当前位置:文档之家› 电子束磁聚焦法测量地磁场

电子束磁聚焦法测量地磁场

电子束磁聚焦法测量地磁场
电子束磁聚焦法测量地磁场

电子束磁聚焦法测量地磁场

摘要:在电子束磁聚焦现象的理论基础上分析了利用磁聚焦法测量地磁场的可行性,并在电子束实验仪上测量地磁场的主要参量,结果表明,利用磁聚焦法测量地磁场实用有效,测量结果精确度较好。

关键词:磁聚焦地磁场磁感应强度励磁电流

Abstract:Based on the theory of magnetic focusing of the electron beam in the magnetic field,the feasibility of measuring geomagnetic field with the method of magnetic focusing is analyzed.The main parameters of geomagnetic field are measured using electron-ray instrument with this method.The result shows that the measuring geomagnetic field with the method of magnetic focusing is actable, and the accuracy is well.

Key word:Magnetic focusing;Geomagnetic field;Magnetic induction;Exciting current

电子束的纵向磁聚焦主要用于测量电子的荷质比[1],由于地球本身就是一个大磁体,是否可利用电子束的磁聚焦现象来测量地磁场?目前少有相关的报道。本文在磁聚焦的理论基础上,分析磁聚焦测量地磁场的可行性和测量方法。

地球具有磁性,所以在地球及近地空间存在着磁场,地磁场的强度与方向随地点而异,通常可用三个物理量来描述:(1)磁偏角α,即地球表

16电子束的聚焦

实验十六 电子束的聚焦 实验目的 1.研究带电粒子在电场和磁场中的聚焦规律 2.进一步了解电子束线管的结构和聚焦原理. 3.掌握测量电子荷质比的一种方法. 仪器与用具 EBe-1型电子束实验仪,万用电表、直流电源等. 实验原理 1.电场聚焦 电子枪的作用是产生电流密度很高,截面很小的电子束,并能使电子束到达荧光屏上的各个地方.其结构如图16-1所示.各电极均做成圆筒形,ff 为加热灯丝,K 为旁热式氧化阴极.在灯丝的烘烤下,温度约升到1100K 时,氧化物中自由电子获得较大的热动能而逸出表面,成为速度很小的游离态电子. 栅极的电位低于阴极,形成阻滞电场.调节栅极电位可以改变进入阳极区电子数目,从而调节光斑的亮度.第一阳极A1和第三阳极A3称加速极,其作用是使电子向阳极区运动.第二阳极A2称聚焦阳极,其电压值主要影响亮点的大小.电子枪内非均匀电场分布,可以将阳极分布范围比较大的游离态电子,非常成功地在屏上聚成一点,这是成像清晰 的重要保证.若U A1K =U A3K >U A2K ,如图16-2所示,图中实线是电力线,可利用它定性地分析电子在电子枪内的运动.在GA1之间的非均匀场的作用下,电子受到的电场力可以分解成两个力:一个沿轴向,使电子加速;另一垂直轴线,这个力使电子向轴靠拢.由于此间电子速度很小,在这个力的作用下,很容易将分散在相当范围的游离态电子会聚到一点上,然后继续向前运动,而且又发散开来.电子在阳极区的非均匀场的作用下,按前面的方法对场的作用分解.可以看出,电子速度大时,径向力使电子“发散”(在A1、A3附近);速度较小时,径向力使电子“会 聚”.这样就使得“会 聚”作用比“发散” 作用的时间长,两种 作用的总效果使电子 会聚,并且离轴越远, 这种作用越强,这就 为将所有的电子会聚 到一点提供了可 能.实验和理论都证 明:不管亮度如何, 聚焦的条件是 G= UA 1K /U A2K =常 数 (16-1) 图16-1 若U A1K >U A2K ,则G >1, 称为正向聚焦;若U A1K <U A2K ,则G <1,称反 向聚焦.由于光斑的亮度是由电子的速度及荧光屏上的单位面积的电子数决定,而反向聚焦速度比较小,因此光斑较暗. 2.磁场聚焦 磁场也可以使电子束线聚焦.把示波管放在螺旋管磁场中,将示波管的第一阳极、第二阳极、第三阳极、偏转板都联在一起,使得电子进入第一阳板后在等电位空间中运动.由于阴极发射出来的电子速度很小,可以认为电子的轴向速度是一样的,其大小由阳极电压U AK 来决定,即 电子的径向速度⊥V 是不一样的,电子进入磁场后受到洛仑兹力B eV F ⊥=(B 为磁感应强度)

【CN109860070A】电子束检测样品及检测方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910285568.5 (22)申请日 2019.04.10 (71)申请人 德淮半导体有限公司 地址 223302 江苏省淮安市淮阴区长江东 路599号 (72)发明人 李丰阳 黄仁德 方桂芹  (74)专利代理机构 北京集佳知识产权代理有限 公司 11227 代理人 吴敏 (51)Int.Cl. H01L 21/66(2006.01) H01L 23/544(2006.01) (54)发明名称 电子束检测样品及检测方法 (57)摘要 一种电子束检测样品及检测方法,检测方法 包括提供晶圆,所述晶圆表面形成有半导体器 件;在所述半导体器件表面覆盖氧化层;电子束 照射所述半导体器件,利用逸出的二次电子来反 应被检测的所述半导体器件表面的形貌特征,在 所述半导体器件表面形成所述氧化层,电子束照 射时要通过所述氧化层之后再进入所述半导体 结构表面,所述氧化层避免电子束能量直接照射 到所述半导体器件内部,防止所述半导体器件内 电流变大产生电弧击穿, 提高检测效率。权利要求书1页 说明书4页 附图3页CN 109860070 A 2019.06.07 C N 109860070 A

权 利 要 求 书1/1页CN 109860070 A 1.一种电子束检测方法,其特征在于,包括: 提供晶圆,所述晶圆表面形成有半导体器件; 在所述半导体器件表面覆盖氧化层; 电子束通过所述氧化层对所述半导体器件进行检测。 2.如权利要求1所述电子束检测方法,其特征在于,所述氧化层的厚度为1nm-5nm。 3.如权利要求1所述电子束检测方法,其特征在于,形成所述氧化层的方法为化学气相沉工艺积或扩散工艺。 4.如权利要求3所述电子束检测方法,其特征在于,所述化学气相沉积工艺为常压化学气相沉积法或低压化学气相沉积法。 5.如权利要求1所述电子束检测方法,其特征在于,所述氧化层的材料为氧化硅。 6.如权利要求1所述电子束检测方法,其特征在于,电子束检测采用的能量为2KeV-2.5KeV。 7.如权利要求1所述电子束检测方法,其特征在于,检测之后,还包括步骤:除去所述氧化层。 8.如权利要求7所述电子束检测方法,其特征在于,除去所述氧化层的工艺为湿法去除工艺。 9.如权利要求8所述电子束检测方法,其特征在于,所述湿法去除工艺包括:采用DHF熔液冲洗所述氧化层。 10.一种电子束检测样品,其特征在于,包括: 晶圆,所述晶圆表面具有半导体器件; 氧化层,覆盖在所述半导体器件表面。 2

把握知识的本质聚焦方法的探索

龙源期刊网 https://www.doczj.com/doc/887259534.html, 把握知识的本质聚焦方法的探索 作者:刘玉琴 来源:《教育界·教师培训》2019年第04期 【摘要】“進行有价值的学习,让数学真正地发生”,这一直是数学上永恒的话题。真正的数学学习需要让学习者从身动发展到心动,让数学思想扎根于他们的血液之中,这样才会构建出一种源于内心深处的和谐关系。文章对如何更好地构建数学知识进行了一些思考。 【关键词】小学数学;教学方式;探讨 一、概念性教学——构建有意义的学习经历 数学的概念虽然都是纯理论的,但它却是构成数学知识体系的基础。我们要改变传统教学上的那种直接将概念灌输给学生的方式,去探讨别更高质量的教学方法。 例如在教学线段时,我们可以进行层次性教学。第一层次通过观察:用一根线拉直前后的样子来让学生感受线段是直的,是有端点的,让学生初步建立线段的表象。在这个过程当中,老师可以用手指一指从哪里到哪里可以看成一条线段。接着让学生找一下身边的线段,用具体的事物来揭示了线段的本质特征。第二层次:结合学生所熟悉的物体,让学生通过剪一剪、折一折来创造一条线段。这里可以发给学生一个花边图形的卡纸,来帮助学生感知线段的存在方式。在学生已经充分理解了线段特征后,再进行第三层次的教学:让学生自己尝试画一画线段,这时候学生画的线段都是直的,但可能没有端点,我们可以再次问问学生:“你的线段从哪到哪?”这时学生会指出来,教师便可以在线段上画出两个小竖线做记号,并介绍这叫作“端点”,让学生完成对“线段的认识”。 如果一上来就介绍什么样的图形是线段,然后笼统表示线段有两个端点,学生可能在自己画图的时候,会漏掉那两个端点。“线段”是比较抽象的几何概念,我们觉得很容易,可学生的抽象思维还比较低,认识起来非常困难。特别是当学生学习线段的长度的时候,会搞不清线段从哪量到哪,造成了“食而不化”的局面。 因此,在概念教学中,我们要尽量给学生呈现丰富的表象,抽丝剥茧,只有这样才能将概念的本质丰盈起来。 二、策略性学习——探究问题的本质 以前,“解决问题”叫“应用题”。改成解决问题的目的,是让我们更加注重在教学时培养学生发现问题与解决问题的能力。小学阶段,解决问题所涉及的数量关系很少,特别是二年级,抓题目中的一些字眼就能做了,有些老师就比较注重训练学生做题熟能生巧,形成了一种固定

实验十四电子束线的电聚焦与磁聚焦6页

实验十四 电子束线的电聚焦与磁聚焦 实验目的 1.研究带电粒子在电场和磁场中聚焦的规律。 2.了解电子束线管的结构和原理。 3.掌握测量电子荷质比的一种方法。 实验仪器 SJ —SS —2型电子束实验仪。 实验原理 1.电聚焦原理 从示波管阴极发射的电子在 第一阳极A 1的加速电场作用下,先会聚于控制栅孔附近一点(图4-18-1中O 点),往后,电子束又散射开来。为了在示波管荧光 屏上得到一个又亮又小的光点,必须把散射开来的电子束会聚起来,与光学透镜对光束的聚焦作用相似,由第一阳极A 1和第二阳极A 2组成电聚焦系统。A 1、A 2是两个相邻的同轴圆筒,在A 1、A 2上分 别加上不同的电压V 1、V 2,当V 1>V 2时,在A 1、A 2之间形成一非均匀电场,电场分布情况如图4-18-2所示,电场对Z 轴是对称分布的。 电子束中某个散离轴线的电子沿轨迹S 进入聚焦电场,图4-18-3画出了这个电子的运动轨迹。 在电场的前半区,这个电子受到与电力线相切方向的作用力F 。F 可分解为垂直指向轴线的分力F r 与平行于轴线的分力F Z 。F r 的作 用使电子向轴线靠拢,F Z 的作用使电子沿Z 轴得到加速度。电子到 达电场后半区时,受到的作用力F ’ 可分解为相应的F ’r 和F ’Z 两个分

量。F ’z 分力仍使电子沿Z 轴方向加速,而F ’r 分力却使电子离开轴线。但因为在整个电场区域里电子都受到同方向的沿Z 轴的作用力(F Z 和F ’Z ),由于在后半区的轴向速度比在前半区的大得多。因此,在后半区电子受F ’r 的作用时间短得多。这样,电子在前半区受到的拉向轴线的作用大于在后半区受到离开轴线的作用,因此总效果是使电子向轴线靠拢,最后会聚到轴上某一点。调节阳极A 1和A 2的电压可以改变电极间的电场分布,使电子 束的会聚点正好与荧光屏重合,这样就实现了电聚焦。 2.磁聚焦原理 将示波管的第一阳极A 1,第二阳极A 2,水平,垂直偏转板全连在一起, 相对于阴极板加一电压V A ,这样电子一进入A 1后,就在零电场中作匀速运 动,这时来自交叉点(图4-18-1中O 点)的发散的电子束将不再会聚,而在荧光屏上形成一个面积很大的光斑。下面介绍用磁聚焦的方法使电子 束聚焦的原理。 在示波管外套一载流长螺线管,在Z 轴方向即产生一均匀磁场B ,电子离开电子束交叉点进入第一阳极A 1后,即在一均匀磁场B (电场为零) 中运动,如图4-18-4所示。v 可分解为平行B 的分量v ∥和垂直于B 的 分量v ⊥,磁场对v ∥分量没有作用力,v ∥分量使电子沿B 方向作匀速直线运 动;V ⊥分量受洛仑兹力的作用,使电子绕B 轴作匀速圆周运动。因此,电 子的合成运动轨道是螺旋线(见图4-18-4),螺旋线的半径为 eB m R ⊥=ν (4-18-1) 式中m 是电子的质量,e 是电子的电荷量。 电子作圆周运动的周期为 eB m v R T ππ22==⊥ (4-18-2) 从(4-18-2)式看出,T 与v ⊥无关,即在同一磁场下,不同速度的电子 绕圆一周所需的时间是相等的,只不过速度大的电子绕的圆周大,速度小

电子束流能量测量

直线加速器电子束流能量的测量 电子直线加速器最重要的束流参数是束流的能量、流强、能散度和发射度 束流能量是影响电子直线加速器性能最重要的因素之一 对于脉冲型电子直线加速器,电子束的能量测量方法通常有:磁偏转法、半价层法、射程法等 一测量原理 1.1磁偏转法 能谱测量原理示意图 磁偏转法通常用于测量电子束的能谱,进而得出电子束的能量E0。 磁偏转法测量电子束能谱的原理如上图所示:从加速器引出的电子垂直于磁场射,会受到洛伦兹力的作用而发生偏转,其偏转半径为R,磁场B 与偏转半径的关系为: 其中,B 为磁场中的磁感应强度,e 为电子电量,R 为回旋半径,v 为电子运动速度。 考虑相对论效应,可以将上式写为: 其中β=v/c,c 为光速,γ 为相对论因子,γ 与β 满足关系: 电子的动能为: 由上述几个公式可以求得电子能量E 与磁感应强度B的关系为:

因此,对于已知磁场B,理论上只需要测出电子的回旋半径R,即可进一步算出电子的能量。为提高测试精度,在电子进入磁分析器之前,需要对其进行准直。通常采用带狭缝的石墨块,其厚度略大于电子在其中的射程;设准直缝距磁极边缘为L,此即分析器的物点O 由于从加速器引出的电子能量具有一定的能散ΔE,因此,对于流强较大的电子束,常用的方法是采用扫描的工作方式,在位置J 处放置一个法拉第筒用于接收电子,使偏转半径为R 的电子能够被接收,通过改变磁场B 使不同能量的电子都被法拉第筒接收,得到一条B-I 曲线,由于B 与能量存在公式所示的定量关系,因此通常直接做出E-I 曲线,即能谱分布曲线,如下图所示的是一条能谱分布曲线,其中纵坐标表示归一化电流,横坐标为能量。 采用磁分析法得到的能谱分布曲线 其中峰值处的横坐标值即对应电子束的能量E0 1.2 半价层法 加速器加速电子打靶所产生的X 射线本质上是具有相当能量的电磁辐射光子,光子的能量近似等于入射电子的能量,因此可以通过测量光子能量的方法间接得到电子能量。辐射光子流在物质中的衰减规律服从简单的指数关系如下:

聚焦学习方法

聚焦高中地理学习方法 一个良好的学习方法会让学习事半功倍,高中生学习压力大,很多同学不能很好的应付高中繁重的学习压力,造成学习很吃力。那么,掌握一两种行而有效而又适合自己的学习方法就显得尤为重要。 不同的学科适合不同的学习方法,下面仅以高中地理学科的学习方法加以阐述。 目标聚焦法。下面我将根据两个具体案例问题,来分析“目标聚焦法”这一顶级学习方法是如何运用到日常学生的学习当中的,再次强调下高中学习时间紧、压力大,必须要有套顶级的学习方法! 述是仅就掌握事物的地理位置,谈谈地图运用的效能。地图对学好地理的作用当然不局限于此。有人曾说:离开地图,便不是地理课。这话是有一定道理的。首先,要利用好教师在课堂上展示的挂图。教师指图讲课时,学生一定要注意看图,不要自己看书,或是做别的事情。教师指图讲课,事先是经过充分备课的。他会把图中的知识直接指给学生,避免学生费时间走弯路地自己去查找。 运用好地图的另一个做法是要把《中国地图册》、《世界地图册》和教科书中的插图,作为自己学习上得心应手的辅助工具。“两图”无论在内容和形式上,都是与教材紧密配合的。而且色调鲜艳悦目,内容生动活泼。如《中国地图册》中《地球》一图,只要看一眼,便会得出地表一片汪洋的结论,而且会掌握大陆分布的基本形势。《地球五带》一图,作者更是用心巧妙,用冷暖颜色显示地带温差,配合以动植物画面,十分便于学生理解和记忆地带的特点。运用好

地图的最后一个做法是不要忽视地理作业填充图的作用,一定要按教师的要求和布置认真做好填充图作业。 2、字头记忆法:即从同类地理知识中分别提取字头,编成简短话语进行记忆,这种字头法,简化知识,利于增强记忆。 例1、有关长江的长度、流域面积、流经省市名称以及长江上中下游的分段等系列知识,地名数据多,硬记有困难,可用字头法编成顺口溜:两湖两江两海安,川西云流六千三; 流域超过百八万,宜昌湖口各拉段。 第一句及第二句的“川西云”是字头,指明长江流经的十省市名称,“六千三”(百公里)是长江全长,“百八(十)万”(平方公里)是长江流域面积,第四句“宜昌”和“湖口”是长江上中下游的分段点,“各拉段”与“各拉丹”音近似,很容易联想到长江的发源地“各拉丹冬”。 例2、记忆世界煤炭储量丰富的七个国家,可以这样记忆:俄巴中澳印加美。中亚五国,哈吉塔土乌。 例3、3、综合法:认识地理特点的过程,绝大多数情况下,要在分析要素特征和各部分联系的基础上加以综合。下面结合北美简易图像,说明如何分析它的气候特征。并介绍综合法的一般步骤。图中哪种气候分布的面积最广(1)指出北美的位置及范围,即搞清楚在哪里的问题。(2)根据事物的组成分解成部分。如分析气候成因,就要从纬度位置、海陆分布、地形洋流、气压及风带等方面去

聚焦离子束技术

第四章 聚焦离子束技术(FIB)

本章主要内容 4.1 FIB系统介绍 41FIB 4.2 FIB-SEM构造及工作原理 4.3 离子束与材料的相互作用 4.4 FIB主要功能及应用 参考书:顾文琪等,聚焦离子束微纳加工技术,北京工业大学出版社,2006。参考书:顾文琪等聚焦离子束微纳加工技术北京工业大学出版社2006。

41FIB 4.1 FIB 系统介绍 (Focused Ion beam FIB)聚焦离子束(Focused Ion beam, FIB)的 系统是利用电透镜将离子束聚焦成非常小尺寸的显微加工仪器。通过荷能离子轰击材料表面实现材料的剥离沉积轰击材料表面,实现材料的剥离、沉积、注入和改性。 目前商用系统的离子束为液相金属离子源(Liquid Metal Ion Source,LMIS) 金属材质为镓(Gallium, Ga),因为镓元素具有低熔点、低蒸气压、及良好的抗氧化力。 即离子束+Zeiss Auriga FIB Zeiss Auriga FIB--SEM system 现代先进FIB 系统为双束,即离子束+ 电子束(FIB+SEM )的系统。在SEM 微观成像实时观察下,用离子束进行微加工g y 加工。

FIB技术发展史 FIB加工系统的发展与点离子源的开发密切相关 系展 1950s:Mueller发明气体场发射离子源(GFIS); 1970s:GFIS应用到聚焦离子显微镜(FIM); 1974-75:J. Orloff 和L.W.Swanson分别将GFIS应用于FIB。此时的(p) GFIS束流低(10pA),分辨率约50纳米; 1974:美国Argonne国家实验室的V.E.Krohn 和G.R.Ringo发现在电场作用下毛细管管口的液态镓变形为锥形,并发射出Ga+离子束; 1978:美国加州休斯研究所的R.L.Seliger等人建立了第一台Ga+液态金属离子源的FIB系统,束斑直径100nm,束流密度1.5A/cm2,亮度达62 3.3x10A/(cm.sr),束能量57keV; 1980s:商品型FIB投入市场,成为新器件研制、微区分析、MEMS制作的重要手段; 1980s-90s:开发出SEM-FIB双束、FIB多束、全真空FIB联机系统。

电子束的偏转与聚焦现象

南昌大学物理实验报告

二、实验原理 1、示波管的结构 示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。 2、电聚焦原理 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。 加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。 3、电偏转原理

图2 在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。令Z 轴沿示波管的管轴方向从灯丝位置指向荧光屏;同时,从荧光屏上看,令X 轴为水平方向向右,Y 轴为垂直方向向上。假定电子从阴极逸出是初速度忽略不计,则电子经过电势差为U 的空间后,电场力做的功eU 应等于电子获得的动能 2m 2 1 v eU = (1) 显然,电子沿Z 轴运动的速度v z 与第二阳极A 2的电压U 2的平方根成正比,即 22v U m e z = (2) 若在电子运动的垂直方向加一横向电场,电子在该电场作用下将发生横向偏转,如图2所示。 若偏转板板长为l 、偏转板末端到屏的距离为L 、偏转电极间距离为d 、轴向加速电压(即第二阳极A 2电压)为U 2,横向偏转电压为U d ,则荧光屏上光点的横向偏转量D 由下式给出: d l U U L D d 2) 2l (2+ = (3) 由式(3)可知,当U 2不变时,偏转量 D 随U d 的增加而线性增加。所以,根 据屏上光点位移与偏转电压的线性关系, 可以将示波管做成测量电压的工具。若 改变加速电压U 2,适当调节U 1到最佳 聚焦,可以测定D-U d 直线随U 2改变而 使斜率改变的情况。 4、磁偏转原理 电子通过A 2后,若在垂直Z 轴的X 方向外加一个均匀磁场,那么以速度v 飞越子电子在Y 方向上也会发生偏转,如图所示。 由于电子受洛伦兹力F=eBv 作用,F 的大小不变,方向与速度方向垂直,因此电子在F 的作用下做匀速圆周运动,洛伦兹力就是向心力,即有eBv=mv 2/R ,所以 eB R z mv = (4) 电子离开磁场后将沿圆切线方向飞出,直射到达荧光屏。在偏转角φ较小的情况下,近似的有

实验五 地磁场测定

实验五 地磁场测定 一.概述 地磁场作为一种天然磁源,在军事、航空、航海、工业、医学、探矿等科研中有着重要用途。本仪器采用新型坡莫合金磁阻传感器测量地磁场的重要参量,通过实验可以掌握磁阻传感器定标以及测量地磁场水平分量和磁倾角的方法,了解测量弱磁场的一种重要手段和实验方法,本仪器与其他地磁场实验仪(如正切电流计测地磁场实验仪)相比具有以下优点: 1.实验转盘经过精心设计,可自由转动,方便地调节水平和铅直。内转盘相隔ο180,具有两组游标,这样既提高了测量精度,又消除了偏心差。 2.新型磁阻传感器的灵敏度高达50V/T ,分辨率可达8710~10--T ,稳定性好。用本仪器做实验,便于学生掌握新型传感器定标,及用磁阻传感器测量弱磁场的方法,测量地磁场参量准确度高; 3.本仪器不仅可测地磁场水平分量,而且能测出地磁场的大小与方向,这是正切电流计等地磁场实验仪所不能达到的。 本仪器可用于高校、中专的基础物理实验、综合性设计性物理实验及演示实验。 二.仪器技术要求 1.磁阻传感器 工作电压 6V ,灵敏度50V/T 2.亥姆霍兹线圈 单只线圈匝数N=500匝,半径10cm. 3.直流恒流源 输出电流0—200.0mA 连续可调 4.直流电压表 量程0—19.99mV ,分辨率0.01mV

5.测量地磁场水平分量不确定度小于3% 6.测量磁倾角不确定度小于3% 7.仪器的工作电压AC 220±10V 三.仪器外型

FD-HMC-2型 磁阻传感器与地磁场实验仪 (以下实验讲义和实验结果由复旦大学物理实验教学中心提供) 一.简介 地磁场的数值比较小,约510-T 量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。本实验采用新型坡莫合金磁阻传感器测量地磁场磁感应强度及地磁场磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角,从而掌握磁阻传感器的特性及测量地磁场的一种重要方法。由于磁阻传感器体积小,灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ (1) 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的

管理就是聚焦,最实用管理方法

生产管理中聚焦与突破瓶颈 生管组合拳的六个动作构成了一个链条:协调会、备料制、日计划、攻关、稽核、考核。这个链条都是以天为单位,如果我们以天为单位的这个管理链条建起来了,把它不断地重复,日复一日地重复,我们的管理就找到了一个最小的控制单元。你的企业把这个最小的控制单元做好了,你就能够慢慢放大。 我们要懂得抓一个管理的最小单元,我们现在抓管理不是这样,要么就不抓,要么抓起来就从上到下一股脑地抓,结果一点都没有抓到。就抓这么一个链条,把这个链条反复反复抓,你的企业就能够抓出一个很好的管理基础。 什么是基础管理?对于工厂来讲,协调会、备料制、日计划、攻关、稽核、考核这个链条是最实在的基础。这个基础都没有,你谈别的都谈不上。我们现在把基础管理理解成流程文件、ISO、ERP,这是对基础管理的最大误解。基础管理就是抓最小的控制单元。 单元的意思是什么?是不可再分割的意思。就是说你要做好一个制造型企业的管理,这几个方面都得抓,不能只抓一个方面,你只抓备料制、日计划,没有攻关相配合,那么很多疑难问题就会一直解决不了,日计划也很难真正执行;你只知道攻关,没有日计划、备料制配合,你的攻关就要失去方向,你都不知道攻什么?攻了半天,那么多问题,你知道解决那些问题为重点啊,找不到? 这个单元里头,攻关属于非常规,其他的属于常规,那么常规和非常规,它的实际操作当中有些什么不同呢? 常规动作比较标准化。标准化的事情我们要懂得是约束出效率。定一个标准,然后你就要频繁地去检查这个标准达没达成。 所以常规动作的特点:定标准、抓执行。 但是攻关做为一个非常规动作,它的标准一般不是很明确的。比如说我们要解决一个模具问题,这个问题到底能解决到什么程度?谁都很难打包票,而且它又受资金的局限。有钱那可能做得更好,钱不多,就只能做成这个样。 所以攻关里头往往很难定死一个标准。它有很大的弹性,所以你就不能强迫他必须做出什么样子。他要是没有积极性,啥都做不出来。因为它是非常规的。 所以对于攻关动作重点要抓激励而不是约束。要懂得激励出效率。 攻关的动作具体怎么做呢?下面我们对攻关活动进行一个系统的阐述: 一、攻关的定义和目的。 1.攻关定义 攻:攻克(解决),关:难关,关卡(瓶颈)。 就是集中优势兵力,解决瓶颈工序或者瓶颈问题。 2.攻关的目的: ①.聚焦,将所有人的目光集中在一个点上。 ②.通过有效动作,快速解决问题。 攻就是攻克,就是解决。关是难关,关卡,引伸到企业当中就是瓶颈或者说瓶颈工序。集中优势兵力解决瓶颈工序或者瓶颈问题,这就是我们邦思顾问团队理解的攻关,也就是生管六大组合拳里面攻关所要诠释的意思。 攻关的目的,第一是聚焦,将所有的目光都集中在一个点上(不是数个点)。第二,通过有效动作快速解决问题。是通过动作来解决问题,而不是通过讲解或者是解释、口号、方案来解决问题。这就是攻关的目的。 随机读管理故事:《黄蜂和蜜蜂》 有一些没主的蜂蜡被发现,黄蜂想认领走,但蜜蜂不答应。细腰蜂受理了这个案子,它也难辨其中的真假。证人说,它曾看到一些昆虫,深褐色,身子比较长,样子像蜜蜂,它们扇动着翅膀,围绕在蜂蜡周围。但这些证词并不能证明什么,因为其特征也适用于黄蜂。这个案子调查了半年,没有任何结果。最后,一只聪明的蜜蜂提出了个好建议,它说:案子进行了半年,却丝毫没有任何进展,蜂蜡再不处置将会变质。我想让黄蜂和我们一起去采蜜,看看谁能用这

电子束的偏转与聚焦实验报告

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:电子束的偏转与聚焦 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间: 一、实验目的: 1、了解示波管的构造和工作原理。 2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。 3、学会规范使用数字多用表。 4、学会磁聚焦法测量电子比荷的方法。

二、实验仪器: EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。 三、实验原理: 1、示波管的结构 示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。 2、电聚焦原理 电子射线束的聚焦是电子束管必须解决的问题。在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。 加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。 3、电偏转原理 在示波管中,电子从被加热的阴极K逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。电场力做的功eU应等于电子获得的动能

地磁场测量的意义

地磁测量的重要意义 地磁场的特点 由于地球本身具有磁性,所以地球及附近的空间存在着磁场, 这个磁场就是地磁场。地磁场是地球的基本资源之一,与人类生活息息相关,它在地球科学、航空航天、资源探测、交通通讯、国防建设、地震预报等领域有着重要的应用。正是因为地磁场有如此重要应用价值,人们对地磁场的测量又迫切的需求。因此,磁场的测量已成为热点课题之一[1]。可以将地磁场近似地看作是地球中心有一个磁铁棒放,它的N极大体上对着南极,从而产生的磁场,其磁感线性状如图1.1所示。事实上,地球磁场的产生是通过电流在导电液体核中流动的发电机效应产生磁场的。 图1.1 地球磁场示意图 地磁场包括基本磁场和变化磁场两个部分,它们是不同的两种磁场。基本磁场是地磁场的主要组成部分,它源于地球的内部,相对来说比较稳定,变化缓慢。变化磁场起源于地球外部,并且很微弱[2]。 地磁场是一个向量场。常用的地磁参量有7个,即地磁场总强度F,地磁场的水平强度H,垂直强度Z,X和Y分别为水平强度的北向和东向分量,D和I 分别为磁偏角和磁倾角。其中以磁偏角的观测历史为最早。

在地磁场观测中,通常用三个参量来表示地磁场的方向和大小: (1)磁偏角A,即地球表面任一点的地磁场磁感应强度矢量B所在的垂直平面(地磁子午面)与地理子午面之间的夹角; (2) 磁倾角Φ,即地磁场磁感应强度矢量B与水平面之间的夹角; (3) 地磁场磁感应强度的水平分量B,即地磁场磁感应强度矢量B在水平面 上的投影[3]。 地磁场的重要应用 地磁场数值较小约0. 5 ×10- 4T,其强度与方向也随地点而异。地磁场被视 为地球的一种重要的天然磁源,它在国家科研中有着重要用途。在地球科学的研究中,作为以地球系统的过程与变化及其相互作用为研究对象的基础学科,研究和掌握地磁场的固有特性及其变化规律是地球科学研究的重要内容。在交通运输方面,可以通过检测由于车辆干扰而引起的地磁场的变化来反应车辆本身的特点及运动情况[4]。 除此之外,地磁还可以用于石油定向斜井钻井中;在海洋中,进行地磁测量可以保证航海的安全、海洋工程建设及了解海底构造;在陆地上,人们通过大规模的地磁测量及分析地磁偏角的变化去测定强磁性铁矿床、弱磁性铁矿床以及铜、镍、铬、金刚石等各种矿石的分布;在科学研究方面,地磁测量有助于人类了解地球的成因和延边过程,掌握火山的活动规律,地震预报等[5];在军事上,可以作为战场环境重要参数对军事斗争的前期准备、部队战斗力的发挥都具有重要意义。 目前国内外在石油开采中,大都利用地磁测量和地磁偏角进行地下储油分布及及其构造的探测。 虽然人们天天生活在地球磁场的影响下,但是我们却无法靠自身的五官来感受和估计地磁场的大小和方向。所以利用地球磁场固有特点,设计和制备应用于地磁测量的磁性传感器,这对于地球科学、航天航空、资源探测、交通运输、空间天气、测绘等诸多技术领域都拥有巨大的应用价值。

载流子迁移率测量方法总结

载流子迁移率测量方法总结 引言 迁移率是衡量半导体导电性能的重要参数,它决定半导体材料的电导率,影响器件的工作速度。已有很多文章对载流子迁移率的重要性进行研究,但对其测量方法却少有提到。本文对载流子测量方法进行了小结。 迁移率μ的相关概念 在半导体材料中,由某种原因产生的载流子处于无规则的热运动,当外加电压时,导体内部的载流子受到电场力作用,做定向运动形成电流,即漂移电流,定向运动的速度成为漂移速度,方向由载流子类型决定。在电场下,载流子的平均漂移速度v与电场强度E成正比为: 式中μ为载流子的漂移迁移率,简称迁移率,表示单位电场下载流子的平均漂移速度,单位是m2/V·s 或cm2/V·s。 迁移率是反映半导体中载流子导电能力的重要参数,同样的掺杂浓度,载流子的迁移率越大,半导体材料的导电率越高。迁移率的大小不仅关系着导电能力的强弱,而且还直接决定着载流子运动的快慢。它对半导体器件的工作速度有直接的影响。 在恒定电场的作用下,载流子的平均漂移速度只能取一定的数值,这意味着半导体中的载流子并不是不受任何阻力,不断被加速的。事实上,载流子在其热运动的过程中,不断地与晶格、杂质、缺陷等发生碰撞,无规则的改变其运动方向,即发生了散射。无机晶体不是理想晶体,而有机半导体本质上既是非晶态,所以存在着晶格散射、电离杂质散射等,因此载流子迁移率只能有一定的数值。 测量方法 (1)渡越时间(TOP)法 渡越时间(TOP)法适用于具有较好的光生载流子功能的材料的载流子迁移率的测量,可以测量有机材料的低迁移率。 在样品上加适当直流电压,选侧适当脉冲宽度的脉冲光,通过透明电极激励样品产生薄层的电子一空穴对。空穴被拉到负电极方向,作薄层运动。设薄层状况不变,则运动速度为μE。如假定样品中只有有限的陷阱,且陷阱密度均匀,则电量损失与载流子寿命τ有关,此时下电极上将因载流子运动形成感应电流,且随时间增加。在t时刻有:

聚焦离子束加工技术及其应用

聚焦离子束加工技术及其应用 摘要:。聚焦离子束(FIB)技术是把离子束斑聚焦到亚微米甚至纳米级尺寸,通过偏转系统实现微细束 加工的新技术。文章简述了聚焦离子束工作原理和应用前景等。 关键词:聚焦离子束、刻蚀 1.聚焦离子束简介 聚焦离子束(focused ion beam,FIB)与聚焦电子束从本质上讲是一样的,都是带电粒子经过电磁场聚焦形成细束。但聚焦电子束不同于聚焦离子束。区别在于它们的质量,最轻的离子为氢离子也是电子质量的1 840倍。离子束不但可以像电子束那样用来曝光,而且重质量的离子也可以直接将固体表面的原子溅射剥离,因此聚焦离子束更广泛地作为一种直接微纳米加工工具。 离子束的应用已经有近百年的历史。自1910年Thomson建立了气体放电型离子源后,离子束技术 主要应用于物质分析、同位素分离与材料改性。由于早期的等离子体放电式离子源均属于大面积离子源,很难获得微细离子束。真正的聚焦离子束始于液态金属离子源的出现。1975年美国阿贡国家实验室开发出液态金属离子源(LMIS),1978年美国加州休斯研究所的R.L.Seliger等人建立了第一台装有Ga LMIS的FIB系统,其束斑直径仅为100nm(目前已可获得只有5nm的束斑直径)。电流密度为1.5A/cm ,亮度达3.3×10。A/(cm2.sr)。这给进行亚微米JJnq-器件的研究极大的鼓舞。 聚焦离子束(FIB)技术就是在电场及磁场的作用下,将离子束聚焦列亚微米甚至纳米量级,通过偏转系统和加速系统控制离子束,实现微细图形的检测分析和纳米结构的无掩模加工。FIB技术经过不断发展,离子束已可以在几个平方微米到近lmm 的区域内进行数字光栅扫描,可以实现:①通过微通道极或通道电子倍增器收集二次带电粒子来采集图像。②通过高能或化学增强溅射来去除不想要的材料。③淀积金属、碳或类电介质薄膜的亚微米图形。 FIB技术已在掩膜修复、电路修正、失效分析、透射电子显微镜(TEM)试样制作及三维结构直写等多方面获得应用。 2.聚焦离子束的工作原理 离子束系统的“心脏”是离子源。目前技术较成熟,应用较广泛的离子源是LMIS,其源尺寸小、亮度高、发射稳定,可以进行微纳米加工。同时其要求工作条件低(气压小于10 Pa,可在常温下工作),能提供A1、As、Au、B、Be、Bi、Cu、Ga、Fe、In、P、Pb、Pd、Si、Sn及Zn等多种离子。由于Ga(镓)具有低熔点、低蒸气压及良好的抗氧化力,成为目前商用系统采用的离子源。 液态金属离子源(LMIS)结构有多种形式,但大多数由发射尖钨丝、液态金属贮存池组成,典型的LMIS 结构示意图如图所示。 FIB系统由离子束柱、工作腔体、真空系统、气体注入系统及用户界面等组成,图2是聚焦离子束工作原理示意图。其工作原理为:在离子柱顶端的液态离子源上加上较强的电场,来抽取出带正电荷的离子,通过同样位于柱中的静电透镜,一套可控的上、下偏转装置,将离子束聚焦在样品上扫描,离子束轰击样品后产生的二次电子和二次离子被收集并成像。 典型的聚焦离子束系统的工作电流在lpA到30nA之间。在最小工作电流时,分辨率均可达5nm。 目前已有多家公司可以提供商品聚焦离子束系统,其中以美国FEI公司的产品占主导地位。该公司可提供一系列通用或专用聚焦离子束机,包括结构分析系列与掩模缺陷修补系列的电子离子双束系统与集成电路片修正系统。 双束系统的优点是兼有扫描镜高分辨率成像的功能及聚焦离子束加工的功能。用扫描电镜可以对样品精确定位并能实时观察聚焦离子束的加工过程。聚焦离子束切割后的样品可以立即通过扫描电镜观察。工业用机的自动化程度高,可装载硅片的尺寸为(6~8)in。 3.聚焦离子束加工的特点

用弹性电子测量能谱仪能量分辨率和电子倍增器的工作曲线

第23 卷第2 期真空科学与技术 2003 年3、4 月VACUUM S CI ENCE AND T E C H NOLOGY(C H INA) 1 01 技术交流 用弹性电子测量能谱仪能量分辨率 和电子倍增器的工作曲线 吴正龙 ( 北京师范大学分析测试中心北京 100875 ) Stud ies of Energy Resolution of Electron S p ec t r osco p y and C h a nn el t r o n Characteristics Using Elastic Seco nd a r y E lec t r o n s Wu Z hen g l o n g ( A n a l y t i cal an d T e s ti n g Center , B e i j ing N ormal University , 1008 75, C hi n a ) Abstract El a st i c s e condary elect r ons w e re used to s t u dy th e ch a nn e ltron characteristi c s an d th e energy res o lut i o n o f th e m u lt-i f u nct i on el e ct r on spectroscopy, including Auger spect r o s c opy( A E S), ultra v i o l e t photoelectron sp e ctr o s c o p y(U P S)and X-ra y photoelectron s p ectr o sc o p y ( XPS) et c. The preliminary result s w e re found t o agree w e l l w i th t h ose o bt a i n e d w i th c o n v ent i onal techniques. H o w e ver , when elect r on curren t exceeds a certain value, an abnormal el ast ic elect ron peak can be observed, because t he channel t ron works in sat urat ion mode. The p o ss ible s at-urat i on mechanism of t h e chann e lt r on w a s also t e nt a t i vely dis c uss e d . K eyw o r d s Electron spectrometer, Chaneltron, Work curve 摘要重点介绍了利用弹性二次电子方便快捷地测量多功能电子能谱的能量分辨率和通道倍增器的工作曲线。并与常规方法进行了比较, 结果一致。测量发现当电子束流增大到一定程度时, 测出的弹性电子峰严重畸变, 电子倍增器工作在饱和状态。对出现饱和的机理进行了讨论。 关键词电子能谱仪通道式倍增器工作曲线 中图分类号: O571. 1 文献标识码: A 文章编号: 0253- 9748( 200 3) 02-0101- 03 电子能谱仪是表面分析中最常使用的仪器, 其中的通道式电子倍增器( Channel Electron Device 简写为Channeltron, 以下简称为通道倍增器) 是真空探测离子, 电子( 光电子, 俄歇电子, 二次电子) 的电子倍增计数器。它的工作情况直接影响所采集谱的质量。通道倍增器有工作电压低( 一般为3 k V) , 探测粒子的能量动态范围广等优点, 在10 e V ~ 10 ke V 粒子能量范围内都有好的线性关系[ 1] 。 通道倍增器是用一种玻璃制成螺旋状的管, 内壁涂有高阻材料, 典型电阻3000 M 。两极加上高压,通常为1 5 k V ~ 4 0 kV。此时, 螺旋管可看成是由多个电阻串联起来的多级小型倍增管。被接收的电子撞击到内壁上, 级联倍增产生二次电子, 总增益可至108 倍, 最终被通道倍增器的正极接收, 转化为电流信号。 通道倍增器的工作电压, 对所收集谱的影响很大。因此, 首先要测定工作曲线, 根据电子能谱仪工作模式, 确定最佳工作电压。正确使用通道倍增器不但可收集到正确的高质量谱, 而且可延长倍增器的寿命。通常的测量方法是在不同的倍增器电压下,测定标样( 如: C u,Ag 等) 的元素特征光电子峰或俄歇峰的强度, 绘制出倍增器的工作曲线。这种方法较繁琐, 而且很难测定诸如强信号的响应。而利用电子弹性峰方便快捷测量通道倍增器工作曲线。 收稿日期: 2002-09-12

相关主题
文本预览
相关文档 最新文档