当前位置:文档之家› 数值分析复习---第一章 基础知识

数值分析复习---第一章 基础知识

郑州大学研究生课程(2011-2012学年第一学期)数值分析

Numerical Analysis

习题课

第一章基础知识

例1.2.1(秦九韶算法)设计算法求多项式n

n n n

n a x a x

a x a x P +++=??11

10)("的值.

解:引进记号

,

)()(,)()(,)()(,

)(132321212

02101n n n a x xP x P a x xP x P a x xP a x a x a x P a x a x P +=+=+=++=+=?#

一、要点回顾

可设计如下算法:

000

010 ,,2,1 ,,, b output end

a x

b b do n k for a b x a a a input k n +←=←""§1.2 计算机算法及其评价请输入多项式阶数(单位:10000):10000请输入自变量x 的值:0.0001

100000000阶多项式在点0.000100的

取值:100010002.000100秦九韶算法运行时间:0.750000秒100000000阶多项式在点0.000100的取值:100010002.000100常规算法运行时间:41.547000秒Press any key to continue

VC6.0环境C 语言编程结果

■常规方法(用重复乘法计算幂,再把各项相加)

n 2

)

1(+n n 需要次加法和次乘法■秦九韶算法

次加法和次乘法

需要n n §1.2 计算机算法及其评价

§1.2 计算机算法及其评价??

?.

.

用存储空间的度量空间复杂度:算法需占费时间的度量时间复杂度:算法需耗算法复杂性的度量算法的评价指标

乘除法与加减法相比花费的CPU时间较多,通常将算法所需要的乘除法的总次数作为计算量大小的尺度。

例如两个n 阶矩阵相乘的乘法次数是,则称两个n 阶矩阵相乘这一问题的时间复杂度为.

3

n )(3

n O

§1.4 误差的基本概念???

??

?

??

???来的误差。数系近似表示实数系带舍入误差:计算机浮点差。

算的精确值而产生的误果代替需要无限次运中有限次计算的近似结截断误差:用实际计算与真实值存在的误差。

等因素导致原始数据试验手段、环境、人员观测误差:由于仪器、大者。误差,是四种误差中最略次要因素而导致的因为做理想化假设,忽模型误差:建立模型是误差类型 误差的类型总结

1.4.1 误差的类型

§1.4 误差的基本概念

1.4.2 误差和有效数字

定义1.4.1 设是某个量的准确值,为其近似值,

称为近似值的绝对误差。

如果,则称为近似值的绝

对误差限。

x x

~x x x e ~)~(?=x ~)~(|~||)~(|x x x x e δ≤?=)

~(x δx ~定义1.4.2 称为近似值的相对误差。

在实际计算时,也将作为近似值的相对误差。如果或,则称为近

似值的相对误差限。

x

x x x e r ~)~(?=

x ~x

x x x e r ~~)~(*?=x ~)

~(|)~(|x x e r r δ≤)~(|)~(|*

x x e r r

δ≤)~(x r δx ~

§1.4 误差的基本概念

1.4.2 误差和有效数字

定义1.4.3 设实数的近似值为

其中每个是中的一个数字,且如果的绝对误差满足

就称用近似时具有n位有效数字,或者说准确到

该位。

x x m

k a a a x "21.010~×±=i a 9,1,0"0

1≠a x ~n k x x x e ?×≤?=10

2

1|~||)~(|x ~x ~

§1.4 误差的基本概念

1.4.2 误差和有效数字

圆周率的近似值和有效数字

6位

5位3位有效数字n x

~)

~(x δ314

.0101

×"

1415926.3=x 2

1021

005.00.0016?×=<31416

.0101

×4

102

1

50000.00.000008?×=<314159

.0101

×5

102

1

500000.00.000003?×=<

有效数字与相对误差的关系

)有效数字?相对误差限

1211

1

()051010

)010

201

102k n n

r k

n n x*.x*x *

.a a a .a a δδ???+×=≤≤××≤×""

(已知x * 有n 位有效数字,则其相对误差限为

)相对误差限?有效数字1

121111110|*|(*)|*|010

2(1)

10(1)1005102(1)

n k

r n k k n

x x x x .a a a a .a δ?+?+???≤?≤××+≤?+×=×+"1

11(*)10

2(1)

n r x a δ?+≤

×+已知x * 的相对误差限为

则可见x * 至少有n 位有效数字。

§1.4 误差的基本概念

1.4.3 误差的累积

定理1.4.1 设是的近似值,

是的近似值,则的绝对误差界是

的绝对误差界是

当且时,

的绝对误差界是x ~x y ~y y x ~~±);

~()~()~~(y x y x δδδ+=±y x ~~?);

~(|~|)~(|~|)~~(x y y x y x δδδ+≈?0~≠y 1)~(*<

x δδδ+≈

§1.4 误差的基本概念

1.4.3 误差的累积

定理1.4.2 设是的近似值,

是的近似值,则的相对误差界是

的相对误差界是

当且时,的相对误差界是

x ~x y ~y y x ~~±y x ~~?0~≠y 1)~(*<

~~|)~(|~|)~(|~|)~~(y x y y x x y x r r r ±+=±δδδ);

~()~()~~(y x y x r r r δδδ+≈?)

~()~()~~(y x y

x r r r δδδ+≈

§1.4 误差的基本概念

1.4.3 误差的累积

特别当和同号时,有x ~y ~)};

~( ),~(max{)~~(y x y x r r r δδδ=+

§1.4 误差的基本概念

1.4.3 误差的累积

例1.4.4 计算并估计误差,其中原始数据

的误差界为

81.965.321.1~+×=y ;

0005.0)81.9(,005.0)81.9(;0014.0)65.3(,005.0)65.3(;0041.0)21.1(,005.0)21.1(≈=≈=≈=r r r δδδδδδ解:由定理1.4.1可得

0.03

005.0005.065.3005.021.1 )

81.9()63.321.1()~(≤+×+×≈+×=δδδy

§1.4 误差的基本概念

1.4.3 误差的累积

由定理1.4.2可得

0.0055.

}0005.0 ,0014.00041.0max{ )}

81.9( ),63.321.1(max{)~(=+≈×=r r r y δδδ求出,因为,我们取2265.14~=y 0.03 )~(≤y δ.

2.14~=y

§1.4 误差的基本概念

1.4.3 误差的累积

定理1.4.3 设是的近似值,函数在包含和的

区间上有足够阶的导数,且与相比不太大,则有

x ~x )(t f x ~x ,0)~('≠x f )~ )((''之间与在x x f ξξ)~('x f )

~(|)~('|))~((x x f x f δδ≈

二、教学要求

1.理解绝对误差、相对误差和有限数字等

概念及其定量关系。

2. 掌握误差传播的计算。

3.理解对算法评价的要点,如时间复杂

度、稳定性等。(掌握秦九韶算法)

三、典型题目解析

题NAc1-01:

设三个近似数a=3.65,b=9.81,c=1.21均有3位有效数字。计算ac+b并说明它有几位有限数字,并求它的相对误差限。

提示:利用有效数字定义求出绝对误差限,用定理1.4.1求出ac+b的绝对误差限并确定其有限数字。由定义求相对误差限。

三、典型题目解析

题NAc1-02:

已知近似数x*有2位有限数字,求其相对误差限。提示:考察有效数字和相对误差限的关系。

三、典型题目解析

题NAc1-03:

提示:自变量t的绝对误差限已知,求对应函数值的绝对误差限,考察误差传播的计算。

数值计算第三章答案

3.1证明:如果求积公式(3.4)对函数f (x )和g (x )都准确成立,则它对于线性组合af(x)+bg(x) (a,b 均为常数)亦准确成立. 因此,求积公式(3.4)具有m 次代数精度的充分必要条件是:它对任一小于等于m 次的多项均能准确成立,但对某个m+1次多项式不能准确成立. ()()不能成立 对与题设矛盾多项式都能准确成立,次多,即对任意的线性组合亦准确成立也能准确成立,则对若对的线性组合亦准确成立对次的多项式准确成立对于任意小于等于不准确成立,对的线性组合亦准确成立对成立次的多项式于等于根据定义可知:对于小次代数精度 机械求积公式具有机械求积公式也成立 对于线性组合同理可得 机械求积公式都成立 对于证明: 1m 1321321320 000 0)1(,,,,,,1,,,,,1,,,,,1),1,0()(2)()()] ()([)()()]()([) ()() ()() ()() ()()(),(1++++=======∴+? ∴?∴==∴?+∴+=+≈+∴≈≈∴≈≈∴∑∑?∑?∑?∑? ∑?∑x m x x x x x x x x x x m x x x x x m j x x f m m x bg x af x bg x af A x bg A x af A dx x bg x af x bg A dx x bg x af A dx x af x g A dx x g x f A dx x f x g x f m m m m m m j n k k k n k k k b a n k k k b a n k k k b a n k k k b a n k k k b a n k k k 3.2直接验证中矩形公式具有一次代数精度,而Simpson 公式则具有3次代数精度。

数值分析第二章小结

第二章小结 对于n 元线性方程组b A =x (*),其中A 为非奇异矩阵,当0det ≠A 时,方程组有唯一的解向量。求解线性方程组的方法可分为两类:直接法(如克莱姆法则,高斯消去法等)和迭代法(Jacobi 迭代法和GS 迭代法等)。 一 、直接法 1、Gauss 消去法:(1) 顺序Gauss 消去法:将矩阵化为上三角矩阵 (2) 列主元素Gauss 消去法:将增广矩阵],[)()(k k b A 中绝对值最大的元素交换到底k 行的主对角线上。 比较:顺序Gauss 消去法的计算结果数值稳定性没有列主元素Gauss 消去法的好。 2、直接三角分解法: (1)定义 Doolittle 分解法和Crout 分解法:如果方程组b A =x 的系数矩阵A 可以分解为A=LU,其中L 是下三角矩阵U 是上三角矩阵,这样方程组b A =x 就化为两个容易求解的三角方程组:y U b Ly ==x ,。 定理3 Doolittle 分解法的充要条件是矩阵A 的前n-1阶顺序主子式0≠K D (k 取1,2,3,4...,n-1) 推论 矩阵A 有唯一Crout 分解的充要条件是A 的前n-1阶顺序主子式0≠K D (k 取1,2,3,4...,n-1) Doolittle 分解计算公式为: 对于k=1,2,3...,n ),...,1,(1 1n k k j u l a u k t tj kt kj kj +=-=∑-=

);,...,2,1(/)(1 1n k n k k i u u l a l kk k t tk it kj ik <++=-=∑-= 则求解下三角方程组y U b Ly ==x 和上三角方程组的计算方程式: ???? ?????--=-===-==∑∑+=-=1 ,,2,1,/)(u /),,3,2(11111 n n i u x u y x y x n i y l b y b y ii n i t t it i i nn n n t i t it i i Crout 分解计算公式为: 对于k=1,2,3...,n ),...,1,(1 1n k k j u l a l k t tk it ik ik +=-=∑-= );,...,2,1(/)(1 1n k n k k j l u l a u kk k t tj kt kj kj <++=-=∑-= 则求解下三角方程组y b y U L ==x ~ ~和上三角方程组的计算方程式: ?????????--=-===-==∑∑+=-=1 ,,2,1,),,3,2()(/1111111 n n i x u y x y x n i l y l b y l b y n i t t it i i n n ii t i t it i i (2)选主元的Doolittle 分解法 优点:对A 的要求低,只要矩阵A 可逆即可,即只要矩阵A 非奇异便可通过对A 做适当变换就可以了. 二、迭代法 1、思想:通过构造一个无限的向量序列,使它的极限是方程组b A =x 的解向量,通过求迭代矩阵,再通过迭代公式使解向量逐步逼近精确解。所以迭代法的缺点也很明显,凡是迭代法都存在收敛性与

数值分析(计算方法)总结

第一章绪论 误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差 是的绝对误差,是的误差,为的绝对误差限(或误差限) 为的相对误差,当较小时,令 相对误差绝对值得上限称为相对误差限记为:即: 绝对误差有量纲,而相对误差无量纲 若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。 例:设x==…那么,则有效数字为1位,即个位上的3,或说精确到个位。 科学计数法:记有n位有效数字,精确到。 由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为 由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字 令 1.x+y近似值为和的误差(限)等于误差(限)的 和 2.x-y近似值为 3.xy近似值为 4. 1.避免两相近数相减 2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章非线性方程求根 1.逐步搜索法 设f (a) <0, f (b)> 0,有根区间为(a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)

一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而 f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|0.将[a0,b0]对分,中点x0= ((a0+b0)/2),计算 f(x0)。 3.比例法 一般地,设[a k,b k]为有根区间,过(a k, f(a k))、(b k, f(b k))作直线,与x轴交于一点x k,则: 1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。 2.比例法不是通过使求根区间缩小到0来求根,而是在一定条件下直接构造出一个点列(递推公式),使该点列收敛到方程的根。——这正是迭代法的基本思想。 事先估计: 事后估计 局部收敛性判定定理: 局部收敛性定理对迭代函数的要求较弱,但对初始点要求较高,即初始点必须选在精确解的附近 Steffensen迭代格式: Newton法: Newton下山法:是下山因子 弦割法: 抛物线法:令 其中:

数值分析 第一章 学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分内容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。 2.2误差知识与算法知识 2.2.1误差来源 误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差:

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

数值分析课后习题答案

习 题 一 解 答 1.取3.14,3.15, 227,355113 作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。 分析:求绝对误差的方法是按定义直接计算。求相对误差的一般方法是先求出绝对误差再按定义式计算。注意,不应先求相对误差再求绝对误差。有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。有了定理2后,可以根据定理2更规范地解答。根据定理2,首先要将数值转化为科学记数形式,然后解答。 解:(1)绝对误差: e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。 相对误差: 3()0.0016 ()0.51103.14r e x e x x -==≈? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。 而π-3.14=3.14159265…-3.14=0.00159… 所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311 101022 --?=? 所以,3.14作为π的近似值有3个有效数字。 (2)绝对误差: e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。 相对误差: 2()0.0085 ()0.27103.15r e x e x x --==≈-? 有效数字: 因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。 而π-3.15=3.14159265…-3.15=-0.008407… 所以│π-3.15│=0.008407……≤0.05=0.5×10-1 =11211101022 --?=? 所以,3.15作为π的近似值有2个有效数字。 (3)绝对误差: 22 () 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈- 相对误差:

第六章学习小结

第6章数值积分 --------学习小结 一、本章学习体会 通过学习本章我学会了利用计算机求积分的方法,可以说这一章是第五章的一个应用。其基本思想是对被奇函数进行拟合,给出数值积分。 这一章有个小小的疑惑:王老师上课说,我们都是在第五章拉格朗日插值法的思想下推出的许多求积分的方法,别的方法不好。我想假如我们在实际中求某个函数的积分,我们可先求出某些节点的函数值,然后用曲线拟合的方法或别的函数逼近的方法求出函数近似表达式,然后积分,感觉这样也挺好的。还有一个疑惑就是高斯型求积公式是在拉格朗日插值法的基础上推出的为什么能具有收敛性。拉格朗日插值中当节点数过多时不是就不准确了吗? 二.本章知识梳理 第六章学的是数值积分。在实际工程中有很多积分我们是没有办法直接手工算出的,我们必须借助与计算机,而我们这章学的就是如何利用计算机实现积分的近似计算即数值积分法。 我们先介绍了插值型求积公式,这种方法实质是利用拉格朗日插值法近似逼近被插函数,后来我们通过一个例题了解到插值节点的选取对积分的代数精度有很大影响,我们就想到了直接将被积区间等分,就有了Newton-cotes求积公式,实质是等步长的拉格朗日插值近似逼近被插函数。但Newton-cotes求积公式不具有收敛性和稳定性,

我们常用n=1,2,4的求积公式。这其实也应了高次拉格朗日插值不可取。当插值节点多时我们怎么办呢?后来我们又引进了复化求积公式,包括复化梯形公式和复化Simpson 公式,实质是将区间等分,在每个小区间上利用Newton-cotes 求积公式。这样一来求积公式就具有了收敛性和稳定性。但复化求积公式要把节点的函数值都求出来,这就增大了计算量而且还不能按我们要求的精确度来选取补偿,基于复化求积的这些缺点我们又想出了用变步长算法即逐次半分法来求解。但如果我们遇到()()b a x f x dx ρ?这样的积分该怎么做呢?则我们又引进了高斯型求积公式。这种方法也是基于拉格朗日插值法思想构造的公式高斯型求积公式关键是确定节点。找一个在(a,b)区间带权()x ρ的正交多项式的零点位置即为节点。我们可以利用前面学到的四种正交多项式来求解。高斯型求积公式可以达到插值型求积公式的最高精度。如果有n 个节点,则其代数精度为2n-1.但高斯型求积公式实际应用是节点和求积系数没有继承性。所以在实际计算时我们要根据实际情况选择适当的求积公式。 1、求积公式的一般形式: )()(0 k b a n k k x f dx x f ? ∑=≈λ ?∑=-=b a n k k k n x f dx x f R 0 )()(λ 代数精度:当)(x f 为次数不高于m 的多项式时带入求积公式左边等于右边,当为m+1次时,左右两边不相等,此时求积公式就为m 次代数精度。

数值分析第二章小结

第2章线性方程组的解法 --------学习小结 一、本章学习体会 通过本章知识的学习我首先了解到求解线性方程组的方法可分为两类:直接法和迭代法。计算机虽然运行速度很快,但面对运算量超级多的问题,计算机还是需要很长的时间进行运算,所以,确定快捷精确的求解线性方程组的方法是非常必要的。 本章分为四个小节,其中前两节Gauss消去法和直接三角分解法因为由之前《线性代数》学习的一定功底,学习起来还较为简单,加之王老师可是的讲解与习题测试,对这一部分有了较好的掌握。第三节矩阵的条件数与病态方程组,我 Ax 的系数矩阵A与左端向量b的元素往往是通首先了解到的是线性方程组b 过观测或计算而得到,因而会带有误差。即使原始数据是精确的,但存放到计算机后由于受字长的限制也会变为近似值。所以当A和b有微小变化时,即使求解过程精确进行,所得的解相对于原方程组也可能会产生很大的相对误差。对于本节的学习掌握的不是很好,虽然在课后习题中对课堂知识有了一定的巩固,但整体感觉没有很好的掌握它。第四节的迭代法,初次接触迭代法,了解到迭代法就是构造一个无线的向量序列,使他的极限是方程组的解向量。迭代法应考虑收敛性与精度控制的问题。三种迭代方法的基本思想我已经掌握了,但是在matlab 的编程中还存在很大的问题。 在本节的学习中我认为我最大的问题还是程序的编写。通过这段时间的练习,虽然掌握了一些编写方法和技巧。相比于第一章是对其的应用熟练了不少,但在程序编写上还存在很多问题。希望在以后的学习中能尽快熟练掌握它,充分发挥它强大的作用。 二、本章知识梳理 2.1、Gauss消去法(次重点) Gauss消去法基本思想:由消元和回代两个过程组成。 a(k=1,2,```,n-1)均不为零的充分必要条件定理顺序Gauss消去法的前n-1个主元素)(k kk 是方程组的系数矩阵A的前n-1个顺序主子式

数值分析第六章实验报告

一、实验名称 Newton-cotes型求积公式 二、实验目的 学会Newton-cotes型求积公式,并应用该算法于实际问题。 三、实验内容 求定积分?π cos xdx e x 四、实验要求 选择等分份数n,用复化Simpson求积公式求上述定积分的误差不超过8 10-的近似值,用MATLAB中的内部函数int求此定积分的准确值,与利用复化Simpson求积公式计算的近似值进行比较。 五、实验程序与输出结果 在MATALAB的Editor窗口中输入以下程序: function y=comsimpson(fun,a,b,n) z1=feval (fun,a)+ feval (fun,b);m=n/2; h=(b-a)/(2*m); x=a; z2=0; z3=0; x2=0; x3=0; for k=2:2:2*m x2=x+k*h; z2= z2+2*feval (fun,x2); end for k=3:2:2*m x3=x+k*h; z3= z3+4*feval (fun,x3); end y=(z1+z2+z3)*h/3; 然后保存为然后保存为comsimpson.m的文件 在MATALAB工作窗口命令窗口中输入: Q2 =comsimpson (@fun,0,pi,1000000000) syms x fi=int(exp(x).*cos(x),x,0,pi); Fs= double (fi)

wQ2= double (abs(fi-Q2) ) 运行后结果: Q2=-12.0703,Fs=-12.0703, wQ2=5.2654e-08 六、实验结果分析 利用复化simpson求积公式计算运行后其结果为Q2=-12.0703,利用内部函数求解的结果为Fs=-12.0703,两者的误差为wQ2=5.2654e-08。从中可以看出误差结果达到了1E-8级数,而相对应的N已经取到了10亿次,再增大N对结果已经没有太大变化。可见复化simpson要得到比较准确的结果需要运算的次数比较大。

数值分析第三章函数逼近与曲线拟合习题答案

第三章 函数逼近与曲线拟合 1. ()sin 2 f x x π =,给出[0,1]上的伯恩斯坦多项式1(,)B f x 及3(,)B f x 。 解: ()sin ,2 f x π = [0,1]x ∈ 伯恩斯坦多项式为 (,)()()n n k k k B f x f P x n ==∑ 其中()(1)k n k k n P x x x k -??=- ??? 当1n =时, 01()(1)0P x x ?? =- ??? 1101()(,)(0)()(1)()1(1)sin(0)sin 022P x x B f x f P x f P x x x x ππ=∴=+??=-?+ ??? = 当3n =时, 3 022 122233 31()(1)01()(1)3(1) 03()(1)3(1) 13()3P x x P x x x x x P x x x x x P x x x ?? =- ?????=-=- ????? =-=- ????? == ???

3 3022322 33223 (,)()() 03(1)sin 3(1)sin sin 6 3 2 3(1)(1)25632221.50.4020.098k k k B f x f P x n x x x x x x x x x x x x x x x π π π =∴==+-+-+= --+-=++≈--∑ 2. 当()f x x =时,求证(,)n B f x x = 证明: 若()f x x =,则 (,)()()n n k k k B f x f P x n ==∑ 001 11(1)(1) 11(1)(1)(1)(1)!(1)[(1)(1)1](1)(1)!1(1) 11(1)1[(1)]n k n k k n k n k k n k n k k n k n k k n k n k k n n k x x k n k n n n k x x n k n n k x x k n x x k n x x x k x x x x -=-=-=-=----=-?? =- ???--+=-----+=---??=- ?-??-??=- ?-?? =+-=∑∑∑∑∑ 3.证明函数1,,,n x x 线性无关 证明: 若20120,n n a a x a x a x x R ++++=?∈ 分别取(0,1,2,,)k x k n = ,对上式两端在[0,1]上作带权()1x ρ≡的内积,得

数值分析学习心得体会.doc

数值分析学习感想 一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。这门 课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处 理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微 分,求解线性方程组的解等,使数学理论更加有实际意义。 数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有 了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误 差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误 差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在 别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数 值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出 的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。 数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数 学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中 的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容 易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的, 这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的 都是不同的算法。而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题, 从而知道如何去解决。 在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下, 我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自 己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触 到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。 计算132 2013014923 张霖篇二:数值分析学习报告 数值分析学习心得报告 班级:11级软工一班 姓名: * * * 学号: 20117610*** 指导老师:* * * 学习数值分析的心得体会 无意中的一次选择,让我接触了数值分析。 作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学 和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比 较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。 学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验 室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影 响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强 大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语 言接口。 根据上网搜集到的资料,你就会发现matlab有许多优点: 首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这

第六章习题答案数值分析

第六章习题解答 2、利用梯形公式和Simpson 公式求积分2 1 ln xdx ? 的近似值,并估计两种方法计算值的最大 误差限。 解:①由梯形公式: 21ln 2 ()[()()][ln1ln 2]0.3466222 b a T f f a f b --= +=+=≈ 最大误差限 3''2 ()111 ()()0.0833******** T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式: 13()[()4()()][ln14ln()ln 2]0.38586262 b a b a S f f a f f b -+= ++=++≈ 最大误差限 5(4)4()66 ()()0.0021288028802880 S b a R f f ηη-=-=≤≈, 其中,(1,2)η∈。 4、推导中点求积公式 3''()()()()() ()224 b a a b b a f x dx b a f f a b ξξ+-=-+<

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

数值分析论文

数值分析论文 几种插值法的应用与比较 摘要:本文主要介绍了几种常用插值法的应用和比较,针对每个插值法,经过详细的论证和讨论,给出了每个插值法的优点和缺点,通过对数学插值法的研究、比较及应用的讨论及总结,从而得出所讨论插值方法的各自优势,以方便用户选择合适的插值法。 关键词:拉格朗日插值,重心拉格朗日插值,分段线性插值 正文:在许多实际问题及科学研究中,因素之间往往存在着函数关系,但是这些关系的显示表达式不一定都知道,通常只是由观察或测试得到一些离散数值,所以只能从这些数据构造函数的近似表达式,有时虽然给出了解析表达式,但由于解析表达式过于复杂,计算起来十分麻烦,这就需要建立函数的某种近似表达,而插值法就是构造函数的近似表达式的方法。 由于代数多项式是最简单而又便于计算的函数,所以经常采用多项式作为插值函数,称为多项式插值多项式插值法有拉格朗日插值法,牛顿插值法、埃尔米特插值法,分段插值法和样条插值法等。其基本思想都是用高次代数多项式或分段的低次多项式作为被插值函数的近似解析表达式。 拉格朗日插值法中,在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法,许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解,如对实践中的某个物理量进行观测,在若干个不同的地方得到,相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式,数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数,拉格朗日插值法最早被英国数学家爱德华.华林于1779年发现,不久后由莱昂哈德·欧拉再次发现1795 年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起。 拉格朗日插值多项式图为:

数值分析第三版课本习题及答案

第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ******** 12412324(),(),()/,i x x x ii x x x iii x x ++其中****1 234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11 783100n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6(21)f =-,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 63 11,(322),,9970 2. (21)(322)--++ 13. 2()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 22ln(1)ln(1)x x x x --=-++ 计算,求对数时误差有多大? 14. 试用消元法解方程组 { 101012121010;2. x x x x +=+=假定只用三位数计算,问结果是否可靠?

数值分析第四章学习小结

第四章学习小结 本章为非线性方程与非线性方程组的迭代解法,由此可分为两大节4.1非线性方程的迭代解法和4.2非线性方程组的迭代解法。本章以人口增长模型为引言,由于在实际应用中只有很少类型的非线性方程能解出根的解析表达式,对于大多数非线性方程,只能用数值法求出它的根的近似值,本章将要介绍几种常用的有效的数值求根方法,它们都属于迭代法,因而还要讨论这些方法的收敛性和收敛速度。 4.1.1对分法 (1)基本思想: ①确定方程有根的区间; ②将区间逐次分半缩小,得到一个区间长度以1/2的比例减小的含根区间序列{}k x ,在给定根的误差界时,利用长度趋于零的特点,可得到在某个区间中满足要求的近似根。收敛速度与公比为12 的等比数列的收敛速度相同。 (2)迭代终止条件 或者 (3)二分法的优缺点: 优点:程序简单,总能求出近似根,对()f x 要求不高。 缺点:收敛速度慢,只能求单根和奇数重根,不能求偶重根,复根。二分法一般用于对根求近似根。 4.1.2简单迭代法及其收敛性 迭代法的基本思想: 迭代法是一种逐次逼近法,用某个固定公式反复校正根的近似值,使 12 a b x +=2k k b a ε-<2 k k k b a x s ε--≤

之逐步精确化,最后得到满足精度要求的解。 迭代法的基本思想是将隐式方程()x x ?=的求根问题归结为计算一组显式公式1()k k x x ?+=,逐步过程实际上是一个逐步显示化的过程。 收敛性:若由迭代公式1().1,2,3...k k x x k ?+==产生的序列{}k x 收敛于x *,则x *是原方程的根。 收敛条件: a .非局部收敛性定理:设函数()[,]x C a b ?∈,在(a ,b )内可导,且满足两个条件: (1)当[,]x a b ∈时,()[,]x a b ?∈;(2)当[,]x a b ∈时,'()1x L ?≤<,其中L 为一常数。则有如下结论: (1)方程()x x ?=在[,]a b 上有唯一的根s ; (2)对任取的0[,]x a b ∈,简单迭代法1()k k x x ?+=产生的序列{}[,]k x a b ?且收敛于s ; (3)成立误差估计式101k k L s x x x L -≤--或11k k k L s x x x L --≤-- 这种形式的收敛定理称为大范围收敛性定理,但当条件不够充分时,预先指定一个区间常常是不可能的。 b .局部收敛性定理 设'(),()s s x ??=在包含s 的某个开区间内连续。如果'()1s ?<,则存在0δ>当0[,]x s s δδ∈-+时,由简单迭代法1()k k x x ?+=产生的序列 {}[,]k x s s δδ?-+且收敛于s 。 4.1.3简单迭代法的收敛速度

COMSOL MULTIPHYSICS和数值分析基础

第一章COMSOL MULTIPHYSICS及数值分析基础 W. B. J. ZIMMERMAN,B. N. HEWAKANDAMBY Department of Chemical and Process Engineering, University of Sheffield, Newcastle Street, Sheffield S1 3JD United Kingdom E-mail: w.zimmerman@https://www.doczj.com/doc/8f7055304.html, 本章主要介绍COMSOL Multiphysics 在零维和一维模型数值分析方面的几个关键内容。这些内容包括求根、步进式数值积分、常微分方程数值积分和线性系统分析。这几乎是所有的化工过程数学分析方法。下面通过COMSOL Multiphysics中的一些常见化工过程应用实例来介绍这些方法,包括:闪蒸、管式反应器设计、扩散反应系统和固体中热传导。 1.简介 本章内容很多,可以分为几个不同的目标。首先介绍了COMSOL Multiphysics的主要工作特性;其次介绍了如何使用这些特性来分析一些简单的,位于零维空间、一维空间或“空间-时间”系统中的化工问题。本章还希望通过展示COMSOL Multiphysics和MATLAB工具在化工过程分析中的强大功能,激发读者对使用COMSOL Multiphysics进行建模与仿真的兴趣。 由于COMSOL Multiphysics不是一个通用的问题求解工具,所以一些目标需要迂回实现。作者在使用FORTRAN、Mathematica和MATLAB解决化工问题方面有着丰富的教学经验,并用这些工具实现过这里所有的例子。而且,扩展化工问题的数值分析也已经在POLYMATH[1]中实现,这似乎只在化工委员会的CACHE项目中使用过。 本书前一版已经介绍过在零维空间中求解非线性代数方程和与时间有关的常微分方程的内容。从概念上讲,零维域就是一个简单的有限元。通过研究某一特定有限元中的变化对理解有限元方法非常有用。但是,COMSOL Multiphysics 通过独立对话框设置,使得零维几何方程和与时间相关的常微分方程求解变得非常简单。所以本章将同时采用这两种方法求解这些例子。 2.方法1:求根 典型的数值分析课程会讲解多种求根方法,但是从实际经验来看,只有两种算法非常有用——二分法和牛顿法。我们这里没有列出所有方法,而是重点考虑为什么求根是最有效的数值分析工具。在线性系统中求根非常简单,但是对于非线性系统这就是一个挑战,而所有感兴趣的动力学问题几乎都是非线性系统。对非线性系统的求根起源于对反函数的描述。为什么呢?因为对于大多数非线性函数,“正向”y=f(u)很好表示,但是它的反函数u=f--1(y)可能不能显式表示、多值(无意义)或根本不存在。如果反函数存在的话,求解反函数其实就是求根的过程——求解满足F(u)=0的u等价于求解F(u)=f(u)-y=0。因为大多数数值分析的目标是在系统约束下计算求解,所以这也等价于对所有的约束取反。COMSOL Multiphysics拥有求解非线性问题的核心函数——femnlin,本节主要介绍用它求解零维非线性问题。 femnlin函数使用牛顿方法求解,由于只有一个变量u,牛顿法通过对一阶 F u迭代来求根。该方法首先估计函数的斜率范围,然后再逼近根。该斜倒数'()

数值计算第三章答案

证明:如果求积公式()对函数f (x )和g (x )都准确成立,则它对于线性组合af(x)+bg(x) (a,b 均为常数)亦准确成立. 因此,求积公式()具有m 次代数精度的充分必要条件是:它对任一小于等于m 次的多项均能准确成立,但对某个m+1次多项式不能准确成立. ()()不能成立 对与题设矛盾多项式都能准确成立,次多,即对任意的线性组合亦准确成立也能准确成立,则对若对的线性组合亦准确成立对次的多项式准确成立对于任意小于等于不准确成立,对的线性组合亦准确成立对成立次的多项式于等于根据定义可知:对于小次代数精度 机械求积公式具有机械求积公式也成立 对于线性组合同理可得 机械求积公式都成立 对于证明: 1m 1321321320 000 0)1(,,,,,,1,,,,,1,,,,,1),1,0()(2)()()] ()([)()()]()([) ()() ()() ()() ()()(),(1++++=======∴+? ∴?∴==∴?+∴+=+≈+∴≈≈∴≈≈∴∑∑?∑?∑?∑? ∑?∑x m x x x x x x x x x x m x x x x x m j x x f m m x bg x af x bg x af A x bg A x af A dx x bg x af x bg A dx x bg x af A dx x af x g A dx x g x f A dx x f x g x f m m m m m m j n k k k n k k k b a n k k k b a n k k k b a n k k k b a n k k k b a n k k k 直接验证中矩形公式具有一次代数精度,而Simpson 公式则具有3次代数精度。

相关主题
文本预览
相关文档 最新文档