当前位置:文档之家› 固相萃取的原理方法等

固相萃取的原理方法等

固相萃取的原理方法等
固相萃取的原理方法等

固相萃取技术

在过去的二十多年中,固相萃取作为化学分离和纯化的一个强有力工具出现了。从痕量样品的前处理到工业规模的化学分离,吸附剂萃取在制药、精细化工、生物医学、食品分析、有机合成、环境和其他领域起着越来越重要的作用。

■固相萃取的原理

在过去的二十多年中,固相萃取作为化学分离和纯化的一个强有力工具出现了。从痕量样品的前处理到工业规模的化学分离,吸附剂萃取在制药、精细化工、生物医学、食品分析、有机合成、环境和其他领域起着越来越重要的作用。

固相萃取是一个包括液相和固相的物理萃取过程。在固相萃取中,固相对分离物的吸附力比溶解分离物的溶剂更大。当样品溶液通过吸附剂床时,分离物浓缩在其表面,其他样品成分通过吸附剂床;通过只吸附分离物而不吸附其他样品成分的吸附剂,可以得到高纯度和浓缩的分离物。

保留和洗脱

在固相萃取中最通常的方法是将固体吸附剂装在一个针筒状柱子里,使样品溶液通过吸附剂床,样品中的化合物或通过吸附剂或保留在吸附剂上(依靠吸附剂对溶剂的相对吸附)。“保留”是一种存在于吸附剂和分离物分子间吸引的现象,造成当样品溶液通过吸附剂床时,分离物在吸附剂上不移动。保留是三个因素的作用:分离物、溶剂和吸附剂。所以,一个给定的分离物的保留行为在不同溶剂和吸附剂存在下是变化的。“洗脱”是一种保留在吸附剂上的分离物从吸附剂上去除的过程,这通过加入一种对分离物的吸引比吸附剂更强的溶剂来完成。

容量和选择性

吸附剂的容量是在最优条件下,单位吸附剂的量能够保留一个强保留分离物的总量。不同键合硅胶吸附剂的容量变化范围很大。选择性是吸附剂区别分离物和其他样品基质化合物的能力,也就是说,保留分离物去除其他样品化合物。一个高选择性吸附剂是从样品基质中仅保留分离物的吸附剂。吸附剂选择性是三个参数的作用:分离物的化学结构、吸附剂的性质和样品基质的组成。

固相萃取的简要过程

1.一个样品包括分离物和干扰物通过吸附剂;

2.吸附剂选择性的保留分离物和一些干扰物,其他干扰

物通过吸附剂;

3.用适当的溶剂淋洗吸附剂,使先前保留的干扰物选择

性的淋洗掉,分离物保留在吸附剂床上;

4.纯化、浓缩的分离物从吸附剂上淋洗下来。

■SPE 的方法建立

1. 选择SPE 小柱或滤膜首先应根据待测物的理

化性质和样品基质, 选择对待测物有较强保留能

力的固定相。若待测物带负电荷, 可用阴离子交换填料, 反之则用阳离子交换填料。若为中性待测物, 可

用反相填料萃取。SPE 小柱或滤膜的大小与规格应视样品中待测物的浓度大小而定。对于浓度较低的

体内样品, 一般应选用尽量少的固定相填料萃取较大体积的样

品。

2. 活化萃取前先用充满小柱的溶剂冲洗小柱

或用5~ 10ml 溶剂冲洗滤膜。一般可先用甲醇等水

溶性有机溶剂冲洗填料, 因为甲醇能润湿吸附剂表面, 并渗透到非极性的硅胶键合相中, 使硅胶更容易

被水润湿, 之后再加入水或缓冲液冲洗。加样前, 应使SPE 填料保持湿润, 如果填料干燥会降低样品保

留值; 而各小柱的干燥程度不一, 则会影响回收率的重现性。

3. 加样一般可采取以下措施: (1) 用0. 1 mol/L

酸或碱调节, 使pH < 3 或pH > 9, 离心取上层液

萃取; (2) 用甲醇、乙腈等沉淀蛋白质后取上清液, 以水或缓冲液稀释后萃取; (3) 用酸或无机盐沉淀蛋白质后取上清液, 调节pH 值后萃取; (4) 超声15 min后加入水、缓冲液, 取上清液萃取。尿液样品中的药物浓度较高, 加样前先用水或缓冲液稀释, 必要时可用酸、碱水解反应破坏药物与蛋白质的结合, 然后

萃取。流速应控制为2~ 4 m l?m in, 流速快不利于待测物与固定相结合。

4. 清洗填料反相SPE 的清洗溶剂多为水或缓

冲液, 可在清洗液中加入少量有机溶剂、无机盐或调

节pH 值。加入小柱的清洗液应不超过一个小柱的容积, 而SPE 滤膜为5~ 10 m l。

5. 洗脱待测物应选用5~ 10m l 离子强

度较弱但能洗下待测物的洗脱溶剂。若需较高灵敏度, 则可先将洗脱液挥干后, 再用流动相重组残留物后进样。体内样品洗脱后多含有水, 可选用冷冻干燥法。保留能力较弱的SPE 填料可用小体积、较弱的洗脱液洗下待测物,再用极性较强的HPLC 分析柱如C18柱分析洗脱物。若待测物可电离, 可调节pH 值, 抑制样品离子化, 以增强待测物在反相SPE 填料中的保留, 洗脱时调节pH 值使其离子化并用较弱的溶剂洗脱, 收集洗脱液后再调节pH 值使其在HPLC 分析中达到最佳分离效果。在洗脱过程中应减慢流速, 用两次小体积洗脱代替一次大体积洗脱, 回收率更高。

■固相萃取技术在环境分析上的应用

在环境污染中农药分析的应用

国内外分析工作者就固相萃取技术在农药残留分析中的应用方面进行了广泛的尝试和探索,取得了许

多成功的经验. 由于农药在农作物生产中不仅污染作物本身,对

农作物的生长环境也产生污染,包括土壤、水体等.

SPE 在水体中农药残留分析方面的应用

测定水体中的农药残留一般采用如C18 ,C8 等非极性吸附剂,通常用甲醇和水条件化,以甲醇为洗脱剂.由于对水体

中的农药残留限量要求严格,如欧盟规定地表水农药残留量为

1.0μg/ L,饮用水为0.1μg/ L,我国规定生活饮用水中滴滴涕、

六六六的限量分别为1μg/ L 和5μg/ L,而且自然水体中的农药

残留质量

浓度通常也很低,若没有可靠的分离富集手段很难检测到,采用固相萃取技术可以使提取、富集和净化一步

完成. 将大体积样品过固相萃取柱进行预浓缩,用小体积洗脱剂

洗脱,再浓缩定容进行检测,大大降低了检测方法的检出限. 如:

康跃慧等人测定水源水中有机磷,通过固相萃取富集分离后,使方法检出限达到了1.19~5. 34 ng/L;Lopez-Blanco 等测定地表水中的硫丹(α和β异构体) ,采用固相萃取实现了样品的100 倍浓缩富集,使方法检出限达到20 ng/L; Pinto 等测定水中草净津等4 种除草剂,采用固相萃取富集样品使浓缩倍数达到500 倍,方法检出限降低至9.8~34 ng/ L.但对于水溶性强的农药品种如甲胺磷、乐果、敌敌畏等,回收率仅50 %~60 % ,甚至更低 ,因此在今后的工作中应着眼于如何提高这些农药品种的回收率,提高方

法的准确度.

SPE 在土壤中农药残留分析方面的应用

测定土壤中的农药残留一般是先用适当的提取溶剂及提取方式从土壤样品中将待测的农药提取出来,再利用固相萃取技术进行净化. 由于待测农药的性质不同所使用的提取溶剂不同,因此从基

质中带来的杂质性质也不尽相同,所以要选择适当的吸附剂实现

待测残留农药的分离和净化.分析极性较强的农药,采用极性较强的提取溶剂如丙酮-水体系时可采用非极性吸附剂如C18等,这样提取溶剂中水溶性强的杂质不会保留在吸附剂上,有利于样品的

净化,如Ruiz 等利用V (水) ∶V (DMF) = 100∶2.5 为提取溶剂、C18为吸附剂,以乙酸乙酯为淋洗剂测定土壤中莠去津,呋喃丹,地亚农等农药取得了较好的效果;而分析极性较弱的农药,采用极性较弱的提取溶剂时,可以选择极性吸附剂如Florisil 等,它不会对提取溶剂中的弱极性杂质产生保留,然后再选择适当溶剂将待

测残留农药淋洗下来进行测定,如Kim 等利用V(正己烷)∶V (二氧甲烷) = 7∶3 为提取溶剂、Florisil 为吸附剂测定土壤中α,β-HCH ,七氯等有机氯农药食品有毒物质分析中的应用近两年,国外有些学者已经开始将SPE 用于食品中一些毒素的提取和净化,如食品中有机氯、有机

磷农药残留量的测定,蔬菜水果中胺基甲酸酯类、拟除虫菊酯类农药的测定,Carmichael和Aase 等人分别用C18 提取了被细菌污染的牡蛎中的麻痹毒素和致腹泻毒素,优化了这些毒素的标本提

取步骤。Fiori 等人对于牛奶中非法添加的地塞米松等9 种皮质类固醇用SPE 法进行了提取,联合LC- MS 进行测定,测定水平为20~100ng/g。Skog对过高温度烧烤肉食中的致癌物质—杂环胺进行了提取,并用GC - MS 法对提取物进行测定,发现其浓度常可达10-9 水平。

有毒药物分析中的应用

固相萃取技术在有毒药物分析中的应用已不再只停留于血、尿等

体液中的巴比妥类、卡马西平、安非它明类、阿片类等药物的提取和净化, Hold 等人为研究毒品在毛发中的代谢机制,将人的毛发

用酶消化后, 调pH 为5. 5 , 然后过固相柱,蒸发浓集后,联合GC - MS 同时测定毛发中的可卡因、阿片以及它们的代谢物(咖啡因,爱康宁等) ,检测限均可达到500pg/mg。

富集环境空气中痕量有机化合物

环境空气污染物中挥发性及半挥发性物质占90 % ,其余为颗粒状污染物;颗粒状污染物可用滤膜捕集,对挥发性和半挥发性一般用固相萃取(固体吸附) ,溶液吸收和低温冷凝富集采样。固相萃取富集环境空气中有机物是将均匀粒度的固定相装成小柱,在常温

或低温下使空气通过小柱,由于气相(空气) 与固定相之间对有机化合物的分配系数不同而将欲捕集的化合物保留在小柱上,空气

中正常组分如氮、氧等则通过小柱流出,达到富集有机化合物的目的。

■固相萃取及其在临床生化检验中的应

用 ------您需要的!哈哈

随着生化技术的发展,从复杂的生物样品(血、尿、体液、粪便) 中提纯并富集痕量物质是现代分析技术必不可少的步骤。通过样品的预处理,去除生物样品中与待测物不相关的其他物质,并富集其浓度在可测定的线性范围内,这就要求预处理的特异性、重复性及回收率要高,而且不破坏待测物本身的性质和结构。以前常用离心、蒸馏、过滤、沉淀和真空冷冻、干燥等方法,但对复杂样品中低浓度待测物来说,上述方法难以满足要求。液-液萃取作为气相色谱( gas chromatography ,GC) 和其他色谱的预处理,曾一度非常流行,但它费时、易乳化、杂质较多、需要样品量大,并且需要一些有毒或有污染的有机溶剂,重现性和精密度较差,安全无毒的溶剂很少,且价格昂贵。为了弥补上述缺点,人们又发明了一较新的萃取方法———固相萃取(solid-phase ext raction ,SPE),SPE 已广泛应用于各行各业,包括生物样品中各种内源性物质和外源性物质及其代谢产物的分离、纯化;药物分析中的安眠类药物、抗组胺药物、抗抑郁药物、局麻药物、兴奋药物等的检测;法医学中的毒物分析(安非他明、大麻类、有机磷、麻醉剂、氰化物等) 及环境监测中某些金属离子的测定。各种SPE 在生物分析中的应用见表:

固相萃取柱知识点

1、使用阳离子固相萃取柱前为什么要用甲醇和水活化 要是使用的是高聚物基质的阳离子柱,可直接上样,不用活化,要是使用的是硅胶基质的阳离子柱,活化是为了打开键合在硅胶上的碳基团链,使之充分发生作用,甲醇是为了与碳链互溶,用水过度是为了能和样品溶液相溶。 2、固相萃取技术原理及应用 一、固相萃取基本原理与操作 1、固相萃取吸附剂与目标化合物之间的作用机理 固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的 1)疏水作用力:如C18、C8、Silica、苯基柱等 2)离子交换作用:SAX, SCX,COOH、NH2等 3)物理吸附:Florsil、Alumina等 2、p H值对固相萃取的影响 pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项 针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。 1)填料保留目标化合物 固相萃取操作一般有四步(见图1): ? 活化---- 除去小柱内的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸) ? 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)? 淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干) ? 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜) 如下图1:

固相萃取与固相微萃取应用之原理

固相萃取与固相微萃取应用之原理 一固相萃取 固相萃取(Solid Phase Extraction,SPE)是一种基于液-固分离萃取的试样预处理技术,由柱液相色谱技术发展而来。SPE技术自70年代后期问世以来,由于其高效、可靠及耗用溶剂量少等优点,在环境等许多领域得到了快速发展。在国外已逐渐取代传统的液-液萃取而成为样品预处理的可靠而有效的方法。 SPE技术基于液相色谱的原理,可近似看作一个简单的色谱过程。吸附剂作为固定相,而流动相是萃取过程中的水样。当流动相与固定相接触时,其中的某些痕量物质(目标物)就保留在固定相中。这时用少量的选择性溶剂洗脱,即可得到富集和纯化的目标物。固相萃取可分为在线萃取线萃取前者萃取与色谱分析同步完成;而后者萃取与色谱分析分步完成,两者在原理上是一致的。 一般固相萃取的操作步骤包括固相萃取柱(即吸附剂)的选择、柱子预处理、上样、淋洗、洗脱。在实验过程中需要具体考虑的因素如下: 1)吸附剂的选择 a.传统吸附剂 在环境分析中最为常用的反相吸附剂较适用于水样中的非极性到中等极性的有机物的富集和纯化。其中有代表性的键合硅胶C18和键合硅胶C8等。该类吸附剂主要通过目标物的碳氢键同硅胶表面的官能团产生非极性的范德华力或色散力来保留目标物。 正相吸附剂包括硅酸镁、氨基、氰基、双醇基键合硅胶及氧化铝等,主要通过目标物的极性官能团与吸附剂表面的极性官能团的极性相互作用(氢键作用等)来保留溶于非极性介质的极性化合物。由于其特殊的作用原理,在环境分析中常用于与其它类型的吸附柱联用,吸附去除干扰物,实现样品纯化。 离子交换吸附剂则主要包括强阳离子和强阴离子交换树脂,这些树脂的骨架通常为苯乙烯-二乙烯基苯共聚物,主要是通过目标物的带电荷基团与键合硅胶上的带电荷基团相互静电吸引实现吸附的。 b.抗体键合吸附剂(Immunosorbents-IS) 这类新型吸附剂充分利用了生物免疫抗原-抗体之间的高灵敏性和高选择性,尤其适应于水中痕量有机物的富集与分离。其特点为,由于绝大多数有机污染物为低分子量物质,不能在动物体内引发免疫反应,所以需把待定污染物键合到牛血清白蛋白的生物大分子载体上,使其具有免疫抗原活性,再注入纯种动物体内(如兔或羊),产生抗体,经杂交瘤技术制得相应于该有机污染物的单克隆抗体。将抗体键合到反相吸附剂的硅胶表面或聚合物表面(如C18固定相),就制得了抗体键合吸附剂,可用于分离、富集特定污染物。研制开发能专门检测各种优先污染物的单克隆抗体或多克隆抗体已成为SPE技术的前沿研究领域。 抗体键合吸附剂洗脱时一般可采用20%~80%的甲醇-水溶液,该类吸附剂经冷藏保存可多次使用。进行SPE操作时应根据目标物的性质选择适合的吸附剂。表1- 1给除了常用的吸附剂类型及其相关的分离机理、洗脱剂性质和待测组分的性质。 吸附剂的用量与目标物性质(极性、挥发性)及其在水样中的浓度直接相关。通常,增加吸附剂用量可以增加对目标物的保留,可通过绘制吸附曲线确定吸附剂用量。 2)柱子预处理 活化的目的是创造一个与样品溶剂相容的环境并去除柱内所以杂质。通常需要两种溶剂来完成任务,第一个溶剂(初溶剂)用于净化固定相,另一个溶剂(终溶剂)用于建立一个适合的固定相环境使样品分析物得到适当的保留。每一活化溶剂用量约为1~2 mL/100 mg固定相。

常用固相萃取柱

常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品 1word格式支持编辑,如有帮助欢迎下载支持。

硅胶上键合乙基 500mg 500mg 1000mg 3ml 6ml 6ml 50 30 30 合物。500mg 500mg 1000mg 3ml 6ml 6ml 50 30 30 核酸碱,核苷,表面活化剂。容量:0.2毫当 量/克。 Phenyl 硅胶上键合苯基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 相对C18和C8,反相萃取,适合 于非极性到中等极性的化合物 Alumnia A (acidic) 酸性 PH ~5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物离子交换和吸附萃取,如维生 素. Silica 无键合硅胶 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物萃取,如乙醇,醛, 胺,药物,染料,锄草剂,农药, 酮,含氮类化合物,有机酸,苯 酚,类固醇 Alumnia B (basic) 碱性 PH~8.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 吸附萃取和阳离子交换。 Cyano(CN) 硅胶上键合丙氰基烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于中等极性的 化合物,正相萃取,适合于极性 化合物,比如,黄曲霉毒素,抗 菌素,染料,锄草剂,农药 ,苯 酚,类固醇。弱阳离子交换萃 取,适合于碳水化合物和阳离 子化合物。 Alumnia N (neutral) 中性 PH~6.5 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物吸附萃取。调节pH,阳和阴离。 子交换.适合于维生素,抗菌素,芳香油,酶, 糖苷,激素 Amino(NH2) 硅胶上键合丙氨基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 正相萃取,适合于极性化合物。 弱阴离子交换萃取,适合于碳 水化合物,弱性阴离子和有机 酸化合物。 Florisil 填料-硅酸 镁 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 极性化合物的吸附萃取,如乙醇,醛,胺,药 物,染料,锄草剂,农药,PCBs,酣,含氮类化 合物,有机酸,苯酚,类固醇 固相萃取柱及填料(SPE column) 2word格式支持编辑,如有帮助欢迎下载支持。

固相萃取(SPE)装置应用及原理

固相萃取(SPE)装置应用及原理 装置:离线与在线SPE 离线SPE: 1.SPE与分析分别独立进行,SPE仅为以后的分析提供合适的试样。 2.为使试样溶液与填料有足够的接触,溶剂流量不能过高。 3.可由自动化仪器完成。自动SPE仪由柱架、柱塞泵、储液槽、管线和试样处理器组成。 在线SPE: 又称在线净化和富集技术,主要用于HLPC分析; 柱预处理: 目的: 1.除去填料中可能存在的杂质; 2.使填料溶剂化,提高固相萃取的重现性; 加样: 1.为防止分析物的流失,试样溶剂浓度不宜过高; 2.以反相机理萃取时,以水或缓冲剂作为溶剂,其中有机溶剂量不超过10%(V/V); 3.为克服加样过程中分析物流失,可采用弱溶剂稀释试样、减少试样体积、增加SPE柱中的填料量和选择对分析物有较强保留的吸附剂等手段。 SPE方法的建立: 分析物的洗脱和收集(另一种情况是杂质被保留而分析物通过柱) 1.对反相萃取柱,清洗溶剂是含适当浓度有机溶剂的水或缓冲液; 2.为决定清洗溶剂的浓度和体积,加试样于SPE柱上,用5~10倍SPE柱床体积的溶剂清洗,依次收集和分析流出液,得到清洗溶剂对分析物的洗脱廓形。依次增加清洗溶剂强度,根据不同不同强度下分析物的洗脱廓形,决定清洗溶剂合适的强度和体积; 3.洗脱和收集目的:将分析物洗脱并收集在小体积的级分中,同时使比分析物更强保留的杂质尽可能多的保留在SPE柱上; 4.为提高分析物的浓度或为以后分析调整溶剂性质,可以把收集到的分析物级分用氮气吹干,再溶于小体积的溶剂中。

产品说明: 川一系列固相萃取仪(Solid-Phase Extraction,简称SPE)是一种被广泛应用且备受欢迎的样品前处理技术,是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的(即样品的分离,净化和富集),目的在于降低样品基质干扰,提高检测灵敏度,其应用于各类食品安全检测、农产品残留监控、医药卫生、环境保护、商品检验、自来水及化工生产实验室。 主要特征: 固相萃取仪整机由透明有机玻璃制作,耐腐蚀性强。 防交叉污染,防雾化真空槽设计,操作简单快速。 无相分离操作易于收集分析物组件并可处理小体积试样。 固相萃取装置可配大容量采集容器,可批量处理样品也可单个处理样品。 真空槽采用特硬玻璃模具成形,其壁厚均匀故可承受-0.098Mpa以上的高负压。 萃取柱托盘采用特高分子材料制成,其美观耐腐蚀并且长期使用在高压力状态下不变形。 内部试管架由聚四氟制成故有很高的耐腐蚀。 各处受压均匀,气密性好,稳定性强。 萃取速度一致性好、控制调整方便。 多通道可独立控制,接头耐腐蚀。

固相萃取概述

固相萃取(SPE) 一、概述 固相萃取(Solid-Phase Extraction,简称SPE)是近年发展起来一种样品预处理技术,由液固萃取和液相色谱技术相结合发展而来,主要用于样品的分离、纯化和浓缩,与传统的液液萃取法相比较可以提高分析物的回收率,更有效的将分析物与干扰组分分离,减少样品预处理过程,操作简单、省时、省力。广泛的应用在医药、食品、环境、商检、化工等领域。 二、SPE的原理与分离模式 固相萃取是基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离、纯化,是一种包括液相和固相的物理萃取过程。SPE根据其相似相溶机理可分为四种:反相SPE、正相SPE、离子交换SPE、吸附SPE。 反相SPE中吸附剂(固定相)属于非极性或弱极性,如硅胶键合C18,C8, C4,C2,-苯基等。 正相SPE中吸附剂(固定相)属于极性键合相和极性吸附剂,如硅胶键合-NH2、-CN,-Diol(二醇基)、(A-,N-,B-)alumina、硅藻土等。 离子交换SPE中吸附剂(固定相)为带电荷的离子交换树脂,流动相为中等极性到非极性样品基质。用于萃取分离带有电荷的分析物 固相萃取的洗脱模式可以分为两种:一种是目标化合物比干扰物与吸附剂之间的亲和力更强,因而被保留,洗脱时采用对目标化合物亲和力更强的溶剂;另一种是干扰物比目标化合物与吸附剂之间的亲和力更强,则目标化合物被直接的洗脱。通常采用前一种洗脱方式。 三、SPE的主要步骤 一个完整的固相萃取步骤包括固相萃取柱的预处理、上样、淋洗、洗脱及收

集分析物四个步骤。 固相萃取柱的预处理的目的主要包括两个方面:清洗萃取柱中的固定相(填料)和活化固定相。通常用两种溶剂来完成,第一个溶剂(初溶剂)用于净化固定相,另一个溶剂(终溶剂)用于建立一个合适的固定相环境使样品分析物得到适当的保留。 上样是为了让分析物被固定相萃取:将样品倒入活化后的SPE 萃取柱,然后利用加压、抽真空或离心的方法使样品进入吸附剂(采取手动或泵以正压推动或负压抽吸方式),使液体样品以适当流速通过固相萃取柱,此时,样品中的目标萃取物被吸附在固相萃取柱填料上。 上样完成后需要对固定相进行淋洗以洗去不需要的成分,尽量的减少杂质的影响。一般选择中等强度的混合溶剂,尽可能除去基体中的干扰组分,又不会导致目标萃取物流失。 淋洗后选择适当的洗脱溶剂洗脱被分析物,收集洗脱液,挥干溶剂以备后用或直接进行在线分析。为了尽可能将分析物洗脱,使比分析物吸附更强的杂质留在SPE 柱上,需要选择强度合适的洗脱溶剂。 四、SPE 的应用 固相萃取(SPE )大多数用来处理液体样品,萃取、浓缩和净化其中的半挥发性和不挥发性化合物,也可用于固体样品,但必须先处理成液体。它是一种用途广泛的样品前处理技术,广泛的应用在医药、食品、环境、商检、化工等领域。主要典型的应用领域: 1、医药发面:血清、体液,固体、液体药物成分的检测分析 如:人体血清中的咖啡因、吴茱萸碱,吴茱萸次碱的SPE 净化及检测和血清中头孢拉定、头孢氨苄、舒必利、磺胺类等药物的检测。 2、食品、食物方面:蔬菜、水果中残留农药,肉制品中残留兽药的检测 如:猪肉中五种磺胺药物(磺胺二甲基嘧啶、磺胺间甲氧嘧啶、磺胺甲唑、预处理 (清洗、活化)上样(萃取)淋洗(去杂质)洗脱(采样分析)

萃取原理

第八章萃取 §1 概述 8-1 萃取概念及应用 我们以手工洗衣服为例,打完肥皂、揉搓后,如何将肥皂沫去除呢?用清水多次漂洗,这是人们熟知的过程。多次漂洗的过程即为化工中的液-固萃取过程。如图8-1所示,漂洗次数越多,衣服与肥皂沫分离越完全,衣服越干净。 图8-1的衣物漂洗过程为错流萃取过程。清水称作萃取剂,含沫水为萃取相,衣物和沫为萃余相。皂沫为溶质A。经验还告诉我们,每盆水揉搓的时间越长(即萃取越接近平衡),拧得越干(即萃取与萃余相相分离越彻底),所用漂洗次数越少(即错流级数越少)。 图8-1 错流萃取示意图 萃取——利用混合物各组分对某溶剂具有不同的溶解度,从而使混合物各组分得到分离与提纯的操作过程。 例如用醋酸乙酯萃取醋酸水溶液中的醋酸。如图8-2所示。 图8-2萃取示意图 萃取用于沸点非常接近、用一般蒸馏方法分离的液体混合物。主要用化工厂的废水处理。如染料厂、焦化厂废水中苯酚的回收。萃取也用于法冶金中,如从锌冶炼烟尘的酸浸出液中萃取铊、锗等。制药工业中,许多复杂有机液体混合物的分离都用到萃取。为使萃取操作得以进行,一方面溶剂S对稀释剂B、溶质A要具有不同的溶解度,另一方面S与B必须具有密度差,便于萃取相与萃余相的分离。当然,溶剂S具有化学性质稳定,回收容易等特点,则将为萃取操作带来更多的经济效益。 萃取过程计算,习惯上多求取达到指定分离要求所需的理论级数。若采用板式萃取塔,则用理论级数除以级效率,可得实际所需的萃取级数。若采用填料萃取塔,则用理论级数乘以等级高度,可得实际所需的萃取填料层高度。等级高度是指相当于一个理论级分离效果所需的填料层高度,等级高度的数据十分缺乏,多需由实验测得。

萃取的原理与应用

双水相萃取 利用物质在不相溶的,两水相间分配系数的差异进行萃取的方法。原理 某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成双水相系统(aqueous two-phase system,ATPS)。利用亲水性高分子聚合物的水溶液可形成双水相的性质,Albertsson于20世纪50年代后期开发了双水相萃取法(aqueous two-phase extraction),又称双水相分配法。 双水相萃取的聚合物不相容性:根据热力学第二定律,混合是熵增过程可以自发进行,但分子间存在相互作用力,这种分子间作用力随相对分子质量增大而增大。当两种高分子聚合物之间存在相互排斥作用时,由于相对分子质量较大的分子间的排斥作用与混合熵相比占主导地位,即一种聚合物分子的周围将聚集同种分子而排斥异种分子,当达到平衡时,即形成分别富含不同聚合物的两相。这种含有聚合物分子的溶液发生分相的现象称为聚合物的不相溶性生物分子的分配系数取决与溶质于双水相系统间的各种相互作用,其中主要有静电作用、疏水作用和生物亲和作用。因此,分配系数是各种相互作用的和。 应用 双水相萃取自发现以来,无论在理论上还是实践上都有很大的发展。在最近几年中更为突出。双水相萃取技术已广泛应用于生物化学、细胞生物学、生物化工和食品化工等领域,并取得了许多成功的范例,在若干生物工艺过程中得到了应用,其中最重要的领域是蛋白质的分离和纯化,其应用举例如表所示。 双水相萃取技术可用于多种生活活性物质的分离和纯化,见下表:

注:PEG为聚乙二醇;dextran为葡聚糖。 此外双水相还可用于稀有金属/贵金属分离,传统的稀有金属/贵金属溶剂萃取方法存在着溶剂污染环境,对人体有害,运行成本高,工艺复杂等缺点。双水相技术萃取技术引入到该领域,无疑是金属分离的一种新技术。 液液萃取 原理 在欲分离的液体混合物中加入一种与其不溶或部分互溶的液体溶剂,经过充分混合,利用混合液中各组分在溶剂中溶解度的差异而实现分离的一种单元操作 液液萃取在工业上的应用 1、液液萃取在石油化工中的应用 ?分离轻油裂解和铂重整产生的芳烃和非芳烃混合物 ?用酯类溶剂萃取乙酸,用丙烷萃取润滑油中的石蜡 ?以HF-BF3作萃取剂,从C8馏分中分离二甲苯及其同分异构体 2、在生物化工和精细化工中的应用 ?以醋酸丁酯为溶剂萃取含青霉素的发酵液 ?香料工业中用正丙醇从亚硫酸纸浆废水中提取香兰素 ?食品工业中TBP从发酵液中萃取柠檬酸 3、湿法冶金中的应用 用溶剂LIX63-65等螯合萃取剂从铜的浸取液中提取铜

固相萃取技术

在2003版的“食品卫生检测方法”标准系列中,有一个较大的改动就是很多项目,尤其是农药项目的前处理普遍使用了固相萃取技术(详见表1 )。现针对这一技术的原理、使用和误区进行探讨。 一.固相萃取技术简介 固相萃取(Solid Phase Extraction,简称SPE)技术,发展于上世纪70年代,由于其具有高效、可靠、消耗试剂少等优点,在许多领域取代了传统的液-液萃取而成为样品前处理的有效手段。 一些传统的介绍SPE的书籍将其归于一个液相色谱的原理,这其实是引起使用不当的主要源由之一。把SPE小柱看作一根液相色谱柱,不如把它看成单纯的萃取剂更合适,因为:液相色谱的重点在于分离,而SPE的重点在于萃取。 固相萃取技术在样品处理中的作用分两种:一是净化,二是富集,这两种作用可能同时存在。 固体萃取和液-液萃取相比,其长处在于方便和消耗试剂少,短处在于批次间的重复性难以保证。出现这种情况的原因在于:液体试剂的重复性好,只要其纯度可靠,不同年代的产品的物理化学性质都是可靠的。而固体萃取剂就算保证了纯度外,还存在着颗粒度的差异,外形的差异等液体试剂不存在的且难以衡量的因素,不同年代不同批号的萃取性质可能会有较大的区别。 从理论上和厂家宣传来看,固相萃取应该在色谱分析的前处理上得到很好的应用:有机溶剂用得很少,可批量处理样品,既可富集,又能除杂质,给人印象是前处理的革命性进步。然而现实情况,起码在国内,虽然推广了多年,实际应用还是相当有限。 SPE应用得不广,与我们的使用方式和期望有关,也与它本身的局限有关。对于供应商来说,从经济利益出发,向来都是忽略固相萃取的局限与不足。固相萃取可以作为前处理手段的一个很好补充,但是在使用时,一定要清醒知道到它的优点和缺点,注意因地制宜,扬长避短。 二、固相萃取的应用优势 在什么项目的前处理适合使用固相萃取技术,即用固相萃取会比普通的溶剂萃取更理想,个人认为有以下几种情况: (一)水中有机物的前处理。 此类常规处理基本上是用与水不相溶的有机溶剂振荡萃取,用固相萃取的优势在于 (1)可以定量地重复前处理过程。 溶剂振荡的操作一般只能要求到控制时间的程度,却无法控制振荡频率,强度,动作,我们

固相萃取基本原理与操作

一、固相萃取基本原理与操作 1、固相萃取吸附剂与目标化合物之间的作用机理 固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的1)疏水作用力:如C18、C8、Silica、苯基柱等 2)离子交换作用:SAX, SCX,COOH、NH2等 3)物理吸附:Florsil、Alumina等 2、p H值对固相萃取的影响 pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH 值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项 针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。 1)填料保留目标化合物 固相萃取操作一般有四步(见图1): ?活化---- 除去小柱的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸) ?上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/m in) ?淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干) ?洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜)

固相萃取简介

固相萃取(Solid Phase Extraction,简称SPE)是从20世纪80年代中期开始发展起来的一种样品前处理技术。它是通过固体吸附剂的选择性吸附和洗脱将液体样品(固体样品也可制成液体样品)中的目标化合物与干扰化合物分离,以达到富集、分离、净化样品的目的。SPE是一个包括液相和固相的物理萃取过程,在固相萃取过程中,吸附剂对目标化合物的吸附力大于样品母液,当样品通过SPE柱时,目标化合物被吸附在固体表面,其他组分则随样品母液通过柱子,最后再用适当的溶剂将目标化合物洗脱并收集,然后进行色谱分析。 固相萃取的主要影响因素 固相萃取是一个目标物在固定相上吸附、解吸附/洗脱的过程,因此影响吸附、解吸附/洗脱的因素都会直接影响萃取的效率,如填料类型、洗脱溶剂的强度、pH、流速等。 填料填料是固相萃取技术的核心,选择对目标物具有适中吸附性的SPE柱填料是确保检测准确的前提。当然针对同一种目标物,我们可以选择不同的柱填料,但是要注意方法的调整。 洗脱溶剂的强度固相萃取是固定相—填料与流动相—上样溶剂/洗脱溶剂对 目标物的竞争吸附作用,所以在上样时,要选择有机溶剂含量或pH都合适的上样液,以避免目标物在上样时漏掉;而在洗脱时,也必须选择适合的洗脱溶剂强度,即有机溶剂的含量或pH,以确保能将吸附在填料上的目标物彻底洗脱下来。 pH 对于离子交换固定相,被分析成分与干扰物质的pKa(等电点)各不相同。通过调节溶剂pH的大小,可以使固定相带电荷,被分析物带相反电荷,而使干扰物质不带电荷;或使固定相带电荷,干扰物质带相反电荷,而使被分析物不带电荷。 流速上样流速和洗脱流速会影响吸附或解吸附/洗脱的效果,上样和洗脱的流速一般控制在1mL/min以内。对于大样量痕量样品的富集,如环境水样中有机物的富集,上样最大流速不超过5mL/min。除了以上的几个因素,一些操作步骤完成的情况,如活化的程度、淋洗步骤的抽干等,也会影响结果的回收率或重现性。 固相萃取种类及特点 固相萃取实质上是一种液相色谱分离,按照萃取机理的不同,固相萃取可分为正相(吸附剂极性大于洗脱液极性)、反相(吸附剂极性小于洗脱液极性)和离子交换吸附。正相固相萃取所用的吸附剂都是极性的,用来萃取(保留)极性物质,可以从非极性溶剂样品中吸附极性化合物;反相固相萃取所用的吸附剂通常是非极性的或极性较弱的,所萃取的目标化合物通常是中等极性到非极性化合物;离子交换固相萃取所用的吸附剂是带有电荷的离子交换树脂,所萃取的目标化合物是带有电荷的化合物。随着人们对固相萃取原理的熟悉,以及对固相萃取操作的熟练,填料越来越成为固相萃取的核心。填料不同,萃取的特点和应用也不同。按照填料种类的不同,固相萃取可以分为以下四类:

萃取操作规程及流程

一、实验目的 了解萃取的原理及应用,掌握其操作方法。 二、实验原理 萃取也是分离和提纯有机化合物常用的操作之一。应用萃取可以从固体或液体混合物中提取出所需要的物质,也可以用来洗去混合物中的少量杂质。前者通常称为“抽提”或“萃取”,后者称为“洗涤”。 1.基本原理 萃取是利用物质在两种不互溶(或微溶)溶剂中溶解度或分配比的不同来达到分离、提取或纯化目的的一种操作。假如某溶液由有机化合物X 溶解于溶剂A 而成,如果要从其中萃取X ,可选择一种对X 溶解度很大而与溶剂A 不相混溶和不起化学反应的溶剂B 。把该溶液放入分液漏斗中,加入适量溶剂B ,充分振荡。静置后,由于A 与B 不相混溶,分成上下两层。此时X 在A 、B 两相间的浓度比,在一定温度下为一常数,叫做分配系数,以K 表示,这种关系称为分配定律。可用公式表示如下: ()分配系数度 中的B 在溶剂Χ度中的A 在溶剂ΧK =浓浓 在萃取中,用一定量的溶剂一次萃取好还是分几次萃取好呢?通过下面的推导来说明这个问题。设在V mL 溶液中,溶解有m 0 g 的溶质(X ),每次用S mL 溶剂B 重复萃取。假如,第一次萃取后剩留在溶剂A 中的溶质(X )量为m 1 g ,则在溶剂A 和溶剂B 中的浓度分别为m 1/V 和(m 0-m 1)/S 。根据分配定律: ()K S m m V m =-101 或 S KV KV m m +=01 设萃取两次后溶质(X )在溶剂A 中剩余量为m 2 g ,则有 ()K S m m V m =-212 或 2 012??? ??+=+=S KV KV m S KV KV m m 显然,萃取n 次后溶质在溶剂A 中的剩余量m n 应为: n n S KV KV m m ??? ??+=0 在用一定量溶剂进行萃取时,我们希望在A 溶剂中剩余量越少越好,在上

常用固相萃取柱

常用固相萃取柱

常用固相萃取柱 HLB是英文"亲水-亲脂平衡"(hydrophilic-l;pophilicbalance)的缩写,它是. 一种新型的反相吸附剂,能同时表现出对亲水性化合物和亲脂性化合物的双重保留特性。 固相萃取柱产品和应用指南(SPE column)返回 提供VARIAN公司BondElut、Agilent公司AccuBond系列固相萃取柱,另可提供经济型国产萃取小柱及填料,并可根据用户需要订做 各种规格产品 填料含量容量包装应用范围填料含量容量包装应用范围 ODS(C18) 硅胶上键合十八烷基 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于非极性到中等 极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药 物,染料,芳香油,脂溶性维生 素,杀真菌剂,锄草剂,农药,碳 水化合物,对羟基甲苯酸取代酯, 苯酚, 邻苯二甲酸酯,类固醇, 表面活化剂,茶碱,水溶性维生 素。 EVIDEXII 辛烷和阳 离子交换 树脂 200mg 400mg 3ml 6ml 50 30 Amphetamina/Methamphetamine、 PCP、 Benzoylecgonine、 Codeine/Morphine、 THC- COOH(Marijuana) Cctyl(C8) 硅胶上键合辛烷 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 反相萃取,适合于非极性到中等 极性的化合物,比如,抗菌素, 巴比妥酸盐,酞嗪,咖啡因,药 物,染料,芳香油,脂溶性维生 素,杀真菌剂,锄草剂,农药,碳 水化合物,对羟基甲基酸取代酯, 苯酚,邻苯二甲酸酯,类固醇,表 SAX 硅胶上键 合卤化季 氨盐 100mg 200mg 500mg 500mg 1000mg 1ml 3ml 3ml 6ml 6ml 100 50 50 30 30 强阴离子交换萃取,适合于阴离子,有机酸,核酸, 核苷酸, 表面活化剂。容量:0.2毫当量/克。

全自动化固相萃取技术(精)

自动化固相萃取技术及其应用 摘要:固相萃取技术(SPE)是近年来发展较快并得到广泛应用的一种新的样品前处理方法。固相萃取技术由于其溶剂使用量少、操作简单、选择性高、重现性好,已发展成为分离和浓缩各种样品中痕量分析物质的一种强有力的工具。本文简单介绍了固相萃取的基本原理,着重介绍了自动化固相萃取(ASPE)的连用技术和在方法优化中的应用。 关键词:自动化固相萃取;连用技术;方法优化 Abstract: Solid-phase extraction ( SPE technology is a fast-developing sample preparation method with wide application in recent years. Because of its solvent use less, simple operation, high selectivity, good reproducibility, solid-phase extraction technology has developed into a powerful tool for separating and concentrating samples which are in minute amounts. T his paper describes the basic principles of solid-phase extraction briefly, emphasis on application of combining automated solid-phase extraction (ASPE technology with other technology and method optimization. Keywords: automated solid-phase extraction; coupled technology; method optimization 1.固相萃取简介 固相萃取( solid phase extraction,SPE是近年来发展迅速的样品前处理方法,固相萃取技术就是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱,达到分离和富集目标

样品前处理--固相微萃取技术综述

固相微萃取(SPME)技术综述 2010级分析化学专业杜亚辉 作为一种较新的样品前处理技术,固相微萃取技术(SPME)具有操作简单、快速,集采样、萃取、浓缩和进样于一体等诸多优点,目前已被广泛应用。下面详细阐述了SPME的技术原理、操作流程、影响因素、应用领域和新的进展。 固相微萃取(Solid-phase microextraction,SPME)是一项新型的无溶剂化样品前处理技术。固相微萃取以特定的固体(一般为纤维状萃取材料)作为固相提取器将其浸入样品溶液或顶空提取,然后直接进行GC、HPLC等分析。SPME由Pawliszyn在1989年首次报道,近10年来固相微萃取技术已成功应用于气体,液体及固体样品的前处理[2]。 1.1 固相微萃取技术及原理 固相微萃取法是以固相萃取为基础发展起来的方法,固相微萃取利用了固相萃取吸附的几何效应,其装置结构的超微化决定了它能避开经典固相萃取的许多弱点。固相微萃取技术多在一根纤细的熔融石英纤维表面涂布一层聚合物并将其作为萃取介质(萃取头),再将萃取头直接浸入样品溶液(直接浸没-固相微萃取方法,简称DI-SPME)或采用顶空-固相微萃取方法(HS-SPME)采样[8]。由于聚合物涂层的种类很多,因而可对样品组分进行选择性富集和采集,固相微萃取的原理是一个基于待测物质在样品及萃取涂层中分配平衡的萃取过程[3]。固相微萃取利用表面未涂渍或涂渍吸附剂的熔融石英纤维或其它纤维材料作为固定相,当涂渍纤维暴露于样品时,根据“相似相溶”原理,水中或溶液中的有机物以及挥发性物质,从试样基质中扩散吸附在萃取纤维上逐渐浓缩富集。萃取时,被测物的分布受其在样品基质和萃取介质中的分配平衡所控制,被萃取量(n)与其他因素的关系可以用下式描述: n=kV f C0V s/(kV f+ V s) 式中:k为被测物在基质和涂层间的分配系数,V f和V s分别为涂层和样品的体积,C0为被测物在样品中的浓度。如果样品体积很大时(VskV f)上式可以简化成: n=kV f C0 萃取的被测物量与样品的体积无关,而与其浓度呈线性关系,因而从分析结果中得到的萃取纤维表面的吸附量,就能算出被萃取物在样品中的含量,可方便地进行定量分析[1]。 1.2 固相微萃取操作条件的选择 萃取头的构成应由萃取组分的分配系数、极性、沸点等参数来确定,在同一个样品中,因萃取头的不同可使其中一个组分得到最佳萃取而使其他组分受到抑制。平衡时间往往由众多因素所决定,如分配系数、物质扩散速度、样品基质等。此外,温度、离子浓度、样品的

固相萃取、吸附原理

不同基质固相萃取小柱的详细介绍 1、硅胶基质 填料说明 C18(封端)Simon C18(封端)是以硅胶为基质的反相C18萃取柱。具有高键合密度,低流失,高回收率等特点。相当于BondElute C18,Super clean ENVI C18。主要应用于血液、血浆、尿液中药物及其代谢物、蛋白、DNA等大分子样品的脱盐、环境水样中的有机物的富集等。 C8辛基Simon C8在吸附性上与C18键合相类似,主要靠非极性碳键相互作用。但由于C8碳键较C18短,所以对非极性化合物保留弱于C18,有助于对非极性吸附过程的样品的洗脱。C8小柱可以从血浆中同时萃取脂溶性和水溶性维生素,也常用于生物分子样品脱盐。 CN氰基Simon CN氰基SPE产品是以硅胶为基质的氰丙基萃取柱。具有中等极性,可用于反相或正相萃取。 NH2(氨基)Simon NH2(氨基)是以硅胶为基质的氨丙基萃取柱。它具有极性固定相和弱阴离子交换剂,可通过弱阴离子交换(水溶液)或极性吸附(非极性有机溶液)达到保留作用,因此具有双重作用。当用在非极性溶液中(如正己烷)进行预处理时,它能与带有-OH,-NH或-官能团的分子形成氢键。氨基pKa=9.8;与阴离子的作用较SAX弱,在PH<7.8水溶液中,可用做弱阴离子交换剂,可用于去除样品中的磺酸根等强阴离子。 PAS N-丙基乙二 胺Simon PAS 是与NH2相似的吸附剂。PSA有两个氨基,pKa 值分别为10.0和10.9。有比NH2柱更强的离子交换能力。同时PSA可与金属离子产生螯合作用,用于提取金属离子。常用于农残分析中样品的前处理,去除有机酸,色素,金属离子和酚类等。 Simon SAX 强阴离子交 换Simon SAX是以硅胶为基质的强阴离子交换萃取柱,键合有季铵盐官能团。主要用于弱阴离子型化合物的萃取,如羧酸等。这种强阴离子交换剂可用于从水合非水溶液中萃取带有负电荷的化合物,最适合于弱酸的提取。相当于BondElute SAX。常用于除掉样品中的强阴离子(有机酸,核酸,核苷酸,磺酸根,无机离子等)生物大分子脱盐等。 Simon Simon COOH是以硅胶为基质的弱阳离子交换萃取柱。键

全自动固相萃取英文介绍

Introduction of Automated solid-phase extraction system Equipment name: Automated solid-phase extraction system Equipment Type: J2 Scientific SPEi Inline SPE Equipment Function: It is mainly used for sample pre-treatment,including food、agricultural、animal and plant samples、aquatic products and the environment(soil,water,etc).Currently,it is used in the pre-pre-treatment of pesticide residues in Chinese herbal medicines. Equipment Key Technical Parameter: The PrepLinc SPEi from J2 Scientific accentuates our line of full-featured automated sample preparation instruments. Use the SPEi as a stand-alone automated SPE system or integrate with our AccuVap Evaporation Systems for complete sample prep. 1、Standout Features. + Use cartridges from 1mL - 15mL plus many specialty and flash chromatography columns + Perform multi-column procedures; up to 3 columns inline + Concentrate eluate to final volume or concentrate between prep processes with our AccuVap + Ability to perform reverse elution through cartridge for special applications + Unlimited elution volumes 2、Exceptional hardware & software features make the PrepLinc SPEi an integral part of your prep lab. + Positive Pressure Elution for Sample and Solvents + Programmable Flowrates to 60 mls/min + Nitrogen Drying + Select from 12 Solvents for processing(3 standard) + Closed System + Pressure Monitoring + Customizable trays & autosampler mat + Add up to 5 SPE column modules 3、Method Operations The SPE method is created by choosing and defining operations in the order they should occur. The available operations are as follows: Drying/Clear: clears lines of solvent

萃取的原理过程及应用

萃取是在两个液相间进行。大部分萃取采用一个是水相。另一个是有机相。但有机相易使蛋白质等生物活性物质变性。最近,发现有一些高分子水溶液(如分子量从几千到几万的聚乙二醇硫酸盐水溶液)可以分为两个水相,蛋白质在两个水相中的溶解度有很大的差别。故可以利用双水相萃取过程分离蛋白质等溶于水的生物产品。例如用聚乙二醇(PEG Mr为6000)/磷酸钾系统从大肠杆菌匀浆中提取β-半乳糖苷酶。这是一个很有前途的新的分离方法,特别适用于生物工程得出的产品的分离。 萃取技术是一种分离技术,主要用于物质的分离和提纯,这里将介绍几种常用的萃取技术,有溶剂萃取、双水相萃取、凝胶萃取三种,本文将分别从它们的原理、过程及应用三方面介绍,这些技术广泛应用于分析化学、原子能、冶金、电子、环境保护、生物化学和医药等领域。 关键字溶剂萃取双水相萃取凝胶萃取原理过程应用

摘要--------------------------------------------------- 1 目录--------------------------------------------------- 2 一、溶剂萃取------------------------------------------ 3 1 原理-------------------------------------------- 3 2 过程-------------------------------------------- 5 3 应用-------------------------------------------- 5 二、双水相萃取---------------------------------------- 6 1 原理-------------------------------------------- 6 2 过程-------------------------------------------- 7 3 应用-------------------------------------------- 8 三、凝胶萃取------------------------------------------ 8 1 原理-------------------------------------------- 8 2 过程-------------------------------------------- 10 3 应用-------------------------------------------- 11 参考文献----------------------------------------------- 11

相关主题
文本预览
相关文档 最新文档