当前位置:文档之家› 电晕放电的物理原理和应用

电晕放电的物理原理和应用

电晕放电的物理原理和应用
电晕放电的物理原理和应用

电晕放电的物理原理和

应用

TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

电晕放电的物理原理和应用

Santa

,Donte a Moriano,(LU)

电晕放电过程是塑料薄膜加工的基本组成部分,因此必须深刻理解它的工作原理和影响放电过程的重要参数的意义。本文将尽可能简单地分析和帮助你了解它的本质因素和操作的重要性,以便能正确地操作仪器,取得最佳的处理结果。

使用电晕的目的

在塑料的处理过程中,挤压、匹配、拉伸和金属化都特别重要,这些操作都需要塑料表面对所匹配的物质(油墨、胶粘剂、油漆和金属)有很强的附着性,因此塑料表面要有可润湿性能,以便形成稳定、安全的附着。

有时,两种材料的物理和化学特性使得它们能自发地胶合在一起,但在大多数情况下,作为基面的塑料表面必须通过物理的方法来增加它的润湿性能,使其能适应要进行的加工条件,这时就需要用到电晕放电。

可用图示来说明电晕处理系统的细目。

此图由电动机机(工作频率通常在15到40KHZ之间)、加速转换器和处理单元组成。处理单元包括一个或多个电极和一个转辊,此转辊由电能驱动,表面包有绝缘材料支撑要处理的薄膜。

依据具体的应用,电极和要处理的膜面之间的空气间隙在到之间。当处理很宽的薄膜时(高到10m),空气间隙为2到,因为此时很难保持太低的空气间隙。这时建议使用一种叫做空气间隙控制系统,它能在电极的全部长度下保持空气间隙为常量。

当对电极施加电压时,在薄膜和电极之间的空气间隙上便产生了放电效应,使薄膜活性增加。随即产生的现象就是电离,在某种意义上电场能使得中性分子离解,

那些本身就存在在空气中的离子在电场的作用下离解开始加快。反过来,新产生的离子又能离解其他的分子,如此循环下去。即可以说在电场的影响下,存在着一种电离粒子的运动。当电场强度增加时,离子的运动速度将增加,同样电离离子的动能也将增加。若电场的能量足够高时,绝缘层便在空气中分解。运动的离子可形成电流,电极与薄膜之间的空气间隙也就变成了导体。因此,可看见兰色的电晕放电现象,这表明通常的空气间隙绝缘层已被打破。

在每次电击过程中,部分离子的动能会转化成热能,引起空气间隙温度的上升。当电动机的输出功率增加时,就会有更多的电离粒子产生,动能的增加可由电晕放电的强度变化看出。

塑料薄膜的电晕放电是通过粒子轰击和进入表层分子结构中产生的,使用氧化和制造电极单元的方法来增加要处理材料的表面张力。离子的振动频率在处理中并不是特别重要,而粒子对材料的冲击能量却很重要。离子通过电离的粒子氛围到达放电材料的表面需要一段时间,虽然看起来时间很长,但和产生的电场的变化时间相比,只需很短的时间即可达到目标。离子的运动时间和它的质量、电场的强度、空间电荷的密度和空气间隙的大小有关。撞击要处理材料表面的带电粒子的能量和电动机功率与粒子存在时间的乘积成正比。即使电晕放电的物理和化学效应相当复杂,但通过在不同的系统上可再现,对于给定的要处理的材料电晕放电很容易被证实。欲得到需要的表面张力应使用具体的功率,可由下式确定:

PSP = Pout / Prod

式中:

PSP :具体的功率(m2)

Pout :马达的输出功率

Prod :生产线产量(m2/min)

然而得到所需表面张力时,应用的具体功率取决于要处理材料的性能,特别取决于其中含有的添加剂用量和性质。为了确定得到给顶的薄膜润湿张力时所用的具体的功率值,必须经常在实验室的小样品或薄膜产品上进行实现测试。

下表给出了在不同类型的薄膜上得到42dyn/cm的表面张力时,所需的具体功率值。

如前所述,上述数值只能看成预计值。

有时也可能发生如下情况:即使具体功率的数值远高于表中所示值,也不能得到所需的润湿张力,此时必须注意所使用的添加剂的用量和类型及取得最佳放电效果时可能要做的工作。

电晕放电时的参数

1.空气间隙

如前所述,根据放电电极的长度,空气间隙可从调节到。当电极很长时,由于很难保持太低的空气间隙,应在2到之间调节,这是因为放电单元的轴承结够不稳定,也受周边温度和传送功率的影响。为了保持空气间隙大小不变,要在放电单元中安装空气间隙控制设备,用来监视电极和薄膜之间的距离及补偿轴承结构的移动。

在上述的测量范围内,使用相同的具体功率处理时不会出现明显的区别。

2.电极

电极通常由铝和不锈钢制成,根据应用的类型—转辊、刀和刀组的不同,电极有不同的形状,表面涂有硅树脂或陶瓷绝缘层。除了绝缘电极外,其他的电极在处理时没有明显的区别。但必须要记住能使用的最高电压,因为即使电压超过处理时电压

很小一部分,也有反面处理的危险。根据应用的功率,应选择那些不会超过此极限的放电表面。

绝缘电极通常用于处理金属或金属化薄膜,由于它们能导电,不会使电晕放电均匀分布且随后就被损坏。建议只在金属或金属化薄膜处理时使用绝缘电极:使用相同大小的电晕功率时,它的处理能力要比非绝缘电极低。也可能在塑料薄膜上使用绝缘电极(例如,不止一种类型的薄膜要在印刷机器中处理时),但不是用来处理金属化薄膜,特别是含有大量添加剂的薄膜要处理时,建议使用非绝缘电极。

绝缘电极必须要冷却,可使用一种有双重功能的风机:冷却和排除由电晕放电产生的臭氧。为了得到更好的冷却效果,电极必须放在一个能使空气接触其外表面的室仓内,空气流应尽可能地沿着这个方向吹动。从工作环境中抽取空气时会在电极和绝缘物质中引入灰尘、水蒸气和其他杂质。众所周知,灰尘和高电压都是不容许的,电极杆要作成能从放电单元中很容易取出,以便经常清洁去尘。

上述的描述也适用于位于同样通风室仓内的非绝缘电极。此时情况更糟,由于没有绝缘层,电极直接和它们各自的绝缘物质相接触。通常放电转辊的绝缘覆层有3到4mm厚,电极电压将相应地增加。可在地中安装放电装置(绝缘电极的操作电压通常为8到,然而非绝缘电极可以达到更高的电压)。

要特别注意所使用的绝缘材料,它们应能抗电弧,因为对灰尘放电不应损坏外部表面,这就需要替换绝缘物质,此时陶瓷材料无疑是最佳的选择。

3.放电转辊的绝缘覆层

在第一个电晕放电单元中,放电转辊并没有绝缘覆层,而是由薄膜本身执行此功能。此时在薄膜本身没有击穿危险的情况下,输出电压和功率不能增加。观察这两种系统,可以很容易看出:在没有绝缘覆层的地方,电压的降低很大,一旦克服了绝缘体的刚度,击穿现象将随后产生。另外,当系统没有绝缘覆层时,薄膜的边部并不能处理到,因为电极和后者一样长,对薄膜的电晕放电会形成一个高电压的短回路。

上述的问题可通过安装绝缘覆层来解决。绝缘覆层的选择和大小对系统的操作和生产都非常重要。

覆层材料必须有一定的刚度、低介电损失和高抗臭氧能力,且厚度不能随着时间而减少、结构紧密,不能有损害绝缘特性的杂质。人们已经测试了许多类型的绝缘覆层:像充电环氧树脂、耐热玻璃、玻璃纤维树脂、硅树脂、陶瓷等。目前通常使用

的绝缘材料是硅树脂和陶瓷。绝缘材料的选择是放电转辊尺寸大小和消耗/效率比的函数。

大多数电晕放电装置,特别是很宽的那些,使用硅树脂覆层作为绝缘层。这种类型的覆层材料能提供上面所有的特性、价格合理、击穿后易于修复,能保证最小的停机时间。但是,它对由操作不小心而引起的尖锐物体或刀的损伤很脆弱。陶瓷绝缘覆层使用的很少,特别是在宽度很大的装置中,因它有很高的能量消耗且击穿后不易修复。当电极击穿后,主要的停机时间不是机器的检修而是替换转辊所需的时间。对于宽大的装置将需要几个小时。

然而电压相同时,使用硅树脂和陶瓷覆层能得到相同的表面张力。这两种绝缘覆层有不同厚度和不同绝缘特性,它们只有经过高压转换器进行所需要的操作后才能使用。陶瓷覆层有到1mm厚,根据转辊的厚度,硅树脂覆层的厚度可在到之间。建议不要使用厚度大于的绝缘层,因为施加同样的电压,输出电极的电压增加,因此单位面积功率就会降低。但是,太低的覆层厚度易于被击穿且在直径很大、很长的转辊上不易实现。

4.频率

对此参数已经做了不同的测试。当频率在15到40KHZ之间时,并没有什么本质的处理差别。施加一定的功率时,工作频率越高、电极输出电压就越低,因此在放电转辊的绝缘覆层上就会形成更大的能量损失、大量的电极发热、就需要更精确的空气间隙调节设备(很小的空气间隙差别能导致不均匀的电晕放电,使得很难调节电极,特别是那些长度很长的电极)。

使用高频发生器,通过减少空气间隙,能得到较均匀的电晕放电效果。根据以上的描述,电晕处理的理想工作频率在15到24KHZ之间。

5.输出电压

象在电极那节中描述的那样,输出电压是指用于电极的有效值。建议此值不要超过13KV(除非是用于塑料厚片或在处理高厚度的材料时,这时有效值可高达

20KV ),因大于此值时,处理效果的增加很不显着,此外还可能出现以下的问题:?增加薄膜的收缩性

?引起高压绝缘体和放电转辊的绝缘覆层的绝缘能力的损失,特别是当装置在相对湿度较高的情况下运转时

电压值应看成是发电机输出量,因此若作为标准使用,并不是它本身决定处理的能力。电压值取决于所施加的功率、空气间隙大小、欲处理材料的厚度和放电转辊绝缘覆层的厚度和类型。当施加的功率大小相同时,只依赖空气间隙的调节和放电单元的构造,使用不同的输出电压可以得到相同的处理能力。

6.输出电流

输出电流代替了电源放电的强度,和输出电压一样,它应看成是发动机的输出量且作为一个可能的参考值使用,此量并不决定电晕处理的能力。有下列因素影响输出电流:功率、工作频率、空气间隙、欲处理材料的类型和厚度、放电转辊的绝缘覆层的类型和厚度、放电的表面性质、相对湿度和高压绝缘系统中的损失。

对此数值,当功率相同时,根据放电单元的构造和工作频率,使用不同的输出电流可以得到相同的处理能力。

7.具体功率

具体功率是能有效地操作处理能力,其应通过设备不断的监视。为得到给定的处理能力而使用的具体功率并不是对所有的材料都一样:每次都要根据材料本身的化学和物理特性来确定。一旦此值被确定下来,电动机在不同的工作环境下都要提供相同的具体功率。必须要有一个操作面板,通过一定的调节算法能不间断地计算出具体功率值。当对不同类型的薄膜定义不同的具体功率后,这些数值可以存储在操作面板

中以便后来可以随时的调用。

除了能向控制面板监视器提供两个输出数值—Idc和Vdc,两个输出数值—Vout和Iout外(因此可以监视发动机的基本操作参数),同样也提供一个使用微处理器执行上述功能的函数的操作面板。根据顾客的要求,可以作出个性化的操作面板能适合具体的要求。

为了获得所有功能的描述,请参阅相关的手册。

8.周边环境

电晕处理易受周边环境,特别是压力和湿度的影响。在高于1000米的地方安装操作设备的比在较低的地方安装同样的设备所需要的具体功率小。

当相对湿度超过70%时,影响非常显着,常常发生处理数值的减少。必须提醒的是在此类型的周边环境下所进行的润湿张力的测试(象ASTM D2578-67)是不可靠的,而应在具体的周边环境下测试。

反面处理

反面处理在上文中已经多次提到,现在就来解释其是什么及怎么产生的反面处理是在已处理表面的对面也有一定的表面处理时产生的。它常是由于以下物质的存在而导致的:褶皱或放电转辊绝缘覆层的不平整、薄膜拉伸不够和在薄膜及放电转辊之间形成的空气泡。

为了更好的理解它的成因,可以想象薄膜由转辊穿过和触及电极时的情景。对

着电极的那一面将得到最小的处理,不论处理过程是否会影响薄膜的对面。图A和B 将帮助我们理解这种现象。

图A 图B

当薄膜与转辊之间的空气间隙的厚度为x时,图A就转变成图B。因单个元件会分担一定的电压,总电压的一部分Va就用于有厚度为x的空气间隙所形成的电容器。如果Va的数值超过了空气的绝缘能力,将有或多或少的放电现象,引起薄膜另一面的活化。

在上述两个电路中的总电阻是相同的,唯一不同的就是在反面处理点的电压,因此功率就较低,这就是反面处理常引起欲处理面处理能力损失的原因。因此反面处理多数情况下是指总输出电压的增加。

当生产的薄膜没有抵抗反面处理的能力时,放电单元必须要有一个能保证薄膜和放电转辊连接良好的压辊。压辊的覆层在60 shore左右,为了使薄膜和放电转辊连接良好,要尽可能的靠近电极且要尽可能的避免薄膜在放电转辊上的卷绕。

臭氧

在电晕放电过程中会产生臭氧,它是一种有毒气体,毒性取决于浓度,对身体健康不利。放电单元区域内的臭氧浓度不能超过m3)。Draeger phial是一种价格低廉、性能可靠、用来测量臭氧浓度的设备。在允许向大气中排放气体的地区,由放电单元产生的臭氧可以通过通风设备直接排放到大气中。通风设备的尺寸大小决定于发动机的输出功率、放电单元的长度、排放管负载损失及生产线的速度。

通风设备和气体排放管必须由抗臭氧材料制成(象不锈钢或PVC-PET塑料)。

在禁止向大气中排放高浓度臭氧气体的地方,要使用臭氧处理装置。使用它(合适的大小取决于臭氧的量)可以得到低于,此值通常低于法律所限定的值。在这

种工作条件下,可以向空气中排放。

地球物理学基础复习资料(白永利)

地球物理学基础复习资料 绪论 一.地球物理学的概念,研究特点和研究内容 它是以地球为研究对象的一门应用物理学,是天文学,物理学与地质学之间的 边缘学科。 地球物理学应用物理学的原理和方法研究地球形状,内部构造,物质组成及其 运动规律,探讨地球起源,形成以及演化过程,为维护生态环境,预测和减轻地球 自然灾害,勘探与开发能源和资源做出贡献。包扩地震学,地磁学,地电学,重力 学,地热学,大地测量学,大地构造物理学,地球动力学等。 研究特点:1.交叉学科地球物理学由地质学和物理学发展而来,随着学科 本身的发展,它不断产生新的分支学科,同时促进了各分支学科的相互交叉,加 强了它与地球科学各学科之间的联系。2.间接性都是通过观测和研究物理场的 信息内容实现地质勘查目标,研究的不是地质体本身,而是其物理性质。3 多解 性正演是唯一的,而反演存在多解。不同的地质体具有不同的物理性质,但产 生的物理场可能相同。不同的地质体具有相近的物理性质,由于观测误差,物理 场的观测不完整以及物理场特点研究不够,产生多解。不同的地质体具有相同的 物理性质,即使知道了地质体的物性分布,也无法确定其地质属性。 地球物理学的总趋势:多学科综合和科学的国际合作。 二.地球物理学各分支所依据的物理学原理和研究的物性参数。 地震学:波在弹性介质中的传播。地震体波走时,面波频散,自由振荡的本征 谱特征 重力学:牛顿万有引力定律。地球的重力场和重力位 地磁学:麦克斯韦电磁理论。地磁场和地磁势。 古地磁学:铁磁学。岩石的剩余磁性。 地电学:电磁场理论。天然电场和大地电场 地热学:热学规律,热传导方程。地球热场,热源。 第一章太阳系和地球 一.地球的转动方式。 1.自转地球绕地轴的一种旋转运动,方向自西向东,转速并非完全均匀,有微小变化。 2.公转地球绕太阳以接近正圆的椭圆轨道旋转的运动。 3.平动地球随整个太阳系在宇宙太空中不停地向前运动。 4.进动地球由于旋转,赤道附近向外凸出,日月对此凸出部分的吸引力使地 轴绕黄轴转动,方向自东向西。这种在地球运动过程中,地轴方向发生的运动即 为地球的进动。 5.章动。地轴在空间的运动不仅仅是沿一平滑圆锥面上的转动,地轴还以很小 的振幅在锥面内,外摆动,地球的这种运动叫章动。 二.地球的形状及影响因素。 地球为一梨形不规则回转椭球体。 影响因素:1.地球的自引力---正球体;2.地球的自转----标准扁球体;3.地球内 部物质分布不均匀--不规则回转椭球体

《应用地球物理学》前言报告

《应用地球物理学》前言报告 岩石物理技术在石油应用: 岩石物理学就只一门以岩石为研究对象,以物理学位研究手段的新学科。岩石是构成地球的最重要的材料,地球的结构和运动学性质必然与岩石的各种物理性质密切相关。岩石物理学是研究岩石在地球内部特殊环境下的各种行为及其物理性质的,针对油气勘探和储藏的岩石物理性质的研究是岩石物理学研究中较为成功的例子。 岩石或地质体中流体的运移,涉及到成岩作用、石油天然气开采等一系列问题,各国科学家都对这些问题给予了高度重视。 例:1:研究岩石中流体运移过程中由不同尺度研究问题组成的研究框架,是岩石物理学中正问题研究的典型例子。先从矿物尺度研究矿物及其晶粒的输运特性,从微观角度研究矿物的微结构和渗透性、矿物之间的孔隙以及矿物变形对这些输运过程的影响;然后研究岩石作为矿物集合体的输运特性,主要研究岩石内部微破裂和孔隙的发展、孔隙的几何情况、密度,以及它们的空间分布;第三则集中研究那些连通的裂纹和孔隙,因为只有形成了连通网络的裂纹和孔隙才对输运过程有较大的影响。最后,将以上三个方面综合,可以得到作为岩体或地质体的输运特性,从而对其流体的流动情况做出估计。 例2:岩石的水压裂或岩石的热开裂。人们通过向地下注水,或者对地下岩石加热,改变矿物晶粒间以及岩石内部的微破裂状态,从而改变岩体或地质体的渗透性。这是将岩石物理学知识应用与实践中的一个典型例子。在石油开采方面曾广泛采取水压致裂技术,水压致裂是通过向岩石注入高压液体来改变岩石中裂纹的状态,但其主要作用是使原来的裂纹扩展长度,对增加裂纹密度所起的作用有限。岩石的热开裂则是岩石受热后,由于组成岩石的各种矿物热膨胀不同,导致矿物边界出现裂纹。热开裂能改变岩石内部的微观结构,既增加裂纹的长度,又能增加裂纹的密度,在一定条件下,可以明显改变岩石整体的输运特性,在石油开采等方面有着潜在的应用前景。 岩石物理学的研究方法: 首先,实验是岩石物理学的最基础的研究方法。其做法主要是:第一,采集各种有地质意义的岩石,在实验室中分别研究各种因素对其物理性质的影响,将大量的实验结果统计归纳得到经验关系式。第二,在建立合理而简化的数学物理模型的基础上,将由实验得到的经验关系外推到实际地球问题中去。因为若没有合适的模型,而只是简单地把实验室小尺度实验得到的结果外推到大尺度的自然界,常常会出现错误的结论。 其次,由于岩石物理学的研究涉及众多诸如地质学、地球物理学、油储地球物理学、地球化学等学科,也涉及众多的基础学科领域,如力学、声学、流体力学和电磁学等。岩石物理学是一门高度跨学科的学科分支,这就决定了岩石物理学中,对于所研究的岩石的不同物理性质,必然要用到上述相应的学科中对应的物理方法和手段。 岩石物理技术在油气勘探领域具有重要作用,随着大数据时代的到来,将计算岩石物理与勘探方法相结合,将会成为一种趋势。主要是基于两个方面的考量:其一,计算机模拟已经成为了物理实验并行的实验方法;其二,岩石各种性质与尺度有关,这在一般的物理学中是根本不会碰到的问题。矿物可以近似地看成是

电磁感应及其应用

一、选择题 (11·河池)9.科学家的发明与创造推动了人类文明的进程。在下列科学家中,首先发现电磁感应现象的是A.法拉第 B.焦耳 C.奥斯特 D.安培 答案:A (11·苏州)10.如图所示,导体AB水平置于蹄形磁铁的磁场中,闭合开关后,导体AB在下列运动情况中,能使图中小量程电流表指针发生偏转的是 A.静止不动 B.水平向右运动 C.竖直向上运动 D.竖直向下运动 答案:B (11·宿迁)11.如图所示装置可探究感应电流产生的条件,下面操作中能产生感应电流的是 A.保持磁铁静止,将导体棒ab上下移动 B.保持导体棒ab静止,将磁铁左右移动 C.保持导体棒ab静止,将磁铁上下移动 D.保持导体棒ab静止,将磁铁沿导体棒ab方向前后移动答案:B

(11·连云港)5.关于发电机的工作原理,下列说法正确的是 A.电流的热效应 B.电流周围存在磁场 C.电磁感应现象 D.磁场对通电导体的作用 答案:C (11·南京)7.如图所示的四幅图中能说明发电机工作原理的是 答案:A (11·肇庆)9.如右图所示,以下四种措施不能 ..使电流表指针偏转的是 A.将条形磁铁向下插入线圈 B.将条形磁铁从线圈中抽出 C.让条形磁铁静止在线圈中 D.条形磁铁静止而将线圈向上移动 答案:C (11·无锡)11.如图所示为“探究感应电流产生条件”

的实验装置.回顾探究过程,以下说法正确的是 A.让导线ab在磁场中静止,蹄形磁体的磁性越强,灵敏电流计指针偏转角度越大 B.用匝数较多的线圈代替单根导线ab,且使线圈在磁场中静止,这时炙敏电流计指针偏转角度增大 C.蹄形磁体固定不动.当导线ab沿水平方向左右运动时,灵敏电流计指针会发生偏转 D.蹄形磁体固定不动,当导线ab沿竖直方向运动时,灵敏电流计指针会发生偏转 答案:C (11·兰州)13.关于电磁感应现象,下列说法正确的是 A.电磁感应现象中机械能转化为电能 B.感应电流的方向只跟导体运动方向有关 C.感应电流的方向只跟磁场方向有关 D.导体在磁场中运动,能够产生感应电流 答案:A (11·泉州)4.在如图所示的实验装置图中能够说明电磁感应现象的是

固体地球物理学

固体地球物理学 (学科代码:070801) 一、培养目标 本学科培养德、智、体全面发展,具有坚实的地球物理理论基础和系统的专业知识,了解固体地球物理学和与其相关学科发展的前沿和动态,能够适应二十一世 纪我国经济、科技和教育发展的需要,并具有较熟练的实验技能和较强的动手能力,具有较全面的计算机知识,具有独立从事该学科领域研究和教学能力的高层次人 才。 二、研究方向 1. 地震学、 2. 地球动力学、 3. 岩石物理、 4. 应用地球物理学、 5. 城市地球物理学 三、学制及学分 按照研究生院有关规定。 四、课程设置 英语、政治等公共必修课和必修环节按研究生院统一要求。 学科基础课和专业课如下所列。 基础课: GP15201★地球内部物理学★(4) GP15202★ 地球动力学★(4) GP15203★地球物理反演★(4) 专业课:

GP14201 计算地震学(3) GP14202 地球物理学进展(4) GP14203 地震学原理(4) GP15210 地震勘探(3) GP15211 定量地震学(4) GP15212 地震偏移与成像(4) GP15213 工程地震学(4) GP15214 岩石本构理论(4) GP15215 应用地球物理学(3) GP15216 地球内部电性与探测(4) GP15218 现代计算机与网络应用(3) GP15219 固体力学(4) GP15220 城市地球物理学(3) GP15701 地球物理高级实验(2) PI05204 工程中的有限元法(3) GP16201 固体地球物理理论(4) GP16202 地球科学中的近代数学(4) GP16203 地球科学前沿讲座(4) 备注:带★号课程为博士生资格考试科目。 五、科研能力要求 按照研究生院有关规定。 六、学位论文要求 按照研究生院有关规定。

《应用地球物理学》主要知识点要点

一、名词 正演(问题):已知地质体求其引起的异常。(给定地球物理模型,通过数值计算或物理模拟,得出相应的地球物理场) 反演(问题):已知异常反推地质体的形状和产状。(已知异常的分布特征和变化规律,求场源的赋存状态(如产状、形状和剩余密度等) 重力勘探:重力勘探是观测地球表面重力场的变化,借以查明地质体构造和矿产分布的物探方法。 零长弹簧 零点漂移:在相对重力测量中,由于重力仪灵敏系统的弹性疲劳、温度补偿不完全等因素,仪器读数的零点值随时间而不断变化。 重力场强度:单位质量的物体在场中某一点所受的重力作用。 大地水准面:以平静海平面的趋势延伸到各大陆之下所构成的封闭曲面,作为地球的基本形状。 重力异常:由地下岩矿石密度分布不均匀所引起的重力变化,或地质体与围岩密度的差异引起的重力变化。 自由空间重力异常:对实测重力值只做正常场与高度校正。 布格重力异常:观测重力差值经过正常场校正、地形校正和布格校正之后得到异常称为布格重力异常。 均衡重力异常:布格重力异常再进行均衡校正。 重力梯级带:重力异常等值线分布密集,异常值向某个方向单调上升或下降。 三度体:x,z,y,三个方向都有限的物体。 二度体:地质体沿走向方向无限延伸。 特征点法:根据异常曲线上的一些点或特征点(如极大值点、零值点、拐点)的异常值及相应的坐标求取场源体的几何或物性参数 磁法勘探:利用地壳内各种岩矿石间的磁性差异所引起的磁异常来寻找有用矿产或查明地下地质构造的一种地球物理勘探方法 磁异常:通常把研究对象引起的磁场部分叫做磁异常,而周围环境和围岩引起的磁场同归为正常场。 磁场强度:单位正磁荷在磁场中所受的力。 磁感应强度:磁感应强度为场源在观测点的磁场强度与磁化物体所形成的附加磁场强度的和。

北京大学空间物理与应用技术研究所-北京大学地球物理学系

北京大学空间物理与应用技术研究所 空间物理学是人类进入太空时代以来迅速发展起来的新兴学科。它主要研究太阳系特别是日地空间中的物理现象与规律,研究空间环境及其对人大空间活动和生态环境的影响。空间物理学主要包括太阳大气物理学,日球层(即行星际)物理学、磁层物理学、电离层物理学及电波传播及应用、高层人气(热层和中层)物理学、空间探测实验与技术。空间环境学,空间等离子体物理学及日地关系学等分支,是一门应用性强的交叉性的基础学科。 当前,人类已进入开发太空资源,开创空间产业的新时期,空间通讯和导航已广泛应用。空间对地观测正在迅速发展。空间材料和制药工程已开始诞生,空间发电系统也将运行。月球基地和行星开发将在下一世纪上半叶出现。我国是一个空间技术大国,空间应用的一些领域已进入实用阶段。人类的航天活动必须以对太空环境的认识为基础。目前日地系统整体过程的研究和地球空间环境预报已在全球范围内广泛开展。21世纪将是空间技术和科学蓬勃发展的新世纪,空间物理学人才大有作为。 北京大学空间物理与应用技术研究所2002年刚刚成立,其前身是成立于1960年的空间物理学专业。四十年来已培养出一大批日地空间物理、空间环境和空间应用等领域内的杰出的科学家和工程技术人才,其中有中国科学院、国防科工委、航天部门和高等院校等诸多系统的各级领导、技术骨干,有国际影响的空间物理学家和空间环境专家等,有的还被评选中国科学院院士;他们为发展我国的空间科学事业做出了巨大的贡献。 本研究所是国家空间物理学博士点和硕士点,现有中国科学院院士1人,教授7人(其中博士生导师3名),副教授、高级工程师和高级实验师4人,博士后1人。此外还有博士研究生和硕士研究生近20人。 本专业教师知识面广,教学水平高,科研成果出色。先后承担了22项国家自然科学基金项目和国家基金委“日地系统能量传输研究”重大项目两项课题及“863”高科技项目,还参与了国家科委攀登计划。多次获得国内外重大科学奖励,(仅2001年就获得两项国家自然科学二等奖,且均为第一获奖人),有的被选为中国科学院院士、有的被选为国际宇航科学院院士、有的被聘为欧空局卫星星座计划国际合作科学家。 在实验条件方面,本专业现已建成“电离层和电波传播实验室”,“等离子体探测实验室”和“高层大气探测实验室”。本专业教师利用这些实验条件承担过航天部的“无线与等离子体相互作用”,“返回卫星等离子体鞘套”及中美合作科学卫星项目等研究工作,还承担了航天部关于卫星表面电位和星内粒子辐射方面的重要任务。此外,本专业还进行“电离层多普勒效应”和“宇宙噪声”的日常观测,具有电离层垂直和斜向探测的能力。并已开始向美国地球物理中心交换观测资料。 本专业同国际一些知名的空间物理研究单位,如美国加州大学洛杉矶分校地球与行星物理研究所、德国马克斯普朗克高空物理研究所等,以及国内空间和科学研

中科院地球物理学

中科院研究生院硕士研究生入学考试 《地球物理学》考试大纲 本“地球物理学”考试大纲适用于中国科学院研究生院固体地球物理与地球动力学等专业的硕士研究生入学考试。“地球物理学”是相关学科专业的基础理论课程,它的主要内容包括地震学、重力与固体潮、地磁学、地热学及海底扩张与板块构造等部分。要求考生对其基本概念有比较深入的了解,掌握基本原理、方法及一般应用。 一、考试内容 (一)介质弹性与波动理论基础 1.弹性介质、应力与形变 2.弹性介质中的波动传播方程 3.弹性介质中的平面波与球面波 4.界面的影响 5.射线理论 (二)地震学基础 1.断层错动和地震波激发 2.地震仪与地震观测记录,地震的烈度、能量和震级 3.地震发震时间与震源位置的基本确定方法 4.地震体波的走时、振幅与理论地震图 5.球面层中地震体波的走时和地球内部基本构造 6.各种常见震相标示规则及其射线路径 7.地震面波的波动方程、频散方程和上地幔结构 8.地球的自由振荡 (三)地球势理论基础 1.地球重力位与地球形状 2.地球重力异常与地球内部构造 3.地球的固体潮 4.地球磁场的一般性质 5.岩石磁性与古地磁 6.地磁成因 7.地磁感应与地球内部的电导性 (四)热流与地球内部温度 1.热传导、热对流与热辐射 2.大地热流

3.热流方程的简单应用 4.地球内部温度 (五)大陆漂移、海底扩张和板块构造 1.大陆漂移与洋底扩张学说 2.板块构造与运动的基本理论与方法 3.地幔对流的基本理论 二、考试要求 (一)介质弹性与波动理论基础 1、了解并掌握地震波的弹性介质理论基础:弹性力学对介质的四个基本假定,应力与形变的基本定义,应力方程的推导过程以及包括杨氏模量与泊松比在内的五个弹性常数之间的相互关系; 2、熟练推导弹性介质中的波动传播方程,掌握纵波与横波的传播特征,了解其速度与密度及相关弹性常数的相互关系; 3、掌握弹性介质中的平面波与球面波的传播特征,特别是在简谐波情况下的振动与传播特征的异同; 4、了解界面的存在对入射纵(横)波、反射纵(横)波及折射纵(横)波的影响,并且掌握平面纵(横)波转播过程中折射系数与反射系数、转换系数的推导; 5、了解地震波射线理论中的费马原理,Snell定律,射线常数、本多夫定律、首波路径、首波临界角等基本概念。 (二)地震学基础 1、了解天然地震基本成因和断层错动激发地震波的基本概念;了解地震仪与地震观测记录的基本原理;了解地震烈度、能量和震级的基本定义;掌握地震发震时间与震源位置的测定原理与基本方法; 2、对于单个水平界面、单个倾斜界面及多层界面,掌握直达波、反射波与首波的走时方程的推导过程;掌握非匀速介质中迴折波参数方程形式的走时公式的推导,了解在不同速度分布函数的形式下,走时曲线的特征;了解平面层中体波的能量与振幅的关系并掌握在平面简谐波情况下的推导,了解直达波、迴折波、反射波与首波情况下,传播过程中的能量发散过程,以及自由界面对入射平面波的能量分配过程的影响等;简单了解地震体波的振幅受到哪些因素的影响以及利用广义射线理论求解理论地震图的基本原理; 3、掌握球面层中地震体波的射线参数方程与本多夫定律等的推导,不同的速率—深度分布曲线情况下对应的地震射线及其走时方程的推导,并了解正常及特殊情况下的走时曲线特征,掌握走时反演的古登堡方法与赫格罗兹—贝特曼—威歇特方法的一般原理与推导过程; 4、了解并掌握常用地震震相的标示规则及其传播过程中的射线路径、走时及振幅特征; 5、了解地震面波与地震体波在传播过程中的异同点,掌握洛夫波与雷利波的传播特征及在一些简单模型下的波动方程和频散方程;了解地震面波的频散方程及其所反映的地球内部构造,了解并掌握群速度与相速度的基本概念及其相互关系推导与计算方法;

无线充电技术(四种主要方式)原理与应用实例图文详解

无线充电已经在电动牙刷、电动剃须刀、无绳电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域及电动汽车和列车领域。未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA 等电器放在桌上就能够立即供 电。 以下是四种主要无线充电方式: 无线充电方式 充电 效率 使用频率范围 传输距离 电场耦合方式 电磁感应方式 92% 22KHz 数mm-数cm 磁共振方式 95% 13.56MHz 数cm-数m 无线电波方式 38% 2.45GHz 数m- 1.电磁感应方式

无线供电驱动一枚60W电灯泡,效率高达75%。 电磁感应无线充电产品示意图

电磁感应方式,送电线圈与受电线圈的中心必须完全吻合。稍有错位的话,传输效率就会急剧下降。下图靠移动送电线圈对准位置来提高效率。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”, 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。

在伦 敦利用其最新研发的感应式电能传输技术成功实现为电动汽车无线充电。在展示过程中,该公司将电能接收垫安装于雪铁龙电动汽车车身下侧,这样电池就可以通过无线充电系统进行无线充电。

电动牙刷无线充电示意图 一种无线充电器发送和接收原理图

2. 磁共振方式 磁共振方式的原理与声音的共振原理相同。排列好振动频率相同的音叉,一个发声的话,其他的也会共振发声。同样,排列在磁场中的相同振动频率的线圈,也可从一个向另一个供电。 相比电磁感应方式,利用共振可延长传输距离。磁共振方式不同于电磁感应方式,无需使线圈间的位置完全吻合。 应用: 三菱汽车展示供电距离为20cm,供电效率达90%以上。线圈之间最大允许错位为20cm。如果后轮靠在车挡上停车,基本能停在容许范围内。 索尼公司发布的一款样机:无电源线的电视机利用磁场共振实现无线供电的电视机。 还有将供电线圈埋入道路中,在红灯停车时和行驶中为电动汽车充电的构想,以及利用植入轨道中的线圈为行驶中的磁悬浮列车供电的设想。 磁共振方式由能量发送装置,和能量接收装置组成,当两个装置调整到相同频率,或者说在一个特定的频率上共振,它们就可以交换彼此的能量。

地球物理学应用中的人工智能和动力系统

地球物理学应用中的人工智能和动力系统 Alexei Gvishiani, Schmidt United Institute of Physics of the Earth RAS, Russia Jacques Octave Dubois, Institut de Physique du Globe de Paris, France Artificial Intelligence and Dynamic Systems for Geophysical Applications 2002, 347pp. Hardcover EUR 119.00 ISBN 3-540-43258-2 Springer-Verlag 本书是一套两卷的丛书,作者用新的人工智能和动力系统技术采集、管理和研究地球物理学数据。第1卷《地球物理学应用中的动力系统和动力学分类》已于1998年发表,本书为该丛书的第2卷,介绍地球物理学、地球动力学和自然灾害中应用新的几何分类归并方案、动力系统和模式识别算法等论题。原来的数学技术是建立在经典和模糊系模型上的,而应用本书描述的人工智能技术大大超越地球科学应用的界限。

全书分成两部分,共有6章。第一部分用人工智能分析地球物理数据(有3章),涉及用几何分类归并和模糊逻辑解决地球物理数据分类问题的新概念和新方法。第1章动力学和模糊逻辑群集和分类;第2章地物理学、地震学和工程地震学中的应用;第3章地震易发区的识别和地震风险评估。第二部分分形和动力系统(有3章),讨论不同的理论工具及它们在用大的地球物理数据集的自然系统模化中的应用,用分形和动力系统分析地貌(大陆和海洋)、水文、深海探测、重力、地震、地磁和火山所生成等的数据。第4章分形和多分形;第5章动力系统的特性和长时间系;第6章结论和远景。 本书可供从事地球物理学研究和实际工作的科学家、工程师,以及大学教师和高年级学生参考。 罗银芳,研究员(中国科学院计算技术研究所) Luo Yinfang, Professor (Institute of Computing Technology, the Chinese Academy of Sciences)

地球物理学基础复习资料.docx

绪论 一.地球物理学的概念,研究特点和研究内容 它是以地球为研究对象的一门应用物理学,是天文学,物理学与地质学Z间的边缘学科。 地球物理学应用物理学的原理和方法研究地球形状,内部构造,物质组成及其运动规律,探讨地球起源,形成以及演化过程,为维护生态环境,预测和减轻地球自然灾害,勘探与开发能源和资源做出贡献。包扩地震学,地磁学,地电学,重力学,地热学,大地测量学,大地构造物理学,地球动力学等。 研究特点:1?交叉学科地球物理学由地质学和物理学发展而来,随着学科本身的发展,它不断产生新的分支学科,同时促进了各分支学科的相互交叉,加强了它与地球科学各学科之间的联系。2.间接性都是通过观测和研究物理场的信息内容实现地质勘查目标,研究的不是地质体本身,而是其物理性质。3多解性止演是唯一的,而反演存在多解。不同的地质体具有不同的物理性质,但产生的物理场可能相同。不同的地质体具有相近的物理性质,由于观测误差,物理场的观测不完整以及物理场特点研究不够,产生多解。不同的地质体具有相同的物理性质,即使知道了地质体的物性分布,也无法确定其地质属性。地球物理学的总趋势:多学科综合和科学的国际合作。二?地球物理学各分支所依据的物理学原理和研究的物性参数。 地震学:波在弹性介质屮的传播。地震体波走时,而波频散,自由振荡的本征谱特征重力学:牛顿万有引力定律。地球的重力场和重力位 地磁学:麦克斯韦电磁理论。地磁场和地磁势。 占地磁学:铁磁学。岩石的剩余磁性。 地电学:电磁场理论。天然电场和大地电场 地热学:热学规律,热传导方程。地球热场,热源。 第一章太阳系和地球 一?地球的转动方式。 1?自转地球绕地轴的一种旋转运动,方向自西向东,转速并非完全均匀,冇微小变化。 2.公转地球绕太阳以接近正圆的椭圆轨道旋转的运动。 3?平动地球随整个太阳系在宇宙太空屮不停地向前运动。 4?进动地球曲于旋转,赤道附近向外凸出,口月对此凸出部分的吸引力使地轴绕黄轴转动,方向门东向曲。这种在地球运动过程中,地轴方向发生的运动即为地球的进动。 5. 章动。地轴在空间的运动不仅仅是沿一平滑圆锥面上的转动,地轴还以很小的振幅在锥面内,外摆动,地球的这种运动叫章动。 二.地球的形状及影响因索。 地球为一梨形不规则回转椭球体。 影响因素:1?地球的自引力…正球体;2?地球的自转■…标准扁球体;3.地球内部物质分布不均匀-不规则冋转椭球体

大学物理尖端放电演示实验

实验名称:尖端放电 演示内容:演示尖端放电原理的应用:避雷针。 仪器装置:高压电源、模拟避雷针装置。 【实验原理】 当避雷针演示仪接通静电高压电源后,绝缘支架上的两个金属板带电了。在极板间电压超过1万伏时,由于导体尖端处电荷密度大于金属球处,所以金属尖端附近形成了强电场,在强电场的作用下,空气分子被电离,致使极板和金属尖端之间处于连续的电晕放电状态,即尖端放电现象。而金属球与极板间的电场不能达到火花放电的数值,故金属球不放电。在实际应用中,尖端导体与大地相连接,云层中的电荷通过导体与大地中和,因而避免了人身和物体遭到雷电等静电的伤害。如高层建筑物顶端都安有高于屋顶物体的金属避雷针。 【实验操作与现象】 1.将静电高压电源正、负极分别接在避雷针演示仪的上下金属板上,把带支架的金属球放在金属板两极之间。接通电压,金属球与上极板间形成火花放电,可听到劈啪声音,并看到火花。若看不到火花,可将电源电压逐渐加大。演示完毕后,关闭电源。 2.用带绝缘柄的电工钳将带支架的顶端呈圆锥状(尖端)的金属物体也放在金属板两极之间,此时金属球和尖端的高度一致。接通静电高压电源,金属球火花放电现象停止了,但可听到丝丝的电晕放电声,看到尖端与上极板之间形成连续的一条放电火花细线。若看不到放电火花细线,将电源电压提高。演示完毕后,关闭电源。 【注意事项】 1.由于电源电压较高,关闭电源后,不能完全充分放电,故每一步演示后都应取下电源任一极与另一极接头相碰触人工进行放电,以确保仪器设备和操作者的安全。 2.晴天演示电源电压应降低些,阴天演示电源电压应提高些。 3.静电高压电源是用一号电池供电,改变电池伏数(即改变电池电压输出电

电磁感应现象及其应用生活实践中

西北农林科技大学 电磁感应现象及其应用 学院:风景园林艺术学院 班级:园林134 姓名:崔苗苗 学号:2913911465 134

电磁感应现象及其在生活中的应用 西北农林科技大学风景园林艺术学院 姓名崔苗苗班级园林134班学号 2013011465 摘要自法拉第历经十年发现电磁感应现象后,电磁感便开始应用生活中。话筒, 电磁炉,电视机,手机等生活用品,无不与人类生活息息相关,极大地方便了我们的生活,推动了社会历史的进步和发展。同时,它的应用也是理论向实践不断探索和改进的过程,理论唯有应用于实践,才更能发挥它的价值。 关键词电磁感应现象生活应用 电磁感应现象的发现不仅揭示了电与磁之间的内在联系,而且为电与磁之间的转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在生活中具有重大的意义。它的发现,标志着一场重大的工业和技术革命的到来。在电工技术,电子技术以及电磁测量等方面都有广泛的应用,人类社会从此迈入电气化时代,对推动生产力和科学技术发展发挥了重要作用。物理发现的重要性由此可见。本文主要介绍了电磁感应现象及其在人类生活中的相关应用。 一.电磁感应现象定义 闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。而闭合电路中由电磁感应现象产生的电流叫做感应电流。 二.电磁感应发现历程 电磁学是物理学的一个重要分支,初中时代的奥斯特实验为我们打开电磁学的大门,此后高中三年这一部分内容也一直是学习的重中之重。继1820奥斯特实验之后,电与磁就不再是互不联系的两种物质,电流磁效应的发现引起许多物理学家的思考。当时,很多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,而迈克尔·法拉第即为其中一位。他在1821年发现了通电导线绕磁铁转动的现象,然后经历10年坚持不懈的努力,最终于1831年取得突破性进展。 法拉第将两个线圈绕在一个铁环上,其中一个线圈接直流电源,另一个线圈接电流表。他发现,当接直流电源的线圈电路接通或断开的瞬间,接电流表的线圈中会产生瞬时电流。而在这个过程中,铁环并不是必须的。无论是否拿走铁环,再做这个实验的时候,上述现象仍然发生,只是线圈中的电流弱些。 为了透彻研究电磁感应现象,法拉第又继续做了许多的实验。终于,在1831年11月24日,他在向皇家学会提交的一个报告中,将这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、

应用地球物理学

中科院研究生院硕士研究生入学考试 《应用地球物理》考试大纲 本《应用地球物理》考试大纲适用于中国科学院研究生院地球物理学各专业的研究生入学考试。应用地球物理学是研究地球物理场空间与时间分布规律以实现地质勘查和找矿目标的一门应用科学。通过观测和研究不同岩、矿石间物理性质的差异,利用物理学原理分析和解释各种地球物理场的特点和意义。要求考生准确掌握应用地球物理基本概念和基本原理,了解主要的六种(重、磁、电、震、放射性和地热)勘探方法。考试内容包括三部分:(1)重力勘探与磁法勘探;(2)电法勘探、放射性测量与地热测量;(3)地震勘探。试题内容包括名词解释(50分)、简答题(50分)、综合计算证明题(50分)。 一、考试内容 (一)应用地球物理基础知识 1.基本概念和基础理论 2.常见岩石的物性差异 3.地球物理场基本知识 4.地球物理勘探方法特点 (二)重力勘探 1.地球重力场的组成 2.正常重力场与重力异常 3.重力测量与重力观测资料改正的基本方法 4.重力异常数据处理与解释的基本方法 (三)磁法勘探 1.地球磁场的组成及基本特征 2.岩石的磁性 3.磁测工作和资料改正的基本方法 4.磁异常数据处理和解释的基本方法 (四)电法勘探 1.电阻率法 2.充电法和自然电场法 3.激发极化法 4.电磁感应法 (五)放射性和地热勘探 —1—

1.放射性的基本知识 2.放射性测量原理及野外工作方法 3.地热学基本知识 4.地温梯度与岩石热物理参数的常用测量方法 (六)地震勘探 1.地震波的动力学 2.地震波的运动学 3.地震勘探的野外工作方法 4.地震资料的数据处理与解释 二、考试要求 (一)应用地球物理基础知识 1.掌握地球物理勘探方法的基本分类、理论基础及应用范围 2.熟悉常见岩石的形态特征、物性特点及其差异 3.了解不同矿藏的地球物理异常特点 (二)重力勘探 1.熟悉地球重力场模型 2.了解重力测量野外工作方法 3.熟悉常见岩(矿)石密度 4.掌握重力异常数据处理方法 5.熟悉重力资料解释的基本步骤和方法 (三)磁法勘探 1.熟悉地磁要素及地磁场的解析表示 2.了解磁法勘探野外工作方法 3.熟悉常见岩石磁性特征 4.掌握磁异常各分量转换方法及简单形体磁异常解释方法 (四)电法勘探 1.掌握岩石电阻率的测定方法,熟悉电阻率剖面法、测深法基本装置类型 2.了解岩石的自然极化特性,熟悉常见自然极化电场特点及自然电场法的应用 3.了解岩石的激发极化机理,熟悉激发极化的频率特性、时间特性及其应用 4.掌握电磁法的理论基础,熟悉电磁测量剖面法、测深法的分类特点及应用(五)放射性和地热勘探 1.熟悉放射性现象及α射线、β射线、γ射线的基本特点 2.了解放射性测量方法原理 3.熟悉地热学中的常见物理量含义及岩石热物理性质 4.了解地球热结构特点,掌握大地热流密度的含义和测量方法 (六)地震勘探 —2—

应用地球物理学习题答案

一、名词解释 1地震勘探:是以不同岩石、矿石间的弹性差异为基础,通过观测和研究地震波在地下岩石中的传播特性,以实现地质勘查目标的一种研究方法。 2震动图:用μ~t坐标系统表示的质点振动位移随时间变化的图形称为地震波的震动图。 3波剖面图:某一时刻t质点振动位移μ随距离x变化的图形称之为波剖面图。4时间场:时空函数所确定的时间t的空间分布称为时间场。 5等时面:在时间场中,如果将时间值相同的各点连接起来,在空间构成一个面,在面中任意点地震波到达的时间相等,称之为等时面。 6横波:弹性介质在发生切变时所产生的波称之为横波,即剪切形变在介质中传播又称之为剪切波或S波。 7纵波:弹性介质发生体积形变(即拉伸或压缩形变)所产生的波称为纵波,又称压缩波或P波。 8频谱分析:对任一非周期地震阻波进行傅氏变换求域的过程。 9波前面:惠更斯原理也称波前原理,假设在弹性介质中,已知某时刻t1波前面上的各点,则可把这些点看做是新的震动源,从t1时刻开始产生子波向外传播,经过Δt时间后,这些子波波前所构成的包拢面就是t1+Δt时刻的新的波前面。10视速度:沿观测方向,观测点之间的距离和实际传播时间的比值,称之为视速度。V* 11观测系统:在地震勘探现场采集中,为了压制干扰波和确保对有效波进行√×追踪,激发点和接收点之间的排列和各排列的位置都应保持一定的相对关系,这种激发点和接收点之间以及排列和排列之间的位置关系,称之为观测系统。

12水平叠加:又称共反射点叠加或共中心点叠加,就是把不同激发点不同接收点上接收到的来自同一反射点的地震记录进行叠加。 13时距曲线:一种表示接收点距离和地震波走时的关系曲线,通常以接收点到激发点的距离为横坐标,地震波到达该接收点的走时为纵坐标。 14同向轴:在地震记录上相同相位的连线。 15波前扩散:已知在均匀介质中,点震源的波前为求面,随着传播距离的增大,球面逐渐扩展,但是总能量保持不变,而使单位面积上的能量减少,震动的振幅将随之减小,这称之为球面扩散或波前扩散。 二、判断题 1.视速度小于等于真速度。× 2.平均速度大于等于均方根速度。× 3.仅在均匀介质时,射线与波前面正交。× 4.纵波和横波都是线性极化波。× 5.地震子波的延续时间长度同它的频带宽度成正比。× 6.倾斜界面情况下,折射波上倾方向接收时的视速度等于下倾方向的视速度。× 7.折射波时距曲线是通过原点的直线,视速度等于界面速度。× 12.瑞雷面波是线性极化波。× 8.折射波的形成条件是地下存在波阻抗界面。× 9.对水平多层介质,叠加速度是均方根速度。√ 10.从各个方向的测线观测到的时距曲线极小点位置,一般可以确定反射界面的大致倾向。√ 11. 相遇观测系统属于折射波法的观测系统√

尖端放电现象以及尖端尺寸对放电的影响

尖端放电现象以及尖端尺寸对放电的影响 要求:通过查阅资料,解释尖端放电现象。建立不同尖端放电模型,研究电场分布及能量分布图,进行比较,得出结论。 例如:建立如下模型仿真其放电情况 小组成员:XXX XXX XXX

尖端放电现象以及尖端尺寸对放电的影响 原理解释 处于静电平衡状态的导体,导体内部没有电荷,电荷只分布在导体的外表面(这是因为,假设导体内部有电荷,导体内部的场强就不可能为零,自由电荷就会发生定向移动,导体也就没有处于静电平衡状态);在导体表面,越尖锐的位置,电荷的密度(单位面积的电荷量)越大,凹陷的位置几乎没有电荷(关于这一点,不妨设想一个极端情况的例子:一枝缝衣针,带电后由于同种电荷相互排斥,电荷自然要被“挤”到针的两端)。 导体尖端的电荷密度很大,附近的场强很强,空气中残留的带电粒子在强电场的作用下发生剧烈的运动,把空气中的气体分子撞“散”,也就是使分子中的正负电荷分离。这个现象叫做空气的电离(ionization)。中性的分子电离后变成带负电的自由电子和失去电子而带正电的离子。这些带点粒子在强电场的作用下加速,撞击空气中的分子,使它们进一步电离,产生更多的带电粒子。那些所带电荷与导体尖端的电荷符号相反的粒子,由于被吸引而奔向尖端,与尖端上的电荷中和,这相当于导体从尖端失去电荷。这个现象叫做尖端放电。 避雷针是利用尖端放电避免雷击的一种设施。它是一个或几个尖锐的金属棒,保持与大地的良好接触。当带电的雷雨云接近建筑物时,由于静电感应,金属棒出现与于云层相反的电荷。通过尖端放电,这些电荷不断向大气释放,中和空气中的电荷,达到避免雷击的目的。 尖端放电会导致高压设备上电能的损失,所以高压设备中导体的表面应该尽量光滑。夜间高压线周围有时会出现一层绿色光晕,俗称电晕,这是一种微弱的尖端放电。 电场矢量分布图

长安大学地球物理学原理-重点

第一章 地球物理学、地球物理学的组成、研究方法与特点 第二章 新星云假说的内容、太阳系的构成 第三章 名词:衰变常数、半衰期 放射性衰变公式测年公式的使用条件及计算 第四章 名词:进动、章动、欧拉自由章动、钱德勒晃动、极移 基本理论:进动、章动和晃动的研究方法、维度观测原理 第五章 名词:地球形状、大地水准面、正常重力、重力异常、固体潮、地球扁率、正常重力公式、(各种)重力校正、相对和绝对重力测量、重力均衡 基本理论与基础知识:地球内部重力场特征、重力均衡与均衡模式、重力校正的物理意义、绝对重力的测量方法、相对重力的测量方法、确定地球形状的步骤 基本技能:重力校正与重力异常的计算 第六章 名词:体波、面波、横波、纵波、地球自由震荡、地震波影区、频散、费马原理 理论:地震波的分类,各类震相的传波、地层的圈层结构、地球自由振荡的分类与特征、snell定理 技能:费马原理与snell定理、拐点法积分法与球对称地球速度分布、各(远、近)震相的传播路径 第七章 名词:地震基本参数、烈度、震级、地震预报 基本理论:全球性地震带的分布及其解释、中国地震带的分布、宏观震中与微观震中异同基本技能:震源机制解的意义与表示方法 第八章 名词:地磁要素、磁子午面、磁偏角、磁倾角、基本磁场、地磁极与磁极、古地磁学、地球磁矩、视电阻率 基本理论:地磁场的基本特征、地磁要素在地表的分布特征、地磁场长期变化特征、物质磁性分类、天然剩磁的分类、热剩磁的特点、古地磁学的基本原理和工作方法、电磁场的穿透深度及影响因素、地球电场的研究方法、地磁场高斯系数的物理意义 基本技能:磁偶极子场的计算 第九章 名词:热流、热导率、比热、热扩散系数、热产率、大地热流 基本理论:地球内部的热原类型、地球内部热的传输机制、热流测量的影响因素、全球热流分布特征、地球内部分布特征 基本技能:地表热流的测量方法 第十章 名词解释:转换断层 基本理论:板块构造理论的地球物理观测依据、板块边界的三种形态 技能:利用板块构造理论解释地震活动性

尖端放电论文

尖端放电 本周我们又上了一堂别开生面的物理演示实验课。这次的演示实验大多数都是跟电磁学有关的,跟我们正在学习的内容紧密相联,增长了见识又加深了对课本的理解。 本次课上看到了许多有趣的实验,像尖端放电,卢瑟福散射实验,电磁阻尼摆等等,每一个都让我印象深刻。但给我印象最深的就是尖端放电,这也是本次实验课中最危险的。尖端放电这个词我们从小就听说了,原先就是知道电能从尖的地方释放出去,并不明白其原理。到了中学时期,老师给做了“电风转筒”,“电风吹烛”等趣味物理实验,使我对电学的神奇现象更加的感兴趣了,直到本学期上了大学物理课我终于明白了其中的道理。 尖端放电简单的说就是在强电场作用下,物体尖锐部分发生的一种放电现象。他属于一种电晕放电。这是因为导体尖锐处曲率很大,电荷面密度就大,因而电势梯度大,尖端附近的电场特别强,当场强超过空气的击穿场强时就会发生空气被电离的放电现象,叫做尖端放电。 尖端放电在我们的生活中有很多的应用。小的方面主要是电子打火装置,比如打火机,燃气炉,燃气热水器等都是靠尖端放电产生的火花来点火的。由于这种放电的能量较大,所以其引燃引爆及引起人体电击的危险性较大。大的方面主要就是避雷针。当带电云层靠近建筑物时,建筑物会感应上与云层相反的电荷,这些电荷会聚集到避雷针的尖端,达到一定的值后便开始放电,这样不停的将建筑物上的电荷中和掉,永远达不到会使建筑物遭到损坏的强烈放电所需要的电荷。 将尖端放电知识与静电屏蔽知识结合起来就可以应用到生活中更多的地方,比如在高压带电作业中工人常常穿上用金属丝或导电纤维织成的均压服,这样可以对人体起屏蔽保护作用,避免人受到电击伤害。还有家喻户晓的鸟巢,运用的不是避雷针,而是避雷网。“鸟巢” 的整个“钢筋铁骨”就是一个“笼式避雷网”。为了防止雷击对人体的伤害,场馆内人能触摸到的部位上,比如钢结构,都作了特殊处理,抵消了雷电对人的影响,绝对不会伤害到人。同时,“鸟巢”内几乎所有的设备都和避雷网连接,保证雷电来临的一瞬间,能顺利将巨大电流导入地下,保证了场馆自身、仪器设备和人身的安全。 我觉得我们还可以利用它进行除尘工作。对于工厂烟囱中放出的煤粉颗粒,若在烟囱中加两个电极,一边是烟囱管,另一边是一根粗裸导线,加强其中的电场使其电离气体的能力加强,以便使煤粉带上电离出的电子而被正电极吸引而被除去。这是我自己的想法,不一定可行。 这次的演示实验课让我明白了许多,电学给我们的工作生活带来了方便,但是如果使用不当也会造成很大的损失,正像中国一句古话说的“水能载舟亦能覆舟”。对于自然及各种物理现象,如果我们能准确把握它们的规律,并合理运用,就会对人类的生活造福深远。而若忽视规律,不合理的滥用,即使是很小的事情,亦会造成灭顶之灾。

《地球物理学原理》课程简介

《地球物理学原理》课程简介 课程编号: 14120 课程名称:地球物理学原理 英文名称:Principles of Applied Geophysics 学时:100 学分: 5 课程简介: 《地球物理学原理》是地球物理和应用地球物理专业的主干专业课程,也是新调整后的地矿类工科本科专业的主要专业基础课之一。 《地球物理学原理》是应用地球物理专业的新课程体系-“应用地球物理学原理”、“应用地球物理的数据采集与处理”、“地球物理反演的基本理论及应用方法”和“地球物理方法的综合应用与解释”4本专业系列课程的第1门课程,是整个专业系列课程的基础。 《地球物理学原理》课程是应用地球物理专业的必修专业课程之一。它的主要任务和目的是从应用地球物理学科的整体角度上,系统地向学生传授应用地球物理的基础知识、基本原理和基本方法,使学生能完整和系统地掌握应用地球物理的专业基础知识,具有专业基础扎实,知识面较宽,适应性较强,为后续的专业课程的学习及以后的工作打好良好的专业基础。 本课程共九章,由四个部分组成: 1)应用地球物理方法的物质基础,重点为物性参数及影响因素; 2)地球物理场的基本特征,重点为地球物理正常场特征的叙述; 3)应用地球物理常用的正演方法,主要为数值模拟方法和物理模拟方法; 4)常用应用地球物理方法的基本原理,主要包括重力、磁法、电法、地震、放射性、地热和测井等方法的基本原理。 本课程的先导课程为数学、物理、场论、计算方法和地质基础课,后续课为“应用地球物理的数据采集与处理”、“地球物理反演的基本理论及应用方法”和“地球物理方法的综合应用与解释”。 授课对象:地球物理专业、工科勘察技术专业的本科生 教材:张胜业、潘玉玲主编,应用地球物理学原理,中国地质大学出版社,2004 参考书: 1.罗孝宽、郭绍雍,应用地球物理教程——重力磁法,地质出版社,1991 2.傅良魁,应用地球物理教程——电法放射性地热,地质出版社,1991 3.何樵登、熊维纲,应用地球物理教程——地震,地质出版社,1991 4.周远田,地球物理测井教程,中国地质大学出版社,1999 主讲教师:张胜业、徐义贤、张玉芬、顾汉明、潘和平等 开课教师所在的院系:地空学院地球物理系

相关主题
文本预览
相关文档 最新文档