当前位置:文档之家› 南京大学《物理化学》每章典型例题

南京大学《物理化学》每章典型例题

南京大学《物理化学》每章典型例题
南京大学《物理化学》每章典型例题

第一章 热力学第一定律与热化学

例题1 1mol 理想气体于27℃ 、101325Pa 状态下受某恒定外压恒温压缩到平衡,再由该状态恒容升温到97 ℃ ,则压力升到1013.25kPa 。求整个过程的W 、Q 、△U 及△H 。已知该气体的C V ,m 恒定为20.92J ?mol -1 ?K -1。

解题思路:需先利用理想气体状态方程计算有关状态: (T 1=27℃, p 1=101325Pa ,V 1)→(T 2=27℃, p 2=p 外=?,V 2=?)

→(T 3=97℃, p 3=1013.25kPa ,V 3= V 2)

例题2水在 -5℃ 的结冰过程为不可逆过程,计算时要利用0℃ 结冰的可逆相变过程,即 H 2O (l ,1 mol ,-5℃ ,θp

(s ,1 mol ,-5℃,θ

p )

↓△H 2 ↑△H 4

H 2O (l ,1 mol , 0℃,θp ) O (s ,1 mol ,0℃,θ

p ) ∴ △H 1=△H 2+△H 3+△H 4

例题3 在 298.15K 时,使 5.27 克的甲醇(摩尔质量为32克) 在弹式量热计中恒容燃烧,放出 119.50kJ 的热量。忽略压力对焓的影响。

(1) 计算甲醇的标准燃烧焓 θ

m c H ?。

(2) 已知298.15K 时 H 2O(l) 和CO 2(g)的标准摩尔生成焓分别为-285.83 kJ·mol -1

、-

393.51 kJ·mol -

1,计算CH 3OH(l)的θ

m f H ?。

(3) 如果甲醇的标准蒸发焓为 35.27kJ·mol -

1,计算CH 3OH(g) 的θ

m f H ?。

解:(1) 甲醇燃烧反应:CH 3OH(l) +

2

3

O 2(g) → CO 2(g) + 2H 2O(l) Q V =θ

m c U ?=-119.50 kJ/(5.27/32)mol =-725.62 kJ·mol -

1

Q p =θ

m c H ?=θ

m c U ?+

∑RT v

)g (B

= (-725.62-0.5×8.3145×298.15×10-

3)kJ·.mol -

1 =-726.86 kJ·mol

-1

(2) θ

m c H ?=θ

m f H ?(CO 2) + 2θ

m f H ?(H 2O )-θ

m f H ? [CH 3OH(l)] θm f H ?[CH 3OH (l)] =θm f H ? (CO 2) + 2θm f H ? (H 2O )-θ

m c H ? = [-393.51+2×(-285.83)-(-726.86) ] kJ·mol -

1

=-238.31 kJ·mol -

1

(3) CH 3OH (l) →CH 3OH (g) ,θm vap ΔH

= 35.27 kJ·.mol -

1

θm f H ?[CH 3OH (g)] =θm f H ?[CH 3OH (l)] +θ

m vap H ?

= (-38.31+35.27)kJ·.mol

-1

=-203.04 kJ·mol -

1

第二章 热力学第二定律

例1. 1mol 理想气体从300K ,100kPa 下等压加热到600K ,求此过程的Q 、W 、U 、H 、

S 、G 。已知此理想气体300K 时的S m =150.0J·K -1·mol -1,c p ,m =30.00 J·K -1·mol -

1。

解:W =-p V =-p (V 2-V 1) =-pV 2+pV 1= -nRT 2+ nRT 1= nR (T 1-T 2) =1mol×8.315J·K -

1·mol -

1×(300K-600K)= -2494.5J

U = n c V ,m (T 2-T 1) =1mol×(30.00-8.315)J·K -

1·mol -

1×(600K-300K)= 6506J H = n c p ,m (T 2-T 1) =1mol×30.00J·K -

1·mol -1×(600K-300K)= 9000J Q p =

H =9000J

S = n c p ,m ln(T 2/T 1) =1mol×30.00J·K -

1·mol -

1×ln(600K/300K) = 20.79J·K -

1·mol -

1 由 S m (600K)=S m (300K)+

S =(150.0+20.79)J·K -1·mol -

1

=170.79J·K -

1·mol -

1 TS =n (T 2S 2-T 1S 1)

=1mol×(600K×170.79J·K -

1·mol -

1-300K×150.0J·K -

1·mol -

1) =57474J

G =H -TS =9000J -57474J =-48474J 。

例2:l mol 单原子理想气体由始态(273K ,p )经由下列两个途径到达终态( T 2,p /2):(l)可逆绝热膨胀;(2)反抗p /2的外压绝热膨胀.试分别求出T 2,W ,?S m 和?G m .并回答能否由?G m 来判断过程的方向? 已知S (298K)=100J ·K -1·mol -1。

解:(1)可逆绝热膨胀过程

Q r = Q = 0 J

?S = 0 J·K -1(可逆过程为恒熵过程)

Θ 单原子理想气体的绝热系数 γ=1.667,利用绝热可逆公式

667

.1667.111)2/(273K )(2112--?==θθγ

γp p p p T T = 207K

∴W =?U =nC V ,m (T 2 - T 1) =1mol× (1.5×8.3145J·K -1·mol -1)×(207K- 273K)= -823.1 J ?H =nC P,m (T 2 - T 1) =1mol× (2.5×8.3145J·K -1·mol -1)×(207K- 273K)= -1371.9 J ?G = ?H - ?(TS ) =?H - (T 2S 2 - T 1S 1)=?H - S (T 2- T 1) = -1371.9 J - 100 J·K -1×(207K-273K)

= 5228 J

过程为非恒温过程,不能用?G 来判断过程的方向。 (2) 恒外压绝热膨胀过程,利用Q =0,?U =W 建立方程求出T 2。

Θ ?U = n C V ,m (T 2 - T 1) = n (1.5×R )×(T 2 - T 1)

W = - p 外(V 2 - V 1)= - p 2(V 2 - V 1)= - nR [T 2 - (T 1/ p 1) p 2] = - nR (T 2 - T 1/2)

∴ n (1.5×R )×(T 2 - T 1) = - nR (T 2 - T 1/2) T 2 = 0.8T 1 = 0.8×273K = 218.4 K

W=?U =nC V ,m (T 2 - T 1) =1mol×(1.5×8.3145J·K -1·mol -1)×(218.4K-273K) =-681.0 J

12,21ln ln

T T

nC p p nR S m p +=? 1

θθK J )273218.4

ln 8.31452.52/ln 314581(-???+??=p p . = 1.125 J·K -1

?H =nC p ,m (T 2 - T 1) =1mol× (2.5×8.3145J·K -1·mol -1)×(218.4K- 273K)= -1135J ?G = ?H - ?(TS ) =?H - [T 2 ?S -+ (T 2-T 1)S 1]

= -1135 J - [218.4K×1.125J·K -1 +(218.4K - 273K)×100J·K -1] = 4079 J

过程为非恒温过程,不能用?G 来判断过程的方向。

例3 水的蒸汽压与温度之间可用如下关系式表示: lg (p /Pa) =-A /T +B

若已知水在77℃时的饱和蒸汽压为41.847kPa ,求: (1)常数A ,B 的值以及水的摩尔蒸发焓;

(2)在多大外压下水的沸点可以改变为101℃;(共8分)

解:(1) 给出的关系式实际上为克-克方程的不定积分式。题目只给出一个温度下的蒸汽压,代入方程无法求解。所以必须考虑其他条件或常识,即水在100℃时的饱和蒸汽压为101.325kPa ,代入自然就可得到A,B 。至于

vap H m

可用与A 的关系计算:

vap H m

= -2.303×AR

亦可用克-克方程的定积分式计算。

(2) 外压压力即为101℃时的水的饱和蒸汽压。

例4:苯的正常沸点为353K ,摩尔汽化焓为30.77kJ?mol -1, 现将353K ,标准压力下的1摩尔液态苯向真空等温蒸发为同温同压的苯蒸汽(设为理想气体)。

A .计算该过程苯吸收的热量和做的功;

B .求过程的 G 和S ;

C .求环境的熵变;

D .可以使用何中判据判断过程的性质。 解:设计如下途径计算:

A .因真空蒸发, p 环=0

?=-=∴0dV p W 环 Q =ΔU =ΔH -Δ(pV )

压力变化不大时,压力对凝聚系统的焓、熵影响不大,所以ΔH 1=0、ΔS 1=0。 又理想气体恒温ΔH 3=0 ,所以

ΔH =ΔH 1+ΔH 2+ΔH 3=ΔH 2= n Δvap H m

则 Q =n Δvap H m - p Δ(V g -V l )= n Δvap H m - p ΔV g ≈ n Δvap H m - nRT

= 1×30770 J - 1mol×8.3145 J·K -1·mol -1 ×353K = 27835J

B. ΔS =ΔS 1+ΔS 2+ΔS 3=ΔS 2+ΔS 3= (ΔH 2/T )+ nR ln(p 1/p 2) = (30770J/353K)+1×8.3145J·K -1×ln(101.325kPa/100kPa)

= 87.28J·K -1

ΔG =ΔH - T ΔS = 30770J - 353K×87.28J·K -1= -39.84J C. 环境熵变 :设系T =环T

ΔS 环= -Q 系/T 环= -27835J/353K = -78.85 J·K -1 D . 可用熵判据判断过程的性质,此过程 ΔS 隔=ΔS 系+ΔS 环= 87.28J·K -1+(-78.85J·K -1)= 8.43J·K -1 > 0 故为不可逆过程。

第三章 多组分系统热力学

例1:已知甲苯的摩尔质量为 92?10-3 kg·mol -1,沸点为383.15K ,平均摩尔气化焓为 33.84kJ·mol -1;苯的摩尔质量为 78?10-3 kg·mol -1,沸点为353.15K ,平均摩尔气化焓为 30.03kJ·mol -1。有一含苯 100g 和甲苯 200g 的理想液态混合物,在373.15K ,101.325 kPa 下达气液平衡。求

(1) 373.15K 时苯和甲苯的饱和蒸气压; (2) 平衡时液相和气相的组成;

(3) 由两组分物质形成该理想液态混合物时的混合焓和混合熵。 解: (1) 求p *(苯)和p *(甲苯),可由克-克方程:

2112*1

*

2

)(ln T RT T T H p p m -=

?

真空等温蒸发 ΔH 、ΔS

ΔH 3、ΔS 3 (3)

(1) ΔH 1、ΔS 1

苯 (l) 1 mol 353K ,p θ

苯 ( l ) 1 mol 353 K

p = 101.325 k Pa

苯 ( g ) 1 mol 353 K ,p θ

苯 (g ) 1 mol 353 K

p = 101.325 kPa

(2) ΔH 2、ΔS 2

5482

.0

K

15

.

373

K

15

.

353

mol

K

8.3145J

)

K

15

.

353

K

15

.

373

(

mol

J

10

03

.

30

kPa

325

.

101

)

(

ln

1

1

1

3

*

=

?

?

?

?

-

?

?

=

-

-

-

p

p*(苯)=175.30kPa

同理

2850

.0

K

15

.

373

K

15

.

383

mol

K

8.3145J

)

K

15

.

383

K

15

.

373

(

mol

J

10

874

.

33

kPa

325

.

101

)

(

ln

1

1

1

3

*

-

=

?

?

?

?

-

?

?

=

-

-

-

甲苯

p

p*(甲苯)=76.20kPa

(2) 液相组成及气相组成可由拉乌尔定律求得:

p(总) = p*(苯) x(苯)+p*(甲苯) {1-x(苯)}

x(苯) = { p(总)- p*(甲苯)} / { p*(苯) - p*(甲苯)}

=(101.325-76.20)kPa /(175.30-76.20)kPa

=0.2535

x(甲苯)=1 - x(苯) = 1- 0.2535 = 0.7465

y(苯)= p*(苯)x(苯)/ p(总) = 175.30kPa×0.2535/101.325kPa = 0.4386 y(甲苯)=1- y(苯)=1 - 0.4386 = 0.5614

(3) △mix H = 0

n(苯)=100g/(78g·mol-1)=1.282mol

n(甲苯)=200g/(92g·mol-1)=2.174mol

△mix S =

-

B

B

B

x

n

R ln

= - R [n(苯)ln x(苯) + n(甲苯) ln x(甲苯)]

= - 8.3145 J·mol-1·K-1×(1.282×ln0.2535+2.174×ln0.7465) mol

= 19.91 J·K-1

例2. 1kg 纯水中,溶解不挥发性溶质B 2.22g,B在水中不电离,假设此溶液具有稀溶液的性质。已知B的摩尔质量为111.0g·mol-1, 水的K b=0.52K·mol-1·kg,vap H m(H2O) = 40.67 kJ · mol-1为常数,该溶液的密度近似为1 kg·dm-3。试求:

(1) 此溶液的沸点升高值。

(2) 此溶液在25℃时的渗透压。

(3) 纯水和此溶液25℃时的饱和蒸气压。已知纯水100℃的饱和蒸气压为101325Pa。

解:(1) b B=(2.22g/111.0 g·mol-1)/1kg=0.02mol·kg-1

T b=K b b B=0.52K·mol-1·kg×0.02mol·kg-1 =0.01K

(2) c B≈b B≈0.02mol·kg-1×1 kg·dm-3=0.02mol·dm-3

= c B RT=0.02×1000 mol·m-3×8.315J·K-1·mol-1×298.15K=49.58kPa

(3) 已知T=373.15K时水饱和蒸气压p=101325Pa,利用克-克方程求T’=298.15K时的饱和蒸气压p’:

ln(p’/p)= -[Δvap H m(H2O)/R](1/T’-1/T)

ln(p’/101325Pa)=-(40670 J·mol-1/8.315J·K-1·mol-1)×(1/298.15K-1/373.15K)

p’=3747Pa

x A= n A/(n A+ n B)=(1000/18)mol/[(1000/18)+(2.22/111)]mol =0.9996

此溶液的饱和蒸气压=p A= p’x A= 3747Pa×0.9996=3745Pa

第四章 相平衡

例1:(NH 4)2SO 4-H 2O 所组成的二组分系统,在-19.1℃时有一个低共熔点,此时冰、(NH 4)2SO 4(s)和浓度为38.4%(质量分数,下同)的(NH 4)2SO 4水溶液平衡共存。在108.9℃时(NH 4)2SO 4饱和溶液(浓度为51.8%)沸腾。

(1) 试绘出相图示意图。 (2) 分析各组分存在的相平衡。

(3) 含30%的(NH 4)2SO 4水溶液冷却能否得到纯固体(NH 4)2SO 4?若不能,如何得到纯固

体(NH 4)2SO 4?

(4) 1kg 含51.8%的(NH 4)2SO 4水溶液在何温度下能得到最多的纯固体(NH 4)2SO 4,计算出最多能得到的(NH 4)2SO 4的量。

解:(1) 相图和各相组成如下

H 2O

(NH 4)2SO 4

t / ℃

%(质量)

(3) 不能。可通过加热蒸发使硫酸铵的浓度增大至超过38.4%(或51.8%)即可.

(4) 冷却到接近-19.1℃时能得到最多的纯固体。设固体量为W s ,利用杠杆规则则有, (51.8-38.4)(1kg -W s)= (100-51.8)W s W s=0.218kg

例2: 对MnO-FeO 二组分系统,已知MnO 和FeO 的熔点分别为1785℃和1370℃;在1430℃时,含有40%和70%FeO(质量%)两固溶体间发生转熔变化,与其平衡的液相组成为85%FeO ;在1200℃,两个固溶体的组成为36%FeO 和74%FeO 。

(1) 试绘制出该系统的相图;

(2) 指出个区域和三相线对应的相态和自由度;

(3) 当一含74%FeO 的二相组分系统,由1650℃缓慢冷至1100℃时,作出冷却曲线,

简述其相态的变化。

(4) 当一含74%FeO 的二相组分系统,由1650℃缓慢冷至无限接近1430℃,试分析此

时各相的组成和质量。假设系统的总质量为1kg 。

解:(1) 系统相图如下

1200

130014001500

1600

1700

1800D

B

A

f

e

d

c

b

a

V

IV

VI

I III

II

I MnO

FeO

% FeO (质量)

t /℃

图 MnO-FeO 系统的液-固恒压相图和a 点的步冷曲线

(2) 各区相态:

I :固溶体 II :固溶体+固溶体 III :固溶体 IV :溶液+ 固溶体 V :溶液+固溶体 VI :溶液 三相线ABD :固溶体 + 固溶体 + 溶液 自由度F =C +1-P =3-P :

单相区P =1,F =2;两相区P =2,F =1;三相线P =3,F =0

(3) 由相图可看出相态变化如下:

1650℃??→?溶液1508℃(溶液+ 固溶体)????→?两相平衡

1430℃(固溶体 + 溶液 + 固溶体)??

?????→?+β

固溶体溶液1410℃(溶液+固溶体)??

??→?β固溶体1290℃????????→?+β

α固溶体固溶体1100℃(固溶体 +固溶体)

(4) 当一含74% FeO 的二组分系统,由1650℃缓慢冷至无限接近1430℃,存在固溶体a

和溶液两相,其组成分别接近40%和85% FeO ,设其质量分别为M s ,M l ,根据杠杆规则,则有 M s ×AC=M l ×CD 即 M s ×(0.74-0.40)=M l ×(0.85-0.74) 可得 M s =1kg×0.11 / 0.45 =0.244kg

M l =1kg- M s =1kg- 0.244kg = 0.756kg 其中固溶体含FeO :M s ×0.40=0.244kg×0.40=0.098kg MnO: 0.244kg-0.098kg=0.146kg 其中溶液含 FeO :M l ×0.85=0.756kg×0.85=0.643kg MnO: 0.756kg-0.643kg=0.113kg

第五章 电化学

例1: 25℃时,电池Zn(s) | ZnCl 2 (b =0.555mol·kg -1) | AgCl(s) | Ag(s) 的电动势E =1.015V ,(?E /?T )p = -4.02×10-4 V·K -

1。已知θE (Zn 2+/Zn)=-0.7630V, θ

E (AgCl/Ag,Cl -)=0.2220V 。

(1) 写出电池反应。

(2) 求上述反应的平衡常数θ

K 。

(3) 求电解质溶液ZnCl 2的平均活度系数。

(4) 求上述反应在定浓条件下,在恒压无其他功的反应器中进行或在电池中可逆地进行时吸放的热量各为多少?

解:(1) 电极反应:

Zn(s) →Zn 2+ + 2e —

AgCl(s) + e —→ Ag(s) + Cl —

电池反应: Zn(s) + 2AgCl(s) →2 Ag(s) + ZnCl 2(2ZnCl a )

(2) θK = exp(zF θE /RT ) = exp[2×96500×(0.2220+0.7630)/8.315/298.2]= 1.983×1033 (3)

])(4ln[2ln 23θ3θZnCl θ2b b F RT E F RT E E ±-=-

=γα

3

θ3

ZnCl 2

??? ??==±±±b b a a γΘ,而b b b b b b 3

/13/12/14])2([)(=?==-

+

-+±ννν,

代入 1.015=(0.2220+0.7630)-(0.05916/2)lg(4×γ±3×0.5553)

γ± = 0.521

(4) 可逆电池 Q r = zFT (? E /?T )p = 2×96500×298.2×(-4.02×10-4) J·mol -1

= -23136J·mol -1

非电池反应:

Q p = Δr H = Δr G +T Δr S = Δr G +Q r = -zFE + Q r = [-2×96500×1.015+(-23136)] J·mol -1

= -219031J·mol -1

例题2:(1) 25℃时,将某电导池充以0.1000mol·dm -3 KCl , 测得其电阻为23.78Ω;若换以0.002414mol·dm -3 醋酸溶液,则电阻为3942Ω。 已知0.1000 mol·dm -3 KCl 的电导率κKCl =1.289 S·m -1, 醋酸的极限摩尔电导 Λ ∞HAc = 0.03907 S·m 2·mol -1 . 计算该醋酸溶液的电离度和标准电离常数.

(2) 可以将煤的燃烧反应 C(石墨) + O 2 → CO 2设计成电池。 已知25℃、θ

p 时,C(石墨)的燃烧焓为 -393.51kJ·mol -1;C(石墨)、CO 2(g)、O 2(g)的标准摩尔熵分别为5.69、213.64和205.03J·mol -1·K -1。

(a) 求该电池的标准电动势θ

E ;

(b) 若25℃时,CO 2的压力为101325Pa,, 电池电动势E =1.012V , 求此时氧的压力。 (c) 试将反应设计成电池(电解质为氧化物), 并写出电极反应。

解:(1)

HAC KCl

KCl HAC R R

=κκ同一电导池Θ

08244.003907.0/10221.3/ mol m S 10221.3Ω

2.394m mol 414.2Ω78.23m S 289.1 3

HAc HAc 1

233

1HAc HAc KCl KCl HAc HAc

=?==???=????==??? ??=∴-∞----ΛΛακκΛR c R c

K = ( c / θ

c )α2/(1-α) =(0.002414)×0.082442 / (1-0.08244) = 1.788×10-5

(2) (a) ? r H = -393.51kJ , ? r S = 2.92 J·K -1

? r G = ? r H - T ? r S = -393.51kJ -298.15K×2.92k J·K -1/1000 = -394.38 kJ

E = (-? r G )/z

F = 394380J/ (4×96500C) = 1.022V

(b) 若E = 1.012 V , p (CO 2)=101.325kPa

E = θ

E - (RT/z

F ) ln {[p (CO 2)/θ

p ] / [p (O 2)/ θ

p ]}

即 1.012V = 1.022V - (0.05916V/4)lg [101325Pa /p (O 2)]

则 p (O 2)=21359Pa

(c) 设计的(燃料)电池为: C(石墨) | 氧化物电解质(熔融物) | O 2 | Pt

负极: C + 2 O 2- → CO 2 + 4e - 正极: O 2 + 4e - → 2O 2-

电池反应: C(s) + O 2(g) → CO 2(g)

第六章 化学动力学

例题1:乙醛热分解CH 3CHO → CH 4+CO 是不可逆反应,在518℃及恒容条件下,有数据:

初始压力(纯乙醛) 0.400kPa 0.200kPa 100秒后系统总压

0.500kPa

0.229kPa

求(1)乙醛分解的反应级数;(2)计算518℃时的速率常数;(3)实验测得在538℃时的速率常数是518℃时的两倍,计算该反应的活化能。 解:

设甲醛为A ,因为是恒温恒容反应,可用压力代替浓度进行有关计算。

A → CH 4 + CO

t =0 p A0 0 0 总压p =p A0

t =t p A p A0-p A p A0-p A 总压p =2p A0-p A 所以 p A =2p A0-p

(1) 可用多种方法求解。比较简单的是积分法。假设为级数n =1, 则 k =ln(p A0/p A )/t =ln[p A0/(2p A0-p )]/t 代入数据:

k 1=ln[0.400/(2×0.400-0.500)]/100s=0.00288s -

1

k 2=ln[0.200/(2×0.200-0.229)]/100s=0.00157s -

1 速率常数相差太多,可否定为一级反应。

假设为二级反应,则 k =(p A -1-p A0-

1) t 代入数据得:

k 1=[(2×0.400-0.500)-1-0.400-1] kPa -1/100s =0.00833 kPa -1·s -

1

k 2=[(2×0.200-0.229)-1-0.200-1] kPa -1/100s =0.00848 kPa -1·s -

1 速率常数非常接近,所以可认为是二级反应。

用n 级反应的压力与时间式代入建立一个方程,用尝试法求n 亦可。

(2) 速率常数 k =(k 1+k 2)/2 =0.00841 kPa -1·s -

1。 (3) E a =RT 1T 2ln(k ’/k )/( T 2-T 1)

=(8.315×793.15×813.15×ln2/20)J·mol -

1

=186 kJ·mol -

1

例题2:有下列反应

A(g)

B(g) + C(g)

k 1k 2

式中k 1和k 2分别是正向和逆向基元反应的速率常数,它们在不同温度时的数值如下:

温度/K 300 310 k 1/s -1 3.50×10-3

7.00×10-3

k 2/(s·p )-1

7.00×10-7

1.40×10-6

(1) 计算上述可逆反应在300K 时的平衡常数K p 和K 。

(2)分别计算正向反应与逆向反应的活化能E1和E2。

(3)计算可逆反应的反应焓ΔH。

(4)在300K时,若反应容器中开始时只有A,其初始压力p0为θp,问系统总压p’, 达到1.5θp时所需时间为多少?(可适当近似)。

解:(1) K p=k1/k2=3.50×10-3s-1/7.00×10-7(s·p)-1=2000 p

K=K p /p =2000

(2) E1=RTT’ln(k1’/k1)/( T’-T’)= [8.315×300×310×ln(7.00/3.50)/(310-300)]J·mol-1

=53.6k J·mol-1

E2=RTT’ln(k2’/k2)/( T’-T’)

= [8.315×300×310×ln(1.40×10-6/7.00×10-7)/(310-300)]J·mol-1

=53.6k J·mol-1

(3) ΔH= E1-E2=0

(4) A(g) = B(g) + C(g)

t=0 θp p=θp

t=t’ p Aθp-p Aθp-p A p=2θp-p A即p A=2θp -p

速率方程

-d p A /d t = k1 p A-k2(θp-p A)2≈k1 p A( ∵p k2<

积分得

t=ln(p A0/p A)/k1=ln[θp/(2θp-p)]/t =ln[θp/(2θp-1.5θp)]/3.50×10-3s-1=198s

例题3:已知反应NO2(g) =NO(g) + (1/2)O2(g) 以NO2的消耗速率表示的反应速率常数与温度的关系为

ln(k/dm3·mol-1·s-1)=-12884K/T +20.2664

(1)试求反应的级数,活化能E a及指前因子A。

(2) 若在400 ℃时将压力为26664Pa的NO2(g)通入反应器中,使之发生分解反应,试计算反应器的压力达到31997Pa时所需时间。

解:(1) 速率常数k的单位为dm3·mol-1·s-1,所以反应为2级。与阿累尼乌斯方程的对数式ln (k/ dm3·mol-1·s-1)= -E a/RT + ln(A/ dm3·mol-1·s-1) 对比,可得

E a=12884K×R=12884K×8.315J·K-1·mol-1=107.1kJ·mol-1

A= exp(20.2664) dm3·mol-1·s-1 =6.33×108 dm3·mol-1·s-1

注:代入两种温度分别计算k,再算E a亦可。

(2)400 ℃时的速率常数: ln(k/dm3·mol-1·s-1)=-12884K/673.15K +20.2664=1.1265

k=3.085dm3·mol-1·s-1

设NO2(g)=A, 对于二级反应,反应时间与浓度的关系如下t=(1/c A-1/c A0)/k

需知道浓度,可通过压力进行计算:

NO2(g) = NO(g) + (1/2)O2(g)

t=0 p0=26664Pa 0 0

t=t26664Pa-p x p x(1/2) p x总压p=26664Pa+p x/2=31997Pa

所以p x=10666Pa

c A=(26664-10666)Pa/RT=15998Pa/RT,c A0=26664Pa/RT

t=(1/c A-1/c A0)/k=RT(1/15998Pa-1/26664Pa)/k

=8.315J·K-1·mol-1×673.15K×(1/15998Pa-1/26664Pa)/ (3.085×10-3m3·mol-1·s-1 )

=45.37s

例题4:.有一平行反应

ln

()k k Ea R T T 212111

=--

在500K 时,k 1、k 2分别为4.65s -1和3.74s -1。求(1) A 转化90%所需要的时间;(2)求总反应的表观活化能。已知两平行反应的活化能E 1、E 2分别为20kJ·mol -1和26 kJ·mol -1。 解:本题需掌握一级平行反应的规律才容易做。

(1) A 的转化率x 与时间的关系如下:

t = -ln(1-x )/(k 1+k 2) =-ln(1-0.90)/(4.65s -1+3.74s -1)= 0.2744s (2) E =(k 1 E 1+k 2 E 2)/ (k 1+k 2)=(4.65×20+3.74×26) kJ·mol -1/(4.65+3.74) =22.67 kJ·mol -1

第七章 胶体化学

例题1:混合等体积的0.1 mo1·dm -3

KI 和0.09 mo1·dm -

3 AgNO 3溶液所得的溶胶。

(1) 试写出胶团结构式; (2) 指明电泳方向;

(3) 比较MgSO 4,Na 2SO 4,CaCl 2电解质对溶胶的聚沉能力并简述原因。(6分)

解:(1) m n I - · (n x )K ]x -

· x K

(2) 胶粒带负电,往正极移动

(3) 聚沉能力为: Na 2SO 4 < MgSO 4< CaCl 2 因为胶粒带负电,反离子起聚沉作用,其价数越高,聚沉能力越大,故Ca 2+、Mg 2+ > Na +。又因与胶粒带同种电荷的离子能削弱反离子作用,高价强于低价,即聚沉能力有SO 42-< Cl -

,因此可得到上面的聚沉能力次序。

例题2:在浓度为10 mol·m -3的20cm 3 AgNO 3溶液中,缓慢滴加浓度为15 mol·m -3的KBr 溶液10cm 3 ,以制备AgBr 溶胶。

(1) 写出AgBr 溶胶的胶团结构表达式,指出电泳方向。

(2) 在三个分别盛10cm 3 AgBr 溶胶的烧杯中,各加入KNO 3、K 2SO 4、K 3PO 4 溶液使其聚沉,最少需加电解质的数量为:1.0 mol·m -3的KNO 3 5.8 cm 3 ;0.01 mol·m -3的K 2SO 4 ;

8.8 cm 3 ;1.5×10-

3 mol·m -3的K 3PO

4 8.0 cm 3 ;计算各电解质的聚沉值以及它们的聚沉能力之比。

(3) 293K 时,在两极距离为35cm 的电泳池中施加的电压为188V ,通电40min 15s ,测得AgBr 溶胶粒子移动了3.8cm 。问该溶胶的ξ电势为多大?已知293K 时分散介质的相对介电常数εr =80,粘度ρ=1.03×10-3 Pa·s ,真空介电常数ε0=8.854×10-12F·m -1。(10分)

解:(1) AgNO 3过量,为稳定剂,胶团结构为

[(AgBr)m n Ag +·(n -x )NO 3- ]x + ·x NO 3-

胶粒带正电,电泳时向负极移动。

(2) KNO 3 的聚沉值: 1.0mol·dm -3×5.8cm 3 / (10+5.8) cm 3 = 0.367 mol·dm -3 K 2SO 4的聚沉值: 0.01 mol·dm -3×8.8cm 3 / (10+8.8) cm 3 = 4.68×10-3 mol·dm -3

胶粒

胶团 胶核

K3PO4的聚沉值;0.0015 mol·dm-3×8.0cm3 / (10+8.0) cm3 = 6.67×10-4 mol·dm-3聚沉能力之比KNO3:K2SO4:K3PO4

= (1/0.357):(1/4.48×10-3):(1/6.67×10-4) =1:79.7:535

(3) 由公式u=E=V/l) 得

= ul V = ul r0 V

= (0.038m/2415s) ×0.35m ×1.03×10-3Pa·s/ (80×8.854×10-12F·m-1×188V)

= 0.0426V

功和功率知识点梳理与典型例题

功知识点梳理与典型例题: 一、功 1.功:如果一个力作用在物体上,物体在这个力的方向我们就说力对物体做了功.2.做功的两个必要因素:和物体在力的方向上. 3.计算公式:,功的单位:,1焦耳物理意义是。 4.不做功的几种情况: A.“劳而无功”物体受到力的作用,但物体没有移动,这个力对物体不做功. 如小孩搬大石头搬不动. B.“不劳无功”由于惯性保持物体的运动,虽有通过的距离,但没有力对物体做功.如冰块在光滑水平面上运动. C.“垂直无功”当物体受到的力的方向与物体运动方向垂直时,这个力对物体不做功. 如提着重物在水平地面上行走.甲、乙图是力做功的实例,丙、丁图是力不做功的实例 基础题 【例1】在国际单位制中,功的单位是() A.焦耳B.瓦特C.牛顿D.帕斯卡 【例2】以下几种情况中,力对物体做功的有() A.人用力提杠铃,没有提起来B.沿着斜面把汽油桶推上车厢 C.用力提着水桶水平移动2米,水桶离地面高度不变 D.物体在光滑水平面上匀速前进二米 【例3】下列关于物体是否做功的说法中正确的是() A.起重机吊着钢筋水平匀速移动一段距离,起重机对钢筋做了功 B.被脚踢出的足球在草地上滚动的过程中,脚对足球做了功 C.小刚从地上捡起篮球的过程中,小刚对篮球做了功 D.小丽背着书包站在路边等车,小丽对书包做了功 【例4】如图所示的四种情景中,人对物体做功的是() 的是() 【例5】关于图所示的各种情景,下面说法错误 ..

A .甲图中:系安全带可预防汽车突然减速时人由于惯性前冲而撞伤 B .乙图中:人用力向上搬大石块没有搬动,则重力对大石块做了功 C .丙图中:在拉力作用下拉力器弹簧变长,说明力可使物体发生形变 D .丁图中:抛出的石块在重力作用下改变原来的运动方向和运动快慢 【例6】 物体A 在水平拉力F =20N 的作用下,第一次加速运动了10m ,第二次匀速运动了 10m ,第三次减速运动了10m ,在三次不同的运动情况中比较拉力F 对物体做的功 ( )A .第一次最多 B .第二次最多 C .三次一样多 D .第三次最多 【例7】 一个人先后用同样大小的力沿水平方向拉木箱,使木箱分别在光滑和粗糙两种不同 的水平地面上前进相同的距离.关于拉力所做的功,下列说法中正确的是( ) A .在粗糙地面上做功较多 B .在光滑地面上做功较多 C .两次做功一样多 D .条件不够,无法比较两次做功的多少 【例8】 如图所示,已知A B C M M M >>.在同样大小的力F 作用下,三个物体都沿着力的 方向移动了距离s ,则力F 所做的功( ) A .A 情况下F 做功最多 B .B 情况下F 做功最多 C .C 情况下F 做功最多 D .三种情况下F 做功相同 【例9】 一名排球运动员,体重60kg ,跳离地面0.9m ,则他克服重力做功(取g =10N/kg ) ( )A .54J B .540J C .9J D .600J 【例10】 今年6月美国将在科罗拉多大峡谷建成观景台.观景台搭建在大峡谷的西 侧谷壁上,呈U 字型,离谷底1200m 高,取名为“人行天桥”,如图所 示.如果在建造过程中有一块质量为0.1kg 的石子从观景台掉落谷底,则 下落过程中,石子的重力做功为(g 取10N/kg )( ) A .12J B .1200J C .51.210J ? D .61.210J ? 【例11】 某商场扶梯的高度是5m ,扶梯长7m ,小明体重为600N .扶梯把小明 从三楼送上四楼的过程中对小明做功_________J . 中档题 【例12】 足球运动员用500N 的力踢球,足球离开运动员的脚后向前运动了50m ,在此运动过程中,运动员对足球做的功是 J . 【例13】 某人用20N 的力将重为15N 的球推出去后,球在地面上滚动了10m 后停下来,这 个人对球所做的功为( ) A .0 B .200J C .150J D .条件不足,无法计算 【例14】 重为1000N 的小车,在拉力的作用下沿水平地面匀速前进10m ,小车所受阻力为 车重的0.3倍,则拉力对小车做的功为_________J ;小车的重力做的功为 _________J .

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

数学必修二第二章经典测试题(含答案)

必修二第二章综合检测题 一、选择题 1.若直线a和b没有公共点,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面 2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为() A.3B.4C.5D.6 3.已知平面α和直线l,则α内至少有一条直线与l() A.平行B.相交C.垂直D.异面 4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90° 5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a?α,b?αB.a?α,b∥α C.a⊥α,b⊥αD.a?α,b⊥α 6.下面四个命题:其中真命题的个数为() ①若直线a,b异面,b,c异面,则a,c异面; ②若直线a,b相交,b,c相交,则a,c相交; ③若a∥b,则a,b与c所成的角相等; ④若a⊥b,b⊥c,则a∥c. A.4B.3C.2D.1 7.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论: ①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD. 其中一定正确的有() A.①②B.②③C.②④D.①④ 8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是() A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥b C.若a?α,b?β,a∥b,则α∥β D.若a⊥α,b⊥β,α⊥β,则a⊥b 9.已知平面α⊥平面β,α∩β=l,点A∈α,A?l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成

2015高中物理磁场经典计算题 (一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a = L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? a b c d B P v L B v E S F D (a ) a O E S F D L v (b

高中物理选修3-5经典例题

物理选修3-5动量典型例题 【例1】质量为0.1kg 的小球,以10m /s 的速度水平撞击在竖直放置的厚钢板上,而后以7m /s 的速度被反向弹回,设撞击的时间为0.01s ,并取撞击前钢球速度的方向为正方向,则钢球受到的平均作用力为( ). A .30N B .-30N C .170N D .-170N 【例2】质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短离地的速率为2v ,在碰撞过程中,地面对钢球的冲量的方向和大小为( ). A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 【例3】质量为2m 的物体A ,以一定的速度沿光滑水平面运动,与一静止的物体B 碰撞后粘为一体继续运动,它们共同的速度为碰撞前A 的速度的2/3,则物体B 的质量为( ). A .m B .2m C .3m D . 2 3 m 【例4】一个不稳定的原子核,质量为M ,处于静止状态,当它以速度0v 释 放一个质量为m 的粒子后,则原子核剩余部分的速度为( ). A .0 m v M m - B . m v M - C .0m v M m -- D .0 m v M m - + 【例5】带有光滑圆弧轨道、质量为M 的滑车静止置于光滑水平面上,如图所示.一质量为m 的小球以速度v 0水平冲上滑车,当小球上滑再返回并脱离滑车时,有①小球一定水平向左做 平抛运动 ②小球可能水平向左做平抛运动 ③小球可能做自由落体运动 ④小球一定水平向右做平抛运动 以上说法正确的是( ) A.① B .②③ C.④ D.每种说法都不对 【例6】质量为m 的物体静止在足够大的水平面上,物体与桌面的动摩擦因数为μ,有一水平恒力作用于物体上,并使之加速前进,经1t 秒后去掉此恒力,求物体运动的总时间t . 【例7】将质量为0.10kg 的小球从离地面20m 高处竖直向上抛出,抛出时 的初速度为15m /s ,当小球落地时,求: (1)小球的动量; (2)小球从抛出至落地过程中的动量增量; (3)小球从抛出至落地过程中受到的重力的冲量. 【例8】气球质量为200kg ,载有质量为50kg 的人,静止在空中距地面20m 高的地方,气球下方悬根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为了安全到达地面,则这根绳长至少为多少米?(不计人的高度)

高中数学必修二第二章经典练习题

高一数学必修二第二章经典练习题 第I卷(选择题) 请修改第I卷的文字说明 一、单项选择 ). ①平行于同一条直线的两条直线互相平行 ②垂直于同一条直线的两条直线互相平行 ③平行于同一个平面的两条直线互相平行 ④垂直于不一个平面的两条直线互相平行 A.仅②不正确B.仅①、④正确 C.仅①正确D.四个命题都正确 2. 如果直线 a是平面α的斜线,那么在平面α内() A 不存在与a平行的直线 B 不存在与a垂直的直线 C 与a垂直的直线只有一条 D 与a平行的直线有无数条 3. 平面α内有一四边形ABCD,P为α外一点,P点到四边形ABCD各边的距离相等,则这个四边形() A 必有外接圆 B 必有内切圆 C 既有内切圆又有外接圆 D 必是正方形 4. 已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是( ) A.PB⊥AD B.平面PAB⊥平面PBC C.直线BC∥平面PAE D.直线PD与平面ABC所成的角为45° 5. 若a,b是异面直线,直线c∥a,则c与b的位置关系是()A.相交 B.异面 C.平行 D.异面或相交 6. 设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α( )A.不存在B.只有1个 C.恰有4个D.有无数多个 7. 设P是△ABC所在平面外一点,P到△ABC各顶点的距离相等,而且P 到△ABC各边的距离也相等,那么△ABC() A 是非等腰的直角三角形 B 是等腰直角三角形 C 是等边三角形 D 不是A、B、C所述的三角形 8. 已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E是SB 的中点,则AE SD ,所成的角的余弦值为( ) A. 1 3 D. 2 3 9. 正方体ABCD—A1B1C1D1中,E、F分别是AA1与CC1的中点,则直线ED 与D1F所成角的大小是 () A. 1 5 B。 1 3 C。 1 2 D 10. 已知空间两条不同的直线m,n和两个不同的平面,αβ,则下列命题中正确的是( ) A.若//,,// m n m n αα ?则 B.若,, m m n n αβα ?=⊥⊥ 则 C.若//,//,// m n m n αα则 D.若//,,,// m m n m n αβαβ ?= I则 11. 在三棱柱 111 ABC A B C -中,各棱长相等,侧掕垂直于底面,点D是 侧面 11 BB C C的中心,则AD与平面 11 BB C C所成角的大小是 ( ) A.30o B.45o C.60o D.90o 12. 已知直线l、m,平面α、β,且lα ⊥,mβ ?,则// αβ是l m ⊥ 的 A.充要条件 B.充分不必要条件

1.2磁场典型例题.

磁场典型例题 类型题■ 分析求解磁感强度 磁感强度B 是磁场中的重要概念,求解磁感强度的方法一般有:定义式法、矢量叠加法等。 【例题1】如图中所示,电流从 A 点分两路通过对称的环形分路汇合于 B 点,在环形分路的中心 0处的 磁感强度( ) A. 垂直环形分路所在平面,且指向“纸内”。 B. 垂直环形分路所在平面,且指向“纸外”。 C. 在环形分路所在平面内指向 B 。 D. 磁感强度为零。 【例题2】电视机显象管的偏转线圈示意图如图所示,某时刻电流方向如图所示。则环心 向为( ) A .向下 B .向上 C.垂直纸面向里 D .垂直纸面向外 【例题3】安培秤如图所示,它的一臂下面挂有一个矩形线圈,线圈共有 N 匝,它的下部悬在均匀磁场 B 内,下边一段长为 L ,它与B 垂直。当线圈的导线中通有电流 I 时,调节砝码使两臂达到平衡;然后使电 流反向,这时需要在一臂上加质量为 m 的砝码,才能使两臂再达到平衡。求磁感强度 B 的大小。 专业、专心、成就学生梦想 个性化辅导学案 0处的磁场方

判别物体在安培力作用下的运动方向,常用方法有以下四种: 1、电流元受力分析法:即把整段电流等效为很多段直线电流元,先用左手定则判出每小段电流元受安 培力方向,从而判出整段电流所受合力方向,最后确定运动方向。 2、特殊值分析法:把电流或磁铁转到一个便于分析的特殊位置 从而确定运动方向。 3、等效分析法:环形电流可以等效成条形磁铁、条形磁铁也可等效成环形电流、通电螺线管可等效成 很多的环形电流来分析。 4、推论分析法: ⑴ 两电流相互平行时无转动趋势,方向相同相互吸引,方向相反相互排斥; (2)两 电 流不平行时有转动到相互平行且方向相同的趋势。 【例题1】如图所示,把一通电直导线放在蹄形磁铁磁极的正上方,导线可 以自由移动,当导线通过电流 I 时,导线的运动情况是( )(从上往下看) (如转过90° )后再判所受安培力方向 , A .顺时针方向转动,同时下降 B ?顺时针方向转动,同时上升 C.逆时针方向转动,同时下降 D .逆时针方向转动,同时上升 【例题2】如图所示,两平行光滑导轨相距为 L=20cm 金属棒MN 的质量为m=10g, 电阻R=8Q ,匀强磁场磁感应强度 B 方向竖直向下,大小为 B=0.8T ,电源电动势为 E=10V,内阻r=1 Q 。当电键S 闭合时,MN 处于平衡,求变阻器 R1的取值为多少?(设 0 =45°) 【例题3】长L=60cm 质量为m=6.0X 10-2 kg ,粗细均匀的金属棒,两端用完全相同的弹簧挂起,放在磁 感强度为B=0.4T ,方向垂直纸面向里的匀强磁场中, 如图8所示,若不计弹簧重力,问⑴ 要使弹簧不伸长, 金属棒中电流的大小和方向如何 ?(2)如在金属中通入自左向右、 大小为I=0.2A 的电流,金属棒下降X 1=1cm 若通入金属棒中的电流仍为 0.2A ,但方向相反,这时金属棒下降了多少 XS 分析导体在安培力作用下的运动 | N l S B

高中物理功和功率典型例题精析

高中物理功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

第2章 典型例题与综合练习

经济数学基础第2章导数与微分第一章典型例题与综合练习 第一节典型例题 一、极限计算 例1求极限lim n n n n n →∞ ++ -+ 2 2 1 254 解:原式= ++ -+ →∞ lim n n n n n 2 2 1 254 = ++ -+ →∞ lim n n n n n 1 11 2 54 2 2 = 1 2 例2求极限lim x x x x → - -+ 1 2 2 1 32 解:lim x→1 x x x x x x x x x x x 2 2 11 1 32 11 12 1 2 11 12 2 - -+ = -+ -- = + - = + - =- →→ lim ()() ()() lim 例3求极限lim sin x x x → -+ 11 2 解:lim x→0 11 2 -+ x x sin=)1 1( 2 sin )1 1 )( 1 1( lim 0+ + + + + - →x x x x x =lim x→0 x x sin2× lim x→0 - ++ 1 11 x= ) 2 1 ( 2 1 - ? =4 1 - 例4求极限lim() x x x →∞ + - 1 1 2 1 解:lim() x x x →∞ + -= 1 1 2 1lim() x x x →∞ - 1 1 2 lim() x x →∞ - 1 1 2 =+ - →∞ -? - lim()() x x x 1 1 2 2 1 2lim() x x →∞ - 1 1 2

经济数学基础 第2章 导数与微分 =+-? ???? ?→∞--lim()x x x 11221 2 lim() x x →∞-1121 e 21?=-e 1= 二、函数的连续性 例1讨论函数?? ???>+=<=0 2100e )(x x x a x x f x 在x =0处的连续性,并求函数的连续区间. 解:因为 a f x x x x ==+=+-→→)0(,1)21(lim ,1e lim 0 ,所以1 )(lim 0 =→x f x 当1≠a 时, ) (lim )0(0 x f f x →≠,即极限值不等于函数值,所以x =0是函数的一个 间断点,且当1≠a 时,函数的连续区间是),0()0,(+∞?-∞. 当1=a 时, ) (lim )0(0 x f f x →=,即极限值等于函数值,所以x =0是函数的一个连 续点,且当1=a 时,函数的连续区间是),(+∞-∞. 三、函数的可导性 例1设函数 f x ax b x x x ()=+>≤???002 若函数f x ()在点x =0处连续且可导,应如何选取系数a b ,? 解:因为0 )0(,)(lim ,0lim 0 20 ==+=+-→→f b b ax x x x 所以当b =0时函数f x ()在点x =0处连续. 又因为0 )(lim )0()0(lim lim )0(2 000=??=?-?+=??='---→?→?→?-x x x f x f x y f x x x '===+→→+ +f y x a x x a x x ()lim lim 000?????? 所以当a =0,b =0时函数f x ()在点x =0处可导.

高中物理磁场专题讲解经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv q B B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。 两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速 穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

功和功率典型例题

功和功率 【例2】如图所示,线拴小球在光滑水平面上做匀速圆周运动,圆的半径是1m ,球的质量是0.1kg ,线速度v =1m/s ,小球由A 点运动到B 点恰好是半个圆周。 那么在这段运动中线的拉力做的功是( ) A .0 B .0.1J C .0.314J D .无法确定 【例3】质量为m 的物体,受水平力F 的作用,在粗糙的水平面上 运动,下列说法中正确的是( ) A .如果物体做加速直线运动,F 一定做正功 B .如果物体做减速直线运动,F 一定做负功 C .如果物体做减速直线运动,F 可能做正功 D .如果物体做匀速直线运动,F 一定做正功 【例4】 质量为2t 的农用汽车,发动机额定功率为30kW ,汽车在水平路面行驶时能达到的最大时速为54km/h 。若汽车以额定功率从静止开始加速,当其速度达到v =36km/h 时的瞬时加速度是多大? 【例5】卡车在平直公路上从静止开始加速行驶,经时间t 前进距离s ,速度达到最大值v m 。设此过程中发动机功率恒为P ,卡车所受阻力为f ,则这段时间内,发动机所做的功为( ) A .Pt B .fs C .Pt =fs D .fv m t 【例6】 质量为0.5kg 的物体从高处自由下落,在下落的前2s 内重力对物体做的功是多少?这2s 内重力对物体做功的平均功率是多少?2s 末,重力对物体做功的即时功率是多少?(g 取2 /10s m ) 功和功率针对训练 1.用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升.如果前后 两过程的运动时间相同,不计空气阻力,则 A .加速过程中拉力的功一定比匀速过程中拉力的功大 B .匀速过程中拉力的功比加速过程中拉力的功大

高中物理必修1知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

(完整word版)高中物理功和功率典型例题解析

功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

(完整word版)高考物理经典大题练习及答案

14.(7分)如图14所示,两平行金属导轨间的距离 L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在 导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于 导轨所在平面的匀强磁场.金属导轨的一端接有电动势 E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒 与金属导轨垂直、且接触良好,导体棒与金属导轨接图14 触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取 10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求: (1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力 15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω, 金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电 阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且 与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动 至AC的位置时,求(计算结果保留两位有效数字): 图15 (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率. 16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l, 导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上 方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直 平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向 里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框 恰好做匀速运动.重力加速度为g. (1)求cd边刚进入磁场时导线框的速度大小. (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克 服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导 线框克服安培力所做的功. 17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R连接,电阻R=90 Ω,与R并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t按图17(乙)所示正弦规律变化.求: (1)交流发电机产生的 电动势最大值;

高二物理 磁场 磁感线 典型例题解析

磁场磁感线典型例题解析 【例1】在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知 [ ] A.一定是小磁针正东方向有一条形磁铁的N极靠近小磁针 B.一定是小磁针正东方向有一条形磁铁的S极靠近小磁针 C.可能是小磁针正上方有电子流自南向北通过 D.可能是小磁针正上方有电子流自北向南水平通过 解答:正确的应选C. 点拨:掌握小磁针的N极受力方向与磁场方向相同,S极受力方向与磁场方向相反是解决此类问题的关键. 【例2】下列关于磁感线的说法正确的是 [ ] A.磁感线上各点的切线方向就是该点的磁场方向 B.磁场中任意两条磁感线均不可相交 C.铁屑在磁场中的分布所形成的曲线就是磁感线 D.磁感线总是从磁体的N极出发指向磁体的S极 解答:正确的应选AB. 点拨:对磁感线概念的理解和磁感线特点的掌握是关键. 【例3】如图16-2所示为通电螺线管的纵剖面图,试画出a、b、c、d四个位置上小磁针静止时N极的指向. 点拨:通电螺线管周围的磁感线分布是小磁针静止时N极指向的根据.【例4】如图16-3所示,当铁心AB上绕有一定阻值的线圈后,在AB间的小磁针静止时N极水平向左,试在图中铁心上的A、B两侧绕上线圈,并与电源连接成正确的电路.

点拨:根据小磁针静止时N极指向确定铁心的N极、S极,再定绕线方向. 跟踪反馈 1.下列说法正确的是 [ ] A.磁感线从磁体的N极出发,终止于磁体的S极 B.磁感线可以表示磁场的方向和强弱 C.磁铁能产生磁场,电流也能产生磁场 D.放入通电螺线管内的小磁针,根据异名磁极相吸的原则,小磁针的N 极一定指向通电螺线管的S极 2.首先发现电流磁效应的科学家是 [ ] A.安培 B.奥斯特 C.库仑 D.麦克斯韦 3.如图16-4所示,若一束电子沿y轴正方向运动,则在z轴上某点A 的磁场方向应是 [ ] A.沿x轴的正向 B.沿x轴的负向 C.沿z轴的正向

高考物理经典考题300道(10)

一、计算题(解答写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。本题包含55小题,每题?分,共?分) 1.如图所示,在光滑的水平面上,有两个质量都是M 的小车A 和B ,两车间用轻质弹簧相连,它们以共同的速度向右运动,另有一质量为 0M 的粘性物体,从高处自由下落,正好落 至A 车并与之粘合在一起,在此后的过程中,弹簧获得最大弹性势能为E ,试求A 、B 车开始匀速运动的初速度 0v 的大小. 解析:物体 0M 落到车A 上并与之共同前进,设其共同速度为1v , 在水平方向动量守恒,有 100)(v M M M v += 所以 0 01v M M M v += 物体0M 与A 、B 车共同压缩弹簧,最后以共同速度前进,设共同速度为2v ,根据动量守 恒有 200)2(2v M M Mv += 所以 0222v M M M v += 当弹簧被压缩至最大而获得弹性势能为E ,根据能量守恒定律有: ()()202102202121221 Mv v M M v M M E ++=++ 解得 ()()002 0022M M M M MM E v ++= . 2.如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一个质量为m 的木块,车的右端固定一个轻质弹簧.现给木块一个水平向右的瞬时冲量I ,木块便沿小车向右滑行,在与弹簧相碰后又沿原路返回,并且恰好能到达小车的左端.试求: (1)木块返回到小车左端时小车的动能. (2)弹簧获得的最大弹性势能. 解:(1)选小车和木块为研究对象.由于m 受到冲量I 之后系统水平方向不受外力作用,系统动量守恒.则v m M I )(+=

第二章轴对称图形知识点归纳+典型例题+提优

2.1轴对称与轴对称图形 姓名_______学号_______班级_______ 学习目标: 1.欣赏生活中的轴对称现象和轴对称图案,探索它们的共同特征,发展空间观念. 2.通过具体实例了解轴对称概念,了解轴对称图形的概念,知道轴对称与轴对称图形的区别和联系. 学习重点: 了解轴对称图形和轴对称的概念,并能简单识别、体会轴对称在现实生活中的广泛应用和它的丰富文化价值. 学习难点: 能正确地区分轴对称图形和轴对称,进一步发展空间观念. 学习过程: 一、创设情境 观察如下的图案, 它们有什么共同的特征? 二、探索活动 活动一折纸印墨迹 问题1.你发现折痕两边的墨迹形状一样吗?

问题2.两边墨迹的位置与折痕有什么关系? 概念:把一个图形沿着___________________翻折,如果它能够与另一个图形__________,那么称这两个图形____________________对称,也称这两个图形成______________. 这条直线叫做________________,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点. 如图,△ABC和△DEF关于直线MN对称, 直线MN是对称轴,点A与点D、点B与点E、 点C与点F都是关于直线MN的对称点. 活动二切藕制作成轴对称的两个截面 联系实际,你能举出一些生活中图形成轴对称的实例吗? 活动三

把_________图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是_______________,这条直线就是_____________. 请你找出图1-5中的各图的对称轴. 联系实际,你能举出一个轴对称图形的实例吗? 活动五轴对称与轴对称图形的区别和联系 三、课堂练习 1. 分别画出下列轴对称型字母的对称轴以及两对对称点. 2.画出下列各轴对称图形的对称轴.

高一必修二物理功和功率练习题带答案解析讲解

7.3 功率同步练习题解析(人教版必修2) 1.质量为m的木块放在光滑水平面上,在水平力F的作用下从静止开始运动,则开始运动时间t后F的功率是()。 A. 2 2 F t m B. 22 2 F t m C. 2 F t m D. 22 F t m 2.一辆小车在水平路面上做匀速直线运动,从某时刻起,小车受到的牵引力F和阻力f随时间的变化规律如图所示,则小车所受的牵引力的功率随时间变化的规律是()。 3.近年我国高速铁路技术得到飞速发展,2010年12月3日京沪杭高铁综合试验运行最高时速达到486.1千米,刷新了世界记录,对提高铁路运行速度的以下说法,错误的是()。 A.减少路轨阻力,有利于提高列车最高时速 B.当列车保持最高时速行驶时,其牵引力与阻力大小相等 C.列车的最高时速取决于其最大功率、阻力及相关技术 D.将列车车头做成流线形,减小空气阻力,有利于提高列车功率 4.如图所示是健身用的“跑步机”示意图,质量为m的运动员踩在与水平面成α角的静止皮带上,运动员用力向后蹬皮带,皮带运动过程中受到的阻力恒为f,使皮带以速度v 匀速向后运动,则在运动过程中,下列说法正确的是()。 A.人脚对皮带的摩擦力是皮带运动的动力 B.人对皮带不做功 C.人对皮带做功的功率为mgv D.人对皮带做功的功率为fv 5.一辆小汽车在水平路面上由静止启动,在前5 s内做匀加速直线运动,5 s末达到额定功率,之后保持额定功率运动,其vt图象如图所示。已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,g取10 m/s2,则()。

A.汽车在前5 s内的牵引力为4×103 N B.汽车在前5 s内的牵引力为6×103 N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s 6.纯电动概念车E1是中国馆的镇馆之宝之一。若E1概念车的总质量为920 kg,在16 s内从静止加速到100 km/h(即27.8 m/s)。受到恒定的阻力为1 500 N,假设它做匀加速直线运动,其动力系统提供的牵引力为____N。当E1概念车以最高时速120 km/h(即33.3 m/s)做匀速直线运动时,其动力系统输出的功率为____kW。 7.一辆电动自行车的铭牌上给出了如下技术指标: 规格 车型26型电动自行车 整车质量30 kg 最大载重120 kg 额定输出功率120 W 额定电压40 V 额定电流3.5 A 质量为M=70 kg F f恒为车和人总重的0.02倍,g取10 m/s2。则在电动自行车正常工作时,人骑车行驶的最大速度为多少? 8.图示为修建高层建筑常用的塔式起重机。在起重机将质量m=5×103kg的重物竖直吊起的过程中,重物由静止开始向上做匀加速直线运动,加速度a=0.2 m/s2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做v m=1.02 m/s的匀速运动。取g=10 m/s2,不计额外功。求: (1)起重机允许输出的最大功率; (2)重物做匀加速运动所经历的时间和起重机在第2秒末的输出功率。

相关主题
文本预览
相关文档 最新文档