接方法因能量传

相关主题
文本预览
相关文档 最新文档