当前位置:文档之家› 电抗器与电感器的区别是什么

电抗器与电感器的区别是什么

电抗器与电感器的区别是什么
电抗器与电感器的区别是什么

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/858090875.html,)电抗器与电感器的区别是什么

电力系统中常叫电抗器,电子电路常叫电感器。电抗器与电感器是两个即相互联系又几乎完全不同的两个概。但是二者的应用领域以及工作原理是完全不同的以下介绍电抗器与电感器的区别,虽然电感器也可以叫电感器。

一、电感器

1、电感器的简述

简称为电感。电感器也是能够把电能转化为磁能而存储起来的元件。电感器是用绝缘导线绕制的各种线圈称为电感器。

阻交流和储能。电感的两个最主要的作用就是滤波(通直流。但只有一个绕组。如果电感器中没有电流通过,电感器的结构类似于变压器。则它阻止电流流过它如果有电流流过它则电路断开时它将试图维持电流不变。电感器又称扼流器、电抗器、动态电抗器。

导线的周围会产生一定的电磁场,电感器是一种常用的电子元器件。当电流通过导线时。并在处于这个电磁场中的导线发生感应电动势—自感电动势,将这个作用称为电磁感应。为了加强电磁感应,人们常将绝缘的导线绕成一定圈数的线圈,将这个线圈称为电感线圈或电感器,简称为电感。

线圈两端将会发生自感电动势,电感器具有阻止交流电通过而让直流电顺利通过的特性。直流信号通过线圈时的电阻就是导线自身的电阻压降很小;当交流信号通过线圈时。自感电动势的方向与外加电压的方向相反,阻碍交流的通过,所以电感器的特性是通直流、阻交流,频率越高,线圈阻抗越大。电感器在电路中经常和电容器一起工作,

构成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了阻流圈、变压器、继电器等。

2、电感器的种类:

①电感器可分为空心电感器(空心线圈)与实心电感器(实心线圈)依照外形。

②电感器可分为高频电感器(各种天线线圈、振荡线圈)和低频电感器(各种扼流圈、滤波线圈等)依照工作性质。

③电感器可分为普通电感器、色环电感器、环氧树脂电感器、贴片电感器等。。

④电感器可分为固定电感器和可调电感器。依照电感量。

印制电路板上一段特殊形状的铜皮也可以构成一个电感器,高频电子设备中。通常把这种电感器称为印制电感或微带线。微带线在电路原理图中通常用图1所示的符号来表示,如果只是一根短粗黑线,则称其为微带线;若是两根平行的短粗黑线,则称其为微带线藕合器。电路中,微带线耦合器的作用有点类似变压器,用于信号的变换与传输,有时也称为互感器。

经常可以看到有许多磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈作为电感线圈)电子电路中常用的抗干扰元件,电子设备中。对于高频噪声有很好的屏蔽作用,故被称为吸收磁环,由于通常使用铁氧体材料制成,所以又称铁氧体磁环(简称磁环)上面为一体式磁环,下面为带安装夹的磁环。磁环在不同的频率下有不同的阻抗特牲。一般在低频时阻抗很小,当信号频率升高后磁环的阻抗急剧变大。

信号频率越高,大家都知道。越容易辐射进来,而一般的信号线都是没有屏蔽层的这些信号线就成了很好的天线,接收周围环境中各种杂乱的高频信号,而这些信号叠加在原来传输的信号上,甚至会改变原来传输的有用信号,严重干扰电子设备的正常工作,

因此降低电子设备的电磁干扰(EM已经是必需考虑的问题。磁环作用下,即使正常有用的信号顺利地通过,又能很好地抑制高频于扰信号,而且利息低廉。

二、电抗器

1、电抗器的简述

主要用于电力系统中的一种恒流和稳压的实质上是一个无导磁材料的空心线圈。可以根据需要布置为垂直、水平和品字形三种装配形式。电力网中所采用的电抗器。会发生数值很大的短路电流,电力系统发生短路时。如果不加以限制,要坚持电气设备的动态稳定和热稳定是非常困难的因此,为了满足某些断路器遮断容量的要求,常在出线断路器处串联电抗器,增大短路阻抗,限制短路电流。发生短路时,由于采用了电抗器。电抗器上的电压降较大,所以也起到维持母线电压水平的作用,使母线上的电压动摇较小,保证了非故障线路上的用户电气设备运行的稳定性。

2、电抗器按用途分为7种:以限制短路电流的数值。

①限流电抗器。串联于电力电路中。起无功补偿作用。

②并联电抗器。一般接在超高压输电线的末端和地之间。用以阻挡载波信号。

③通信电抗器。又称阻波器。串联在兼作通信线路用的输电线路中。使之进入接收设备。用以在三相电网的一相接地时供给电感性电流。

④消弧电抗器。又称消弧线圈。接于三相变压器的中性点与地之间。以弥补流过接地点的电容性电流,使电弧不易起燃,从而消除由于电弧多次重燃引起的过电压,以消除电力电路某次谐波的电压或电流。

⑤滤波电抗器。用于整流电路中减少竹流电流上纹波的幅值;也可与电容器构成对某种频率能发生共振的电路。限制其短路电流。

⑥电炉电抗器。与电炉变压器串联。限制其起动电流。

⑦起动电抗器。与电动机串联。一个导体通电时就会在其所占据的一定空间范围发生磁场,电抗器也叫电感器。所以所有能载流的电导体都有一般意义上的感性。然而通电长直导体的电感较小,所产生的磁场不强,因此实际的电抗器是导线绕成螺线管形式,称空心电抗器;有时为了让这只螺线管具有更大的电感,便在螺线管中插入铁心,称铁心电抗器。

电容及电感也会阻碍电流的流动,交流电的领域中则除了电阻会阻碍电流以外。这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。

比较科学的归类是感抗器(电感器)和容抗器(电容器)统称为电抗器,电抗分为感抗和容抗。然而由于过去先有了电感器,并且被称谓电抗器,所以现在人们所说的电容器就是容抗器,而电抗器专指电感器。

本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站;

变宝网官网:https://www.doczj.com/doc/858090875.html,/?qxb

买卖废品废料,再生料就上变宝网,什么废料都有!

串联电抗器的作用

1电抗器的作用 串联电抗器顾名思义就是指串联在电路中电抗器(电感),无功补偿和谐波治理行业内的串联电抗器主要是指和电容器串联的电抗器,电抗器和电容器串联后构成谐振回路,起到消谐或滤波的作用,而电抗器在谐振回路中起的作用如下: 1.1降低电容器组的涌流倍数和涌流频率。 降低电容器组的涌流倍数和涌流频率,以保护电容器和便于选择配套设备。加装串联电抗器后可以把合闸涌流抑制在1+电抗率倒数的平方根倍以下。国标GB50227-2008要求应将涌流限制在电容器额定电流的20倍以下(通常为10倍左右),为了不发生谐波放大(谐波牵引),要求串联电抗器的伏安特性尽量为线性。网络谐波较小时,采用限制涌流的电抗器;电抗率在0.1%-1%左右即可将涌流限制在额定电流的10倍以下,以减少电抗器的有功损耗,而且电抗器的体积小、占地面积小、便于安装在电容器柜内。采用这种电抗器是即经济,又节能。 1.2与电容器组构成全谐振回路,滤除特征次谐波。 串联滤波电抗器感抗与电容器容抗全调谐后,组成特征次谐波的交流滤波器,滤去某次特征次谐波,从而降低母线上该次谐波的电压畸变,减少线路上特征次谐波电流,提高网络同母线供电的电能质量。 1.3与电容器组构成偏谐振回路,抑制特征次谐波。 先决条件是需要清楚电网的谐波情况,查清周围电力用户有无大型整流设备、电弧炉、轧钢机等能产生谐波的负荷,有无性能不良好的高压变压器及高压电机,尽可能实测一下电网谐波的实际值,再根据实际谐波成分来配置合适的电抗器。 1.4提高短路阻抗,减小短路容量,降低短路电流。 无功补偿支路前置了串联电抗器,当出现电容器故障时,例如电容器极板击穿或对地击穿,系统通过系统阻抗和串联电抗器阻抗提供短路电流,由于串联电抗器阻抗远大于系统阻抗,所以有效降低了电容器短路故障时的短路容量,保证了配电断路器断开短路电流可能,提高了系统的安全、稳定性能。 1.5减少电容器组向故障电容器组的放电电流,保护电力电容器。 当投运的无功补偿电容器组为多个支路时,其中一组电容器出现故障时其它在运行的电容器组会通过故障电容器放电,串联电抗器可以有效减少这种放电涌流,保证保护装置切断故障电容器组的可能性。 1.6减少电容器组的投切涌流,降低涌流暂态过程的幅值,有利于接触器灭弧。 接触器投切电容器的过程中都会产生涌流,串联电抗器可以有效抑制操作电流的暂态过程,有利于接触器触头的断开,避免弧光重燃,引起操作过电压。降低过电压的幅值,保护电容器,避免过电压击穿或绝缘老化。 1.7减小操作电容器组引起的过电压幅值,避免电网过电压保护。 接触器投切电容器的过程中都会产生操作过电压,串联电抗器可以有效抑制接触器触头重击穿现象出现,降低操作过电压的幅值,保护电容器,避免过电压击穿或加速绝缘老化。 随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。产生电网谐波“污染”的另一个重要原因是电网接有冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。这不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。 电能质量的综合治理应遵循谁污染谁治理,多层治理、分级协调的原则。在地区的配电和变

电力系统中目前使用的变压器 电抗器多含有有 、.

简 介 电力系统中目前使用的变压器、电抗器多含有有载调压机构,分接头的位置是变压器、电抗器的重要信息。测控单元在采集分接头位置信号时,通常提供的开关量位置较少,因此通常对分接头位置进行编码,转换成与测控系统相适应的 BCD 方式输出。 该装置是配合变电站实现电力调度自动化、无人值班化的一种自动监测仪器。它将来自主变压器有载调压分接开关的升、降、停调压控制、档位机械分接点位置监测、远方/就地控制等功能集于一体。可以在就地位置实现升、降、停操作,也可以与综合自动化系统的测控装置接口,进行远方遥控操作,并且遥测档位位置。 该装置可以满足三种输入方式:(1)一对一(每个档位对应一付空接点);(2)编码方式(1-9分别对应一付空接点,10位对应一付空接点);(3)BCD 输入方式。 输出方式:BCD 或HEX 输出。 结构上采用了屏柜安装方便快捷。 技术参数 额定工作电压: DC220V/110V 编码输出类型: BCD 或HEX 输出 输入最大档位数:19档(更多档位订货时注明) 档位输入类型: 一对一的输入、编码输入、BCD 输入 装置端子定义图 输出方式: 空接点输出 输出接点容量: 载流容量 5A 接点断弧容量: 60W(220VDC);2000VAC 安装方式: 柜面开孔安装

装置电原理图 装置典型使用接线 接线图如下: 1一对一输入的接线方式 2 编码输入的接线方式(仅适用于BCD输出方式时) 3 BCD输入的接线方式(仅适用于BCD输出方式时) 装置操作说明

运行指示灯:档位控制器上电,运行正常时运行灯点亮(绿色)。 远方、就地选择开关 远方位置:允许测控装置通过档位控制器进行调压机构遥控操作。 就地位置:允许通过装置面板上的升、降按钮进行调压机构操作。 升、降、停按钮 升、降按钮:就地操作时,通过面板上的升、降按钮可以实现调压机构的就地升降;档位控制器面板上的按钮只在就地位置时,升、降才有效。 停按钮:按下停按钮时,切断调压机构电源,禁止调压操作;停接点不受远方就地的控制。 码制转换(√表示输入相应档位时该接点与BCOM为通路) BCD码输出:用跳帽将J2、J4、J8、JA跳至“BCD”位置 BCD码输出逻辑23~44 输入档位数码管显示 1 2 4 8 A 无输入00 档位1 01 √ 档位2 02 √ 档位3 03 √√ 档位4 04 √ 档位5 05 √√ 档位6 06 √√ 档位7 07 √√√ 档位8 08 √ 档位9 09 √√ 档位10 10 √ 档位11 11 √√ 档位12 12 √√ 档位13 13 √√√ 档位14 14 √√ 档位15 15 √√√

电机与变压器试题

电机与变压器试题 1.变压器是将一种交流电转换成()的另一种交流电的静止设备。 A、同频率 B、不同频率 C、同功率 D、不同功率 2.变压器具有改变()的作用。 A、交变电压 B、交变电流 C、变换阻抗 D、以上都是 3.变压器获得最大效率的条件是()。 A、不变损耗大于可变损耗 B、不变损耗小于可变损耗 C、不变损耗等于可变损耗 D、和不变损耗、可变损耗无关 4.将变压器的一次侧绕组接交流电源,二次侧绕组与负载连接,这种运行方式称为()运行。A、空载B、过载C、负载D、满载 5.当变压器带纯阻性负载运行时,其外特性曲线是()的。 A、上升很快 B、稍有上升 C、下降很快 D、稍有下降 6.变压器负载运行时,若所带负载的性质为感性,则变压器副边电流的相位()副边感应电动势的相位。 A、超前于 B、同相于 C、滞后于 D、超前或同相于 7.有一台电力变压器,型号为SJL-560/10,其中的字母“L”表示变压器的()的。 A、绕组是用铝线绕制 B、绕组是用铜线绕制 C、冷却方式是油浸风冷式 D、冷却方式是油浸自冷式 8.一台三相变压器的联接组别为Y,yn0,其中“yn”表示变压器的()。 A、低压绕组为有中性线引出的星形联接 B、低压绕组为星形联接,中性点需接地,但不引出中性线 C、高压绕组为有中性线引出的星形联接 D、高压绕组为星形联接,中性点需接地,但不引出中性线 9.电力变压器大修后耐压试验的试验电压应按“交接和预防性试验电压标准”选择,标准中规定电压级次为6千伏的油浸变压器的试验电压为()千伏。 A、15 B、18 C、21 D、25 10.三相电动势到达最大的顺序是不同的,这种达到最大值的先后次序,称三相电源的相序,若最大值出现的顺序为V-U-W-V,称为()。 A、正序 B、负序 C、顺序 D、相序 11.三相异步电动机的正反转控制关键是改变()。 A、电源电压 B、电源相序 C、电源电流 D、负载大小 12.在三相交流异步电动机定子上布置结构完全相同,在空间位置上互差120°电角度的三相绕组,分别通入(),则在定子与转子的空气隙间将会产生旋转磁场。 A、直流电 B、交流电 C、脉动直流电 D、三相对称交流电 13.电动机是使用最普遍的电气设备之一,一般在70%-95%()下运行时效率最高,功率因数大。 A、额定电压 B、额定负载 C、电压 D、电流 14.异步电动机不希望空载或轻载的主要原因是()。 A、功率因数低 B、定子电流较大 C、转速太高有危险 D、转子电流较大 15.它励直流电动机在启动时,通电方式为()。 A、先通电枢,后通励磁 B、先通励磁,后通电枢 C、电枢和励磁同时通电 D、以上都不对

并联电抗器的选择及保护装置的配置

并联电抗器的选择及保护装置的配置 来源:时间:2007-06-13 字体:[ 大中小 ] 投稿 摘要: 本文讨论了在地方电网工程设计实践中,线路并联电抗器的容量、台数、装设地点、继电保护配置等有关技术问题,对设计人员有一定参考价值。 电抗器分为铁芯的和空芯的两大类。铁芯电抗器有线路并联电抗器和消弧线圈两种,其构造与变压器相似,不同的是其铁芯带有气隙,电抗器的线圈只有一个,不分一次和二次。空芯电抗器有水泥电抗器,用电缆做成空心线圈,沿线圈圆周均匀对称的用水泥浇注,把线圈匝间固定起来。水泥电抗器大多用在大容量发电厂或变电站的输配电系统中。 一、并联电抗器容量及台微选择 二、在大电力系统中,并联电抗器的容量、台数、装设地点、中性点小电抗器参数及伏安特性等的选择比较复杂,需对工频暂态及稳态电压升高、潜供电流及恢复电压、发电机自励磁、谐振过电压等方面进行专题计算、模拟试验和分析比较后才能确定。 对地方小电力系统,我们是对工频电压升高,发电机自励磁计算分析后,再根据小电力系统实际情况来确定并联电抗器容量。其推荐值可按下式初步计算。 若线路电压为110~220千伏,线路长度在300公里以下,取0.4~0.45.线路电压为330千伏,线路长度在300公里以上,可取0.5 Ue——电力网额定线电压(千伏)来源:https://www.doczj.com/doc/858090875.html, Ic.——电力网电容电流(千安) 此值可用计算或直接测量的方法求得.如果能从有关手册查出输电线的电纳,则可直接由下式计算求得:请登陆:输配电设备网浏览更多信息

可查表求得(表略). 根据以上公式计算出并联电抗器容量后进行标准化,选取铁芯式电抗器.其台数决定于并联电抗器总容量的大小,设计容量在10000千乏以上,投切次数少,可选一台集中补偿;8000千乏以下适用于小电力系统、电压等级低,一般选两台分散补偿,有利于运行调整. 并联电抗器可向特种变压器厂订货,选取BKSJ型. 二、装设地点及安装方式 理论上讲,并联电抗器装设地点设在线路的哪一方都可以.但要根据工程实际情况考虑所选并联电抗器电压等级高低、新建工程是否需要补偿,工程扩建时是否有安装地方,控制操作是否方便灵活等各方面因素后再确定. 对大电力系统,补偿容量大,电压高,可集中安装在区域性枢纽变电所高压倒,采用户外安装方式.因投切次数少,在满足开断容量条件下可采用隔离开关和油开关操作. 小电力系统的补偿容量小,电压等级低,可户外分散安装。为了运行、调整投切灵活力便,可采用ZN型真空断路器开关柜. 三、保护装置的配置 (-)装设瓦斯保护.当并联电抗器内部由于短路等原因产生大量瓦斯时,应及时动作并跳闸。当产生轻微瓦斯或油面下降时,应及时发出信号。 瓦斯保护流速整定值的选择,主要取决于并联电抗器容量、冷却方式及导油管直径。目前国内尚无统一标准,均采用经验数据进行整定。 1.并联电抗器容量≤10000千乏、导油管直径≤5.3厘米或瓦斯继电器为QJ1一50型时,流速值可取0.6~0.8米/秒。 2.当并联电抗器容量大于10000千乏以上,导油管直径为8.0厘米或瓦斯继电器为QJ1一80型时,流速值可取0.8~1.2米/秒。 3.对于强迫油循环冷却的并联电抗器不低于1.1米/秒。 (二)装设差动保护或电流速断保护 大容量并联电抗器装设差动保护,小容量若灵敏度满足要求时可装设电流速断保护,以防御并联电抗器内部及其引出线的相间和单相接他短路。在可能出现的最大不平衡电流下,保护装置不应该误动作.并联电抗器装设过电流保护作为差动保护的后备,保护装置带时限动作于跳闸。 (三)装设过负荷保护,以防御电源电压升高和引起并联电抗器的过负荷。保护装置带时限动作后作用于信号。来源:输配电设备网

无功补偿电容器串联电抗器的选用

无功补偿电容器串联电抗器的选用 在高压无功补偿装置中,一般都装有串联电抗器,它的作用主要有两点:1)限制合闸涌流,使其不超过20倍;2)抑制供电系统的高次谐波,用来保护电容器。因此,电抗器在无功补偿装置中的作用非常重要。 然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。 下面总结电容器串联电抗器时,电抗率选择的一般规律。 1. 电网谐波中以3次为主 根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。 2. 电网谐波中以3、5次为主 (1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。 3. 电网谐波以5次及以上为主 (1)5次谐波含量较小,应选择4.5%~6%的串联电抗器;(2)5次谐波含量较大,应选择4.5%的串联电抗器。对于采用0.1%~1%的串两电抗器,要防止对5次、7次谐波的严重放大伙谐振。对于采用4.5%~6%的串联电抗器,要防止怼次谐波的严重放大或谐振。当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器端的电压升高的情况分析计算,可选用0.5%~1%的电抗器。 根据以上的选择原则,对无功补偿装置中的串联电抗器有以下建议: (1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,必须考虑电容器装置接入处的谐波背景。 (2)对于已经投运的电容器装置,其串联电抗器选择是否合理须进一步验算,并组织现场实测,了解电网谐波背景的变化。对于电抗率选择合理的电容器装置不得随意增大或减小电容器组的容量。 (3)电容器组容量变化很大时,可选用于电容器同步调整分接头的电抗器或选择电抗

什么叫稳压器为什么要加稳压器

《稳压器学习入门知识》 1.什么叫稳压器? 稳压器就是根据用电设备的需求提供稳定的输出电压的一种设备。(所谓稳压并不是将电压稳定在某一个数值不变,而是将外界电网的大的波动范围稳定到一个相对较小的波动范围(小的波动范围可以人为设定称为精度)。 2.为什么要配置稳压器? 随着社会飞速前进,用电设备与日俱增。但电力输配设施的老化和发展滞后,以及设计不良和供电不足等原因造成未端用户电压的过低,而线头用户则经常电压偏高,对用电设备特别是对电压要求严格的高新科技和精密设备,独如一颗不定时炸弹。不稳定的电压会使设备造成致命伤害或误动作,影响生产,造成交货期延误、质量不稳定等多方面损失。同时加速设备的老化、影响使用寿命甚至烧毁配件,使业主面临需要维修的困扰或短期内就要更新设备,浪费资源;严重者甚至发生安全事故,造成不可估量的损失。 3.怎么选购稳压器? 稳压器从开发﹑设计﹑材料零件的选购,制造加工﹑寿命试验﹑品管包装及售后服务,其烦杂的流程对于稳压器的质量都息息相关,举凡国内外各大厂商,其质量皆有其差异性,因此使用者在选购稳压器时,应由多层面作考虑,才能达到预期的效果!

质量优劣是决定稳压器所保护的昂贵﹑精密机器设备的使用 寿命首要因素,而制造厂商的专业程度,是产品质量的保证。价格也是决定购买因素,但对价位考虑的利益是短暂的,重视产品质量的利益才是长远的。而良好的售前服务,能让客户多了解电源环境质量、专业电源信息以及产品的技朮规范、附加功能,并提出合适的建议,让客户作多层面的考虑,以便作最佳抉择。同时更要考虑优质的售后服务网和专职的服务人员。所以质量﹑价格及售前、售中、售后服务才是您无虑的选择! 4.稳压器技术参数。 A、稳压器有一个输入电压适应范围。 IEC标准为输入电压在额定值的±10%范围内变化。我公司产品的输入范围是 ±20%。超出范围即自动声光报警且使输出电压自动切断保护。 B、输出电压调整率,是输入电压的变化而引起输出量变化的效应,当负载为额定值时,将输入电压按源电压范围由额定值向上调到上限值和往下限值,测量输出电压的最大变化量(±%)。此值越小越好,是衡量交流稳压器性能的重要指针。 C、负载调整率:是负载的变化引起输出量变化的效应。改变负载电流大小,测量输出电压的变化量(±%)。此值越小越好,也是衡量交流稳压器性能的重要指针。 D、输出电压相对谐波含量(亦称输出电压失真度),通常用THD表示,是谐波含量的总有效值与基波有效值之比,当负载为

电抗器的基本结构

电抗器的基本结构 一、铁心式电抗器的结构 铁心式电抗器的结构与变压器的结构相似,但只有一个线圈——激磁线圈;其铁心由若干个铁心饼叠置而成,铁心饼之间用绝缘板(或纸板、酚醛纸板、环氧玻璃布板)隔开,形成间隙;其铁轭结构与变压器相同,铁心饼与铁轭由压缩装置通过螺杆拉紧,形成一个整体,铁轭和所有的铁心饼均应接地。铁心结构,铁心饼由硅钢片叠成,叠片方式有以下几种: (a)单相电抗器铁心;(b)三相电抗器铁心 (1)平行叠片 其叠片方式,与一般变压器相同,每片中间冲孔,用螺杆、压板夹紧成整体,适用于较小容量的电抗器。 (2)渐开线状叠片 其叠片方式,与渐开线变压器的叠片方式相同,中间形成一个内孔,外圆与内孔直径之比约为4:1至5:1,适用于中等容量的电抗器。 (3)辐射状叠片 其叠片方式,硅钢片由中心孔向外辐射排列,适用于大容量电抗器。 (a)平行叠片;(b)渐开线状叠片;(c)辐射状叠片 在平行叠片铁心中,由于气隙附近的边缘效应,使铁心中向外扩散的磁通的一部分在进入相邻的铁心饼叠片时,与硅钢片平面垂直,这样会引起很大的涡流损耗,可能形成严重的局部过热,故只有小容量电抗器才采用这种叠片方式。在辐射形铁心中,其向外扩散的磁通在进入相邻的铁心饼叠片时,与硅钢片平面平行,因而涡流损耗减少,故大容量电抗器采用这种叠片方式。 铁心式电抗器的铁轭结构与变压器相似,一般都是平行叠片,中小型电抗器经常将两端的铁心柱与铁轭叠片交错地叠在一起,为压紧方便,铁轭截面总是做成矩形或丁形。 二、空心式电抗嚣的结构 空心式电抗器就是一个电感线圈,其结构与变压器线圈相同。空心电抗器的特点是直径大、高度低,而且由于没有铁心柱,对地电容小,线圈内串联电容较大,因此冲击电压的初始电位分布良好,即使采用连续式线圈也是十分安全的。空心

变压器

变压器种类 变压器种类较多,可以根据芯、用途及工作频率等进行分类。(l)按芯种类分类B69000 变压器按芯的种类不同,可分为空心变压器、磁芯变压器和铁芯变压器,它们的图形符号如图3-27所示。 空心变压器是指一、二次绕组没有绕制支架的变压器。磁芯变压器是指一、二次绕组绕在磁芯(如铁氧体材料)上构成的变压器。铁芯变压器是指一、二次绕组绕在铁芯(如硅钢片)构成的变压器。 (2)按用途分类 变压器按用途不同,可分为电源变压器、音频变压器、脉冲变压器、恒压变压器、自耦变压器和隔离变压器等。 (3)按工作频率分类 变压器按工作频率不同,可分为低频变压器、中频变压器和高频变压器。 ①低频变压器。低频变压器是指用在低频电路中的变压器。低频变压器铁芯一般采用硅钢片,常见的铁芯形状有E形、C形和环形,如图3-28所示。

E形铁芯优点是成本低,缺点是磁路中的气隙较大,效率较低,工作时电噪声较大。C形铁芯是由两块形状相同的C形铁芯组合而成的,与E形铁芯相比,其磁路中气隙较小,性能有所提高。环形铁芯由冷轧硅钢带卷绕而成,磁路中无气隙,漏磁极小.工作时电噪声较小。 常见的低频变压器有电源变压器和音频变压器,如图3-29所示。 电源变压器的功能是提升或降低电源电压。其中降低电压的降压变压器最为常见,一些手机充电器、小型录音机的外置电源内部都采用降压电源变压器,这种变压器一次绕组匝数多,接220V交流电压,而二次绕组匝数少,输出较低的交流电压。在一些优质的功放机中,常采用环形电源变压器。 音频变压器用在音频信号处理电路中,如收音机、录音机的音频放大电路常用音频变压器来传输信号,当在两个电路之间加接音频变

电抗器计算公式和顺序

电抗器计算公式和步骤 S=1.73*U*I 4% X=4/S*.9 1. 铁芯直径D D=KPZ0.25 cm K—50~58 PZ—每柱容量kVA 2.估算每匝电压ET ET=4.44fBSP×10-4 V B—芯柱磁密 0.9~1T SP—芯柱有效截面

cm2 3. 线圈匝数 W=UKM/(ET×100)KM—主电抗占总电抗的百分数 U—总电抗电压 V 4. 每匝电压及铁芯磁密 ET=UKM/(W×100) V BM=ET×104/(4.44fSP) T 5. 主电抗计算 选择单个气隙尺寸δ=0.5~3cm 计算行射宽度E E=δ/πln((H+δ)/δ) cm H—铁饼高度,一般5cm 计算行射面积SE

SE=2E×(AM+BM+2E) cm2 AM—叠片总厚度 cm BM—最大片宽 cm 计算气隙处总有效截面积 SM=SF/KF+SE cm2 SF—铁芯截面 KF—叠片系数 计算气隙个数 n=(7.9fW2SM)/(X NδKM×106) XN—电抗Ω 计算主电抗 XM=(7.9fW2SM)/(nδ×108) 如果XM≈X N KM/100则往下进行,否则重新选择单个气隙长度,重复上述计算。 6.

漏电抗计算 Xd=(7.9fW2Sdρ)/(H×108) Ω Sd=2π/3FRF+πRn2-SF/KF ρ=1-2×(RW-RO)/(π×H)式中: F—线圈幅向尺寸 cm RF—线圈平均半径 cm Rn—线圈内半径 cm RW—线圈外半径 cm RO—铁芯半径 cm

H—线圈高度 cm 总电抗X N X N=XM+Xd Ω 附:串联电抗器参数与计算 一基本技术参数 1 额定电压UN (电力系统的额定电压kV) 并联电容器的额定电压U1N 2 额定电流I1 3 额定频率f 4 相数单相三相 5 电抗器额定端电压U1当电抗器流过额定电流时一相绕组二端的电压6 电抗器额定容量P

主变压器和并联电抗器安装安全技术规程

主变压器和并联电抗器安装安全技术规程 2? 基础埋设应符合下列规定: (1)在进行设备受力基础埋件(如基础板、拉锚)和油池内排油管道安装前,应对埋件安装点及施工现场进行清理、检查,以符合安装要求。 (2)埋件安装过程中,应先初定位,待检查方位、高程、中心符合要求后,最终用钢筋加固焊牢。 (3)作业人员应戴防护手套,电焊作业人员应按焊接安全要求进行防护。(4)埋件浇筑完成并待全部模板拆完后再进行检查,检查时应戴防护手套。(5)在钢筋网上作业时,应在作业区架设临时通道。 2? 主变压器、并联电抗器现场搬运、就位应符合下列规定: (1)主变压器、并联电抗器的装卸及运输,应对运输路况及两端的装卸条件进行调查,制定相应的安全技术措施,并经批准后执行。工作前,应向作业人员进行安全技术交底。 (2)搬运工作应有专人统一指挥,指挥信号应清晰明确,不得跨越钢丝绳和用手接触绳索及传动机械,搬运中途暂停时,应有专人监护,并采取停止牵引装置、卡牢钢丝绳、楔住滚轮等安全措施。 (3)轨道运输时,应检查变压器轨道两侧空间有无障碍物。变压器在轨道上行走时,应至少有两人对运输情况进行监视。 (4)主变压器、并联电抗器本体起吊时,应采用专用吊具,并按设备厂家标识的吊点及吊装方法进行吊装,起吊设备下方严禁站人。 (5)主变压器、并联电抗器在运输过程中的速度(包括加速度)、倾斜度均应限制在允许的范围内,运输道路上如有带电裸导线,应采取相应安全措施。

(6)利用机械方法牵引主变压器、并联电抗器本体时,牵引点的布置和牵引的坡度均应满足设备运输要求。当坡度不能满足要求时应采取相应的措施。(7)使用滚杠运输时,道木接缝应错开,搬动滚杠、道木时,不得用手直接调整滚杠,滚动前方不得有人,防止碾压手脚。 (8)搭设卸车(卸船)平台时应考虑车、船卸载时上浮或下沉的位差情况及船体的倾斜情况。 (9)主变压器在运输过程中应有防冲击振动的措施,应安装冲击记录仪,记录沿途受振情况。 (10)应使用螺旋千斤顶顶起或降落主变压器、并联电抗器本体,并辅以油压千斤顶同步跟随保护,所有千斤顶应同步操作,操作速率应一致。 (11)安装运输轮时,应在主变压器、并联电抗器本体下部设置有足够强度的钢支墩。 (12)主变压器安装调整定位后,应及时安装前后的卡轨器或焊接档块,并将外壳进行可靠接地。 2? 变压器油卸车、倒运应符合下列规定: (1)变压器油桶采用吊车卸车时,应使用油桶专用吊具起吊,油桶下严禁站人。 (2)在地面搬运或滚动油桶时,应避让行人。 (3)配电开关应使用空气断路器;不得使用电炉等加热电器。 (4)进入空油罐清扫作业,应打开下部排油孔和上部进人孔。并应采取充足的供氧、通风措施,作业时入口处应有专人监护,防止作业人员缺氧窒息。罐内照明应采用12V低压灯具。

电刷式交流稳压器工作原理

电刷式交流稳压器工作原理 一.稳压器的分类 按调压方式不同分类可分为三类 电子感应式油式稳压器 干式接触式调压稳压器(直接调压稳压器和补偿式调压稳压器) 干式无触点调压式稳压器(一般是带补偿的稳压器) 二.稳压器的分类: 按电源使用环境不同分类可分为两类 单相交流稳压器 三相交流稳压器 三.以干式接触式调压稳压器为例分析稳压器工作原理: 单相交流稳压器原理分析 1.单相SVC直接调压稳压器原理分析 图二

A点为单相稳压器输入侧,B点为单相稳压器的输出侧. 其实这一类用调压器直接调压式的稳压器就是利用自耦变压器的原理做成的.图中AN 侧就是自耦变压器的输入侧,BN侧就是自耦变压器的输出侧,如果输入电压高于输出设置点220V时,这个自耦变压器就工作在降压状态,如果输入电压低于220V时,这个自耦变压器就工作在升压状态.(图中所示就是处在降压状态) 这种稳压器不同于自耦变压器的主要是输入点A是可以由0V到250V之间任意滑动.这样就可以随时调整输入电压的输入点来满足输出电压的恒定.一般我们把输入侧A点叫做滑臂,它由电机通过减速装置来驱动,电机的转向由稳压控制电路来控制完成. 稳压器的取样电路时刻监视稳压器的输出两点间电压,输出电压升高时,控制电机朝自耦变压器降压的方向移动,(如图二)当输出电压达到所要的电压时,停止控制电机运动.反之控制电路则控制电机朝自耦变压器升压的方向转动.(图三)达到所要的电压时停止.

图二 图三 此类稳压器的容量大小全部由这个输出电压可以变压器的自耦变压器来承担,但由于它制造工艺的影响,它不能做得很大,只能适应小功率的场合.要相把稳压器的功率做得更大,就要加入补偿变压器来实现稳压器的功率扩大 2.单相补偿式稳压器原理分析(图四)

并联电抗器无功补偿

并联电抗器 1.并联电抗器在电力系统中的作用 并联电抗器无功功率补偿装置常用于补偿系统电容。它通过向超高压、大容量的电网提供可阶梯调节的感性无功功率,补偿电网的剩余容性充电无功功率控制无功功率潮流,保证电网电压稳定在允许范围内。实践证明,对于一些电压偏高的电网,安装一定数量的并联电抗器是解决系统无功功率过剩,降低电压的有效措施,特别是限制由于线路开路或轻载负荷所引起的电压升高。所以在一定的运行工况中,在超高压输电线路手段装设并联电抗器以吸收输电线路电容所产生的无功功率,称为并联电抗器补偿。 由于目前应用于电力系统的电抗器大都为固定容量的电抗器,其容量不能改变,无法随时跟踪运行工况的无功功率变化,造成电抗器容量的浪费,与目前节能减排的主题不相符合,所以,有必要研究可控电抗器这个热门话题,使得电抗器的容量可控可调,这也在一定程度上符合我国发展智能电网的要求。 2.可控并联电抗器的分类、基本原理和优缺点 图1可控并联电抗器的分类 2.1 传统机械式可调电抗器 调匝式和调气隙式是最早出现并广泛应用的可调电抗器。其基本原理是通过调节线圈匝数或调节铁芯气隙的长度来改变电抗器的磁路磁导,从而改变电抗值。调匝式可控电抗器较易实现,但是电抗值不能做的无级调整。调气隙式由于机械惯性和电机的控制问题无法在工程上应用。 2.2 晶闸管可控电抗器(TCR) 晶闸管可控电抗器,是随着电力电子技术发展起来的一种新型的可控电抗器,它采用线性电抗器与反并联晶闸管串联的接线方式,通过控制晶闸管的触发角就可以控制电抗器的等效电抗值。 TCR的控制灵活,响应速度快,缺点是在调节时会产生大量的谐波,需要加装专门的滤波装置。在高电压大容量的场合下,必须采用多个晶闸管串联的方式,造价昂贵,这使得它在超高压电网中的应用受到了相当大的限制,目前主要应用范围是35kV和10kV的配电

电抗器与电容器匹配问题

将电抗器与电容器串联构成去谐系统可以避免这些谐振现象。去谐系统的自振频率介于最低的谐波频率和基波频率之间,对于高于去谐系统自振频率的谐波而言,去谐系统表现为感性,避免了谐振;对于50Hz的基波频率而言,它呈容性,因而无功功率可以得到补偿。 此串联电抗器不但能抑制合闸时的瞬时涌流,而且可抑制、吸收谐波电流,具有滤波作用,大大提高了电网的运行安全性。 然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。 下面总结电容器串联电抗器时,电抗率选择的一般规律。 1.电网谐波中以3次为主 根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器: (1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。 (2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。 2. 电网谐波中以3、5次为主 (1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器; (2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。 3. 电网谐波以5次及以上为主 (1)5次谐波含量较小,应选择4.5%~6%的串联电抗器; (2)5次谐波含量较大,应选择4.5%的串联电抗器。对于采用0.1%~1%的串两电抗器,要防止对5次、7次谐波的严重放大伙谐振。对于采用4.5%~6%的串联电抗器,要防止怼次谐波的严重放大或谐振。当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器端的电压升高的情况分析计算,可选用0.5%~1%的电抗器。 根据以上的选择原则,对无功补偿装置中的串联电抗器有以下建议: (1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,必须考虑电容器装置接入处的谐波背景。

电抗器与变压器是一样的产品吗

电抗器与变压器是一样的产品吗 电抗器也叫电感器,一个导体通电时就会在其所占据的一定空间范围产生磁场,所以所有能载流的电导体都有一般意义上的感性。然而通电长直导体的电感较小,所产生的磁场不强,因此实际的电抗器是导线绕成螺线管形式,称空心电抗器;有时为了让这只螺线管具有更大的电感,便在螺线管中插入铁心,称铁心电抗器。电抗分为感抗和容抗,比较科学的归类是感抗器(电感器)和容抗器(电容器)统称为电抗器,然而由于过去先有了电感器,并且被称谓电抗器,所以现在人们所说的电容器就是容抗器,而电抗器专指电感器。 什么叫变压器? 变压器是一种用于电能转换的电器设备,它可以把一种电压、电流的交流电能转换成相同频率的另一种电压、电流的交流电能。 变压器几乎在所有的电子产品中都要用到,它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。 一、变压器的基本原理 当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形

成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为"空载电流"。 如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2 所抵消的那部分磁通,以保持铁心里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。 二、变压器的损耗 当变压器的初级绕组通电后,线圈所产生的磁通在铁心流动,因为铁心本身也是导体,在垂直于磁力线的平面上就会感应电势,这个电势在铁心的断面上形成闭合回路并产生电流,好象一个旋涡所以称为"涡流"。这个"涡流"使变压器的损耗增加,并且使变压器的铁心发

配置稳压器隔离变压器的必要性

稳压器、隔离变压器配置的必要性 对于一些大型的\重要的,昂贵的,进口设备在国外制造过程中,制造现场的电网都做了严格的管理和控制,然而这些设备在引入到国内使用时,现场情况却比较复杂,远不及设备在制造时的电网环境,所以我们需对此作必要的防范! 我们认为比较完整的保护方式应为二级保护,具体如下: 电网——稳压器——隔离变压器——设备 一、稳压器的作用如下: 1.定量补偿:例如设备要求供给电压390V为宜,但现场电压往往会有相差,或410V、或400V或380V或370V,有可能白天380V,晚上400V等等,诸如此类的电压定向微调是稳压器的一个主要功能,力求准确地满足设备对电压的需求,无论是超压、还是欠压都会影响设备的正常工作和使用寿命。 2.调整精度:设备要求供给电压上下波动不能超过3%,精度大多在10V以内,而在很多客户现场电压波动往往受周边大型工厂或大型设备的影响,波动范围达到10-20%,甚至更高,要保证设备的精确工作,首先要保证电压的精确供给。 3.保护功能:稳压器的保护功能就像汽车安装安全气囊一样,稳压器能在意外发生时,保护设备,将损失降到最低,具体如下: a.过、欠压保护:输出电压大于输出额定值±10%(±2%)或小于输出额定值-10-15%时,自动报警并 切断电源; b、延时自动上电功能:市电供电后,稳压器自动取样并迅速调压,电压调节平稳后延 时5-7S自动输 出。 c、手动/自动调压可选:稳压器出厂默认自动稳压功能,也可以将稳压功能拨到手动,任意调节输出 电压值(一般手动功能在调试机器或故障维护时应急使用)。 d、过流与短路保护:超过设定的电流或过载短路时,设备自动跳闸保护; e、缺相保护:当电网出现缺相时,设备发出报警信号并自动切断输出; f、错相保护:当电网出现错相(逆相)时,设备发出报警信号并自动切断输出; 二、隔离变压器的作用如下: 1.安全用电:隔离变压器初级和次级完全分开(隔离),能量通过磁场传递。由于初级和次级分开,人不可能再接到“电网”,操作人员接触次级线圈(或设备)一个带电点,(不形成回路),就不会有危险。 2.谐波滤除:隔离变压器器对高频谐波有较大的衰减作用,因此可以避免电力电子设备对电网造成污染。当然反过来也成立,电网的噪声也会被隔离变压器隔离,避免对二次侧用电设备造成干扰。

并联电容器串联电抗器利与弊

在理性负载两端并联电容器,这是电网最常用的无功补偿办法,也是进步功率因数改善电压质量节能降损的有效措施。为满足电网和用电设备对电压质量的请求,依据无功负荷变化而投切适量的电容量。但是在电容器投运合闸霎时将产生幅值很大,频率很高的合闸涌流。若电容器接入处电网村谐波污染,由于电容器的容性阻抗特性,将对谐波电流起到放大作用。风险的过电流必将对电气设备产生不良影响,严重时常常还会形成设备的损坏。 为防止谐波对补偿安装的影响,则在电容器回路采用串联电抗器的措施,这既不影响电容器的无功补偿作用,又能抑止高次谐波。所以在补偿电容器回路串联电抗器,具有抑止高次谐波,限制合闸涌流的效果。 但是运转理论标明,电容器回路串联电抗器后,在无功补偿安装投运合闸时还可能产生过电压,以及电容器端电压升高和运用寿命缩短等负面影响,现就电容器回路串联电抗器的利和弊做些剖析。 1电容器回路串联电抗器的益处 1.1限制合闸涌流 无功补偿电容器在投运合闸霎时常常会产生冲击性合闸涌流,这是由于初次合闸的电容器处于未充电状态,流入电容器的电流仅受回路阻抗的限制。因该回路接近短路状态,回路阻抗很小,故而会产生很大冲击涌流。 GB50227—95《并联电容器安装设计标准》中合闸涌流的计算式为: 式中: Ie——电容器组额定电流; XC——电容器组一相容抗值 Xs——电容器组与电网间电抚值 Sd——合闸点系统的短路容量 Qc——电容器组容量 合闸涌流倍数

,K值时随合闸点短路容量的增大和电容器组容量的减小而增大,普通为3——10倍。 电容器组回路加装串联电抗器后的合闸涌流倍数为: K值时随母线短路容量的增大,或电抗器感抗占电容器容抗的百分数的增加而大幅度减小,故而串联电抗器后能起到限制合闸涌流的作用。 1.2抑止高次谐波 当补偿电容器接入处电网存在谐波时,电容器对n次谐波的容抗降为XC/n,系统电感对n次谐波的感抗升为nxs。电网存在有n此谐波时,假如nxs=XC/n,则产生n次谐波谐振现象。其n次谐波电流与基波电流迭加后,使流过电容器电流骤增,其过电流将危及电容器的平安。此时,谐波电流在系统阻抗上产生的谐波电压与原电压迭加而产生过电压,此过电压将影响电容器运用寿命。 在补偿电容器回路串联电抗器后,能有效避开谐振区,从而起到抑止高次谐波作用。 当nXs=xc/n而产生n次谐波谐振现象时,其自振频率为: 电网存在高次谐波时,当n>n0时其阻抗呈理性,对等效网络有明显的抑止休博作用。 但在n 运转理论标明,如串联电抗器的主要用处限制合闸涌流,应选择0.2~2%容抗值得电抗器;如是为抑止高次谐波则应选择6%容抗值的电抗器。电抗器应串联在电容器组的电源侧,其抑止谐波效果会更好。 2串联电抗器存在的弊端 2.1电容器投切时产生过电压 在并联电容器组的回路中串联的电抗器,特别是线性电抗器,或是质量因数较高电抗器,在断路器投切电容器时都会产生过电压,因断路器在合闸时的弹跳和分闸时的重燃,均会增加过电压产生的几率和倍数。故而投切电容器的断路器宜选择高性能、无涌流,不发作重燃的开关,以防止操作时产生过电压。

10kV并联电抗器合闸过电压的计算与分析

10kV并联电抗器合闸过电压的计算与分析 摘要:针对某些变电站出现的对10kV并联电抗器进行合闸操作时开关柜发生爆炸的事故,本文分析了并联电抗器合闸过电压产生的原因,并用EMTP对合闸过电压进行了理论计算。计算结果表明,真空开关合闸时发生弹跳是合闸过电压产生的主要原因,阻容吸收装置对该类过电压有较好的抑制作用。 关键词:并联电抗器;真空开关;触头弹跳 1前言 并联电抗器作为电网的无功补偿设备,对于稳定电压、提高供电质量有着重要的意义。并联电抗器的投切也是电网中较为频繁的操作。在投切电抗器的时候通常研究的是分闸时真空开关发生截流、重燃产生的过电压,而对合闸时产生的过电压研究较少[1-5]。但是在某些变电站,对并联电抗器进行合闸操作时,发生了开关柜爆炸的事故。为此,笔者专门针对并联电抗器合闸时产生的过电压进行了计算分析。 2并联电抗器合闸过电压产生原因分析 在对电抗器进行合闸操作时,如果断路器触头同期性差,非全相合闸会产生一个电磁振荡过程,在一定的参数情况下还会产生谐振过电压。如图1所示,A、B、C三相合闸时,如果合闸时间不一致,回路中就会存在电磁振荡的过程,如果电容和电感的匹配,还会产生谐振过电压。 图1电抗器回路示意图 对于某些质量不好的真空开关,在合闸的过程中,开关触头发生弹跳(震动),也会产生过电压。开关触头的弹跳是指开关的触头发生了一个合上以后又分开,然后又合上的过程,或者持续合上又分开直至完全合上不再分开的过程。在这个过程中触头分开的距离不大,断口的电弧会发生重燃,截留现象,回路中会产生高频的电磁振荡,产生过电压。 3计算结果及分析 利用电磁暂态仿真程序(EMTP),进行了10kV真空开关对并联电抗器进行合闸操作产生过电压的理论计算。计算原理如下图所示。

电抗器和电容器

问:电抗器定义与作用 答: 电气回路的主要组成部分有电阻、电容和电感.电感具有抑制电流变化的作用,并能使交流电移相.把具有电感作用的绕线式的静止感应装置称为电抗器。 1、电抗器适用于无功功率补偿和谐波的治理系统中,可以改善功率因数,对谐波起滤波作用,以抑制电网电压波形畸变,从而改变电网质量和保证电力系统安全运行。 2、进线电抗器用来限制电网电压突变和操作过电压引起的电流冲击,平滑电源电压中包含的尖峰脉冲,或平滑桥式整流电路换相时产生的电压缺陷,它既能阻止来自电网的干扰,又能减少整流单元产生的谐波电流对电网的污染。 3、直流电抗器(又称平波电抗器)主要用于变流器的直流侧,电抗器中流过的具有交流分量的直流电流。主要用途是将叠加在直流电流上的交流分量限定在某一规定值,保持整流电流连续,减小电流脉动值,改善输入功率因数。 4、输出电抗器的主要作用是补偿长线分布电容的影响,并能抑制输出谐波电流,提高输出高频阻抗,有效抑制dv/dt.减低高频漏电流,起到保护变频器,减小设备噪声的作用。 5、电容器在补偿功率的时候,往往会受到谐波电压和谐波电流的的冲击,造成电容器损坏和功率因数降低,为此,需要在补偿的时候进行谐波治理。 1、电容器的定义 所谓电容器就是能够储存电荷的“容器”。只不过这种“容器”是一种特殊的物质——电荷,而且其所存储的正负电荷等量地分布于两块不直接导通的导体板上。至此,我们就可以描述电容器的基本 结构:两块导体板(通常为金属板)中间隔以电介质,即构成电容器的基本模型。 2、电容器的作用 电容器在电子线路中的作用一般概括为:通交流、阻直流。电容器通常起滤波、旁路、耦合、去耦、转相等电气作用,是电子线路必不可少的组成部分。在集成电路、超大规模集成电路已经大行其道的 今天,电容器作为一种分立式无源元件仍然大量使用于各种功能的电路中,其在电路中所起的重要作用可 见一斑。作贮能元件也是电容器的一个重要应用领域,同电池等储能元件相比,电容器可以瞬时充放电, 并且充放电电流基本上不受限制,可以为熔焊机、闪光灯等设备提供大功率的瞬时脉冲电流。电容器还常 常被用以改善电路的品质因子,如节能灯用电容器。 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路

相关主题
文本预览
相关文档 最新文档