当前位置:文档之家› 物理化学学科发展

物理化学学科发展

物理化学学科发展
物理化学学科发展

《物理化学学科发展》

摘要:在了解了物理化学的发展史以后,我们可以从它的发展历史和历史中有名的化学家身上学到许多为人处事的道理,还能让我们在学习与反思之际,得到提升。

关键字:物理化学发展史品质

物理化学是以物理的原理和实验技术为基础,研究化学体系的性质和行为,发现并建立化学体系中特殊规律的学科。作为最早形成的第一门边缘学科,它的发展经历了一个个漫长而艰难的时期,由一个个化学家用他们的辉煌成就,亦或他们的惨痛失败,用他们无数个日日夜夜的钻研,用他们的汗水和泪水,甚至用他们的生命才铸造而成。由此可见,无数化学家的努力和艰辛,在物理化学的发展史中,就如同星星一般耀眼且美丽。

了解了物理化学史后,许多化学家令我折服。他们身上所具备的精神品质,让我仰慕。雅可比·范特霍夫是物理化学这门学科的奠基人之一,同时也是第一位获得诺贝尔化学奖的化学家。但他的实事求是、谦虚谨慎的态度更加令我折服。范特霍夫首先提出了碳的四面体结构学说。过去的有机结构理论认为有机分子中的原子都处在一个平面内,这与很多现象是矛盾的。范特霍夫的理论纠正了过去的错误。但是这一新的理论却遭到了一些权威人士的反对,当时德国有机化学家哈曼·柯尔比就是其中一个。这位老科学家倚老卖老,根本不愿学习新的东西。在没有认真研究的情况下,就毫无根据地把范特霍夫斥责了一顿。范特霍夫对这位才先生的高论嗤之以鼻,不与其辩论。这一下可气坏了老柯尔比,他跳着脚非要与范特霍夫一比高低。范特霍夫本来就想与这些化学界的权威们争一高低,因为事实是迟早会说话的。既然柯尔比不远千里从德国来到荷兰,那也只好以礼相见了。毕竟范特霍夫是晚辈,当柯尔比气势汹汹地冲进范特霍夫的办公室时,范特霍夫已经恭恭敬敬地等候他了。待柯尔比的火气稍稍减退之后,范特霍夫平心静气地向他陈述了自己的观点,并请柯尔比用事实来批评自己的理论。这位老权威暗暗地吃了一惊,眼前的年轻人非同小可,讲述观点时条理清楚,论证有据,不可不服呀。柯尔比毕竟还是要讲道理、讲事实的。平心而论,范特霍夫的理论是正确的,他刚来时的火气完全消失了,并邀请范特霍夫去普鲁士科学院工作。成就,源于他们对人生的态度。如果没有这样谦虚的优秀品质,我想他也一定无

法成为如此优秀的化学家。

在物理化学发展史中,不光有独放异彩的个人,也有一群人的团结奋斗。作为物理化学的另一位奠基人,奥斯特瓦尔德经常倡议:事业需要大家更紧密地进行合作,把一切力量都联合起来。他和阿伦尼乌斯,范特霍夫共同创办的《物理化学杂志》第一期在莱比问世,这标志着物理化学这门边缘学科学的诞生。他们三个人的友谊与协作,使他们突破了国界和学科的局限,共同为新学科的创立奠定基础,为新兴的基本理论的确立进行顽强的战斗。因此,他们被誉为“物理化学的三剑客”。所以我觉得,化学家不能太看重名利而淡化友情,研究,需要化学家共同探索,相互沟通,这样才能共同进步。

虽然化学家个人的努力能够带来物理化学的发展,但外界对化学研究者的态度有时却会限制它的发展。提出了吉布斯自由能与吉布斯相律的约西亚·威拉德·吉布斯是一位对物理化学贡献极大的化学家,但是在吉布斯的那个时代,美国科学传统带有很大的功利主义,对于纯理论研究十分轻视,再加上吉布斯本人的纯数学推导式的写作风格和刊物发行量太小等原因,这篇文章在美国大陆没有引起回应。随着时间的推移,这篇论文才开始受到欧洲大陆同行的重视。假如他的研究工作能早点被察觉,也许历史或许就会改写。史上这样的教训不缺,我们应该反思。外界,对我们的化学研究者应该有更多的包容,这样才能给他们一片思想遨游的天空。在宽容包容的环境下,化学家才能有更大的进步。化学家,需要一个宽容的环境。

化学家爱科研,更应该爱惜自己的身体。在敬佩化学家的同时,我也为有些化学家感到可惜。晚年的阿累尼乌斯,体弱多病,但他仍不肯放下自己的研究。他抱病坚持修改完成了《世界起源》一书的第二卷。1927年10月2日,这位68岁的科学巨匠与世长辞。67岁的凯库勒因患感冒并发心脏病,病故;1911年,范特霍夫,积劳成疾,死于肺结核,年仅59岁,一颗巨星又因身体陨落。他们都正处于人生辉煌阶段,他们还有好多好多研究没有做。假如他们爱惜自己的身体,科研有度,我相信,取得的成就会更多。

了解这些历史的意义所在,我觉得可以借用一句话:“以史为镜,可以知兴替;以人为镜,可以明得失。”物理化学的发展史就像一面镜子,透过它,我们可以窥探过去,又可以展望未来;可以让我们好好的反思自己,又可以让我们有

更多的信心面对未来的研究!

再了解物理化学史的过程中,我收获了很多。作为当代的大学生,我们在惊叹前人的丰功伟绩之时,更应该反思自己的不足。努力提升自己,专注于学习,专注于科研中,争取获得更高的成就,为社会做出自己的贡献!

参考文献:

1、王智民、韩基新:《第一门边缘学科物理化学的形成及学科特点》

漫谈物理化学的发展及学科特点

漫谈物理化学的发展及学科特点 2007化教一班222007316011045 王祖龙 摘要:经历漫长而艰难的发展,物理化学终以一门新的学科出现。它具有自身独特的特点,并在化学中占有极重要位置。随着人们不断的深入认识,越来越多地为人们服 务。 关键词:物理化学形成发展学科特点前景 世界的变化日新月异,尤其在当今,新兴学科层出不穷,但统而观之,它们有一个重要特点,即很多都是边缘学科(亦称交叉学科,1926年美国首次出现)——横跨两种或两种以上基础学科。边缘学科的产生,是随着人们对物质运动形式及固有次序的逐步揭示,是当基础学科发展到一定阶段时的必然结果,是人们知识的深化。 化学,在其漫长的发展历程中,形成了自己独有的特色,并且一直以来对于人类文明的发展起到了很大的推动作用。与此同时,一系列化学的分支学科也不断形成,大大的丰富了化学知识,拓展了人们的眼界。在所有化学分支学科中,当属物理化学最为重要。 而物理化学,作为最早形成的第一门边缘学科,被称为交叉学科的典范,是现代化学的核心内容和理论基础,在基础化学课程体系中起着龙头作用。它的形成与发展经历了较漫长而艰难的时期。 一、物理化学的形成与发展 “物理化学”这个术语曾在十八世纪首先被罗蒙诺索夫创用,但是它的主要研究方向和基本内容却是在十九世纪下半叶才被确定下来。至今其研究内容也都是在当时的基础上不断深入发展的。对于物理化学的形成,不得不提到一个人——杰出的俄国一德国物理化学家奥斯特瓦尔德(Ostwald,W.F.,1853一1932),他为物理化学作出了最伟大的贡献,在1887年创办了第一份名副其实的专业性期刊:德文的《物理化学杂志》(Zeitschrift physikalische Chemie)121,标志着物理化学的形成.。奥斯特瓦尔德因此被称为“物理化学之父”,也曾被列宁誉为“伟大的化学家和渺小的哲学家”。 在十九世纪下半叶以前的近代化学初期,化学家往往又是物理学家,他们研究的问题常常相互有关,相互渗透和相互补充。例如,1807年法国化学家盖吕萨克观测到气体向真空膨胀后温度没有变化,于是物理学家便据此作出“气体膨胀至真空没有作功”这种结论。又如道尔顿,他起初是一位物理学家,后来才研究化学。他从长期观测气象着手,研究空气组成并得出气体的“微粒说”;再经过对碳的两种氧化物以及多种氢化物的组成的化学分析实验,在1804年正式提出倍比定律,后来将物理原子论(即哲学“微粒说”)发展成为“化学原子论”,成为了近代化学诞生的标志。 到了十九世纪下半世纪,随着工业生产力的发展,以及此前大量拥现的化学和物理学成就的逐步积累,近代化学迅速向专业化分工,化学家在研究方向及方法上和物理学家终于分道扬镰。物理化学正是在这个时期开始独立形成的。在这一时期,主要是以李比希和杜马等为代表的有机化学家。有机化学取得了重大的成就,使得从类型理论向结构理论的发展逐步系统化。同时在这一时期,有少数化学家(有的本来也就是物理学家和数学家)关心物理学的理论和发现,这就使得化学和物理学相结合起来,例如拉乌尔(Raoutt,F.M,1830一1901,法国)、瓦格(Waage,P.1933一1990,娜威)、范霍夫(Van't Hoff,J.H.,1852一1911) 以及能斯特(Nernst,H.W.,1864一1941,德国)等。他们都为物理化学最终成为现代化学的一个独立分支做出了开创性的工作,是初期物理化学的共同奠基人。 从道尔顿提出原子论以来,近代化学前期到奥斯特瓦尔德创办《物理化学杂志》之间,有着许多与物理化学形成有关的十分重要的史实: 1、关于原子一分子学说

仪器分析是以物质的物理性质或物理化学性质为 基础

仪器分析是以物质的物理性质或物理化学性质为基础,探求这些性质在分析过程中所产生分析信号与物质内在关系为基础,进而对其进行定性、定量及结构分析和动态分析的一类测定方法。仪器分析方法与分类:光学分析法非光谱法(nonspectrum method)光谱法(sepectrum method) 其他仪器分析方法和技术分离分析法(色谱分析法电化学分析法光学分析法定义:利用待测组分的光学性质(如光的发射、吸收、散射、折射、衍射、偏振等)进行分析测定。理论基础:物理光学、几何光学与量子力学分类:吸收光谱法、发射光谱法,散射光谱法,旋光(偏振光)分析法、折射分析法、X射线及电子衍射分析法等紫外可见光谱仪原子吸收光谱仪电化学分析法定义:利用待测组分在溶液中的电化学性质进行分析测定。理论基础:电化学、化学热力学分类:电位分析法、极谱与伏安分析、电导分析、库仑分析等分离分析法(色谱分析法)定义:利用待测组分间的溶解能力、亲和能力、吸附和解吸能力、迁移速率等性能方面的差异,先分离后分析测定。理论基础:化学热力学、化学动力学分类:气相色谱法,液相色谱、薄层色谱法、离子色谱法,超临界流体色谱法等仪器分析方法的主要性能参数精密度:指在相同条件下用同一方法对同一试样进行多次平行测定结果之间的符合的程度。(重复性与再现性) 表示:标准偏差S表示或相对标准偏差Sr(或RSD)表示。是测量中随机误差的量度,S、Sr越小,精密度越高.准确度:多次测定的平行值与真值(或标准值)相符合的程度。相对误差Er=(x-μ)/ μ×100% Er越小,准确度越高选择性:指分析方法不受试样中基体共存物质干扰的程度。选择性越好,干扰越少。灵敏度b:是指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度.(在浓度线性范围内校正曲线的斜率.)b=dA/dC(dM) 检出限——指某一分析方法在给定的置信度能够被仪器检出的待测物质的最低量浓度。(最小浓度,最小质量,最小物质的量) 相对检出限,绝对检出限表示: AL=A0+3S0; 能产生净响应信号AL-A0的待测物质的浓度或质量即为该分析方法对该物质的检测限D=(AL-A0)/b,AL为最小响应信号。精密度,准确度,检出限是评价分析方法的最主要技术指标仪器分析的特点(1)分析速度快。(2)灵敏度高,相对灵敏由10-4%(ppm)到10-7 % (ppb),绝对灵敏由μg到ng。(3)容易实现在线分析和遥控监测。计算机与网络的应用.(4)用途广泛——定性分析、定量分析外、结构分析。仪器分析的局限性仪器设备复杂。仪器分析一般需用已知组成的标准物质来对照。相对误差较大,一般不适于常量和高含量分析。分析质量保证体系包括:人员的考核、仪器的维护、分析质量控制、原始记录归档及查询等制度和措施。要求实事求是地记录数据和测定过程,防止伪造实验数据的可能性,并保证测定数据的责任性和追溯性。这是一项管理方面的任务,是一种防止虚假分析结果的廉价措施,是人品和诚信的保证。样品采集及制备原则:代表性,步骤:采集、综合、抽提;方法:随机与代表性取样相结合提取和消解溶剂提取:溶剂选择,提取过程与方法消化:干法消化与湿法消化.新技术应用:压力密封消解与微波加热消解样品纯化:色谱法、化学法、萃取法样品浓缩与衍生:浓缩目的:提高待测组分浓度,除去过多溶剂浓缩方法:常压、减压、氮气吹干、冷冻干燥衍生目的吸收定义:当光与物质接触时,某些频率的光被选择性吸收并使其取样强度减弱。本质:光能转移到物质的分子或原子中。分来:分子吸收与原子吸收.特性:透射率T=I/I0,吸光度A=Lg(I0/I)朗伯-比尔定律:在一定浓度范围内,物质的吸光度A 与吸光样品的浓度C及厚度L的乘积成正比,这就是光的吸收定律A=kCL 发射:当物质受到激发后,从高能态回到低能态时,往往以光辐射的形式释放出多余能量,可分为原子发射、分子发射以及X 射线光的透射:光通过透明介质时,如果只是引起微粒的价电子相对于原子核的振动, 它所需要的光能,只是瞬时被微粒所保留,当物质回到原来的状态时,又毫无保留地将能量(光)重新发射出来, 在这个过程中没有净能量的变化,因此光频率也没有变化;只是传播速度减慢:以能源与物质相互作用引起原子、分子内部量子化能级之间迁移所产生的光的吸收、发射、散射等波长与强度的变化关系为基础的光分析法,称为光谱法与光谱有关的能量是Er、Ev 、Ee ,E光= hν= E2-E1= △E= △Ee +△Ev+ △Er △Ee为外层电子跃迁所引起的内能变化;△Ev为振动能级跃迁所引起的内能变化;△Er为转动能级跃迁所引起的内能变化; 由于物质内部的粒子运动所处的能级和产生能级跃迁时的能量变化都是量子化的,因此,在产生能级跃迁时只能吸收或发散与粒子运动相对应的特定频率的光能,形成相应的特征光谱。不同的物质由于其组成和结构的不同,粒子运动时所具有的能量也不同,获得的特征光谱也不同,因此根据试样物质的光谱可以研究物质的组成和结构原子光谱主要是由原子核外电子在不同能级间跃迁而产生的辐射或吸收,它的表现形式为线光谱。△E一般在2~20eV之间,按式△E=hν=h c/ λ可以估算波长多分布在紫外及可见光区(200~780nm)吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自旋原子核吸收特定的光子之后,由低能态被激发跃迁到高能态,此时将吸收的光辐射记录下来,得到的就是吸收光谱。发射光谱:吸收了光能处于高能态的分子或原子,其寿命很短,当回到基态或较低能态时,有时以热或光的形式释放所吸收的的能量,由此获得的光谱就是发射光谱。散射光谱:无能量交换的为瑞利散射,有能量变化的为拉曼散射。非光谱法:圆二、旋光、折射、干涉、衍射等原子发射光谱法优点:多元素同时检测能力;灵敏度高(ICP);选择性好;准确度高;试样用量少,测定范围广。缺点:只能用于元素总量分析,无法确定空间结构及官能团;无法进行元素价态和形态分析;常见非金属元素如O、S、N等谱线在远紫外区,无法检测原子的基本状态:基态、激发态原子发射或发光:处于激发态的电子有降低能级的趋势,即回跃迁到基态或能级较低的激发态.。此时电子以电磁辐射形式将多余能量释放出来。产生原子发射光谱.特征光谱:由于每一种元素都有其特有的电子构型,即能级层次,所以各元素的原子只能发射出它特有的波长的光,经过分光系统得到各元素发射的互不相同的光谱. 定性分析:利用足够能量使原子受激发而发光,根据某元素的特征频率或波长的谱线是否出现,即可确定试样中是否存在该种原子。定量分析:分析试样中待测原子数目越多,则被激发的该种原子的数目也多,相应的谱线强度也越大,如与已知含量的标样的谱线强度相比,即可测定试样中该种元素的含量。谱线的自吸:原子在高温区发射某一波长的辐射,被处于边缘低温状态的同种原子所吸收的现象. 谱线的自蚀:但浓度达

分析化学发展史

分析化学发展史 摘要]分析化学始于一些分析检验的实践活动。商品生产和交换的发展,促进了分析检验工作。 16世纪,化学反应广泛地应用于湿法分析。18世纪中叶,重量分析法使分析化学由单纯的定性分析迈 入了定量分析的时代。到了19世纪,定性分析趋于完善,定量分析的各种方法也相继出现并不断发展。 分析化学真正成为一门独立的学科是在20世纪初,被称之为经典分析化学。20世纪以来,在经典化学 不断充实、完善的同时,仪器分析也迅猛发展,并且在分析化学中占据越来越重要的地位。[关键词]化学分析;仪器分析 在化学还没有成为一门独立学科的中世纪,甚至古代,人们已开始从事分析检验的实践活动。这一实践活动来源于生产和生活的需要。如为了冶炼各种金属,需要鉴别有关的矿石;采取天然矿物做药物治病,需要识别它们。这些鉴别是一个由表及里的过程,古人首先注意和掌握的当然是它们的外部特征。如水银又名“流珠”,“其状如水似银”,硫化汞名为“朱砂”、“丹砂”等都是抓住它们的外部特征。人们初步对不同物质进行概念上的区别,用感官对各种客观实体的现象和本质加以鉴别,就是原始的分析化学。 在制陶、冶炼和制药、炼丹的实践活动中,人们对矿物的认识便逐步深化,于是便能进一 步通过它们的一些其他物理特性和化学变化作为鉴别的依据。如中国曾利用“丹砂烧之成水银”来鉴定硫汞矿石。随着商品生产和交换的发展,很自然地就会产生控制、检验产品的质量和纯度的需求,于是产生了早期的商品检验工作。在古代主要是用简单的比重法来确定一些溶液的浓度,可用比重法衡量酒、醋、牛奶、蜂蜜和食油的质量。 到了6世纪已经有了和我们现在所用的基本相同的比重计了。商品交换的发展又促进了货币的流通,高值的货币是贵金属的制品,于是出现了货币的检验,也就是金属的检验。古代的金属检验,最重要的是试金技术。在我国古代,关于金的成色就有“七青八黄九紫十赤”的谚语。在古罗马帝国则利用试金石,根据黄金在其上划痕颜色和深度来判断金的成色。 16世纪初,在欧洲又有检验黄金的所谓“金针系列试验法”,这是简易的划痕试验法的进一步发展。16世纪,化学的发展进入所谓的“医药化学时期”。关于各地各类矿泉水药理性能的研究是当时医药化学的一项重要任务,这种研究促进了水溶液分析的兴起和发展。1685年,英国著名物理学家兼化学家R·波义耳(Boyle,1627-1691)编写了一本关于矿泉水的专著《矿泉的博物学考察》,相当全面地概括总结了当时已知的关于水溶液的各种检验方法和检定反应。波义耳在定性分析中的一项重要贡献是用多种动、植物浸液来检验水的酸碱性。波义耳还提出了“定性检出极限”这一重要概念。这一时期分析检验法的多样性、可靠性和灵敏性,并为近代分析化学的产生做了准备。 18世纪以后,由于冶金、机械工业的巨大发展,要求提供数量更大、品种更多的矿石,促进了分析化学的发展。这一时期,分析化学的研究对象主要以矿物、岩石和金属为主,而且这种研究从定性检验逐步发展到较高级的定量分析。其中干法的吹管分析法曾起过重要作用。此法是把要化验的金属矿样放在一块木炭的小孔中,然后以吹管将火焰吹到它上面,一些金属氧化物便熔化并会被还原为金属单质。但这种方法能够还原出的金属种类并不多。到了18世纪中

无线电导航的发展历程

1.无线电导航的发展历程 无线电导航是20世纪一项重大的发明 电磁波第一个应用的领域是通信,而第二个应用领域就是导航。早在1912年就开始研制世界上第一个无线电导航设备,即振幅式测向仪,称无线电罗盘(Radiocompass),工作频率0.1一1.75兆赫兹。1929年,根据等信号指示航道工作原理,研制了四航道信标,工作频率为0.2一0.4兆赫兹,已停止发展。1939年便开始研制仪表着陆系统(ILS),1940年则研制脉冲双曲线型的世界第一个无线电定位系统奇异(Gee),工作频率为28一85兆赫兹。1943年,脉冲双曲线型中程无线电导航系统罗兰A(Loran-A)投入研制,1944年又进行近程高精度台卡(Dessa)无线电导航系统的研制。 1945年至1960年研制了数十种之多,典型的系统如近程的伏尔(VOR)、测向器( D ME)、塔康(Tacan)、雷迪斯特、哈菲克斯(Hi-Fix)等;中程的罗兰B(Loran-B)、低频罗兰(LF-Loran)、康索尔(Consol)等;远程的那伐格罗布((Navaglohe)、法康(Facan)、台克垂亚(Dectra)、那伐霍(Navarho),罗兰C(Loran-C)和无线电网(Radionrsh)等;超远程的台尔拉克(Delrac)和奥米加(Omega)与。奥米加;空中交通管制的雷康(Rapcon)、伏尔斯康(VOLSCAN)、塔康数据传递系统(Tacandata-link)和萨特柯((Satco)等,另外还有多卜勒导航雷达(Doppler navigation tadar),这期间主要保留下来的系统如表1 表1主要地基无线电导航系统运行年代表 1.1 无线电导航发展的重大突破 1960年以后,义发展了不少新的地基无线电导航系统。如近程高精度的道朗((TORAN)、赛里迪斯(SYLEDIS)、阿戈(ARGO)、马西兰(MAXIRAN)、微波测距仪(TRISPONDER)以及MRB-201,NA V-CON,RALOG-20,RADIST等等;中程的有罗兰D (Loran-D)和脉冲八(Pulse8)等;远程的恰卡(Chayka);超远程的奥米加((Omega与 );突破在星基的全球导航系统,还有新的飞机着陆系统。同时还开始发展组合导航与综合导航系统,以及地形辅助导航系统等。表2列出几种常用的系统及主要性能与用量。 表2几种常用的地基系统性能与用量 *D为飞行距离。

药学专业中物理化学课后习题答案

第五章 化学平衡 三.思考题参考答案 1.反应达到平衡时,宏观和微观特征有何区别? 答:反应到达平衡时,宏观上反应物和生成物的数量不再随时间而变化,好像反应停止了。而微观上,反应仍在不断的进行,反应物分子变为生成物分子,而生成物分子又不断变成反应物分子,只是正、逆反应的速率恰好相等,使反应物和生成物的数量不再随时间而改变。 2.为什么化学反应通常不能进行到底? 答: 严格讲,反应物与产物处于同一系统的反应都是可逆的,不能进行到底。只有逆反应与正反应相比小到可以忽略不计的反应,可以粗略地认为可以进行到底。这主要是由于存在混合Gibbs 自由能的缘故,反应物与产物混合,会使系统的Gibbs 自由能降低。如果没有混合Gibbs 自由能,在Gibbs 自由能对反应进度的变化曲线上,应该是一根不断下降的直线,不会出现最低点。如果将反应在van ’t Hoff 平衡箱中进行,反应物与生成物的压力都保持不变,反应物与生成物也不发生混合,反应物反应掉一个分子,向平衡箱中补充一个分子。生成一个生成物分子,则从平衡箱中移走一个分子,这样才能使反应进行完全。 3.什么是复相化学反应?其平衡常数有何特征? 答:有气相和凝聚相(液相、固体)共同参与的反应称为复相化学反应。对凝聚相,只考虑是纯态的情况,纯态的化学势就是它的标准态化学势,所以复相化学反应的标准平衡常数只与气态物质的压力有关。 4.什么是物质的解离压? 答:在一定温度下,某纯的固体物质发生解离反应,如果只产生一种气体,达到平衡时,这气体的压力就称为该固体在该温度时的解离压。如果产生的气体不止一种,达到平衡时,所有气体压力的总和称为该固体在该温度时的解离压。显然物质的解离压在定温下有定值。 5.什么是标准摩尔生成Gibbs 自由能? 答:因为Gibbs 自由能的绝对值不知道,所以只能用相对值,需要规定一个共同的相对标准。即将标准压力下稳定单质(包括纯的理想气体,纯的固体或液体)的生成Gibbs 自由能看作零,在标准压力下,反应温度时,由稳定单质生成计量系数B 1ν=的物质B 时,标准摩尔Gibbs 自由能的变化值称为物质B 的标准摩尔生成Gibbs 自由能,用符号 f m (B,,)G P T ?表示。热力学数据表上一般列出的是在298.15 K 时的数值。 6.根据公式,r m ln G RT K ?=-,所以说 r m G ? 是在平衡状态时的Gibbs 自由能的变化值,这样说对不对? 答:不对。在等温、等压、不作非膨胀功时,化学反应达到平衡时的Gibbs 自由能的变化值等于零,这样才得到上述公式。而r m G ?是指在标准状态下Gibbs 自由能的变化值,在数值上等于反应式中各参与物质的标准化学势的代数和,即:r m B B B ()()G T T ν μ?=∑,因 此不能认为r m G ?是在平衡状态时的Gibbs 自由能的变化值,否则在标准状态下。它的数值 永远等于零。

物理化学小论文题目讲解

物理化学期中课程小论文 一形式要求: 1.题目(见后) 2.背景介绍(提出问题) 3.基本物理化学原理(鼓励自学内容) 4.实际应用的例子 5.结论/感受/未来展望 6.参考文献 二文字数量要求: 1.论文必须独立完成; 2.论文应有自己的分析和观点,不能是文献资料的拼接; 3.论文的字数:最少不得少于2000字,最多不超过5000字,以2000-3000字为宜; 三打印要求:A4,电子稿(手写可以) 封面题目,目录,班级,姓名,学号,时间 包括封面在内不超过4页 四上交时间限定:14周周三(可以与该次作业一起上交),过时不候。 五论文格式:(见附页) 题目(不超过20个字,字体4号,居中);

姓名;(小5号字,居中) 班级;(小5号字,居中) 电话和E-mail (小5号字,居中); 摘要(不超过100字,小5号字); 关键词(3-5个,小5号字); 正文(包括引言,具体讨论和结论,5号字)参考文献

六、物理化学课程小论文参考题目 (物理化学原理在实际科研生产中的应用) 1 物理化学家小传及其对有化学的贡献; 2 以合成氨反应为例说明你对热力学第二定律的认识和思考; 3 稀溶液的依数性及其应用; 4 物理化学热力学研究的现状,应用,局限性分析和改进的设想; 5 物理化学发展中的偶然发现和对你的启发; 6 以合成氨为例说明影响化学平衡的主要因素及其在科研和生产实践中的应用; 7 用物理化学方法对现实生活或生产中某些现象进行解释; 8 热力学第一定律及其应用; 9 相图在化学化工或实际生活中的应用; 10 化工中的界面现象。 11基于LabVIEW软件的物理化学实验仿真系统的开发与应用 12多壁碳纳米管储氢的物理吸附与化学吸附特性 13交互智能性物理化学实验课件的设计与开发 14物理化学实验仿真软件的研究与开发 15中外两本优秀物理化学教材的比较研究 16中学化学实验中物理知识凸现状况的研究 17物理化学实验课程中实验题目的设计与研究 18化学电源与物理电源产品策略研究 19初中化学、物理、生物交融性教学的研究 20硅系延期药物理化学性质及燃烧性质的研究

物理化学发展史

物理化学发展史——早期溶液理论和今日中学化学 很荣幸今天能为大家介绍物理化学发展史,物理化学博大精深,很有内涵,所以我耍个机灵,取了早期溶液理论的发展这一节,同时谈一谈今日中学化学对溶液理论的研究和教学实践。首先我想谈一谈物理化学,既然叫物理化学,那他一定和物理有点关联,例如空气湿度多大时我们能够观察到雾的现象?早晨的露珠为什么呈现球形?天上云层很厚实,为什么不下雨?人工降雨的原理到底是什么?等等这些物理现象,其实都属于物质的性质,而物理化学其实是研究物质性质和化学反应原理的学科。 自1887年奥斯特沃尔德和范霍夫合办了德文《物理化学杂志》,这门学科获得了快速的发展,今天物理化学的发展程度当然已经超乎人们的想象,具体包括化学热力学、化学动力学,电化学,光化学,表面化学,胶体化学,结构化学,量子化学,催化理论等等分支。应该说,物理化学以热力学、动力学和量子力学为基础。日本化学史家山岗望提出,物理化学学发端于拉瓦锡时代,本生进一步将物理学的实验方法应用到化学研究上,把物理学原理用来解释化学现象则是从范霍夫开始的。这段时间大致与两次工业革命的兴起重叠,也就是说,物理化学建立在产业革命兴起的大背景下,期间涌现了无数大牛,更有麦克斯韦,玻尔兹曼,普朗克这三尊神。例如麦克斯韦,以电磁理论闻名于世的物理大神,为化学做出的贡献在我看来要更加惊人。请看这两个数,一个热力学K,一个是动力学K,这两个K为什么长这么像?类似的还有克劳修斯克拉博隆方程,如果我把ΔG和ΔEa都用能量E表示,你会发现形式上和麦克斯韦能量分布积分式惊人的相似。这三位确定了热运动的本质,确定了热力学第二定律的适用范围,明确地给出了熵与微观状态数的数学关系。有意思的是文科里面更喜欢谈熵,伟大的科幻小说家阿西莫夫以熵增定律为主题写了科幻史上我认为是最好的一篇——最后的问题。 好言归正传,关于溶液理论,就必须提物理化学三剑客:阿伦尼乌斯,范霍夫和奥斯特沃尔德,三人之间的性格可以说迥异,又来自三个不同国家但对稀溶液的研究将他们的命运深深的绑定,三人友谊可以说是科学史上一段佳话。 故事要从溶液的依数性说起。首先是关于溶液渗透压的发现。最早观察到渗透现象的是法国物理学家诺勒。1748年他为了改进酒的制作时曾作过一个实验:把酒精装满一个玻璃圆筒,用猪膀胱膜封住,然后把圆筒全部浸进水中。他发现膀胱膜向外膨胀,即发现水通过膜渗透进了圆筒,最后膀胱膜竟被撑破。但他并未意识到这就是渗透压造成的。最早对渗透压进行半定量研究的则是法国生理学家杜特罗夏在1830年左右进行的。他用一个钟罩形的玻璃容器,下面用羊皮纸封住,从上面插进一支长玻璃管,容器中分别放入各种不同浓度、不同物质的溶液,然后把它浸入水槽中。于是观察到玻璃管内液面上升,浓度越大,水柱越高,两者成正比。这时候他意识到:这个压力是由于外面的水通过羊皮纸向溶液方向迁移而产生的。他给这种现象命名为“渗透”,该术语来源于希腊文“wσμos”,意思是“推进”。1848年,德国化学家K.维洛尔特(Karl Vierordt)证实了他的这一结论。但由于动物膜既可让溶剂分子也可让溶质分子渗透,只是速度不同,所以测得的渗透压力只是暂时的,不稳定的,而且与溶剂、溶质的渗透相对速度有关,因此测得的渗透压也只是粗略的,而且由于这类半透膜不够坚固,经受不住浓溶液的很大的渗透压。 1867年,德国生理化学家特劳贝让亚铁氰化铜或丹宁-明胶沉积在多孔陶瓷上,制出了真正只让水分子透过的膜,范霍夫称它为半透膜。这种膜非常牢固,能够经受几百个大气压的渗透压。1884年德国植物学家普菲弗便利用这种半透膜研究植物的枯萎状况,对蔗糖溶液的渗透压进行了广泛的定研究,得到了准确的数据。 这些实验结果激起了范霍夫对渗透压进行理论探讨的热情。他从浦菲弗的数据得知,含有一克蔗糖中加水,水加的越多,渗透压越小,但一定是一个常数,与波义耳定律对气体的

常用化学试剂物理化学性质

氨三乙酸 化学式CH6N9O6,分子量191.14,结构式N(CH2COOH)3,白色棱形结晶粉末,熔点246~249℃(分解),能溶于氨水、氢氧化钠,微溶于水,饱和水溶液pH为2.3,不溶于多数有机溶剂,溶于热乙醇中可生成水溶性一、二、三碱性盐。属于金属络合剂,用于金属的分离及稀土元素的洗涤,电镀中可以代替氰化钠,但稳定性不如EDTA。 丙酮 最简单的酮。化学式CH3COCH3。分子式C3H6O。分子量58.08。无色有微香液体。易着火。比重0.788(25/25℃)。沸点56.5℃。与水、乙醇、乙醚、氯仿、DMF、油类互溶。与空气形成爆炸性混和物,爆炸极限2.89~12.8%(体积)。化学性质活泼,能发生卤化、加成、缩合等反应。广泛用作油脂、树脂、化学纤维、赛璐珞等的溶剂。为合成药物(碘化)、树脂(环氧树脂、有机玻璃)及合成橡胶等的重要原料。 冰乙酸 化学式CH3COOH。分子量60.05。醋的重要成份。一种典型的脂肪酸,无色液体。有刺激性酸味。比重1.049。沸点118℃,可溶于水,其水溶液呈酸性。纯品在冻结时呈冰状晶体(熔点16.7℃),故称“冰醋酸”,能参与较多化学反应。可用作溶剂及制造醋酸盐、醋酸酯(醋酸乙酯、醋酸乙烯)、维尼纶纤维的原料。 苯酚 简称“酚”,俗称“石炭酸”,化学式C6H5OH,分子量94.11,最简单的酚。无色晶体,有特殊气味,露在空气中因被氧化变为粉红,有毒!并有腐蚀性,密度1.071(25℃),熔点42~43℃,沸点182℃,在室温稍溶于水,在65℃以上能与任何比与水混溶,易溶于酒精、乙醚、氯仿、丙三醇、二硫化碳中,有弱酸性,与碱成盐。水溶液与氯化铁溶液显紫色。可用以制备水杨酸、苦味酸、二四滴等,也是合成染料、农药、合成树脂(酚醛树脂)等的原料,医学上用作消毒防腐剂,低浓度能止痒,可用于皮肤瘙痒和中耳炎等。高浓度则产生腐蚀作用。 1,2-丙二醇 化学式CH3CHOHCH2OH,分子量76.10,分子中有一个手征性碳原子。外消旋体为吸湿性粘稠液体;略有辣味。比重1.036(25/4℃),熔点-59℃,沸点188.2℃、83.2℃(1,333Pa),与水、丙酮、氯仿互溶,溶于乙醚、挥发油,与不挥发油不互溶,左旋体沸点187~189℃,比旋光度-15.8。丙二醇在高温时能被氧化成丙醛、乳酸、丙酮酸与醋酸。为无毒性抗冻剂。可用于酿酒、制珞中,是合成树脂的原料。医学上用作注射剂、内服药的溶剂与防腐剂,防腐能力比甘油大4倍,此外还可用于室内空气的消毒。 丙三醇 学名1,2,3-三羟基丙烷,分子式C3H8O3,分子量92.09,有甜味的粘稠液体,甜味为蔗糖的0.6倍,易吸湿,对石蕊试纸呈中性。比重1.26362(20/20℃)。熔点7.8℃,沸点290℃(分解)167.2℃(1,3332Pa)。折光率1.4758(15℃),能吸收硫化氢、氰化氢、二氧化硫等气体。其水溶液(W/W水)的冰点:10%,-1.6℃;30%,-9.5℃;50%,-23℃;80%,-20.3℃。与水、乙醇互溶,溶于乙酸乙酯,微溶于乙醚,不溶于苯、氯仿、四氯化碳、二硫化碳、石油醚、油类。可以制备炸药(硝化甘油)、树脂(醇酸树脂)、润滑剂、香精、液体肥皂、增塑剂、甜味剂等。在印刷、化妆品、烟草等工业中作润滑剂。医学上可用滋润皮肤,防止龟裂;作为栓剂(甘油栓)可用作通便药。切勿与强化剂如三氧化铬、氯酸钾、高锰酸钾放在一起,以免引起爆炸。 蓖麻油 化学式C57H104O9,分子量933.37。无色或淡黄色透明液体,具有特殊臭味,凝固点-10℃,比重

北斗卫星发展历程

中国北斗卫星导航系统发展历程 相信在座的大部分都只知道北斗时中国的导航系统,但并没有深入的了解,那中国北斗卫星导航系统是如何发展到如今的地步呢? 中国北斗卫星导航系统(BeiDouNavigationSatelliteSystem,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 2017年11月5日,中国第三代导航卫星顺利升空,它标志着中国正式开始建造“北斗”全球卫星导航系统。 卫星导航系统是重要的空间信息基础设施。中国高度重视卫星导航系统的建设,一直在努力探索和发展拥有自主知识产权的卫星导航系统。2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显着的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。为了更好地服务于国家建设与发展,满足全球应用需求,我国启动实施了北斗卫星导航系统建设。 2012年12月27日,北斗系统空间信号接口控制文件正式版1.0正式公布,北斗导航业务正式对亚太地提供无源定位、导航、授时服务。 2013年12月27日,北斗卫星导航系统正式提供区域服务一周年新闻发布会在国务院新闻办公室新闻发布厅召开,正式发布了《北斗系统公开服务性能规

各种物质物理化学参数使用手册

STANDARD ITS-90 THERMOCOUPLE TABLES The Instrument Society of America (ISA) has assigned standard letter designations to a number of thermocouple types having specified emf-temperature relations. These designations and the approximate metal compositions which meet the required relations, as well as the useful temperature ranges, are given below: Type B(Pt + 30% Rh) vs. (Pt + 6% Rh) 0 to 1820°C Type E(Ni + 10% Cr) vs. (Cu + 43% Ni)-270 to 1000°C Type J Fe vs. (Cu + 43% Ni)-210 to 1200°C Type K (Ni + 10% Cr) vs. (Ni + 2% Al + 2% Mn + 1% Si)-270 to 1372°C Type N (Ni + 14% Cr + 1.5% Si) vs. (Ni + 4.5% Si + 0. 1% Mg) -270 to 1300°C Type R(Pt + 13% Rh) vs. Pt-50 to 1768°C Type S (Pt + 10% Rh) vs. Pt -50 to 1768°C Type T Cu vs. (Cu + 43% Ni)-270 to 400°C The compositions are given in weight percent, and the positive leg is listed first. It should be emphasized that the standard letter designations do not imply a precise composition but rather that the specified emf-temperature relation is satisfied. The first set of tables below lists, for each thermocouple type, the emf as a function of temperature on the International Temperature Scale of 1990 (ITS-90). The coefficients in the equation used to generate the table are also given. The second set of tables gives the inverse relationships, i.e., the coefficients in the polynomial equation which expresses the temperature as a function of thermocouple emf. The accuracy of these equations is also stated. Further details and tables at closer intervals may be found in Reference 1. REFERENCES 1. Burns, G. W., Seroger, M. G., Strouse, G. F., Croarkin, M. C., and Guthrie, W.F., Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types Based on the ITS-90, Nat. Inst. Stand. Tech. (U.S.) Monogr. 175, 1993. 2. Schooley, J. F., Thermometry, CRC Press, Boca Raton, FL, 1986.

物理化学性质

甲醇 MSDS 基本信息 中文名:甲醇;木酒精木精;木醇英文名: Methyl alcohol;Methanol 分子式:CH4O 分子量: 32.04 CAS号: 67-56-1 外观与性状:无色澄清液体,有刺激性气味。 主要用途:主要用于制甲醛、香精、染料、医药、火药、防冻剂等。 物理化学性质 熔点: -97.8 沸点: 64.8 相对密度(水=1):0.79 相对密度(空气=1): 1.11 饱和蒸汽压(kPa):13.33/21.2℃ 溶解性:溶于水,可混溶于醇、醚等多数有机溶剂临界温度(℃):240 临界压力(MPa):7.95 燃烧热(kj/mol):727.0 甲醇由甲基和羟基组成的,具有醇所具有的化学性质。[3] 甲醇可以在纯氧中剧烈燃烧,生成水蒸气(I)和二氧化碳(IV)。另外,甲醇也和氟气会产生猛烈的反应。[4] 与水、乙醇、乙醚、苯、酮、卤代烃和许多其他有机溶剂相混溶,遇热、明火或氧化剂易 燃烧。燃烧反应式为: CH3OH + O2 → CO2 + H2O 具有饱和一元醇的通性,由于只有一个碳原子,因此有其特有的反应。例如:① 与氯化钙形成结晶状物质CaCl2·4CH3OH,与氧化钡形成B aO·2CH3OH的分子化合物并溶解于甲醇中;类似的化合物有MgCl2·6CH3OH、CuSO4·2CH3OH、CH3OK·CH3OH、AlCl3·4CH3OH、AlCl3·6CH3OH、AlCl3·10CH3OH等;② 与其他醇不同,由于-CH2OH基与氢结合,氧化时生成的甲酸进一步氧化为CO2;③ 甲醇与氯、溴不易发生反应,但易与其水溶液作用,最初生成二氯甲醚(CH2Cl)2O,因水的作用转变成HCHO与HCl;④ 与碱、石灰一起加热,产生氢气并生成甲酸钠;CH3OH+NaOH→HCOONa+2H2;⑤与锌粉一起蒸馏,发生分解,生成 CO和H2O。[2] 产品用途 1.基本有机原料之一。主要用于制造甲醛、醋酸、氯甲烷、甲胺和硫酸二甲酯等多种 有机产品。也是农药(杀虫剂、杀螨剂)、医药(磺胺类、合霉素等)的原料,合成对苯二甲酸二甲酯、甲基丙烯酸甲酯和丙烯酸甲酯的原料之一。还是重要的溶剂,亦

物理化学基本原理在相关学科中的应用

物理化学基本原理在环境工程专业的应用摘要:我国环境污染越来越严重,许多环境问题急需解决,而物理化学提供了许多基本原理,我们可以运用这些原理来解决环境问题,本文中介绍了几种处理环境问题的物理化学的基本原理以及介绍了物理化学对环境保护做出的贡献。 关键字:物理化学环境工程化学固化土壤淋洗动电修复贡献 物理化学是在物理和化学两大学科基础上发展起来的。它以丰富的化学现象和体系为对象,大量采纳物理学的理论成就与实验技术,探索、归纳和研究化学的基本规律和理论,构成化学科学的理论基础。物理化学的水平在相当大程度上反映了化学发展的深度。 物理化学的研究内容大致可以概括为三个方面:化学体系的宏观平衡性质,以热力学的三个基本定律为理论基础,研究宏观化学体系在气态、液态、固态、溶解态以及高分散状态的平衡物理化学性质及其规律性。在这一情况下,时间不是一个变量。属于这方面的物理化学分支学科有化学热力学。溶液、胶体和表面化学。化学体系的微观结构和性质以量子理论为理论基础,研究原子和分子的结构,物体的体相中原子和分子的空间结构、表面相的结构,以及结构与物性的规律性。属于这方面的物理化学分支学科有结构化学和量子化学。化学体系的动态性质研究由于化学或物理因素的扰动而引起体系中发生的化学变化过程的速率和变化机理。在这一情况下,时间是重要的变量。属于这方面的物理化学分支学科有化学动力学、催化、光化学和电化。随着学科的交叉,渗透与融合的不断深入,物理化学也显得越来越重要了,它不仅在化学,还在生命、材料、能源、环境等领域中也发挥着重要作用。在此,我们介绍一些物理化学基本原理在环境方面的应用。 一,环境工程中的物理化学技术 1,化学固化 在重金属污染土壤修复技术中运用化学固化,固化的方法就是加入土壤添加剂改变土壤的理化性质,通过重金属的吸附或沉淀作用来降低其生物的有效性。污染土壤中的毒害重金属被固定后,不仅可减少想土壤深层和地下水迁移,而且可能重建植被。固化方法的关键在于成功地选择一种经济而有效的固化剂,固化剂的种类很多,常用的主要有石灰、磷灰石、沸石、磷肥、海绿石、含铁氧化物材料、堆肥和钢渣等,不同的固化剂固定重金属的机理不同,如施用是非主要通过重金属自身的水解反应极其与碳酸钙的共沉淀反应机制降低土壤中的重金属的移动性,沸石是碱金属或碱土金属的水化硅酸盐晶体,含有大量的三维晶体结构、很强的例子交换能力及独特的分子结构,从而通过离子交换吸附和专性吸附降低土壤中的重金属的有效性,向土壤添加富含铁锰氧化物的物料,铁锰氧化物能专性吸附重金属,使其生物有效性降低,大多数重金属磷酸盐的溶解度很低,因此有关羟基磷灰石对重金属的固化效果、机理和影响因素报道很多。固化方法能在原位固化重金属,从而大大降低成本。但是固化方法并不是一个永久的措施,因为重金属知识改变其在土壤中的存在形态,仍留在土壤中。 2,土壤淋洗 土壤淋洗是通过逆转离子交换、吸附、沉淀等反应机制,把土壤固相中的重金属转移到土壤液相。将挖掘出的地表土经过初期筛选去除表面残渣,分散土壤大块后,与一种提取剂充分混合,经过第二步筛选分离后,用水淋洗出去残留的提取剂,处理后“干净”的土壤可归还原位被再利用,富含重金属的废水可进一步处理回收重金属和提取剂。土壤淋洗技术的关键是寻找一种提取剂,既能提取各种形态的重金属,又不能破换土壤的结构。提取剂很多,包括有机或无机酸、碱、盐等。 3,动电修复 动电修复是指在污染土壤中插入电机对,并通过低直流电,污染物在电场作用下向电机室运输,从而通过工程化的手机系统手机起来,进行集中处理。在电场作用下,污染物主要

物理化学-化学前沿与进展

砷钼酸盐化学研究进展与展望 巩培军104753140807 物理化学 摘要:多金属氧酸盐以其丰富多彩的结构及其自身的优良分子特性,包括极性、氧化还原电位、表面电荷分布、形态及酸性,使其在很多领域,尤其是材料、催化、药物等方面具有潜在应用前景,因而受到人们的广泛关注。本文选择目前报道尚少的砷钼杂多化合物为研究重点。 Abstract: Polyoxometalates (POMs), a fascinating class of metal–oxygen cluster compounds with a unique structural variety and interesting physicochemical properties, have been found to be extremely versatile inorganic building blocks in view of their potential applications in catalysis, medicine, and materials. In this paper, the main work has been focused on the rare reported arsenomolybdates. Keywords: polyoxometalates; physicochemical properties; applications 1 多酸概述 多金属氧酸盐化学至今已有近二百年的历史,它是无机化学中的一个重要研究领域[1-3]。早期的多酸化学研究者认为无机含氧酸经缩合可形成缩合酸:同种类的含氧酸根离子缩合形成同多阴离子,其酸为同多酸;不同种类的含氧酸根离子缩合形成杂多酸阴离子,其酸为杂多酸[4]。现在文献中多用Polyoxometalates (多金属氧酸盐) 及Metal-oxygen clusters (金属氧簇)来代表多酸化合物。 从结构上多酸是由前过渡金属离子通过氧连接而形成的金属氧簇类化合物,它的基本的结构单元主要是八面体和四面体。多面体之间通过共角、共边或共面相互连接。根据多面体的连接方式不同,多金属氧酸盐可划分为不同的结构类型,如Keggin、Dawson、Silvertone、Anderson、Lindqvist 和Waugh 结构等,它们被称为多金属氧酸盐最常见的六种基本结构类型(图1)。(1)Keggin 结构,其阴离子通式可表示为[XM12O40]n– (X = P、Si、Ge、As、B、Al、Fe、Co、Cu 等;M = Mo、W、Nb 等);(2)Wells—Dawson 结构,其阴离子通式可表示为[X2M18O60]n– (X = P、Si、Ge、As 等;M = Mo、W 等);(3)Silverton 结构,其阴离子通式为[XM12O42]n– (X = Ce IV等;M = Mo VI 等);(4)Anderson 结构,其阴离子通式为[XM6O24]n– (X = Al、Cr、Te、I 等;M = Mo 等);(5)Lindqvist 结构,其阴离子的通式为[M6O19]n– (M = Nb V、Ta V、Mo VI、W VI等);(6)Waugh 结构,其阴离子通式为[X2M5O23]n– (X = P V等;M = Mo VI等)。其结构又决定其特殊性质的,如强酸性、氧化性、催化活性、光致变色、电致变色、导电性、磁性等。多金属氧酸盐由于各种确定的结构和特异、优越的物理化学性质,使它们在催化[5]、材料科学[6]、化学及医药学[7]等方面具有重要的应用前景。多金属氧酸盐可根据组成不同分为同多(iso)和杂多(hetero)金属氧酸盐两大类。这种分类方法一直沿用早期化学家的观点:即由同种含氧酸盐缩合形成的称同多酸(盐),由不同种含氧酸盐缩合形成的称为杂多酸(盐)。多酸化学经过近两个世纪的发展,已经成为无机化学的一个重要分支和研究领

相关主题
文本预览
相关文档 最新文档