实验三10进制计数器的仿真
- 格式:doc
- 大小:81.50 KB
- 文档页数:3
北京科技大学实验报告学院:高等工程师学院专业:自动化(卓越计划)班级:自E181姓名:杨威学号:41818074 实验日期:2020 年5月26日一、实验名称:集成计数器及其应用1、实验内容与要求(1)用74161和必要逻辑门设计一个带进位输出的10进制计数器,采用同步置数方法设计;(2)用两个74161和必要的逻辑门设计一个带进位输出的60进制秒计数器;2、实验相关知识与原理(1)74161是常用的同步集成计数器,4位2进制,同步预置,异步清零。
引脚图功能表其中X。
3、10进制计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数输出QD、QC、QB、QA,进位输出RCO,显示译码输出OA、OB、OC、OD、OE、OF、OG2)计数范围:0000-10013)预置数值:00004)置数控制端LDN:计数到1001时输出低电平5)进位输出RCO:计数到1001时输出高电平画出如下状态转换表:CP QDQCQBQA0 00001 00012 00103 00114 01005 01016 01107 01117 10009 100110 0000(2)原理图截图仿真波形如下功能验证表格CLRN QD QC QB QA RCO0 0 0 0 0 01 0 0 0 1 01 0 0 1 0 01 0 0 1 1 01 0 1 0 0 01 0 1 0 1 01 0 1 1 0 01 0 1 1 1 01 1 0 0 0 01 1 0 0 1 11 0 0 0 0 04、60进制秒计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数十位输出QD2、QC2、QB2、QA2和计数个位输出QD1、QC1、QB1、QA1,进位输出RCO2)计数范围:0000 0000-0101 10013)预置数值:0000 00004)置数控制端LDN1(个位):计数到0101 1001时输出低电平5)清零端CLRN2(十位):计数到0110时输出低电平6)ENT:个位计数到1001时输出高电平7)进位输出RCO:计数到1001时输出高电平画出如下状态转换表CP QD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA10 0000 0000 20 0010 0000 40 0100 00001 0000 0001 21 0010 0001 41 0100 00012 0000 0010 22 0010 0010 42 0100 00103 0000 0011 23 0010 0011 43 0100 00114 0000 0100 24 0010 0100 44 0100 01005 0000 0101 25 0010 0101 45 0100 01016 0000 0110 26 0010 0110 46 0100 01107 0000 0111 27 0010 0111 47 0100 01118 0000 1000 28 0010 1000 48 0100 10009 0000 1001 29 0010 1001 49 0100 100110 0001 0000 30 0011 0000 50 0101 000011 0001 0001 31 0011 0001 51 0101 000112 0001 0010 32 0011 0010 52 0101 001013 0001 0011 33 0011 0011 53 0101 001114 0001 0100 34 0011 0100 54 0101 010015 0001 0101 35 0011 0101 55 0101 010116 0001 0110 36 0011 0110 56 0101 011017 0001 0111 37 0011 0111 57 0101 011118 0001 1000 38 0011 1000 58 0101 100019 0001 1001 39 0011 1001 59 0101 100160 0000 0000 (2)设计原理图截图(3)实验仿真仿真波形:仿真结果表:5、实验思考题:(1)总结任意模计数器的设计方法。
计数器一实验目的1、掌握中规模集成计数器的逻辑功能及使用方法。
2、学习运用集成电路芯片计数器构成N位十进制计数器的方法。
二实验原理计数器是一个用以实现计数功能的时序器件,它不仅可以用来记忆脉冲的个数,还常用于数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多,按构成计数器中的各个触发器输出状态更新是否受同一个CP脉冲控制来分,有同步和异步计数器,根据计数制的不同,分为二进制、十进制和任意进制计数器。
根据计数的增减趋势分,又分为加法、减法和可逆计数器。
另外,还有可预置数和可编程功能的计数器等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器芯片。
如:异步十进制计数器74LS90,4位二进制同步计数器74LS93,CD4520,4位十进制计数器74LS160、74LS162;4位二进制可预置同步计数器CD40161、74LS161、74LS163;4位二进制可预置同步加/减计数器CD4510、CD4516、74LS191、74LS193;BCD码十进制同步加/减计数器74LS190、74LS192、CD40192等。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列就能正确使用这些器件。
例如74LS192同步十进制可逆计数器,具有双时钟输入十进制可逆计数功能;异步并行置数功能;保持功能和异步清零功能。
74192功能见表表19.1*表中符号和引脚符号的对应关系:CR = CLR—清零端;LD= LOAD—置数端(装载端)CP U = UP—加计数脉冲输入端CP D = DOWN—减计数脉冲输入端CO——非同步进位输出端(低电平有效)BO——非同步借位输出端(低电平有效)D3 D2 D1 D0 = D C B A—计数器数据输入端Q D Q C Q B Q A—计数器数据输出端根据功能表我们可以设计一个特殊的12进制的计数器,且无0数。
如图19.1所示:当计数器计到13时,通过与非门产生一个复位信号,使第二片74LS192(时十位)直接置成0000,而第一片74LS192计时的个位直接置成0001;从而实现了1——12的计数。
实验三 VHDL 时序逻辑电路设计一、实验目的1.熟悉用VHDL语言设计时序逻辑电路的方法2.熟悉用Quartus文本输入法进行电路设计二、实验所用仪器元件及用途1.计算机:装有Quartus软件,为VHDL语言提供操作场所。
2.直流稳压电源:通过USB接口实现,为实验开发板提供稳定电源。
3.数字系统与逻辑设计实验开发板:使试验结果下载到开发板上,实现整个实验的最终结果。
三、实验内容1.用VHDL语言设计实现一个8421码十进制计数器。
(1)实验内容及要求:在Quartus平台上设计程序和仿真题目要求,并下载到实验板上验证试验结果。
(2)试验结果:VHDL代码和仿真结果。
2.用VHDL语言设计实现一个分频系数为8,分频输出信号占空比为50%的分频器。
(1)实验内容及要求:在Quartus平台上设计程序和仿真题目要求。
(2)试验结果:VHDL代码和仿真结果。
3.用VHDL语言设计实现一个控制8个发光二极管亮灭的电路。
(1)实验内容及要求:在Quartus平台上设计程序和仿真题目要求,并下载到实验板上验证试验结果。
a.单点移动模式:一个点在8个发光二极管上来回的亮b.幕布式:从中间两个点,同时向两边依次点亮直至全亮,然后再向中间点灭,依次往复c.通过拨码开关或按键控制两种模式的转换(2)试验结果:VHDL代码和仿真结果。
四、实验设计思路及过程1.8421码十进制计数器状态转移表左图为8421码十进制计数器的状态转移表,abcd为初状态,ABCD为下一状态,每当有“1”出现时,相应的管脚就亮灯,从而从0000到1001的灯依次出现。
VHDL代码如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY count12 ISPORT(clk,clear:IN STD_LOGIC;q :OUT STD_LOGIC_VECTOR(3 DOWNTO 0);END count12;ARCHITECTURE a OF count12 ISSIGNAL q_temp:ATD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(clk)BEGINIF(clk'event and clk='1') THENIF clear='0' THENq_temp<="0000";ELSIF q_temp="1011"THENq_temp<="0000";ELSEq_temp<=q_temp+1;END IF;END IF;END PROCESS;q<=q_temp;END a;2.分频系数为8,输出占空比为50%的分频器的设计左图为八分频器(占空比50%)的状态转移图,其中abc为原状态,ABC为下一状态。
十进制加法器设计1课程设计的任务与要求 课程设计的任务1、综合应用数字电路知识设计一个十进制加法器。
了解各种元器件的原理及其应用。
2、了解十进制加法器的工作原理。
3、掌握multisim 软件的操作并对设计进行仿真。
4、锻炼自己的动手能力和实际解决问题的能力。
5、通过本设计熟悉中规模集成电路进行时序电路和组合电路设计的方法,掌握十进制加法器的设计方法。
课程设计的要求1、设计一个十进制并运行加法运算的电路。
2、0-9十个字符用于数据输入。
3、要求在数码显示管上显示结果。
2十进制加法器设计方案制定 加法电路设计原理图1加法运算原理框图如图1所示第一步置入两个四位二进制数。
例如(1001)2,(0011)2和(0101)2,(1000),同时在两个七段译码显示器上显示出对应的十进制数9,3和5,8。
2第二步将置入的数运用加法电路进行加法运算。
第三步前面所得结果通过另外两个七段译码器显示。
即:加法运算方式,则(1000)2+(0110)2=(1110)2 十进制8+6=14 并在七段译码显示出14。
运算方案通过开关S1——S8接不同的高低电平来控制输入端所置的两个一位十进制数,译码显示器U8和U9分别显示所置入的两个数。
数A直接置入四位超前进位加法器74LS283的A4——A1端,74LS283的B4——B1端接四个2输入异或门。
四个2输入异或门的一输入端同时接到开关S1上,另一输入端分别接开关S5——S8,通过开关S5——S8控制数B的输入,通过加法器74LS283完成两个数A和B的相加。
由于译码显示器只能显示0——9,所以当A+B>9时不能显示,我们在此用另一片芯片74LS283完成二进制码与8421BCD码的转换,即S>9(1001)2时加上3(0011)2,产生的进位信号送入译码器U10来显示结果的十位,U11显示结果的个位。
3十进制加法器电路设计加法电路的实现用两片4位全加器74LS283和门电路设计一位8421BCD码加法器。
《基于FPGA的现代数字系统设计》实验名称:十进制计数器设计与仿真姓名:学号:班级:指导老师:2013年3月11日实验目的:(1)熟悉和掌握ISE Foudation 软件的使用(2)掌握基本原理图进行FPGA设计开发的全流程(3)理解和掌握“自底向下”的层次化设计方法(4)温习数字电路设计的基础知识实验要求:(1)使用原理图库中的门电路元件设计七段显示译码电路,以及十进制加法计数器。
(2)要求LED定位显示。
(3)完成LED七段码波形的仿真分析。
(4)在目标板按要求显示译码结果。
实验原理:本次试验将完成的设计是一个具有数显输出的十进制计数器。
示意图如2.1所示。
图2.1七段数码管属于数码管的一种,是由7段二极管组成。
按发光二极管单元衔接方式分为共阳极数码管和共阴极数码管。
本实验使用共阴数码管。
它是指将一切发光二极管的阴极接到一同构成公共阴极(COM)的数码管。
共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平相应字段就点亮,当某一字段的阳极为低电平相应字段就不亮。
显示译码器,一般是将一种编码译成十进制码或特定的编码,并通过显示器件将译码器的状态显示出来。
最小项译码器输出能产生输入变量的所有最小项,而任何一个组合逻辑函数都可以变换为最小项之和的标准形式,故采用译码器和门电路可实现任何单输出或多输出的组合逻辑函数。
当译码器输出低电平有效时,一般选用与非门;当译码器输出高电平有效时,一般选用或门。
本实验可以采用ISE软件自带的“Decoder”库中的4线-16线译码器D4_16E (带使能端,输出高电平有效)和“Logic”库中的16输入或门OR16。
本次试验将完成的设计是一个具有数显输出的十进制计数器。
实验步骤:1.完成七段数码管的绘制,按照正常操作新建工程,添加新原理图文件。
(1)画出七段数码管A段的原理图,如图1所示,根据书上的七段数码管的真值表完成D$_16E与16位或门的连线,其中0的地方连地,1的地方连上D4_16E 芯片。
目录一.设计目的和设计内容1.1设计目的1.2设计要求二.设计原理2.1计数器2.2集成计时器2.3 常用计时器原理2.4显示与译码2.5 VHDL计数器三.设计方案3.1备选方案3.2设计方案3.3仿真软件的选择四.仿真分析和体会五.致谢六.参考资料摘要:计数器的功能是记忆脉冲的个数,它是数字系统中应用最广泛的基本时序逻辑构件。
计数器在微型计算机系统中的主要作用就是为CPU和I/O设备提供实时时钟,以实现定时中断、定时检测、定时扫描、定时显示等定时控制,或者对外部事件进行计数。
一般的微机系统和微机应用系统中均配置了定时器/计数器电路,它既可当作计数器作用,又可当作定时器使用,其基本的工作原理就是"减1"计数。
计数器:CLK输入脉冲是一个非周期事件计数脉冲,当计算单元为零时,OUT输出一个脉冲信号,以示计数完毕。
以下是关于十进制计数器的几种设计方法。
一.设计目的和内容1.本次课程设计应达到的目的:1、综合运用相关课程中所学到的理论知识去独立完成某一设计课题;2、通过查阅手册和相关文献资料,培养学生独立分析和解决问题的能力;3、进一步熟悉常用芯片和电子器件的类型及特性,并掌握合理选用器件的原则;4、学会电路的设计与仿真;5、培养严肃认真的工作作风和严谨的科学态度。
2.本课程设计课题任务的内容和要求(包括原始数据、技术参数、设计要求等):1、具有10进制计数功能;2、设置外部操作开关,控制计数器的直接清零、启动、和暂停/连续功能;3、计时器为10进制加法计数,计时间隔为1秒;4、并用相关仿真软件对电路进行仿真。
二.设计原理1.计数器计数器是数字系统中用的较多的基本逻辑器件。
它不仅能记录输入时钟脉冲的个数,还可以实现分频,定时,产生节拍脉冲和脉冲序列等。
例如,计算机中的时序发生器,分频器,指令计数器等都要使用计数器。
计数器的种类很多。
按时序脉冲输入方式的不同,可分为同步计数器和异步计数器;按进位体制不同可以分为二进制计数器和非二进制计数器;按计数器的数字增减趋势的不同,可分为加法计数器,减法计数器和可逆计数器。
含异步清零和同步时钟使能的加法计数器设计(1)实验目的:学习计数器的设计、仿真和硬件测试,进一步熟悉VHDL设计技术。
(2)实验原理:实验程序为例4-22;实验原理参考4.4节(计数器设计),设计流程参考第5章。
【例4-22】设计一个带有异步复位和同步时钟使能的十进制加法计数器。
LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNT10 ISPORT(CLK,RST,EN : IN STD_LOGIC;CQ : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);COUT : 0UT STD_LOGIC);END ENTITY CNT10;ARCHITECTURE behav OF CNT10 ISBEGINPROCESS (CLK,RST,EN)VARIABLE CQI : STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINIF RST=‘1’ THEN CQI:=(OTHERS =>‘0’);--计数器异步复位ELSIF C LK’E VENT AND CLK=‘1’ THEN --检测时钟上升沿IF EN=‘1’ THEN --检测是否允许计数(同步他能) IF CQI<9 THEN CQI:=CQI+1; --允许计数,检测是否小于9ELSE CQI := (OTHERS => ‘0’); --大于9,计数值清零END IF;END IF;END IF;IF CQI=9 THEN COUT<=‘1’; --计数大于9,输出进位信号ELSE COUT<=‘0’;END IF;CQ<=CQI; --将计数值向端口输出END PROCESS;END ARCHITECTURE behav;(3)实验内容1:在Quartus II 上对例4-22进行编辑、编译、综合、适配、仿真。
实验一十进制计数器的设计与仿真一、实验目的熟悉QuartusⅡ的Verilog HDL文本设计流程全过程,学习计数器的设计、仿真和硬件测试。
二、实验原理该程序设计是带有异步复位、同步计数使能、可预置型功能全面的十进制计数器。
(1)第一个条件句if(!RST)构成的RST接于寄存器下方的异步清0端CLR。
(2)第二个条件句if(EN)构成EN接于寄存器左侧的使能端ENA。
(3)第三个条件句if(LODA)构成LODA接于上面的多路选择器,使之控制选择来自DATA的数据,还是来自另一多路选择器的数据。
(4)不完整的条件语句与语句Q1<=Q1+1构成了加1加法器和4位寄存器。
(5)语句(Q1<9)构成了小于比较器,比较器的输出信号控制左侧多路选择器。
(6)第二个过程语句构成了纯组合电路模块,即一个等式比较器,作进位输出。
三、实验设备与软件平台实验设备:计算机、FPGA硬件平台是Cyclone系列FPGA软件平台:Quartus II 9.1 (32-Bit)、5E+系统四、实验内容编写Verilog程序描述一个电路,实现以下功能:设计带有异步复位、同步计数使能和可预置型的十进制计数器。
具有5个输入端口(CLK、RST、EN、LOAD、DATA)。
CLK输入时钟信号;RST 起异步复位作用,RST=0,复位;EN是时钟使能,EN=1,允许加载或计数;LOAD 是数据加载控制,LOAD=0,向内部寄存器加载数据;DATA是4位并行加载的数据。
有两个输出端口(DOUT和COUT)。
DOUT的位宽为4,输出计数值,从0到9;COUT是输出进位标志,位宽为1,每当DOUT为9时输出一个高电平脉冲。
五、实验步骤设计程序:module CNT10 (CLK,RST,EN,LOAD,COUT,DOUT,DATA);input CLK;input EN;input RST;input LOAD;input [3:0] DATA;output [3:0] DOUT;output COUT;reg [3:0] Q1 ;reg COUT ;assign DOUT = Q1;always @(posedge CLK or negedge RST) begin if (!RST) Q1 <= 0;else if (EN) beginif (!LOAD) Q1 <= DATA;else if (Q1<9) Q1 <= Q1+1;else Q1 <= 4'b0000;endendalways @(Q1)if (Q1==4'h9) COUT = 1'b1;else COUT = 1'b0;Endmodule设计流程:1.编辑和输入设计文件(1)、新建一个文件夹如D:\CNT10 ,本工程所有文件将存放在此目录中。
实验三使用74161构成十进制计数器实验三使用74161构成十进制计数器实验三使用74161构成一个同步十进制计数器一、实验目的1.掌握74161的功能2.掌控意见反馈登位法、意见反馈预置法二、实验内容使用74161及必要的逻辑门构成一个同步十进制计数器。
建议使用意见反馈登位法、意见反馈预置法两种方法。
三、分析过程1.反馈复位法:下面的第一个图是反馈复位法。
反馈复位发是当遇到1010时,会立即进行清零。
即从0000开始到1010的时候会进行清零。
qb与qd想与在进行非门,最后的引脚给了clrn,即给它清零。
从0000开始计时,当遇到第一个时冲的时候,qdqcqbqa变成0001,挡在遇到下一个clock时钟的时候,变成0010,就这样每当遇到一个上升的时钟的上升沿的时候,qdqcqbqa就会自动的加一,到了第十个时钟脉冲的时候,它会自动的立即清零。
2.意见反馈预置法:下面的第一个图就是意见反馈混凝土法。
混凝土的dcba的值0000,意见反馈混凝土就是当碰到1001时,不能立即展开清零,而是要到下一个时冲的到来的时候可以立即清零,既当碰到1010的时候可以立即清零。
即为从0000已经开始至1010的时候可以展开清零。
qb与qd想要与在展开非门,最后的插槽给了clrn,即为给它清零。
从0000已经开始计时,当碰到第一个时冲的时候,qdqcqbqa变成0001,挡在遇到下一个clock时钟的时候,变成0010,就这样每当遇到一个上升的时钟的上升沿的时候,qdqcqbqa就会自动的加一,到了第十个时钟脉冲的时候,它会自动的立即清零四、原理图(粘贴quartus中绘制的原理图)下面这个是反馈复位:下面这个就是意见反馈预置五、功能仿真的波形图及说明这就是一个意见反馈登位的74161十进制的计数器,clock的频率为5纳秒,刚开始的时候,qdqcqbqa的值0000;在第一个clock始终到来的时候,即为在第五纳秒的时候,qdqcqbqa可以自己提1=0001;在第二个时钟的下降沿的到来的时候,即为在第十纳秒的时候,qdqcqbqa=0010;在第三个时钟的下降沿的下降沿的时候,即为在第十五纳秒的时候qdqcqbqa=0011;在第四个时钟的下降沿的下降沿的时候,即为在第二十纳秒的时候qdqcqbqa=0100……当在第十个时钟的上升沿到来的时候,会马上清零,即当在了1010的时候,在时钟的上升沿的到来的时候,qdqcqbqa=,马上又变成了0000;即又开始了了下一个的轮回。
实验八计数器一、实验目的1.熟悉由集成触发器构成的计数器电路及其工作原理。
2.熟悉掌握常用中规模集成电路计数器及其应用方法。
二、实验原理和电路所谓计数,就是统计脉冲的个数,计数器就是实现“计数”操作的时序逻辑电路。
计数器的应用十分广泛,不仅用来计数,也可用作分频、定时等。
计数器种类繁多。
根据计数体制的不同,计数器可分成二进制(即2”进制)计数器和非二进制计数器两大类。
在非二进制计数器中,最常用的是十进制计数器,其它的一般称为任意进制计数器。
根据计数器的增减趋势不同,计数器可分为加法计数器—随着计数脉冲的输入而递增计数的;减法计数器—随着计数脉冲的输入而递减的;可逆计数器—既可递增,也可递减的。
根据计数脉冲引入方式不同,计数器又可分为同步计数器—计数脉冲直接加到所有触发器的时钟脉冲(CP)输入端;异步计数器—计数脉冲不是直接加到所有触发器的时钟脉冲(CP)输入端。
1.异步二进制加法计数器异步二进制加法计数器是比较简单的。
图1.8.1(a)是由4个JK(选用双JK74LS112)触发器构成的4位二进制(十六进制)异步加法计数器,图1.8.1(b)和(c)分别为其状态图和波形图。
对于所得状态图和波形图可以这样理解:触发器FFO(最低位)在每个计数沿(CP)的下降沿(1 → 0)翻转,触发器FF1的C P端接FF0的Q0端,因而当FFO(Q O)由1→ 0时,FF1翻转。
类似地,当FF1(Q1)由1→0时,FF2翻转,FF2(Q2)由1→0时,FF3翻转。
4位二进制异步加法计数器从起始态0000到1111共十六个状态,因此,它是十六进制加法计数器,也称模16加法计数器(模M=16)。
从波形图可看到,Q0 的周期是CP周期的二倍;Q1是Q0的二倍,CP的四倍;Q2是Q1 的二倍,Q0的四倍,CP的八倍;Q3是Q2的二倍,Q1的四倍,Q0的八倍,CP的十六倍。
目录1 引言 (3)2 Multisim9简介 (4)2.1 Multisim特点 (4)2.2 Multisim9简介 (4)3 电路设计 (5)3.1病人呼叫大夫的电路设计 (5)3.1.1设计任务 (5)3.1.2实验原理及思路分路 (5)3.1.374ls148编码器 (5)3.1.4电路图及仿真结果 (6)3.2加法电路的设计 (6)3.2.1设计任务 (7)3.2.2实验原理及框图 (7)3.2.3电路图及仿真结果 (7)3.3用74ls90实现十进制计数器的设计与制作 (8)3.3.1设计任务 (8)3.3.2 74ls逻辑功能 (9)3.3.3电路仿真 (9)3.4数码管显示控制电路的设计 (11)3.4.1设计任务 (11)3.4.2实验原理及设计分析 (11)3.4.3电路图及仿真结果 (13)3.5灯控电路的设计 (14)3.5.1设计任务 (14)3.5.2电路分析及原理框图 (15)3.5.3电路仿真 (15)3.6 直流稳压源的电路设计 (17)3.6.1设计任务 (17)3.6.2实验原理及思路分析 (18)3.6.3电路仿真 (18)4 总结和体会 (20)致谢 (21)参考文献 (22)1 引言1.1引言随着时代的发展,计算机技术在电子电路设计中发挥着越来越大的作用。
传统的电子线路设计开发,通常需要制作一块试验板或在面包板上来进行模拟实验,以测试是否达到设计指标要求;并且需要反复试验、调试,才能设计出符合要求的电路。
这样做,既费时又费力,同时也提高了设计成本;另外,因受工作场所、仪器设备等因素的限制,许多试验(例如理想化、破坏性的实验)不能进行。
随着计算机硬件与软件的发展,解决以上问题的计算机仿真技术应运而生。
利用计算机仿真软件,电子设计师可以从概念、算法、协议等开始设计电子系统,大量工作可以通过计算机完成,并可以将电子产品从电路设计、性能分析到设计出版印刷板的整个过程在计算机软件上自动处理完成。
第1篇一、实验目的1. 理解数字电路的基本概念和组成原理。
2. 掌握常用数字电路的分析方法。
3. 培养动手能力和实验技能。
4. 提高对数字电路应用的认识。
二、实验器材1. 数字电路实验箱2. 数字信号发生器3. 示波器4. 短路线5. 电阻、电容等元器件6. 连接线三、实验原理数字电路是利用数字信号进行信息处理的电路,主要包括逻辑门、触发器、计数器、寄存器等基本单元。
本实验通过搭建简单的数字电路,验证其功能,并学习数字电路的分析方法。
四、实验内容及步骤1. 逻辑门实验(1)搭建与门、或门、非门等基本逻辑门电路。
(2)使用数字信号发生器产生不同逻辑电平的信号,通过示波器观察输出波形。
(3)分析输出波形,验证逻辑门电路的正确性。
2. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发器电路。
(2)使用数字信号发生器产生时钟信号,通过示波器观察触发器的输出波形。
(3)分析输出波形,验证触发器电路的正确性。
3. 计数器实验(1)搭建异步计数器、同步计数器等基本计数器电路。
(2)使用数字信号发生器产生时钟信号,通过示波器观察计数器的输出波形。
(3)分析输出波形,验证计数器电路的正确性。
4. 寄存器实验(1)搭建移位寄存器、同步寄存器等基本寄存器电路。
(2)使用数字信号发生器产生时钟信号和输入信号,通过示波器观察寄存器的输出波形。
(3)分析输出波形,验证寄存器电路的正确性。
五、实验结果与分析1. 逻辑门实验通过实验,验证了与门、或门、非门等基本逻辑门电路的正确性。
实验结果表明,当输入信号满足逻辑关系时,输出信号符合预期。
2. 触发器实验通过实验,验证了D触发器、JK触发器、T触发器等基本触发器电路的正确性。
实验结果表明,触发器电路能够根据输入信号和时钟信号产生稳定的输出波形。
3. 计数器实验通过实验,验证了异步计数器、同步计数器等基本计数器电路的正确性。
实验结果表明,计数器电路能够根据输入时钟信号进行计数,并输出相应的输出波形。
长沙学院数电课程设计说明书题目三位十进制计数器系(部) 电子与通信工程系专业(班级) 光电信息工程专业一班姓名***学号**********指导教师***起止日期06.11-06.15010级光电信息工程专业课程设计任务书(课题)系(部):电子与通信工程系专业:光电信息工程长沙学院课程设计鉴定表目录一.课程设计的目的 (6)二.课程设计课题 (6)三.课程设计内容 (7)四、设计步骤: (7)五.设计要点: (7)六.设计原理: (8)1.部分器件介绍: (8)2.+5V直流电源工作原理: (13)3.三位十进制计数器工作原理: (13)七:电路仿真 (14)1.M ULTISIM仿真图 (14)2.P ROTEL原理图: (16)3.PCB板: (18)八:心得体会 (19)九:参考文献 (19)三位十进制计数器的设计摘要本次课程设计的课题是三位十进制计数器,就设计所选用的器材而言,主要用到了3个74LS192,3个CD4511,3个七段数码管,1个555芯片以及一些电阻和电容。
74LS192是双时钟方式的十进制可逆计数器,这使得设计本身简单了许多。
设计中采用555芯片制成一脉冲发生器,为电路提供连续脉冲。
CD4511是7段数码管译码器,将74LS192的输出信号译码成数码管可识别的信号。
然后Multisim仿真软件测试和分析电路性能,并用protel软件绘制原理图,设计pcb板,本次设计的计数器是三位十进制加计数器,由上升沿触发,通过CO输出与其他的芯片级联。
达到进位输出!另外,本设计要求自己设计一个直流+5v电源,故用到了LM7805,以及变压器和整流桥堆!关键词:三位十进制计数器,74LS192芯片,555芯片,脉冲发生器,加计数器,上升沿触发,+5v直流电源,Multisim仿真,Protel原理图,PCB板。
一.课程设计的目的1.激发学生的学习热情,最大限度的发挥学生的潜能。
2.对所学过的知识进行强化加深,了解设计一般数电产品的基本程序,方法及过程。
数字电路的仿真设计与实验——74LS92设计59进制计数一、实验目的1. 理解74LS192芯片的功能及其在计数器设计中的应用。
2. 掌握如何使用数字逻辑仿真软件进行电路设计和仿真。
3. 学习如何根据需求设计特定进制的计数器。
4. 增强对数字电路设计的实际操作能力和问题解决能力。
二、预习要求1. 数字逻辑基础:了解数字电路的基本概念,包括逻辑门、触发器等。
2. 计数器的工作原理:熟悉不同类型计数器的工作机制,特别是同步计数器。
3. 74LS192芯片资料:阅读74LS192的数据手册,了解其功能、引脚配置及工作模式。
4. 仿真软件操作:熟悉所选数字逻辑仿真软件的基本操作和电路搭建方法。
5. 进制转换:复习不同进制之间的转换方法,特别是十进制与任意进制之间的转换。
三、实验仪器与设备四、实验内容1、用192串行进位法构成59进制计数器DCD_HEX_ORANGE五、注意事项1. 仔细检查电路连接:确保所有连接正确无误,避免短路或开路的情况发生。
2. 逐步验证电路:在完成整个电路设计之前,先对各个模块进行单独测试,确保每个部分都能正常工作。
3. 观察波形和输出:使用虚拟仪器观察计数器的输出波形和状态,以验证计数器是否按照预期工作。
4. 记录实验数据:在实验过程中,记录关键数据和观察结果,以便后续分析和报告撰写。
5. 安全第一:虽然在仿真环境中进行实验,但仍需遵守实验室的安全规程,保持专注和谨慎。
六、思考与感悟1. 理论与实践相结合:通过将理论知识应用于实际电路设计中,我更加深刻地理解了计数器的工作原理和设计方法。
2. 细节决定成败:在电路设计中,每一个小的细节都可能影响最终的结果。
因此,细心和耐心是成功的关键。
3. 创新思维:在设计59进制计数器的过程中,我尝试了不同的设计方案,这让我意识到创新思维在解决问题时的重要性。
--------顶层文件counter十进制计数并显示在LED上LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY count ISPORT(CLK, RST, EN, LOAD :IN STD_LOGIC;DATA : IN STD_LOGIC_VECTOR (3 DOWNTO 0);COUT : OUT STD_LOGIC;LED7S:OUT STD_LOGIC_VECTOR (6 DOWNTO 0));END count;ARCHITECTURE BEHAVE OF count ISCOMPONENT CNT10 ISPORT(CLK, RST, EN, LOAD :IN STD_LOGIC;DATA : IN STD_LOGIC_VECTOR (3 DOWNTO 0);DOUT : OUT STD_LOGIC_VECTOR (3 DOWNTO 0);COUT : OUT STD_LOGIC);END COMPONENT CNT10;COMPONENT DECL7S ISPORT (A:IN STD_LOGIC_VECTOR (3 DOWNTO 0);LED7S:OUT STD_LOGIC_VECTOR (6 DOWNTO 0));END COMPONENT DECL7S;SIGNAL S:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINU1:CNT10PORT MAP (CLK=>CLK,RST=>RST,EN=>EN,LOAD=>LOAD,DATA=>DATA,DOUT=>S,COUT=>COUT);U2:DECL7S PORT MAP (A=>S,LED7S=>LED7S);END ARCHITECTURE BEHAVE;---------------------cnt10 10进制计数LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNT10 ISPORT(CLK, RST, EN, LOAD :IN STD_LOGIC;DATA : IN STD_LOGIC_VECTOR (3 DOWNTO 0);DOUT : OUT STD_LOGIC_VECTOR (3 DOWNTO 0);COUT : OUT STD_LOGIC);END CNT10;ARCHITECTURE BEHAVE OF CNT10 ISBEGINPROCESS(CLK, RST, EN,LOAD)VARIABLE Q : STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINIF RST = '0' THEN Q := (OTHERS=>'0');ELSIF CLK'EVENT AND CLK= '1' THENIF EN= '1' THENIF (LOAD= '0') THEN Q :=DATA;ELSEIF Q<15 THEN Q := Q+1;ELSE Q := (OTHERS=>'0');END IF;END IF;END IF;END IF;IF Q="1010" THEN COUT<='1';ELSE COUT<='0'; END IF;DOUT<=Q;END PROCESS;END BEHAVE;---------------------驱动LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL; ENTITY DECL7S ISPORT (A:IN STD_LOGIC_VECTOR (3 DOWNTO 0);LED7S:OUT STD_LOGIC_VECTOR (6 DOWNTO 0));END;ARCHITECTURE ONE OF DECL7S ISBEGINPROCESS (A) BEGINCASE A ISWHEN "0000" => LED7S <= "1000000";WHEN "0001" => LED7S <= "1111001";WHEN "0010" => LED7S <= "0100100";WHEN "0011" => LED7S <= "0110000";WHEN "0100" => LED7S <= "0011001";WHEN "0101" => LED7S <= "0010010";WHEN "0110" => LED7S <= "0000010";WHEN "0111" => LED7S <= "1111000";WHEN "1000" => LED7S <= "0000000"; WHEN "1001" => LED7S <= "0010000"; WHEN "1010" => LED7S <= "0001000"; WHEN "1011" => LED7S <= "0000011"; WHEN "1100" => LED7S <= "1000110"; WHEN "1101" => LED7S <= "0100001"; WHEN "1110" => LED7S <= "0000110"; WHEN "1111" => LED7S <= "0001110"; WHEN OTHERS => NULL;END CASE;END PROCESS;END;生成门电路图波形仿真图引脚锁定。
实验三实验三 VHDL VHDL VHDL 时序逻辑电路设计时序逻辑电路设计 一、实验目的一、实验目的1. 熟悉用VHDL 语言设计时序逻辑电路的方法语言设计时序逻辑电路的方法 2. 熟悉用Quartus 文本输入法进行电路设计文本输入法进行电路设计 二、实验所用仪器元件及用途二、实验所用仪器元件及用途 1. 计算机:装有Quartus 软件,为VHDL 语言提供操作场所。
语言提供操作场所。
2. 直流稳压电源:通过USB 接口实现,为实验开发板提供稳定电源。
接口实现,为实验开发板提供稳定电源。
3. 数字系统与逻辑设计实验开发板:使试验结果下载到开发板上,实现整个实验的最终结果。
果。
三、实验内容三、实验内容 1. 用VHDL 语言设计实现一个8421码十进制计数器。
码十进制计数器。
(1) 实验内容及要求:在Quartus 平台上设计程序和仿真题目要求,并下载到实验板上验证试验结果。
验证试验结果。
(2) 试验结果:VHDL 代码和仿真结果。
代码和仿真结果。
2. 用VHDL 语言设计实现一个分频系数为8,分频输出信号占空比为50%的分频器。
的分频器。
(1) 实验内容及要求:在Quartus 平台上设计程序和仿真题目要求。
平台上设计程序和仿真题目要求。
(2) 试验结果:VHDL 代码和仿真结果。
代码和仿真结果。
3. 用VHDL 语言设计实现一个控制8个发光二极管亮灭的电路。
个发光二极管亮灭的电路。
(1) 实验内容及要求:在Quartus 平台上设计程序和仿真题目要求,并下载到实验板上验证试验结果。
验证试验结果。
a. 单点移动模式:一个点在8个发光二极管上来回的亮个发光二极管上来回的亮b. 幕布式:从中间两个点,同时向两边依次点亮直至全亮,然后再向中间点灭,依次往复往复c. 通过拨码开关或按键控制两种模式的转换通过拨码开关或按键控制两种模式的转换 (2) 试验结果:VHDL 代码和仿真结果。
eda10进制计数器实验报告1B计算机组成原理教学实验箱一台,排线若干。
2) PC机一台。
3、实验步骤与源程序l) 根据该模型机的指令系统,编写一段程序。
这里给出两个参考程序。
参考程序一:本程序从输入设备(数码开关)取入数据,保存在内存单元08,然后从08单元送到输出设备(LED数码管)进行显示。
然后程序停止(请实验者考虑:如何修改程序,使程序不断从输入设备取出数据,送到输出设备显示。
每次循环过程中,可以使输入设备数据改变,考察输出显示的结果。
)。
设计机器指令程序如下(机器码为十六进制数据)。
地址内容助记符说明00 00 IN;输入开关数据→R00120 STA [08H] ;R0→[08]02 08 ;地址03 30 OUT [08H] ;[08H] →BUS04 08 ;地址05 40 JMP [00H] ;00H→PC06 00 ;跳转地址参考程序二:本程序从输入设备(数码开关)读入数据,与0A单元的数据相加,然后送到输出设备(LED数码管)进行显示。
本程序不断地循环运行,在运行中可改变输入开关(INPUT)的值,观察输出显示的变化。
设计机器指令程序如下(机器码为十六进制数据)。
地址内容助记符说明00 00 IN;输入开关数据→R0,采集数据0110 ADD [0AH] ;R0+[0AH]→R0,输入数据与指定数据相加02 0A ;地址0320 STA [0BH] ;R0→[0B]04 0B ;地址05 30 OUT [0BH] ;[0BH] →BUS,输出显示06 0B ;地址07 40 JMP [00H] ;00H→PC08 00 ;跳转地址0A 01 ;加数,可自定0B ;求和结果保存在0B单元2) 按图1连接实验线路。
3) 写程序:对于本实验箱可以用两种方法来写入程序。
方法一:手动写入(1)先将机器指令对应的微代码正确地写入2816中,由于在实验1.6微程序控制器的组成与微程序设计实验中已将微代码写入E2PR0M芯片中,对照表2—2校验正确后就可使用。