当前位置:文档之家› 结构动力学能量法

结构动力学能量法

结构动力学能量法
结构动力学能量法

结构动力学能量法

势能:设位移函数。局限性,不能同时考虑多种函数,频率偏高,动位移精度好,动内力

精度低。

考虑梁的轴向、弯曲、剪切和扭转变形的应变能:

(1)或者:

(2)动能:

(3)

(4)

(5)

根据能量守恒,即最大动能等于最大势能,可以求出结构的频率。

若只考虑弯曲变形,梁的频率为:

(6)

如果还有集中质量则,

(7)

式中的y 为位移函数,只要满足位移边界条件即可。

以上两式也叫瑞雷商。

从式(7)还可以推导出:

(8)

(9)应用:如图,

其周期:

例题:两边简支的梁,取

余能:保持势能的优点,只设一个位移函数,可以推广到板壳及有限元中,计算频率精度特高,接近实际频率,动位移差,动内力精度高。

1、弯曲梁动力计算的最小余能公式

??

-

+

+

=

∏R

u

dx

EA

x

N

GA

x

Q

EJ

x

M

l

)

2

)

(

2

)

(

2

)

(

(

2

2

2

μ

(1)式中:最后一项为支座沉陷的余能。

结构运动方程:

)

(

)

(

])

(

[

1

2=

''

+

-''

''x

y

N

x

y

m

x

y

EJω(2)该方程比静力问题多了)

(

2x

y

-这一项,可以把它比拟成弹性地基上的梁。

0)()(])([1=''++''''x y N x ky x y EJ (3)

该简支梁弯曲变形余能为:

12

1212/0

2)22(212k x

dx x x x P EJ l +-=∏? (4)

如果梁是放在弹性系数为k 的地基上时,其弹簧的余能为:

dx k x ky l

?0

2

2)]([ dx m x y m EJ x M l

)2)]([2)((2

2

20

2ωω-=∏? (5) 其中M (x )为假想惯性力引起的弯矩函数。

考虑剪切变形影响时式(5)可以改写成:

dx m x y m GA x Q EJ x M l

)2)]([2)(2)((2

2

220

2ωωμ-+=∏? (6)

设 l

x

a x y πsin

)(= (7)

则假想惯性力为:)()(2

x y mw x q = (8)

??

???=??-=??)()

()()(x Q x x M x q x

x Q (9) 可以得到:

?

?

???

+=+=l x a N l x l a m x M l x l

a

N l

x

l

a

m x Q πππωππ

ππ

ωsin sin }()(cos

cos

)(122

12 (10)

将式(10)代入(6)得到

GAl

a N l a EJ N l a m GA N l a m EJ N m l

a m l a m l GA l a m l EJ l μπωμπωωωωπμωπ24222]

2[2)(212)(222122

12

2123221224224222424++++-+=∏ (11)

式(11)对a m 2

ω取导数:

02222121)(12312

2324

52=+++A +=?∏?al GA

N a

l EJ N al a m l G a m l EJ a m μπωπμωπω (12)

得到

2

2

441221234512312

122222πμπμππμπμπωl

GA m l EJ m GA N l EJ N l GA m l EJ m GA l N l EJ N l +

--=+--= (13) 式中:分母第一项为弯曲变形ω

2

b

的倒数,第二项为剪切变形ω

2s

令01=N 时可以得到:

ω

ωω

22

2

1

1

1

s

b

+=

(14)

如果将常轴力1N 由压力变为拉力,式(11)变为:

GAl

a N l a EJ N l a m GA N l a m EJ N m l

a m l a m l GA l a m l EJ l μπωμπωωωωπμωπ24222]

2[2)(212)(222122

12

2123221224224222424-----+=∏ (15)

对a N 1取导数,得到

2

212

m l N πω= (16)

此为弦横向振动的基频。

若令式(13)中的02

=ω,则可求得:GA

l EJ N μπ1

1122

1-

=

(17)

强迫振动的余能方法:

t l

x

a t x y θπsin sin

),(= (18)

均布荷载引起的弯矩和剪力:

?

????-=-=

)(2

)()(2

)(x l q

x Q x x l q x M q q (19) 于是式(10)变成:

?

?

?

??-++=-+

+=x x l q

l x a N l x l a m x M x l q l x

l a

N l x l a

m x Q )(2sin sin }()()(2cos

cos

)(12212πππθππππθ (20) 3

232

2522122

12

2123

221224224222424*2129.024222]

2[2)(212)(2πμθπ

θμπθμπθθθθπμθπGA m a ql EJ a qm l GAl a N l a EJ N l a m GA N l a m EJ N m l

a m l a m l GA l a m l EJ l ++++++-+=∏ (21) 0

22129.02222121)(3

3

25

12312

232452*=++

++-A +=?∏?πμπμπθπμθπθGA ql

EJ q l al

GA N a l EJ N al a m l G a m l EJ a m (22)

求得a 为:

)

1)(1(4129.022

12213

2

24ω

θμππμπ---+

=

GA N l EJ N GA ql EJ q l a (23)

其中:2

2

4

41

2212

1πμπμπωl GA m l EJ m GA N l EJ N +-

-=

(24) EJ

ql EJ q l 3845129.0424≈π 弯曲变形梁中点得位移

GA

ql GA ql μπμ842

32≈

剪切变形梁中点的位移

《结构力学》作业答案

[0729]《结构力学》 1、桁架计算的结点法所选分离体包含几个结点 A. 单个 2、固定铰支座有几个约束反力分量 B. 2个 3、从一个无多余约束的几何不变体系上去除二元体后得到的新体系是 A. 无多余约束的几何不变体系 4、两刚片用三根延长线交于一点的链杆相连组成 A. 瞬变体系 5、定向滑动支座有几个约束反力分量 B. 2个 6、结构的刚度是指 C. 结构抵抗变形的能力 7、桁架计算的截面法所选分离体包含几个结点 B. 最少两个 8、对结构进行强度计算的目的,是为了保证结构 A. 既经济又安全 9、可动铰支座有几个约束反力分量 A. 1个 10、固定支座(固定端)有几个约束反力分量 C. 3个 11、改变荷载值的大小,三铰拱的合理拱轴线不变。 A.√ 12、多余约束是体系中不需要的约束。 B.× 13、复铰是连接三个或三个以上刚片的铰 A.√ 14、结构发生了变形必然会引起位移,结构有位移必然有变形发生。 B.×

15、如果梁的截面刚度是截面位置的函数,则它的位移不能用图乘法计算。 A.√ 16、一根连杆相当于一个约束。 A.√ 17、单铰是联接两个刚片的铰。 A.√ 18、连接四个刚片的复铰相当于四个约束。 B.× 19、虚功原理中的力状态和位移状态都是虚设的。 B.× 20、带拉杆三铰拱中拉杆的拉力等于无拉杆三铰拱的水平推力。 A.√ 21、瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。 A.√ 22、一个无铰封闭框有三个多余约束。 A.√ 23、三铰拱的水平推力不仅与三铰的位置有关,还与拱轴线的形状有关。 B.× 24、三铰拱的主要受力特点是:在竖向荷载作用下产生水平反力。 A.√ 25、两根链杆的约束作用相当于一个单铰。 B.× 26、不能用图乘法求三铰拱的位移。 A.√ 27、零杆不受力,所以它是桁架中不需要的杆,可以撤除。 B.× 28、用图乘法可以求等刚度直杆体系的位移。 A.√ 29、连接四个刚片的复铰相当于四个约束。

中心差分法的基本理论与程序设计

中心差分法的基本理论与程序设计 1程序设计的目的与意义 该程序通过用C语言(部分C++语言)编写了有限元中用于求解动力学问题的中心差分法,巩固和掌握了中心差分法的基本概念,提高了实际动手能力,并通过实际编程实现了中心差分法在求解某些动力学问题中的运用,加深了对该方法的理解和掌握。 2程序功能及特点 该程序采用C语言(部分C++语言)实现了用于求解动力学问题的中心差分法,可以求解得到运动方程的解答,包括位移,速度和加速度。计算简便且在算法稳定的条件下,精度较高。 3中心差分法的基本理论 在动力学问题中,系统的有限元求解方程(运动方程)如下所示: ()()()() Ma t Ca t Ka t Q t ++= 式中,() a t分别是系统的结点加速度向 a t是系统结点位移向量,() a t和() 量和结点速度向量,,, M C K和() Q t分别是系统的质量矩阵、阻尼矩阵、刚度矩阵和结点载荷向量,并分别由各自的单元矩阵和向量集成。 与静力学分析相比,在动力分析中,由于惯性力和阻尼力出现在平衡方程中,因此引入了质量矩阵和阻尼矩阵,最后得到的求解方程不是代数方程组,而是常微分方程组。常微分方程的求解方法可以分为两类,即直接积分法和振型叠加法。 中心差分法属于直接积分法,其对运动方程不进行方程形式的变换而直接进行逐步数值积分。通常的直接积分是基于两个概念,一是将在求解域0t T内的任何时刻t都应满足运动方程的要求,代之仅在一定条件下近似地满足运动方程,例如可以仅在相隔t?的离散的时间点满足运动方程;二是在一定数目的t?区域内,假设位移a、速度a、加速度a的函数形式。 中心差分法的基本思路是用有限差分代替位移对时间的求导,将运动方程中的速度和加速度用位移的某种组合表示,然后将常微分方程组的求解问题转换为

结构动力学读书笔记

《结构动力学》读书报告 学院 专业 学号 指导老师 2013 年 5月 28日

摘要:本书在介绍基本概念和基础理论的同时,也介绍了结构动力学领域的若干前沿研究课题。既注重读者对基本知识的掌握,也注重读者对结构振动领域研究发展方向的掌握。主要容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构动力学的前沿研究课题。侧重介绍单自由度体系和多自由度体系,重点突出,同时也着重介绍了在抗震中的应用。 1 概述 1.1结构动力学的发展及其研究容: 结构动力学,作为一门课程也可称作振动力学,广泛地应用于工程领域的各个学科,诸如航天工程,航空工程,机械工程,能源工程,动力工程,交通工程,土木工程,工程力学等等。作为固体力学的一门主要分支学科,结构动力学起源于经典牛顿力学,就是牛顿质点力学。质点力学的基本问题是用牛顿第二定律来建立公式的。牛顿质点力学,拉格朗日力学和哈密尔顿力学是结构动力学基本理论体系组成的三大支柱。 经典动力学的理论体系早在19世纪中叶就已建立,。但和弹性力学类似,理论体系虽早已建立,但由于数学求解上的异常困难,能够用来解析求解的实际问题实在是少之又少,能够通过手算完成的也不过仅仅限于几个自由度的结构动力体系。因此,在很长一段时间,动力学的求解思想在工程实际中并未得到很好的应用,人们依然习惯于在静力学的畴用静力学的方法来解决工程实际问题。 随着汽车,飞机等新时代交通工具的出现,后工业革命时代各种大型机械的创造发明,以及越来越多的摩天大楼的拔地而起,工程界日新月异的发展和变化对工程师们提出了越来越高的要求,传统的只考虑静力荷载的设计理念和设计方法显然已经跟不上时代的要求了。也正是从这个时候起,结构动力学作为一门学科,也开始受到工程界越来越高的重视,从而带动了结构动力学的快速发展。 结构动力学这门学科在过去几十年来所经历的深刻变革,其主要原因也正是由于电子计算机的问世使得大型结构动力体系数值解的得到成为可能。由于电子计算机的超快速度的计算能力,使得在过去凭借手工根本无法求解的问题得到了解决。目前,由于广泛地应用了快速傅立叶变换(FFT),促使结构动力学分析发生了更加深刻地变化,而且使得结构动力学分析与结构动力试验之间的相互关系也开始得以沟通。总之,计算机革命带来了结构动力学求解方法的本质改变。 作为一门课程,结构动力学的基本体系和容主要包括以下几个部分:单自由度系统结构动力学,;多自由度系统结构动力学,;连续系统结构动力学。此外,如果系统上所施加的动力荷载是确定性的,该系统就称为确定性结构动力系统;而如果系统上所施加的动力荷载是非确定性的,该系统就称为概率性结构动力系统。 1.2主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模

哈工大结构动力学大作业2012春

结构动力学大作业 对于如下结构,是研究质量块的质量变化和在简支梁上位置的变化对整个系统模态的影响。 1 以上为一个简支梁结构。集中质量块放于梁上,质量块距简支梁的左端点距离为L. 将该简支梁简化为欧拉伯努利梁,并离散为N 个单元。每个单元有两个节点,四个自由度。 单元的节点位移可表示为: ]1122,,,e v v δθθ?=? 则单元内一点的挠度可计作: 带入边界条件: 1 3 32210)(x a x a x a a x v +++=0 1)0(a v x v ===3 322102)(L a L a L a a v L x v +++===1 10 d d a x v x ===θ2 321232d d L a L a a x v L x ++===θ1 0v a =

[]12 3 4N N N N N = 建立了单元位移模式后,其动能势能均可用节点位移表示。单元的动能为: 00111()222 l l T T T ke e e e e y E dx q N Ndxq q mq t ρρ?===??? 其中m 为单元质量阵,并有: l T m N Ndx ρ=? 带入公式后积分可得: 222215622541322413354 1315622420133224l l l l l l l m l l l l l l ρ-?? ??-??= ?? -?? ---? ? 单元势能可表示为 22 200 11()()22 2 T l l T T e pe e e e q y E EI dx EI N N dxq q Kq x ?''''== =??? 其中K 为单元刚度矩阵,并有 ()l T K EI N N dx ''''=? 2 23 2212 612664621261266264l l l l l l EI k l l l l l l l -????-??=??---??-?? 以上为单元类型矩阵,通过定义全局位移矩阵,可以得到系统刚度矩阵和系统质量矩 1 1θ=a )2(1)(3211222θθ+--=L v v L a )(1)(22122133θθ++-= L v v L a 1232133222231)(θ???? ??+-+???? ??+-=L x L x x v L x L x x v 2 2232332223θ??? ? ??-+???? ??-+L x L x v L x L x 2 4231211)()()()()(θθx N v x N x N v x N x v +++=

结构动力学作业1

2012学年《结构动力学》作业1 发布日期:3月9日上交日期:3月16日 1.采用牛顿第二定律推导复合摆的 运动方程,该复合摆由一根长L, 单位长度的质量为m的均质棒以 及半径为R质量为M的圆盘组成 (见图1)。 图1:复合摆示意图 2.推导图2中系统的等效弹簧常数。 图2:由弹簧通过刚性连杆支持的系统 3.承受弯曲的悬臂梁是由2个均匀段 组成,如图3所示。求对应于自由 端x=L处施加垂直力时的等效弹 簧常数。 图3:非均匀梁作为弹簧 4.如图4,比重计质量为0.0115 kg, 用于测定某液体的密度。比重计伸 出液面部分的玻璃管直径为0.8 cm,液体比重为1.02 (即是水的 密度的1.02倍)。现将比重计轻轻 地向下按一下,比重计将作上下自 由振动,求振动周期。 图4 5.如下图所示,重量为P的小车从斜面上高h处滑下,与缓冲弹簧相撞后,随同弹簧一起做自由振动。弹簧刚度为K,斜面倾角为 ,小车与斜面间摩擦不计。求小车的振动周期和振幅。(注意:振幅为相对于弹簧静平衡位置) 6.教材习题2-1 7.教材习题2-2

8. 如教材图2-7所示单自由度系统,假设m =1kg ,K =100N/m ,初始条件x(0)=0.1m , 0)0(=x ,a) 绘制 c =1 N ·s/m ,5N ·s/m ,10N ·s/m 条件下,t =0~10s 的响应;b )绘制 c =20 N ·s/m ,30N ·s/m ,40N ·s/m 条件下, t =0~10s 的响应。要求用Matlab 编程计算并绘图。对结果进行分析。 9. 教材习题2-4 10. 教材习题2-5 11. 一个有粘性阻尼的弹簧质量系统,作自由振动时测得振动周期为1.8s ,相邻两振幅之比 为4.2:1。求此系统的固有频率。 12. 列出下图系统的振动微分方程。已知m =98 N ,K =9800 N/m ,r =9800 N s/m ,a =L/3, b=2L/3。(1)求系统振动时的频率(注意:不是固有频率),并与无阻尼时的固有频率作比较;(2)求系统振动时振幅的对数衰减率。 13. 一质量弹簧系统的质量块重W =19.6 kN ,弹簧刚度系数K =48.02 kN/m ,今需在此系统 中配置一粘性阻尼,使系统的相对阻尼系数1.0=?,问阻尼器的粘性阻尼系数c 应为多少?系统自由振动时的频率为多少?

结构动力学大作业

结构动力学作业 姓名: 学号:

目录 1.力插值法 (1) 1.1分段常数插值法 (1) 1.2分段线性插值法 (4) 2.加速度插值法 (7) 2.1常加速度法 (7) 2.2线加速度法 (9) 附录 (12) 分段常数插值法源程序 (12) 分段线性插值法源程序 (12) 常加速度法源程序 (13) 线加速度法源程序 (13)

1.力插值法 力插值法对结构的外荷载进行插值,分为分段常数插值法和分段线性插值法,这两种方法均适用于线性结构的动力反应计算。 1.1分段常数插值法 图1-1为一个单自由度无阻尼系统,结构的刚度为k ,质量为m ,位移为y (t ),施加的外力为P (t )。图1-2为矩形脉冲荷载的示意图,图中t d 表示作用的时间,P 0表示脉冲荷载的大小。 图1-1 单自由度无阻尼系统示意图 图1-2 矩形脉冲荷载示意图 对于一个满足静止初始条件的无阻尼单自由度体系来说,当施加一个t d 时间的矩形脉冲荷载,此时结构在t d 时间内的位移反应可以用杜哈梅积分得到: 0()sin ()2 (1cos )(1cos ) (0) t st st d P y t t d m t y t y t t T ωττω πω=-=-=-≤≤? (1-1) 如果结构本身有初始的位移和速度,那么叠加上结构自由振动的部分,结构的位移反应为: 02()cos sin (1cos ) (0 )st d y t y t y t t y t t T πωωω =+ +-≤≤ (1-2)

图1-3 分段常数插值法微段示意图 对于施加于结构任意大小的力,将其划分为Δt 的微段,每一段的荷载都为一个常数(每段相当于一个矩形的脉冲荷载),如图1-3所示,则将每一段的位移和速度写成增量的形式为: 1cos t sin t (1cos t)i i i i y P y y k ωωωω +=?+ ?+-? (1-3) i+1/sin t cos t sin t i i i y P y y k ωωωωω =-?+ ?+ ? (1-4) 程序流程图如下

有限差分法

有限差分法 一、单变量函数: 用中心差分法(matlab程序见附录)计算结果如下: 图1 中心差分法

表1 数据对比 二、一维热传导: 在此取φ(x)=0,g1(t)= g2(t)=100-100*exp(-t)

问题描述: 已知厚度为l的无限大平板,初温0度,初始瞬间将其放于温度为100度的流体中,流体与板面间的表面传热系数为一常数。 试确定在非稳态过程中板内的温度分布。 (1)显式差分法: 图3 显式差分法 (2)隐式差分法: 图4 隐式差分法

小结:显式格式仅当时格式是稳定的。(其中称为网格比) 隐式格式从k层求k+1层时,需要求解一个阶方程组。而且隐式格式的稳定性对网格比没有要求,即为绝对稳定的。 三、Possion方程: 取f=1,R=1 图5差分法

图6 误差小结:观察误差曲面,其绝对误差数量级为

附Matlab程序: 第1题: %===========================Boundary Value Problem 1 clear;clc; A=[-2.01 1 0 0 0 0 0 0 0; 1 -2.01 1 0 0 0 0 0 0; 0 1 -2.01 1 0 0 0 0 0; 0 0 1 -2.01 1 0 0 0 0; 0 0 0 1 -2.01 1 0 0 0; 0 0 0 0 1 -2.01 1 0 0; 0 0 0 0 0 1 -2.01 1 0; 0 0 0 0 0 0 1 -2.01 1; 0 0 0 0 0 0 0 1 -2.01;]; c1=[0.1;0.2;0.3;0.4;0.5;0.6;0.7;0.8;0.9]; C=0.01*c1-1*[0;0;0;0;0;0;0;0;1]; y=A\C; x=0:0.1:1; yn=[0;y;1]; ye=2*(exp(x)-exp(-x))/(exp(1)-exp(-1))-x; figure(1); plot(x,yn,'*',x,ye); legend('numerical solution','exact solution') xlabel('x','fontsize',20); ylabel('y','fontsize',20); set(gca,'fontsize',18); figure(2); err=abs(ye'-yn); plot(x,err); legend('error') xlabel('x','fontsize',20); ylabel('y','fontsize',20); set(gca,'fontsize',18); 第2题: %========================Boundary Value Problem 1_Explicit %显式 clear;clc l=20;%板厚 h=1;%步长 J=l/h; T=50;%时间

高等结构动力学大作业

Advanced Structural Dynamics Project The dynamic response and stability analysis of the beam under vertical excitation Instructor:Dr. Li Wei Name: Student ID:

1.Problem description and thepurpose of the project 1.1 calculation model An Eular beam subjected to an axial force. Please build thedifferential equation of motion and use a proper difference method to solve this differentialequation. Study the dynamic stability of the beam related to the frequency and amplitude of the force. As shown in the Fig 1.1. Fig1.1 1.2 purpose and process arrangement a.learninghow to create mathematical model of thecontinuous system and select proper calculation method to solve it. b.learning how to build beam vibration equation and solve Mathieu equation. https://www.doczj.com/doc/858024837.html,ing Floquet theory to judgevibration system’s stability and analyze the relationship among the frequency and amplitude of the force and dynamic response. This project will introduce the establishment of the mathematical model of the continuous system in section 2, the movement equation and the numerical solution of using MATLAB in section 3,Applying Floquent theory to study the dynamic stability of the beam related to the frequency and amplitude of the force in section 4. In the last of the project, we get some conclusions in section 5.

结构力学作业86036

西南交《结构力学E》离线作业 一、单项选择题(只有一个选项正确,共13道小题) 1. 瞬变体系在一般荷载作用下( C) (A) 产生很小的内力 (B) 不产生内力 (C) 产生很大的内力 (D) 不存在静力解答 2. 图示体系为:B (A) 几何不变无多余约束 (B) 几何不变有多余约束; (C) 常变体系; (D) 瞬变体系。 3. 图示某结构中的AB杆的隔离体受力图,则其弯矩图的形状为( B)

(A) 图a (B) 图b (C) 图c (D) 图d 4. 图示结构:B (A) ABC段有内力; (B) ABC段无内力; (C) CDE段无内力; (D) 全梁无内力。 5. 常变体系在一般荷载作用下(D) (A) 产生很小的内力 (B) 不产生内力 (C) 产生很大的内力 (D) 不存在静力解答 6. 图示体系的几何组成为D

(A) 几何不变,无多余联系; (B) 几何不变,有多余联系; (C) 瞬变; (D) 常变。 7. 在弯矩图的拐折处作用的外力是(B)。 (A) 轴向外力 (B) 横向集中力 (C) 集中力偶 (D) 无外力 8. 对于图示结构,下面哪个结论是正确的。(B) (A) 该结构为桁架结构; (B) 该结构是组合结构,其中只有57杆是受拉或受压杆(二力杆); (C) 只有杆34的内力有弯矩; (D) 除杆123外,其余各杆均为二力杆。

9. 在径向均布荷载作用下,三铰拱的合理轴线为:( A) (A) 圆弧线; (B) 抛物线; (C) 悬链线; (D) 正弦曲线。 : 10. 如图示各结构弯矩图的形状正确的是( B) (A) 如图a (B) 如图b (C) 如图c (D) 如图d 11. 静定结构在支座移动时,会产生:( C) (A) 内力; (B) 应力; (C) 刚体位移; (D) 变形。 12. 图示桁架,各杆EA为常数,除支座链杆外,零杆数为:(A )

结构动力学习题解答(一二章)

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构力学大作业

结构力学大作业——五层三跨框架结构内力计算 专业班级:土木工程XXXX班 姓名 XXXXX 学号:XXXXX 指导教师:XX

目录 一、题目 (3) 二、任务 (5) 三、结构的基本数据 (5) 1.构件尺寸: (5) 2.荷载: (5) 3.材料性质: (5) 四、水平荷载作用下的计算 (5) 1.反弯点法 (6) 2.D值法 (8) 3.求解器法 (12) 五、竖直荷载作用下的计算 (15) 1.分层法 (16) 2.求解器法 (21) 六、感想 (24)

二、题目 结构(一) 1、计算简图如图1所示。 4 . 2 m 3 . 6 m 3 . 6 m 3 . 6 m 3 . 6 m 图1

’ 图2 q’ 图3

二、任务 1、计算多层多跨框架结构在荷载作用下的内力,画出内力图。 2、计算方法: (1) 水平荷载: D 值法、反弯点法、求解器,计算水平荷载作用下的框架 弯矩; (2) 竖向荷载:迭代法、分层法、求解器,计算竖向荷载作用下框架弯矩。 3、对各种方法的计算结果进行对比,分析近似法的误差。 4、把计算过程写成计算书的形式。 三、结构的基本数据 E h =3.0×107kN/m 2 柱尺寸:400×400,梁尺寸(边梁):250×600,(中间梁)300×400 竖向荷载:q '=17kN/m 水平荷载:F P '=15kN 构件线刚度:)12 (,3 bh I l EI i == 柱子:43-3 10133.212 400400m I ?=?= 柱 第一层:m kN i ?=???= -152382.410133.2100.33 71 第二--五层:m kN i ?=???= -177786.310133.2100.33 72 梁: 边梁:43-3105.412 600250m I ?=?=边梁 m kN i ?=???=-225006105.4100.3373 中间梁:43-3106.112 400300m I ?=?=中间梁 m kN i ?=???=-228571 .2106.1100.3374 四、水平荷载作用下的计算 水平荷载: F P =16kN ,F p '=15kN

偏微分中心差分格式实验报告(含matlab程序)

二阶常微分方程的中心差分求解 学校:中国石油大学(华东)理学院 姓名:张道德 一、 实验目的 1、 构造二阶常微分边值问题: 22,(),(), d u Lu qu f a x b dx u a u b αβ?=-+=<

11122 222222333222122112 100121012010012 00N N N u f q h h u f q h h h u f q h h h q u f h h ---???? ??+-???? ??? ???? ???????-+-? ?????? ???????????=-+? ?????? ???????????-???? ????????-+????? ?? ????? 可以看出系数矩阵为三对角矩阵,而对于系数矩阵为三对角矩阵的方程组可以用“追赶法”求解,则可以得出二阶常微分方程问题的数值解。 四、 举例求解 我们选取的二阶常微分方程边值问题为: 2 22242,01 (0)1,(1), x d u Lu x u e x dx u u e ?=-+=-<

结构动力学习题解答一二章

第一章 单自由度系统 1、1 总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析与动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 与势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1、2 叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

2018西南大学[0729]《结构力学》大作业答案

1、结构的刚度是指 1. C. 结构抵抗变形的能力 2、 图7中图A~图所示结构均可作为图7(a)所示结构的力法基本结构,使得力法计算最为简便的 C 3、图5所示梁受外力偶作用,其正确的弯矩图形状应为()C 4、对结构进行强度计算的目的,是为了保证结构 1. A. 既经济又安全 5、改变荷载值的大小,三铰拱的合理拱轴线不变。 1. A.√ 6、多余约束是体系中不需要的约束。 1. B.×

7、结构发生了变形必然会引起位移,结构有位移必然有变形发生。 1. B.× 8、如果梁的截面刚度是截面位置的函数,则它的位移不能用图乘法计算。 1. A.√ 9、一根连杆相当于一个约束。 1. A.√ 10、单铰是联接两个刚片的铰。 1. A.√ 11、虚功原理中的力状态和位移状态都是虚设的。 1. B.× 12、带拉杆三铰拱中拉杆的拉力等于无拉杆三铰拱的水平推力。 1. A.√ 13、瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。 1. A.√ 14、虚位移原理中的虚功方程等价于静力平衡方程,虚力原理中虚功方程等价于变形协调方程。 1. A.√ 15、体系的多余约束对体系的计算自由度、自由度及受力状态都没有影响,故称多余约束。 1. B.× 16、力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。 1. A.√ 17、当上部体系只用不交于一点也不全平行的三根链杆与大地相连时,只需分析上部体系的几何组成,就能确1. A.√ 18、用力法计算超静定结构时,其基本未知量是未知结点位移。

B.× 19、静定结构在非荷载外因(支座移动、温度改变、制造误差)作用下,不产生内力,但产生位移。 1. A.√ 20、力法和位移法既能用于求超静定结构的内力,又能用于求静定结构的内力。() 1. B.× 21、静定结构在非荷载外因(支座移动、温度改变、制造误差)作用下,不产生内力,但产生位移。()1. A.√ 22、位移法和力矩分配法只能用于求超静定结构的内力,不能用于求静定结构的内力。( ) 1. B.× 23、 图2所示体系是一个静定结构。() 1. B.× 24、力矩分配法中的分配系数、传递系数与外来因素(荷载、温度变化等)有关。 1. B.× 25、三铰拱的水平推力不仅与三铰的位置有关,还与拱轴线的形状有关。 1. B.× 26、三铰拱的主要受力特点是:在竖向荷载作用下产生水平反力。 1. A.√ 27、两根链杆的约束作用相当于一个单铰。 B.× 28、不能用图乘法求三铰拱的位移。

结构动力学大作业

目录 一、结构特性矩阵 1.1框架设计 (2) 1.2截面尺寸 (2) 1.3动力自由度 (2) 1.4结构的一致质量矩阵 (3) 1.5结构的一致刚度矩阵 (13) 二、频率与振型 2.1简化的质量矩阵 (25) 2.2简化的刚度矩阵 (25) 2.3行列式法求频率与振型 (27) 2.4Stodola法求频率与振型 (27) 三、时程分析 3.1框架资料 (31) 3.2地震波波形图 (31) 3.2瑞利阻尼 (32) 3.4操作步骤 (33) 3.5各楼层位移时程反应图 (37)

一、结构特性矩阵 1.1框架设计 框架平面图如图1所示,跨度均为6.0m,层高均为3.6m,混凝土采用C30。 图1 框架平面图 1.2截面尺寸 梁均为300mm600mm ? ?,柱均为500mm500mm 1.3动力自由度 框架结构可以理想化为在节点处相互连接的梁柱单元的集合。设梁、柱的轴向变形均忽略不计,只考虑横向平面位移,则该框架有3个平动自由度和12个角自由度,共15个自由度,并对梁柱单元分别编号,如图2所示: 图2 单元编号及自由度

将结构分成在有限个节点处相互连接的○1~○21个离散单元体系,通过计算各个单元的一致质量矩阵、一致刚度矩阵,并将相关的单元叠加求得整个单元结构的一致质量矩阵、一致刚度矩阵。 1.4结构的一致质量矩阵 在节点位移作用下框架梁和柱上所引起的变形形状采用三次Hermite 多项式,因此均布质量梁的一致质量矩阵为: ??? ???? ???????4 3 2 1 I I I I f f f f =420L m ?? ? ?? ???????------222 2432213341322221315654132254156 L L L L L L L L L L L L ???? ????????? ????? (4) .. 3 2 1 v v v v 梁:m =250060.030.0??=450kg/m, L=6m;

差分法

第三章 有限差分法 函数()f x ,x 为定义在区间[]a b ,上的连续变 量。将区间[]a b ,等分成n 份,令()h b a n =-称为 步长,x 在这些离散点处的取值为 x a ih i =+ ()i n =01,,, 称为节点。函数()f x 在这些节点处的差值 ()()()()()() f x h f x f x f x h f x h f x h i i i i i i +---+--??? ?? (5-1) 分别称为一阶向前、向后和中心差分,可以用它 们作为函数()f x 在x i 处的微分近似值。这些差分 与相应x 区间的比值 ()()[] ()() [ ] ()()[] 1 1 1 2h f x h f x h f x f x h h f x h f x h i i i i i i +---+--?????? ??? (5-2) 分别称为一阶向前、向后和中心差商,可以用它 们作为函数()f x 在x i 处的导数近似值。完全类似 地可以定义高阶差商,例如常用的二阶中心差商 ()()()[] 1 22h f x h f x f x h i i i +-+- (5-3) 可以作为函数()f x 在x i 处的二阶导数近似值。 §3.1 常微分方程初值问题的差分解法 考虑电学中的一个问题:如图5-1。研究 电容器上的电荷随时间的变化规律。 图5-1 RC 放电回路 这个问题对应的微分方程及其定解条件为:

d d Q t Q RC Q Q t =-=??? ??=00 (5-4) 这是一阶微分方程的初值问题,它的解析解为 Q Q e t RC =-0 (5-5) 一、欧拉(Euler )折线法 求解下列普遍形式的一阶微分方程的初值 问题: ()[]()'=∈=?????y f x y x a b y a y ,,0 (5-6) 首先,将区间[]a b ,等分n 份,取值 a x x x b n =<<<=01 ,步长h x x i i =-+1。 然后,用一阶向前差商近似一阶导数,即 ()() ()()[] y x y x h y x f x y x i i i i i +-≈'=1, (5-7) 简记()y x y i i ≈,则式(5-7)可以写成差分格式: ()y y h f x y i i i i +=+?1, ()i n =-011,,, (5-8) 此即向前欧拉差分格式。这是一个递推计算格式, 从区间左端点即式(5-6)中的初始条件出发,按式 (5-8)依次可以算到区间右端点,得到的 y y y n 12,,, 就是原方程解()y x 的近似值。 应用式(5-8)计算RC 放电方程(5-4),按SI 单 位制,取Q 010=,RC =8,时间步长h =1,计 算结果如下:

结构动力学大作业

结构动力学大作业 问题描述 《建筑结构抗震设计》高振世P247 该建筑为一幢六层现浇钢筋混泥土框架房屋,屋顶有局部突出的楼梯间和水箱间。混泥土强度等级:梁为C20,柱为C25。混凝土密度为2500kg/m3 本题目将对该梁柱结构的框架房屋进行模态分析,求解出该结构的前8阶固有频率及其对应的模态振型。框架的平、剖面见图1,图2。构件尺寸参见表1、表2。 其材料为混凝土,相关参数为:杨氏模量C20为2.55e10N/m2,C25为2.8e10 N/m2。 图 1 平面视图 图 2 剖面图 表 1 梁的几何尺寸 部位断面 b×h (m×m) 跨度L (m) 屋顶梁0.25×0.60 5.7 楼层梁0.25×0.65 5.7 走道凉0.25×0.40 2.1 表 2 柱的几何尺寸 层次柱高(m)断面(m×m) 1 4 0.50×0.50 2,3,4,5,6 3.6 0.45×0.45

建模 利用有限元商业软件ANSYS8.0建模和有限元分析。 1单元类型(Element Type ): Beam4 图 3 单元BEAM4的特征 2材料模型: 本题目中所有材料都假定是各向同性线弹性体。 表 3 MARERIAL MODEL No. 梁/柱混凝土标号弹性模量EX N/m2 泊松比PXY 密度DENS kg/ m3 1 柱C25 2.8e10 0. 2 2500 2 梁C20 2.55e10 0.2 2500

3单元实常数: 表 4 REAL CONSTANT No. 部位 横截面面积 AREA(m2) Z轴惯性矩 IZZ(m4) Y轴惯性矩 IYY(m4) 高度 TKZ(m) 宽度 TKY(m) 1 底层柱0.25 5.208e-3 5.208e-3 0.5 0.5 2 其余柱0.2025 3.417e- 3 3.417e-3 0.45 0.45 3 走道梁0.1 1.333e-3 5.208e- 4 0.4 0.25 4 楼层梁0.162 5 5.721e-3 8.464e-4 0.65 0.25 5 屋顶梁0.15 0.45e-3 7.8125e-4 0. 6 0.25 4几何模型,网格划分,施加边界条件: 柱划为个6单元,走道梁划为3个单元,楼层梁划为5个单元,合计3029个单元 图 4

结构动力学大作业

结 构 动 力 学 大 作 业 姓名: 学号:

习题1 用缩法减进行瞬态结构动力学分析以确定对有限上升时间得恒定力的动力学响应。实际结构是一根钢梁支撑着集中质量并承受一个动态荷载。 钢梁长L ,支撑着一个集中质量M 。这根梁承受着一个上升时间为t τ,最大值为F1的动态荷载F(t)。梁的质量可以忽略,需确定产生最大位移响应时间max t 及响应max y 。同时要确定梁中的最大弯曲应力bend σ。 已知:材料特性:25x E E MPa =,质量M =0.03t ,质量阻尼ALPHAD=8; 几何尺寸:L =450mm I=800.64 mm h=18mm; 荷载为:F1=20N t τ=0.075s 提示:缩减法需定义主自由度。荷载需三个荷载步(0至加质量,再至0.075s , 最后至1s ) ANSYS 命令如下: FINISH /CLE$/CONFIG,NRES,2000 /prep7 L=450$H=18 ET,1,BEAM3 ET,2,MASS21,,,4 R,1,1,800.6,18 R,2,30 !MASS21的实常数顺序MASSX, MASSY, MASSZ, IXX, IYY, IZZ MP,EX,1,2E5$MP,NUXY ,1,0.3 N,1,0,0,0 N,2,450/2,0,0 N,3,450,0,0 E,1,2$E,2,3 !创建单元 TYPE,2$REAL,2 E,2 M,2,UY FINISH /SOLU !进入求解层 ANTYPE,TRANS

TRNOPT,REDUC OUTRES,ALL,ALL$DELTIM,0.004 !定义时间积分步长 ALPHAD,8 !质量阻尼为8 D,1,UY$D,3,UX,,,,,UY !节点1Y方向,约束节点3X、Y方向约束 F,2,FY,0 LSWRITE,1 !生成荷载步文件1 TIME,0.075 FDELE,ALL,ALL F,2,FY,20 LSWRITE,2 !生成荷载步文件2 TIME,1 LSWRITE,3 !生成荷载步文件3 LSSOLVE,1,3,1 !求解荷载文件1,2,3 FINISH /SOLU EXPASS,ON$EXPSOL,,,0.10000 !扩展处理 SOLVE FINISH /POST26 NUMV AR,0 FILE,fdy,rdsp !注意,建立的项目名称为fdy,否则超出最大变量数200,结果无效NSOL,2,2,U,Y,NSOL PLV AR,2 !时间位移曲线 PRV AR,2 !得出在0.10000该时间点上跨中位移最大 /POST1 !查看某个时刻的计算结果 SET,FIRST PLDISP,1 !系统在0.10000秒时总变形图 ETABLE,Imoment,SMISC,6 !单元I点弯矩 ETABLE,Jmoment,SMISC,12 !单元J点弯矩 ETABLE,Ishear,SMISC,2 !单元I点剪力 ETABLE,Jshear,SMISC,8 !单元J点剪力 PLLS,IMOMENT,JMOMENT,1,0 !画出弯矩图 PLLS,ISHEAR,JSHEAR,,1,0 !画出剪力图 结果如下; 随着时间位移的大小:

相关主题
文本预览
相关文档 最新文档