当前位置:文档之家› 土壤酶活性与土壤肥力的关系研究

土壤酶活性与土壤肥力的关系研究

土壤酶活性与土壤肥力的关系研究
土壤酶活性与土壤肥力的关系研究

土壤酶活性与土壤肥力的关系研究 植物营养与肥料学报 2004,10(3):277-280PlantNutritionandFertilizerScience 土壤酶活性与土壤肥力的关系研究 邱莉萍,刘 军,王益权,孙慧敏,和文祥 (西北农林科技大学资源环境学院,陕西杨陵 712100) 摘要:通过长期定位试验地中土壤养分和酶活性的测定结果,将其进行了相 关分析、通径分析和主成分分析。结果表明,土壤脲酶和碱性磷酸酶活性可以作 为土壤肥力的指标,且酶活性大小受到土壤化学性质和其它酶活性影响。土壤主 成分分析能较为客观地评价土壤肥力水平。b5E2RGbCAP 关键词:土壤酶活性;土壤肥力;相关分析;通径分析;主成分分析中图分类 号:S15412 文献标识码:A 文章编号:1008-505X(2004)03-0277-04 Researchonrelationshipbetweensoilenzymeactivitiesandsoilfertilityp1Ean
qFDPw
QIULi2ping,LIUJun,WANGYi2quan,SUNHui2min,HEWen2xiangDXDiTa9E3d (CollegeofResour1andEnvir1,NorthwesternAgric12ForestoryUniv1ofSci1ean dTechn1,Yangling,Shaanxi712100,China)RTCrpUDGiT Abstract:Thesoilenzymeactivitiesandnutrientcontentwereassayedinlong2t ermfertilizingsoilsamples1Theresultsobtainedbythecorrelation,pathandp rincipalcomponentanalysisshowedthatsoilureaseandalkalinephosphataseac tivitiescouldbeasacomprehensiveindexofsoilfertility,andtheirenzymeact ivitiesareaffectedbysoilchemicalpropertiesandotherenzymes1Soilfertili tycouldbeevaluatedobjectivelybyprincipalcomponentanalysis15PCzVD7HxA Keywords:soilenzyme;soilfertility;correlationanalysis;pathanalysis;pr incipalcomponentanalysis 土壤酶活性能否作为土壤肥力指标争论已久。
jLBHrnAILg
-2]

周礼恺、?? ±1o?3等[1 认为,土壤酶与主要肥力因子有显著相关关系,可 作为土壤肥力指标之一;而 -4]Sakorn、周瑞莲等[3 的研究却表明,土壤酶活性与 1)对照(无肥,CK);2)化肥(施尿素和过磷酸钙分别为 450、 525kg/hm2,CF),3)休闲(不种作物,施尿素、过磷酸钙和玉米秸秆分别为 450、 525 和 9375kg/hm,FW),4)低量秸秆(施尿素、过磷酸钙和玉米秸秆分别为 450、 525 和 9375kg/hm,LS),5)中量秸秆(施尿素、过磷酸钙和玉米秸秆分别为 450、 525 和 18750kg/hm2,ML),6)高量秸秆(施尿素、过磷酸钙和玉米秸秆分别为 450、525 和 37500kg/hm2,HS),7)厩肥(施尿素、过磷酸钙和厩肥分别为 450、 525 和 37500kg/hm2,BM)。除休闲外,其余处理均为小麦)玉米一年两茬轮作种植 制度。各处理随机区组排列,3 次重复。土壤为重壤质 xHAQX74J0X 土 (系统分类名为土垫旱耕人为土,Earth2cumuli2orth2icanthrosols)。样品 是在连续培肥 25 年后于 2002 年冬小麦播种前采样。采样时,先去除 0)5cm 表层 未腐解的作物秸秆,用 5 点法取 5)20cm 土样,混匀风干,分别过 1mm 和 0125mm 筛 备用。LDAYtRyKfE 2 2 土壤的营养水平间并不存在显著相关。尽管如此,土壤酶能够促进土壤中物 质转化与能量交换是不争的事实。因此,对土壤酶与土壤肥力之间关系的进一步 研究,在理论和实践上都有着重要意义。Zzz6ZB2Ltk 本文旨在通过对长期培肥土壤的脲酶、蔗糖酶、碱性磷酸酶和多酚氧化酶 活性的研究,并采用相关分析、通径分析和主成分分析,以探讨土壤酶活性与土 壤肥力水平的关系以及将其作为土壤肥力指标的可行性。dvzfvkwMI1 1 材料与方法 供试土样采自西北农林科技大学 1977 年在农一站设置的长期肥料定位试验 地。试验设计[5]为: 收稿日期:2003-05-19 修改稿收到日期:2003-07-09 作者简介:邱莉萍(1979)),女,江西赣州人,硕士研究生,从事土壤生物质量 研究。 278 植物营养与肥料学报 10 卷 土壤样品分析:土壤有机质、全氮、全磷、碱解氮、速效磷分别采用丘林 法、开氏法、酸溶)钼锑抗比色法、碱解扩散法和 Olsen 法测定;土壤脲酶、蔗 糖酶、碱性磷酸酶和多酚氧化酶活性,用比色法[7]测定,分别以 NH3-NLg/(g#h)、glu1Lg/(g#h)、Ph(OH)Lg/(g#h)、紫色没食子酸 Lg/(g#h)表 示。 数据的相关分析(CORR)、多元线性回归(REG)和主成分分析(PRINCOMP)采 用美国 SAS 软件进行。rqyn14ZNXI [6]

量的分析看出,施肥处理使土壤中主要养分含量得到显著提高,有机质、全 氮、全磷、碱解氮和速效磷较对照显著增加,增加幅度分别为 5167%~48174%、 4140%~45155%、8117%~45185%、5108%~7013%和 90196%~648174%。在不同培肥 方式中,有机质增加的顺序为厩肥(BM)>高秸(HS)>中秸(MS)>低秸(LS)>休闲 (FW)>化肥(CF);全氮增加的顺序为 BM>HS>MS>FW>LS>CF;碱解氮增加的顺序为 BM>HS>MS>FW>CF>LS;全磷含量增加的顺序为 BM>FW>HS>MS>CF>LS;速效磷增加的 顺序为 BM>FW>MS>HS>CF>LS(表 1)。EmxvxOtOco 2 结果分析 211 长期培肥对土壤养分和酶活性的影响 通过对连续 25 年定位培肥试验地土壤养分含 表 1 不同处理对土壤养分和酶活性的影响 Table1 EffectsofdifferenttreatmentsonnutrientsandenzymeactivitiesofsoilSixE2yX
Pq5
有机质 处理 O1M1 Treatment (g/kg)CKCFFWLSMSHSBM 151118151975161631171198181726201147221486 全氮 Tot1N(g/kg)11023110681118911103113641143911489 全磷 Tot1P(g/kg)01698017760186901755017840182111018 碱解氮 Alk12hydr1N(mg/kg)5116255511256018135412507117508611888719386ewMyirQFL 速效磷脲酶蔗糖酶 Avai1PUreaseInvertase(mg/kg)[Lg/(g#h)][Lg/(g#h)]618361416342913391310 54171430171101511184kavU42VRUs 7815851385198719104191121912511 103519114814123811121911122719160119124311 碱性磷酸酶 Phosphatase[Lg/(g#h)]94129516111159613112121121612419y6v3ALoS89 多酚氧化酶 Polyphenol2oidase[Lg/(g#h)]44512479115221752117611185291546814M2ub6vST
nP
注(Note):CK)对照 Control,CF)化肥 Chemicalfertilizer,FW)休闲 Fallow,LS)低量秸秆 Lowrateofmaizestraw,MS)中量秸秆 Middlerateofmaizestraw,HS)高量秸秆 Highrateofmaizestraw,BM)厩肥 Barnyardmanure;下同 Sameasfollows10YujCfmUCw

表 1 还看出,施肥对 4 种酶的活性均有显著的增加。土壤脲酶、蔗糖酶、碱 性磷酸酶和多酚氧化酶活性分别比无肥对照区酶增加幅度为 8167%~59136%、 10186%~54164%、1149%~32159%和 5121%~37142%。从不同培肥方式来看,脲酶与 碱性磷酸酶有相似的趋势,即 BM>HS>MS>FW>CF>CK。厩肥处理土壤蔗糖酶活性低 于高秸处理,其原因可能在于土壤蔗糖酶源于植物根茬,微生物的胞外酶,并在土 壤中很少受土壤微生物增殖的影响[4],因此,在施用同样无机肥的情况下,高秸 处理蔗糖酶活性高。从表 1 还看出,多酚氧化酶与前 3 种酶的变化趋势大不一样, 不同培肥方式的多酚氧化酶活性以中秸处理最大,无肥最小,各处理酶活性的顺 序为:MS>HS>FW>LS>CF>BM>CK,这表明施肥可以提高土壤多酚氧化酶活性,但培肥 于低秸、化肥和厩肥处理,说明作物种植对多酚氧化酶活性影响不大,这可能主 要是由于多酚氧化酶的性质与水解酶类不同而引起的。eUts8ZQVRd 212 土壤酶活性与肥力因素关系分析 21211 相关分析 许多研究[8]表明,土壤肥力水平在很大程度上受制于土壤 酶的影响,与土壤酶活性之间存在着非常密切的相关关系。为此,我们对土壤酶 与主要肥力因子之间进行相关分析。结果表明(表 2),有机质、全氮、全磷、碱 解氮、速效磷与脲酶、碱性磷酸酶活性呈显著或极显著相关水平,而蔗糖酶、多 酚氧化酶与所有肥力因素相关性均不显著。这个结果说明用土壤脲酶和碱性磷 酸酶的活性作为评价土壤肥力的指标是具有一定可靠性的。sQsAEJkW5T 21212 通径分析 两个变量之间的简单相关系数,往往不能正确地说明这两 个变量之间的真正关系,, 3期 邱莉萍,等:土壤酶活性与土壤肥力的关系研究表 2 土壤酶活性与主 要养分含量的相关系数 Table2 ThecoefficientbetweensoilenzymeactivitiesandthenutrientcontentsGMsIasN
XkA
酶类 Enzyme 有机质 O1M101990*0117401881*01578 * 279 全氮 Tot1N01968*0168001925*01375 * 碱解氮 Alkali2hydr1N 01755* 0171701889*01119 * 全磷 Tot1P01970*0129201883*-01083 * 速效磷 Avail1P

017010115101852*-01118 脲酶 Urease 蔗糖酶 Invertase 碱性磷酸酶 Phosphatase 多酚氧化酶 Polyphenoloidase *** 性相关关系,都会受到其它变量的影响[9],因此,要想真实探求两个变量之 间的线性相关关系,就必须对其做通径分析和多元回归分析。TIrRGchYzg 多元回归方程能描述随机变量在多个回归因子中的平均变化规律,通径分析 则是标准化的多元线性回归分析。将脲酶、碱性磷酸酶活性与主要肥力因子的 测定结果进行回归,得到两个标准多元回归方程:7EqZcWLZNX U=018243X1+010357X2-014166X3+ 012545X4+013011X5 P=-016252X1+113016X2-011832X3-011395X4+017323X5 其中,U、P 为标准化的脲酶和碱性磷酸酶活性,X1 为有机质,X2 为全氮,X3 碱解氮,X4 为全磷,X5 速效磷,X1-X5 为标准化的土壤化学性质。方程中的系数即 为直接通径系数,它乘以各肥力因子之间的相关系数就得到间接通径系数[10], 结果见表 3。lzq7IGf02E 表 3 土壤主要肥力因子对土壤酶活性的通径系数 Table3 Thepathcoefficientofprincipalfertilityfactoraffectingthesoilenzymeact ivitieszvpgeqJ1hk 酶类 Enzyme 脲酶 Urease X1yU X1X2X3X4X5 碱性磷酸酶 Phosphatase X1X2X3X4X5 018243017819016667017824016212X1yP-015931-015057-015935-014712NrpoJac3v1 X2yU010339010357010257010350010237X2yP1123461130160193471127660186261
nowfTG4KI
X3yU-013370-012992-012978-014108X3yP-011482-011316-011832-011310-0118 07fjnFLDa5Zo X4yU012415012496011819012545011655X4yP-011324-011368-010997-011395-01 0907tfnNhnE6e5

X5yU012269011995012969011958013011X5yP015519014853017221014763017323H
bmVN777sL
注(Note):划横线的数据为直接通径系数 Thedataunderlinearedirectpathcoefficients1V7l4jRB8Hs 直接通径系数反应了各主要肥力因子对土壤酶活性的直接影响,而间接通径 系数却是一种间接影响力,指的是以主要肥力因子通过其它肥力因子对土壤酶活 性产生的间接影响程度。这种影响力更具有客观性,因而也更具有真实表现力。 通过表 3 可看出,对脲酶活性的直接影响力(按绝对值大小)排序依次为土壤有机 质>碱解氮>速效磷>全磷>全氮;碱性磷酸酶(按绝对值大小)为全氮>速效磷>有机 质>碱解氮>全磷。土壤全氮对脲酶的直接影响力虽然很小(直接通径系数为 010357),但其通过有机质对脲酶产生的间接通径系数却达到 017819,1 酶的影响 主要表现在间接影响上。与此类似,碱解氮、全磷对碱性磷酸酶的影响也都体现 在间接影响上。83lcPA59W9 21213 主成分分析 主成分分析是一种采取降维,将多个指标化为少数几个 综合指标的统计分析方法。这些综合指标尽可能地反映了原来变量的信息量,而 且彼此之间互不相关[11]。为了进一步论证土壤酶是土壤肥力的一个重要指标, 我们将土壤酶与土壤中的主要肥力因子作了主成分分析。mZkklkzaaP 表 4 看出,第一主成分的方差贡献率最大,为 7213%,加上第二主成分方差贡 献率 1618%,其累 280 植物营养与肥料学报 10 卷 成分能基本反应土壤肥力系统的变异信息。 再将土壤主成分进行分权计 算,并计算出各因子在各主成分上的载荷:AVktR43bpw 载荷=(特征向量@特征根 1/2)2 由表 5 可看出,第一主成分主要综合了脲酶、碱性磷酸酶、有机质、全氮和 碱解氮的变异信息,第 二主成分则综合了蔗糖酶、多酚氧化酶、全磷和速效磷的变异信息。第一 主成分的累积方差贡献率最大,因此对土壤肥力起着主要作用,从分权系数来
ORjBnOwcEd
看,脲酶和碱性磷酸酶都在第一主成分内,因此,足以证明这两种酶类可反应 土壤肥力水平的高低。 表 4 供试土壤主成分特征根 Table4 Principalcomponenteigenvaluesofthesoilstested2MiJTy0dTT 项目 Item 特征根 Eigenvalues 方差贡献率 Proportionofvariance(%)累积方差贡献率 Proportionofcumulativevariance(%) 第一主成分

1stprincipalcomponent 61572137213 第二主成分 2ndprincipalcomponent 11516188911 第三主成分 3rdprincipalcomponent 0167109611 注(Note):特征根指的是累积方差贡献 Eigenvaluesisthecumulativevariance1gIiSpiue7A 表 5 供试土壤主成分的特征向量 Table5 Principalcomponenteigenvectorsoftestedsoil 测定项目 Analysisitems 脲酶 Urease 蔗糖酶 Invertase 碱性磷酸酶 Alkali2phosphatase 多酚氧化酶 Polyphenol2oidase 有机质 O1M1 全氮 Tot1N 碱解氮 Avai1N 全磷 Tot1P 速效磷 Avai1PuEh0U1Yfmh 第一主成分载荷 -1(%)1stprincipalloadingcomponentcapacity-101379001244501375501092201 3808013820013787013372013146IAg9qLsgBX 019337013889019164010553019426019485019322017391016434WwghWvVhPE 第二主成分载荷 -2(%)2ndprincipalloadingcomponentcapacity-201044901466001063201643101 0093011544011062013670014398asfpsfpi4k 010030013257010060016203)010358010169012021012901 第三主成分载荷 -3(%)3rdprincipalloadingcomponentcapacity-3-010998-015377012463017067 -010*********-012195011393012540ooeyYZTjj1 010060011735010364012996010053)010289010116010387 --注:载荷-1,2,3 分别指各主成分上承载的各因子的方差百分率。 Note:loadingcapacity-1,2,3arethepercentofvarianceinprincipalcomponent ofdifferentfactorrespectively1BkeGuInkxI 3 结语 通过对长期定位试验地中土壤养分和酶活性的关系研究,发现土壤脲酶和碱 性磷酸酶活性与土壤养分之间呈显著或极显著相关关系,可以作为衡量土壤肥力




北京地区耕地肥力评价标准

北京地区耕地肥力评价标准 在调查基础上,结合北京市第二次土壤普查结果和北京市土壤肥力状况,研究制定了《北京市耕地肥力分等评价标准》。 在专家指导下,首先构建了北京市耕地土壤肥力评价指标体系,选择土壤有机质、全氮(N)或碱解氮(N)、有效磷(P)和速效钾(K)4个指标作为评价指标,各指标的评分规则如表1所示。 表1 北京市土壤肥料指标评分规则 注:各指标数值分级区间的分界点包含关系均为下(限)含上(限)不含,例如有机质“高”等级中,“25-20”表示“大于或等于20,且小于25的区间值”,其他类同。 根据北京市土壤各肥力指标特点和各指标在土壤肥力构成中的贡献水平,参考历史资料和有关专家的意见确定北京市土壤肥力参评指标权重值(表2)。 表2 京市土壤养分指标权重 项目权重(W) 有机质0.30 全氮(N)或碱解氮(N)0.25 有效磷(P)0.25 速效钾(K)0.20 合计 1.00 计算每个评价地块的肥力综合指数,采用加法模型: I=∑F i×W i(i=1,2,3,……,n),式中:I代表地块肥力综合指数,F i=第i个指标评分值,W i=第i个指标的权重。

根据各指标的评分值和指标对应的权重值计算得到的肥力综合指数,依据北京市土壤养分等级划分规则(表3)将全市耕地土壤肥力划分为“极高、高、中、低和极低”共5个等级。 表3 北京市土壤养分等级划分规则 等级综合指数(I) 极高100-95 高95-75 中75-50 低50-30 极低30-0 注:综合评分数值分级区间的分界点包含关系均为下(限)含上(限)不含,如“高”等级中,“95-75”表示“大于或等于75,且小于95 的区间值”,其他类同。

土壤肥力因素

浅谈植物生长不可缺少的土壤肥力 万物的生长离不开土壤,经过我几年来在绿化施工中的观察,苗木的成活率很大方面取决于土壤因素,就此我想就我了解的关于土壤的一点小认识在此作一肤浅的探讨。 土壤为植物生长提供、协调营养条件和环境条件的能力。是土壤各种基本性质的综合表现,是土壤区别于成土母质和其他自然体的最本质的特征,也是土壤作为自然资源和农业生产资料的物质基础。 土壤肥力按成因可分为自然肥力和人为肥力。前者指在五大成土因素(气候、生物、母质、地形和年龄)影响下形成的肥力,主要存在于未开垦的自然土壤;后者指长期在人为的耕作、施肥、灌溉和其他各种农事活动影响下表现出的肥力,主要存在于耕作(农田)土壤。 中国的一些土壤工作者根据中国农业生产的经验和研究成果,将土壤肥力归结为土壤中养分、水分、通气状况和温度状况(简称水、肥、气、热)等 4 个因素的综合。 土壤中的许多因素直接或间接地影响土壤肥力的某一方面或所有方面,这些因素可以归纳如下。 养分因素指土壤中的养分贮量、强度因素和容量因素,主要取决于土壤矿物质及有机质的数量和组成。就世界范围而言,多数矿质土壤中的氮、磷、钾三要素的大致含量分别是0.02?0.5%、0.01? 0.2%和0.2?3.3%。中国一般农田的养分含量是: 氮0.03?0.35%;磷0.01?0.15%钾 0.25?2.7%。但土壤向植物提供养分的能力并不直接决定于土壤中养分的贮量,而是决定于养分有效性的高低;而某种营养元素在土壤中的化学位又是决定该元素有效性的主要因素。 化学位是一个强度因素,从一定意义说,它可以用该营养元素在土壤溶液中的浓度或活度表示。由于土壤溶液中各营养元素的浓度均较低,它们被植物

高三地理一轮复习常考知识点---土壤肥力精选习题

20** 届高三地理一轮复习常考知识点 --- 土壤肥力精选习 题 一、单选题(本大题共 46小题,共 92.0 分) 读某地区的经纬网和等高线图,回答下列小题。 1. 图中甲地区土地盐碱化较轻、耕地质量较好的自然原因是( ) A. 人类长期耕作,形成了肥沃的水稻土 B. 多为紫色土,冲积土壤比较肥沃 C. 土壤中水、肥、气、热条件协调较好,肥力高 D. 土壤中含钙质较多,黑土分布广 2. 图中乙地区的经济作物和林木主要为( ) A. 甘蔗、柑橘 B. 甜菜、柑橘 C. 花生、苹果 有机质含量高低是土壤肥力的重要标志,一般土壤有机质含量为 某地土壤剖面图,图 2 为该土壤有机质分布图。读图回答下列问 题。 图 1 图2 3. 关于该地表层土壤的描述,正确的是 A. 地表枯枝落叶多,有机质含量较高, B. 人工增施有机肥,有机质含量较高, C. 受流水侵蚀作用,有机质含量较低, D. 气候干旱植被稀少,有机质含量低 4. 针对该土壤的特性,该地宜采用的农业技术是 A. 免耕直播 B. 深耕改土 C. 大棚温室 如图为某区域地理各要素间的相互关系示意图。读图,回答下题。 D. 棉花、茶树 5%。图 1 为我国东部 D. 砾石压土

5. 按照字母顺序将“①色暗、肥沃的土壤、②地理位置、③冷湿的温带季风气候”填 入,顺序正确的是 6. 该地区森林面积锐减对本地区的土壤和河流的影响主要有 ( ) 7. 下图为江南丘陵某研究区红壤在不同措施下(均不施肥)实验结果。据此回答。 与处理措施①比较,该实验结果表明( ) A. ②处理措施使土壤有机质增多,利于保持水土 B. ③处理措施使土壤酸性增强,利于积累有机质 C. ②处理措施导致水土流失增强,土壤酸性减弱 D. ③处理措施导致水土流失减弱,土壤酸性增强 8. 影响我国苹果带苹果产量浮动的主要因素是 A. 土壤肥力变化大 B. 天气条件变化大 C. 种植习惯 D. 市场需求 埃尔埃希多地区(下图小方框所示)干旱少雨,年降水量小于 300mm ,土壤贫瘠。当 地农业科技人员对土壤进行“三明治”式的改良,很好地改善了作物生长的水肥条件。A. ①②③ B. ③②① C. ②①③ D. ②③① ①土壤腐殖质增多 ②水土流失加剧,土层变薄,土壤肥力下降 ③河流含沙量减小 ④降水多时易形成洪水、无降水时河流水量锐减甚至断流 A. ①② B. ②④ C. ③④ D. ①③

土壤肥力等级区分

全国第二次土壤普查推荐的土壤肥力分级 狭义的土壤肥力是指土壤供应给植物生长所必需的养分的能力,据全国第二 次土壤普查及有关标准,将土壤主要养分含量分为以下级别(见下表)。 表1 土壤主要养分分级标准 土壤主要养分分级标准主要针对有机质、全氮、速效氮、速效磷和速效钾、缓效钾(二者合称有效钾)的含量进行分级,每种级别对不同成分的含量不同。而在实际工作中,我们可以对照或若参考这个标准,对要进行施肥的土地进行测试分析,以了解土壤的真实肥力状况。 而土壤养分是指存在于土壤中的植物必需的营养元索。包括碳(C)、氮(N)、氧(O、氢(H)、磷(P)、钾(K、钙(ca、镁(Mg、硫(3、铁(Fe)、锰(Mn、钼(M0、锌(Zn)、铜(Cu)、硼(B)、氯(Cl)等16种。在自然土壤中,除前三种外,土壤养分主要来源于土壤矿物质和土壤有机质、其次是大气降水、坡渗水和地下水。 有机质是土壤肥力的标志性物质,其含有丰富的植物所需要的养分,调节土壤的理化性状,是衡量土壤养分的重要指标。它主要来源于有机肥和植物的根、茎、枝、叶的腐化变质及各种微生物等,基本成分主要为纤维素、木质素、淀粉、糖类、油脂和蛋白质等,为植物提供丰富的C、H O S及微量元索,可以直接被植物所吸收利用。有机质的分级可

作为土壤养分分级的重要组成部分,土壤主要养分分级标准共六级,且六级为最低,一级为最高。 有效态的钙(Ca)、镁(Mg、硫(S)为土壤中存在的,为植物生长发育所必需而且能够被吸收利用的中量元素养分,其分级标准共有五级,且五级为最低,一级为最高: 表2 土壤中量元素养分分级标准 项目有效钙有效镁有效硫 级别含量mg/kg Mg/kg Mg/kg 一级>1000 >300 >30 二级700-1000 200-300 16-30 三级500-700 100-200 <16 四级300-500 50-100 五级<300 <50 土壤中微量元素养分分级如下: 表3 土壤中微量元素养分分级标准 项目有效铜有效锌有效铁有效锰有效钼有效硼级别含量mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 1 >1.80 >3.00 >20 >30 >0.30 >2.00 2 1.01~1.80 1.01~3.00 10.1~20 15.1~30 0.21~0.30 1.01~2.00 3 0.21~1.00 0.51~1.00 4.6~10 5.1~15.0 0.16~0.20 0.51~1.00 4 0.11~1.20 0.31~0.50 2.6~4. 5 1.1~5.0 0.11~0.15 0.21~0.50 5 / 0.30 / / 0.10 0.20 广义的土壤肥力就是土壤在植物生长发育过程中,同时不断地供应和协调植 物需要的水分、养分、空气、热量及其它生活条件的能力(扎根条件和无毒害物

浅谈生物有机肥与土壤肥力的关系

浅谈生物有机肥与土壤肥力的关系 目录 1、概述 (1) 2、生物有机肥料的定义和特点 (1) 2.1 生物有机肥的定义 (1) 2.2 生物有机肥的特点 (2) 3、生物有机肥的作用 (2) 3.1生物有机肥料可以改良土壤、培肥地力 (2) 3.2 生物有机肥料可以提高化肥利用率 (3) 3.3 生物有机肥料可提高和改善作物品质 (3) 3.4 生物有机肥可以减轻作物的病害 (4) 3.5 使用生物有机肥可以降低环境污染 (4) 4、展望 (4) 参考文献 (5) 生物有机肥对土壤的作用 摘要:本文阐述了我国肥料的使用现状,施用生物有机肥对土壤的作用,指出生物有机肥具有改良土壤, 提高土壤肥力, 增强植物抗病能力, 减少植物病害, 减少农药使用量,提高农产品品质等重要作用。 关键字:生物有机肥;土壤肥力; Abstract: this paper describes the present situation of the use of fertilizer in our country, the importance of bio-organic fertilizers to the soil: the fertilizer will reform soil structure, raise soil fertility, increase plants’ ability against disease and pest injury, decrease pesticide application, and improve the quality of agricultural product. Key words: bio-organic fertilizers; soil fertility; 1、概述 在我国现代农业生产中,化学肥料是增加粮食产量的物质基础,是农业生产最主要的外来营养物质,在农业投入中的比重越来越中。化肥在粮食增产中的贡献率在40%-60%,稳定在50%左右[1]。随着农业的发展,全球化肥施用量不断增加,目前我国化肥生产和消费量均居世界第一[2]。化肥施用量的增加,特别是接近或超过现有土壤环境的最大容量和作物的需求量,不仅会造成资源浪费,导致土壤中养分过剩,还会使化肥中附带的其他元素在土壤中富集,给土壤环境造成巨大压力,例如化肥中的磷肥,由于磷肥的生产大多来自于磷矿石,通过研究发现,在磷矿石中往往含有一些致癌的元素,如果这些致癌元素在土壤中富集并被作物所吸收,将给人们的健康带来很大影响;在一些靠近河流的田地里如果化肥施用不当,也会给水体带来污染,甚至导致水体中生物的死亡。同时生产化肥所需的资源,日渐枯竭,也使化肥的生产成本增加,进而使农民的生产投入增加。且长期

陕西白水农业土壤养分现状分析

本科毕业论文 题目:陕西白水农业土壤养分现状分析学院:化学与生命科学学院 专业班级:地理112班 毕业年份:2015 姓名:梁木风 学号:110846037 指导老师:胡明 职称:副教授 第二导师:张全峰 工作单位:渭南市土肥所

陕西白水农业土壤养分现状分析 梁木风 (渭南师范学院化学与生命科学学院11级2班) 摘要:本文主要以白水县为研究对象,利用手持GPS定位,在2010年采集农业用地0~20cm土壤样本500个,对有机质、碱解氮、有效磷、速效钾、有效铁、有效锰、有效铜、有效锌的含量进行了测定,并利用EXCEL2007进行数据录入、统计、处理、分析。通过分析发现,白水县土壤养分有机质的均值14.13 g/kg,碱解氮、有效磷、速效钾含量分别为59.06mg/kg、11.93mg/kg、146.07mg/kg。土壤养分微量元素有效铁、有效锰、有效铜、有效锌的含量分别为3.79mg/kg、5.28mg/kg、1.76mg/kg、1.34mg/kg。其中碱解氮和有机质为低肥力水平,只有有效磷和速效钾含量达到了中等肥力水平;各养分含量均为中等变异。有效铁和有效锰含量缺乏,有效铜和有效锌含量适中。各微量元素均为中等变异性。从现状分析来看,该区的土壤养分和土壤微量元素均与该区域土壤的类型、气候、岩层、成土条件、人为外在因素等有关。 关键字:土壤养分;现状分析;合理施肥;白水县 1引言 土壤具有为陆生植物提供水分、热量、二氧化碳、氮素等多种营养物质的功能,是植物进行光合作用把水分和二氧化碳合成有机质的场所[1]。土壤养分则是土壤肥力的物质基础,是土壤的基本属性和本质特征。目前,国内外对土壤养分的研究主要侧重于结合GIS技术对土壤养分进行空间变异性研究,如杨勇[2]等通过克里格插值并制图,准确了解土壤养分含量的分布状况,并运用半方差函数分析,得出土壤中有机质、全氮、有效磷存在中等空间相关性,速效钾的空间相关性较弱,为有针对性的进行施肥及有效利用土壤供了依据。而关中地区对土壤养分方面的研究多集中在秦岭北麓地区农用土壤方面,如戴相林[3]等在周至、户县、长安,研究农用土壤时发现秦岭北麓地区氮素、磷素盈余、钾素亏缺,应采取“减氮、控钾、增磷”的措施,进行合理施肥。对白水县土壤养分方面的研究比较少。虽然近20年来白水地区的主要农作物苹果的产量得到快速的提高,经济效益得到稳定增长,但是从长远利益来说,目前的优质土地资源还是很缺乏的。所以需要我们了解当地的土壤养分现状,并对其进行一些改善建议。只有提高土壤肥力,进行科学的养分管理,建立健康的农业生态系统。才能促进该地区农业的优质、高产、高效的发展。本文就白水县农业土壤养分现状的分析,了解当地土壤现状,从而为该地区农业的发展,产量的提高提供科学依据。 2材料与方法 2.1区域概况 白水县位于陕西省东北部,处于关中平原与陕北高原的过渡地带,是关中与

土壤肥力的影响因素分析

土壤肥力的影响因素分析 摘要土壤肥力既是土壤质量的重要组成部分,也是土地生产力的基础。随着精准农业的提出和发展,土壤肥力的空间变异性研究,已成为现代土壤科学研究的热点之一。本文从施肥制度、土地利用方式、土壤酸碱性、经济条件和作物种类等方面对土壤肥力进行了分析,从而可以为合理施肥提供一些理论基础。 关键词土壤肥力因素影响 土壤是人类赖以生存的物质基础,而肥力又是土壤的本质属性,人类对土壤肥力的研究具有相当长的历史。尽管到目前为止对土壤肥力的定义并没有统一的标准,但人们对土壤肥力的基本属性却进行了广泛的研究,对土壤肥力的本质也进行了深入探讨,其中某些领域的研究在指导农业生产过程中也起到了非常重要的作用[1]。 1 施肥制度对土壤肥力的影响 化肥直接、快速地增加土壤速效养分,供应作物生长利用;有机肥料则除其中的养分大多可直接被作物吸收利用外,有机物质如纤维素、半纤维素、脂肪、蛋白质、氨基酸、激素和胡敏酸类等及其腐解产物将影响土壤的物理、化学和生物学性质,供给土壤微生物以碳源,促进其繁衍活动。化肥施入土壤后也能被微生物直接利用,微生物体的代谢,以及化肥直接与土壤中的有机物及其降解的中间产物结合成新的有机物(如微生物体内的有机酸与吸入的铵结合生成氨基酸)等过程,都能使土壤中的有物质不断更新,保持甚至提高有机质含量,减缓有机质的消亡。因此,施用有机肥料固然可明显提高土壤有机质含量,施用化肥在保持土壤有机质方面也有积极作用[2]。因此,有机无机肥料配合施用不但能使作物获得高产,而且能够保持和改善土壤肥力。中国历来倡导和贯彻有机肥料和化学肥料相结合的施肥制度,实际生产中化肥与有机肥混合或配合使用十分常见。广州市耕地土壤监测的耕作记录统计显示,52.4%监测点农户施用有机肥料,平均施用量为每年562.7 kg/667m2;监测点土壤有机质、全氮和pH 均呈平稳衡定态势,表明长期的常规耕作施肥没有使土壤中的有机质含量降低和导致土壤酸化,保持着稳定的土壤肥力[3]。 秸秆还田也是保持土壤肥力的一项措施,对于还到田中的秸秆、根茬越多相应的微生物活动也愈旺盛,这对平衡和补偿土壤有机质具有重要意义。,平衡合理地施肥,特别是化肥与有机肥结合,是促进作物增产、提高土壤肥力、发展现代化农业保障农业可持续生产的有效途径和重要手段。

土壤中的四个因素决定着土壤肥力的高低-推荐下载

土壤中的四个因素决定着土壤肥力的高低 1 土壤水分 1.1 土壤水分类型 土壤水分常以三种形式存在于土壤中,束缚水。紧紧吸附在土粒表面,不能流动,也很难为作物根系吸收的水分叫束缚水。土粒越细,吸附在土粒表面的束缚水越多;毛管水。土粒之间小于0.1mm的小孔隙叫毛细管,毛细管中的水可以在土壤中上下、左右移动,是供作物吸收利用的主要有效水。因此,毛管水对作物生长发育最为重要;重力水。是土粒之间大于0.1mm大孔隙中的水分。由于受重力作用只能向下流动,所以叫重力水。在水稻田中,重力水是有效的水分。在旱田中,重力水只能短期被植物利用,如较长期地充满着重力水(即地里积水),则土壤空气缺乏,对作物生长非常不利。 1.2 土壤水分的有效性 土壤水分并不能全部被作物吸收利用,束缚水和重力水都是不能被作物利用的无效水,只有毛管水是能被作物利用的有效水。当土壤中只存在着束缚水时,因作物不能利用,而表现出萎蔫,这时的土壤含水量叫萎蔫系数。随着土壤水分的增加毛细管中开始充水,当土壤中毛细管全部充满水时的含水量,叫田间持水量。土壤有效水的数量是田间持水量减去萎蔫系数的数值。 土壤有效水含量的多少,主要受土壤质地、结构、有机质含量的影响。砂土和黏土有效水都低于壤土。具有团粒结构的土壤毛细孔隙增加,有效水含量高。 2 土壤养分 2.1 土壤养分的有效性 根据作物吸收土壤养分的难易,可把土壤养分分为两类。一类是速效态养分叫有效养分,另一类是迟效态养分又叫潜在养分。速效态养分以离子、分子状态存在于土壤溶液中和土壤胶凿表面上,能够直接被作物吸收利用。持效养分存在于土壤矿物质和有机质中,难溶于水而不能被作物直接吸收利用,需经化学作用和微生物作用,分解成可溶性的速效养分才能被吸收。理想的土壤,不但要求养分种类齐全,含量高,而且要求速效和迟效各占一定比例,使养分能均衡持久地供给作物利用。

长期施肥对土壤肥力的影响

土 壤(Soils), 2011, 43 (3): 336~342 长期施肥对土壤肥力的影响① 龚 伟1,2, 颜晓元1*, 王景燕2 (1 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所), 南京 210008; 2 四川农业大学林业生态工程省级重点实验室,四川雅安 625014) 摘 要: 基于长期试验资料,从土壤肥力的角度综述了长期施肥对土壤肥力指标有机质、N素、P素和K素含量,微生物生物量及数量和土壤酶活性的影响,指出长期施用有机肥及有机肥与化肥配施是维持和提高土壤肥力的关键,可促进农田生态系统可持续发展。 关键词: 长期施肥;土壤肥力;有机肥;化肥 中图分类号: S147.2;S158 土壤是具有生物活性的自然体,土壤肥力的高低是决定土地生产力的基本条件[1]。利用有机肥料培肥土壤是我国农业的特色之一,自20世纪80年代以来,中国化肥施用量快速增加,而有机肥用量逐渐减少,施用化肥成为最主要的粮食增产措施[2]。肥料在粮食生产中起着非常重要的作用,合理施肥,不仅能为作物生长创造养分贮量丰富、有效性高、贮供协调的土壤生态环境,而且还能调节土壤酸碱性,改善土壤结构和理化性质,协调土壤水、肥、气、热诸因素,提高土壤肥力,从而增加作物产量和改善农产品质量;但不合理施肥不仅导致肥料利用率低,且不利于作物稳产和土壤培肥[3]。由于各种肥料养分对作物的增产效应各不相同,不同的施肥措施会影响作物产量。因此,如何合理施肥,提高作物产量、维持和提高土壤肥力,是目前需要研究的课题,长期的化肥投入对粮食持续生产和土壤肥力的影响及其程度和趋势也一直是人类关注的重要科学问题[4]。长期肥料定位监测试验,具有时间上反复证明、信息量极为丰富、数据准确可靠、解释能力强、在生产上可提供决策性建议等优点。本文以长期试验研究资料为基础综述了长期施肥对土壤肥力影响的研究进展,以期为维持和提高农田生态系统土壤肥力提供参考,为生产与生态环境共赢合理施肥提供理论支撑。 1 施肥对土壤有机质的影响 土壤中有机质含量虽少,但在土壤肥力上的作用很大,是土壤中各种营养元素的重要来源,几乎能为作物提供生长所需的所有营养元素,也是土壤微生物必不可少的 C 源和能源,由于它具有胶体特性,能吸附较多的阳离子,因而使土壤具有保肥力和缓冲性[5]。土壤有机质在土壤物理、化学和生物学特性中发挥着极其重要的作用,是评价土壤肥力的一个重要指标[6]。大量的长期定位施肥试验表明,施用化肥对土壤有机质含量的影响结果各异,且不同施肥措施对土壤有机质的影响不同。有研究表明在化肥施用过程中,与不施肥对照(CK)相比,化肥N、P 和 K 三者(NPK)或两者(NP、NK、PK)配施,以及化肥N、P 和K (N、P、K)单独施用,均能提高土壤有机质含量。如陈永安等[7]和张爱君等[8]的试验(分别为 4 年和 19 年)表明,耕层(0 ~ 20 cm)土壤有机质含量为 NPK >NP>N>CK;陈修斌等[9]的试验(11 年)表明,耕层土壤有机质含量 NP>N>P>CK;宋永林等[10]的试验(14 年)表明,耕层土壤有机质含量为 NP>NPK >PK>NK>N>CK。施用化肥处理没有外源有机物的输入,土壤有机 C 的来源主要是作物残体自然还田,施肥能提高作物产量,作物产量的差异直接影响着进入土壤的有机物数量,土壤有机质积累也与作物根系输入有关[11]。虽然单施化肥不能明显提高土壤中有机质含量,但是它可以促进农作物根系的迅速生长,从而提高根际有机物质的输入。同时,根系分泌物是作物向土壤输入有机 C 的重要途径。Kuzyakov等[12]的研究发现,小麦同化产物的 20% ~ 30% 分配进入地下。因此,化肥对土壤有机 C 含量提高程度的不同与化肥对作物生长促进作用密切相关。 ①基金项目:中国科学院知识创新工程重要方向资助项目(kzcx2-yw-406-2, kzcx2-yw-312)资助。 * 通讯作者 (yanxy@https://www.doczj.com/doc/8517213325.html,) 作者简介:龚伟(1980—),男,四川崇州人,博士,副教授,主要从事土壤生态方面研究。E-mail: gongwei@https://www.doczj.com/doc/8517213325.html,

土壤肥力调查实验方案

土壤肥力调查实验方案 1—1 土壤样品的采集与处理 土壤样品的采集是土壤分析工作中的一个重要环节,是直接影响着分析结果和结论是否正确的一个先决条件。由于土壤特别是农业土壤本身的差异很大,采样误差要比分析误差大得多,因此必须重视采集有代表性的样品。另外,要根据分析目的不同而采用不同的采样和处理方法。 1—1.1 土壤样品的采集 1 土样的采集时间和工具 土壤中有效养分的含量因季节的不同而有很大的差异。分析土壤养分供应的情况时,一般都在晚秋或早春采样。采样时要特别注意时间因素,同一时间内采取的土样分析结果才能相互比较。常用的采样工具有铁锨、管形土钻和螺旋土钻。 2 土壤样品采集的方法 采样的方法因分析目的不同而不同。 (1)土壤剖面样品。研究土壤基本理化性质,必须按土壤发生层次采样。一般每层采样1kg,分别装入袋中并做好标记。 (2)土壤物理性质样品。如果是进行土壤物理性质的测定,必须采集原状土壤样品。在取样过程中,须保持土块不受挤压,样品不变形,并要剥去土块外面直接与土铲接触而变形部分。 (3)土壤盐分动态样品。研究盐分在土壤剖面中的分布和变动时,不必按发生层次采样,可从地表起每10cm或20cm采集一个样品。 (4)耕作层土壤混合样品。为了评定土壤耕层肥力或研究植物生长期内土壤耕层中养分供求情况,采用只取耕作层20cm深度的土样,对作物根系较深的或熟土层较厚的土壤,可适当增加采样深度。 采样点的选择一般可根据土壤、作物、地形、灌溉条件等划分采样单位。在同一采样单位里地形、土壤、生产条件应基本相同。土壤的混合样品是由多点混合而成。一般采样区的面积小于10亩时,可取5个点的土壤混合;面积为10—40亩时,可取5—15个点的土壤混合;面积大于40亩时,可取15—20个点的土壤混合。在丘陵山区,一般5—10亩可采一个混合样品。在平原地区,一般30—50亩可采一个混合样品。 采样点的分布方式主要有: 对角线取样法(图1):适用于面积不大,地势平坦,肥力均匀的地块。 棋盘式取样法(图2):适用于中等面积,地势平坦、地形完整,但地力不均匀的地块。 之字形取样法(图3):适用于面积较大,地势不平坦地形多变的地块。××

影响土壤健康的六大因素

影响土壤健康的六大因素 土壤是我们赖以生存的家园,你是否知道健康土壤到底是什么样子?现给大家作以分析。 一、土壤有机质 土壤中有机质含量与土壤肥力、作物健康度、作物产量等有着很大的联系。资料显示,在一定范围内,有机质的含量与土壤肥力水平呈正相关。有机质含量丰富的土壤往往表现为透水透气性好、供肥能力强、不容易出现板结以及盐渍化的情况。因此说,提高土壤有机质是耕作管理的第一要务。 二、土壤微生物 作为土壤的活跃组成部分,土壤微生物在自己的生活过程中,通过代谢活动的氧气和二氧化碳的交换,以及分泌的有机酸等有助于大团粒结构的形成,最终形成真正意义上的土壤。 在我们的农田中,微生物的作用尤为重要,杂草、作物的枯叶、杂草的烂根以及施入土壤中的粪便都需要微生物才可以腐烂分解,释放出养分,形成腐殖质,进而提高土壤肥力,

改善土壤结构。在农药、化肥被大量滥用的今天,微生物还可以降解土壤中的有机污染物,降低农残危害,帮助土壤恢复健康。 三、土壤中微量元素 在土壤和植物中,通常认为中量元素包括钙、镁、硫,微量元素包括铁、铜、锌、锰、钼、硼、镍和氯等。我们在农业生产时会发现,当作物不健康时,往往是由于其中的某一个中量元素或微量元素缺失而导致的,当作物的各种元素都有充足的补给时,才会有健康的作物,才会生产出优质的果实。因此说,给土壤不仅要补充作物生长所必须的N、P、K等大量元素,中微量元素的补充也是相当重要的。 四、土壤酸碱度 不同的植株都有自己喜欢的土壤,将南方的作物直接栽种在北方,即使将它放在温室中提供同等的热量,如果土壤还是北方的土壤,那么它就不会生长得很好,那是因为每个作物都有自己喜欢的酸碱度。

土壤养分分级

土壤养分分级 土壤养分的重要指标主要包括土壤有机质、全氮、有效磷和速效钾,其含量的状况是土壤肥力的重要方面。上世纪八十年代进行的第二次土壤普查,对北京市土壤进行了大规模的养分调查测定工作,获取了大量的农化分析结果,涉及的样品约有13000多个,对全市土壤养分有了一个全面的了解掌握。但由于土壤速效养分具有易变的特性,其中氮素养分变化相对磷钾的变化要更大些,土壤氮素需要适时监控,进行养分的及时调控,磷钾养分一般采用衡量监控,指导养分管理,一般3-5年进行一次即可,因此土壤养分氮素状况的调查可更密集一些,磷钾的相对少些。 有机质是土壤肥力的标志性物质,其含有丰富的植物所需要的养分,调节土壤的理化性状,是衡量土壤养分的重要指标。它主要来源于有机肥和植物的根、茎、枝、叶的腐化变质及各种微生物等,基本成分主要为纤维素、木质素、淀粉、糖类、油脂和蛋白质等,为植物提供丰富的C、H、O、S及微量元素,可以直接被植物所吸收利用。按全国第二次土壤普查的分级标准将土壤养分划分为六级: 表1 全国第二次土壤普查分级标准 一级二级三级四级五级六级 很高高中等低很低极低 >44-33-22-11-0.6<0.6 据全国第二次土壤普查及有关标准,将养分含量分为以下级别(见下表)。 表2 土壤养分分级标准 项目有机质 %全氮 % 速效氮 PPM 速效磷 PPM(P2O5) 速效钾 K2O 级别含量 1>4>0.2>150>40>200 23~40.15~0.2120~15020~40150~200 32~30.1~0.1590~12010~20100~150 41~20.07~0.160~905~1050~100 50.6~10.05~.07530~603~530~50

土地利用变化对土壤肥力影响研究进展

第20卷 第1期世 界 林 业 研 究Vol.20 No.1 2007年2月World Forestry Research Feb12007 土地利用变化对土壤肥力影响研究进展3 肖 烨1,2 张于光2 张小全2 易图永1 (1湖南农业大学生物安全科技学院,长沙410128; 2中国林业科学研究院森林生态环境与保护研究所,国家林业局森林生态环境重点实验室,北京100091) 摘要:随着人类活动对土地利用的范围不断扩大、强度不断加剧,不同的土地利用方式改变了土壤的理化性质、养分状况、土壤酶活性,进而对土壤肥力造成了不同程度的影响。文中从土壤微生物、养分状况、土壤酶活性和土壤的物理性质4个方面综述了土地利用变化对土壤肥力的影响。 关键词:土地利用变化,土壤酶活性,土壤有机质,土壤肥力 中图分类号:S714 文献标识码:A 文章编号:1001-4241(2007)01-0006-04 Rev i ew on the I nfluence of Land Use Changes on So il Fertility Xiao Ye1,2Zhang Yuguang2Zhang Xiaoquan2Yi Tuyong1 (1College of B i osafety Science and Technol ogy,Hunan Agricultural University,Changsha410128,China; 2I nstitute of Forestry Ecol ogy,Envir on ment and Pr otecti on,Chinese Acade my of Forestry, the Key Laborat ory of Forest Ecol ogy and Envir on ment of State Forestry Ad m inistrati on,Beijing100091,China) Abstract:Land use is a general reflecti on of the human activities of using land and the most exten2 sive,direct and p r ofound influence fact ors t o the s oil fertility.W ith the intensity and amp lificati on of land use,land use changes i m pacts the s oil physicoche m ical p r operties,which directly i m pacted the s oil fertility,nutrient status and s oil enzy me activities.This paper revie wed the effect of land use changes on s oil fertility f oll owing the changes of s oil m icr obe,nutrient status,s oil enzy me ac2 tivities and s oil physical p r operties. Key words:land use changes,s oil enzy me activities,s oil organic matter,s oil fertility 土地利用是指人类使用土地的方式或目的,如农业、林业、居住地、草地、湿地、果园等;土地利用变化主要指农业、林业和其他土地管理活动对整个景观的改变[1]。土地利用方式的变化以及不同的管理措施等必然会导致土壤性质的变化以及土地生产力的改变[2]。我国是土地利用/覆盖变化巨大的国家,几千年的人类活动使得土地利用方式发生了很大的变化,近些年来又开展了大规模的退耕还林还草工作和天然林保护工程,这些活动无疑导致了土地利用/覆盖发生巨大变化进而影响着许多自然现象与生态过程[3]。土地利用作为人类利用土地各种活动的综合反映,又是影响土壤肥力变化最普遍、最直接、最深刻的因素[4]。 土地利用变化与土壤肥力关系的研究对于了解生态过程、动态和进行生态系统适应性管理是十分必要的,目前,土地利用变化与土壤肥力的关系已经成为国内外科学家关注的热点之一[5]。 1 土地利用变化对土壤微生物的影响 一般而言,生境条件越适宜,土壤微生物种类多样性就越高,即群落的多样性指数可用来衡量其环境的优劣[6]。土壤微生物的多样性除了受土壤本身性质影响外,还受到许多外在因素 3收稿日期:2006-04-21 基金项目:国家自然科学基金(40271109) 作者简介:肖烨(1979-),女,硕士研究生,E-mail:xiaoye417@https://www.doczj.com/doc/8517213325.html, 通讯作者:张小全(1965-),Tel:(010)62889512,E-mail:xiaoquan@https://www.doczj.com/doc/8517213325.html,

土壤肥力分级指标

土壤肥力分级指标 This model paper was revised by the Standardization Office on December 10, 2020

一、全国第二次土壤普查推荐的土壤肥力分级 二、土壤微量元素含量分级 三、北京市土壤养分指标评分规则 北京市土壤养分分等定级评价选择土壤有机质、全氮(N)或碱解氮(N)、有效磷(P)和速效钾(K)共4个指标,各指标的评分规则如表1所示。 表1 北京市土壤养分指标评分规则

注:各指标数值分级区间的分界点包含关系均为下(限)含上(限)不含,例如有机质“高”等级中,“25-20”表示“大于或等于20,且小于25的区间值”,其他类同。 2、北京市土壤养分指标权重 根据北京市土壤养分特点和各养分指标在土壤肥力构成中的贡献,参考历史资 料和有关专家的意见确定北京市土壤养分各参评指标权重值(表2)。 表2 北京市土壤养分指标权重

3、土壤综合养分指数计算 计算每个评价地块的养分综合指数,采用加法模型: I=∑Fi×Wi (i=1,2,3,……,n),式中:I代表地块养分综合指数,Fi =第i个指标评分值,Wi=第i个指标的权重。 4、北京市土壤养分等级划分规则 根据各指标的评分值和指标对应的权重值计算得到的养分综合指数,依据北京市土壤养分等级划分规则(表3)将土壤养分划分为“极高、高、中、低和极低”共5个等级。 表3 北京市土壤养分等级划分规则 注:综合评分数值分级区间的分界点包含关系均为下(限)含上(限)不含,如有“高”等级中,“95-75”表示“大于或等于75,且小于95 的区间值”,其他类同。

土壤肥力的影响因素

摘要土壤肥力既是土壤质量的重要组成部分,也是土地生产力的基础。随着精准农业的提出和发展,土壤肥力的空间变异性研究,已成为现代土壤科学研究的热点之一。本文从施肥制度、土地利用方式、土壤酸碱性、经济条件和作物种类等方面对土壤肥力进行了分析,从而可以为合理施肥提供一些理论基础。 关键词土壤肥力因素影响 土壤是人类赖以生存的物质基础,而肥力又是土壤的本质属性,人类对土壤肥力的研究具有相当长的历史。尽管到目前为止对土壤肥力的定义并没有统一的标准,但人们对土壤肥力的基本属性却进行了广泛的研究,对土壤肥力的本质也进行了深入探讨,其中某些领域的研究在指导农业生产过程中也起到了非常重要的作用[1]。 1 施肥制度对土壤肥力的影响 化肥直接、快速地增加土壤速效养分,供应作物生长利用;有机肥料则除其中的养分大多可直接被作物吸收利用外,有机物质如纤维素、半纤维素、脂肪、蛋白质、氨基酸、激素和胡敏酸类等及其腐解产物将影响土壤的物理、化学和生物学性质,供给土壤微生物以碳源,促进其繁衍活动。化肥施入土壤后也能被微生物直接利用,微生物体的代谢,以及化肥直接与土壤中的有机物及其降解的中间产物结合成新的有机物(如微生物体内的有机酸与吸入的铵结合生成氨基酸)等过程,都能使土壤中的有物质不断更新,保持甚至提高有机质含量,减缓有机质的消亡。因此,施用有机肥料固然可明显提高土壤有机质含量,施用化肥在保持土壤有机质方面也有积极作用[2]。因此,有机无机肥料配合施用不但能使作物获得高产,而且能够保持和改善土壤肥力。中国历来倡导和贯彻有机肥料和化学肥料相结合的施肥制度,实际生产中化肥与有机肥混合或配合使用十分常见。广州市耕地土壤监测的耕作记录统计显示,%监测点农户施用有机肥料,平均施用量为每年 kg/667m2;监测点土壤有机质、全氮和pH 均呈平稳衡定态势,表明长期的常规耕作施肥没有使土壤中的有机质含量降低和导致土壤酸化,保持着稳定的土壤肥力[3]。 秸秆还田也是保持土壤肥力的一项措施,对于还到田中的秸秆、根茬越多相应的微生物活动也愈旺盛,这对平衡和补偿土壤有机质具有重要意义。,平衡合理地施肥,特别是化肥与有机肥结合,是促进作物增产、提高土壤肥力、发展现代化农业保障农业可持续生产的有效途径和重要手段。 2 土地利用方式对土壤肥力的影响

土壤养分分级等级标准

农业土壤养分分级标准 土壤养分分级标准主要是针对有机质、全氮、速效氮、速效磷和速效钾的含量进行分级, 每种级别对不同成分的含量不同。而实际工作中,我们可以参照这个标准进行测试分析,以 了解土壤的真实肥力情况。 而土壤养分是指存在于土壤中的植物必须的营养元素。包括碳(C)、氮(N)、氧(O)、 氢(H)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、锰(Mn)、铜(Cu)、锌 (Zn)、硼(B)、钼(Mo)、氯(Cl)等16种。在自然土壤中,除前三种外,土壤养分主要 来源于土壤矿物质和土壤有机质,其次是大气降水、破渗水和地下水。 有机质是土壤肥力的标志性物质,其含有丰富的植物所需要的养分,调节土壤的理化性 状,是衡量土壤养分的重要指标。它主要来源于有机肥和植物的根、茎、叶的腐化变质及各 种微生物等,基本成分主要为纤维素、木质素、淀粉、糖类、油脂和蛋白质等,为植物提供 丰富的C、H、O、S及微量元素,可以直接被植物所吸收利用。其中有机质的分级可作为土 壤养分分级,土壤养分分级等级标准共六级,且六级为最低,一级为最高。 表1 土壤pH值分级 注:按:1水土比例浸拌土壤,pH玻璃电极和甘汞电极(或复合电极)测定。 表2 有机质及大量元素养分含量分级 注:有机质测定为重铬酸钾氧化-容量法;碱解氮测定为碱解扩散法;速效磷测定为碳酸氢钠提取-钼锑抗比色法(Olsen法);速效钾测定为醋酸铵浸提-火焰光度计法。 表3 中量元素养分临界值(mg/kg)

注:有效钙和有效镁即交换性钙、镁,测定方法为醋酸铵提取-原子吸收分光光度计(或火焰光度计)测定;有效硫测定为磷酸盐-醋酸提取,硫酸钡比浊。 表4 有效微量元素含量分级(mg/kg) 注:铁、锰、铜、锌分析方法均为DTPA溶液浸取-原子吸收分光光度法;钼的分析方法为草酸-草酸铵浸提—极谱法;硼的分析方法为沸水浸提-姜黄素比色法。 表5 阳离子交换量分级(meq/100g土) 注:阳离子交换量测定方法为EDTA-铵盐浸提,蒸馏滴定法。 山西云大中天环境科技有限公司

轮作对土壤肥力的影响

轮作对土壤肥力的影响 摘要轮作是在一定年限内在同一地块上有顺序地轮换种植不同的农作物,通过协调作物与土壤的关系,实现持续增产的一项具体有效措施。本文概述了轮作对土壤有机质、土壤养分利用、土壤结构等的作用,提出了合理轮作对土壤肥力的影响。 关键词轮作;作物;土壤;土壤肥力 轮作是指在一定年限内在同一地块上有顺序地轮换种植不同的农作物,通过协调作物与土壤的关系,实现持续增产的一项具体有效措施。合理轮作可以使根系深浅不同、吸收不同种类养分的作物相互搭配,达到全面利用土壤养分,改善土壤的理化性状,提高土壤肥力,实现作物高产的目的。轮作对土壤肥力的影响主要表现在以下7个方面: 1)轮作有利于提高土壤有机质含量 土壤中丰富的有机质和腐殖质是实现作物高产的前提。连作对土壤有机质消耗量大,而轮作能够维持土壤有机质的含量。各种作物秸秆、残茬、根系和落叶是补充土壤有机质和养分的重要来源。不同作物残留有机质种类和数量不同,如马铃薯、叶菜类以及果菜类遗留在土壤中较少,而豆科作物、禾本科作物的枯枝落叶和根系等残茬遗留在土壤中的相对较多,三叶草、豆科等作物残留有机质的数量多,并富含钙质,而且还能通过根瘤菌固定空气中的氮素,提高土壤中氮素含量,避免土壤有机质的下降,影响土壤肥力。 2)轮作有利于均衡利用土壤中养分 在同一地块长期连续种植对土壤养分需求相同的作物,就会造成土壤中某些营养元素片面消耗过多,使土壤营养元素失衡,产生缺素症,影响作物正常 生长发育。不同作物对土壤中营养元素吸收和利用能力有很大差异,如玉米、稻、麦等禾谷类作物对氮、磷肥消耗较多,对钙吸收较少;豆科作物吸收磷、钙较多,对硅吸收较少;烟草、薯类作物对钾肥需求量较大;豆类作物能固定空气中的氮素,对土壤中氮素需求较少。在禾本科作物种植之后,土壤含氮量较高,土质较疏松,可种植需氮较多的白菜类、茄果类、瓜类等,再次种植需氮素较少的根菜类和葱蒜类,而以需氮素最少的豆类放在最后;荞麦、豆类和油菜能利用土壤中难溶性磷,而小麦、玉米、棉花只能利用有效磷;叶菜类、十字花科蔬菜作物根系分泌有机酸,可使土壤中难溶性磷得以溶解和吸收,具有富集土壤磷的功能。但多数作物对土壤中难溶性磷吸收利用率低。因此,实行合理轮作,有利于保持和提高土壤有机质含量,均衡利用土壤中各种营养元素,提高土壤肥力,并更好地促进作物生长,提高作物产量。 3)轮作有利于提高不同层次土壤中养分的利用

试述土壤酸碱性类型及其影响因素

1.试述土壤酸碱性类型及其影响因素。如何调节土壤的酸碱性。 答:酸性类型:(1)活性酸(2)潜在酸影响因素:(一)土壤胶体类型和性质①土壤胶体的极限PH值②土壤胶体上酸基的解离常数K 对PH值的影响(二)土壤盐基饱和度(三)土壤空气中的CO2的分压(四)土壤水分含量(五)土壤氧化还原条件酸性的调节:通常以施用石灰或石灰粉来调节改良。沿海地区可以用蚌壳灰、草木灰,它们既是良好的钾肥,同时也起中和酸性的作用;沿海的咸酸田在采用淡水洗盐的同时,也能把一些酸性物质除掉。土壤碱性的调节:(1)施用有机肥料(2)施用硫磺、硫化铁及废硫酸或黑矾(FeSO4)等。(3)对碱化土、碱土,可施用石膏、硅酸钙。 2.试述土壤氧化还原状况与植物生长的关系?如何调节土壤氧化还原状况? 答:(一)与植物生长的关系:旱地土壤的Eh值在400~700m V之间,多数作物可以正常发育,过高或过低对植物营养不利。水田土壤Eh 值变动较大,在排水种植旱作物期间,其Eh值可达500m V以上,在淹水期间,可低至-150m V以下。调节:以水稻来讲,水稻土的氧化还原的调节,通常通过排灌和施用有机肥等来实现的,在强氧化条件下,要解决水源问题,并增施有机肥料。反之,在强还原条件的土壤,则应采取开沟排水,降低地下水位等措施。对于一般水稻土,主要通过施用有机肥料和适当灌水,使土壤还原条件适度发展,然后根据水稻生长状况和土壤性质,采用排水、烤田等措施。 3.土壤有机质对土壤肥力的影响及其调控的基本途径与措施。 答:对土壤肥力的影响:土壤有机质可增强土壤的保肥性。调控的途径:(一)增加土壤有机质的途径(1)种植绿肥:种植绿肥是一个用来培肥土壤的有效措施。(2)增施有机肥料:表现在两个方面,一是改变或改善土壤的物理、化学和生物学性状;二是扩大土壤养分库,尤其是土壤有效养分库,从而改善土壤养分状况和提高对植物所需养分的供给力。(3)秸秆还田:一般是指将作物收获的秸秆切碎,不经堆腐直接翻入土壤。(二)调节土壤有机质的分解速率 4.试述土壤缓冲作用的机理及其影响机理及其影响因素。 答:缓冲作用的机理(1)土壤胶体的阳离子代换作用是土壤产生缓冲性的主要原因(2)土壤溶液中的弱酸及其盐类的存在(3)土壤中两性物质的存在(4)酸性土壤中铝离子的缓冲作用影响因素:(1)土壤无机胶体:土壤的无机胶体种类不同,其阳离子交换量不同,缓冲性不同。土壤胶体的阳离子交换量愈大,缓冲性也愈强。(2)土壤质地:从不同的土壤质地来看,黏土>壤土>砂土,这是因为前者黏粒含量高,相应的阳离子的交换量亦大。(3)土壤有机质:土壤有机质的含量虽仅占土壤的百分之几,但腐殖质含有大量的负电荷,对阳离子的交换量贡献大。通常表土的有机质含量较底土的高,缓冲性也是表土较底土强。 5.试述土壤水、气、热与植物生长及土壤肥力的关系。 答:(一)土壤水分与植物生长的关系(1)土壤水分是植物正常生命活动的重要因素(2)作物发芽出苗对水分的需求:土壤水分是作物发芽出苗的必需条件(3)不同作物对水分的要求:作物种类不同对水分的要求是不同的(4)作物不同生育期对土壤水分的需求(二)土壤水分与土壤肥力的关系(1)土壤水分对土壤形成有极其重要的作用(2)土壤水分影响土壤的养分状况(3)土壤水分直接影响土壤空气和热量状况(4)土壤水分影响土壤的物理机械性和耕性(三)土壤空气与植物生长及土壤肥力的关系(1)影响种子萌发(2)影响根系的生长发育和吸收功能(3)影响生物活性和养分状况(4)影响植物生长的土壤环境状况(四)土壤温度与植物生长发育及土壤肥力的关系(1)土温影响植物种子发芽出苗(2)土温影响植物根系生长(3)土温影响植物的生理过程(4)土温对土壤肥力的影响6.试述我国土壤资源存在哪些问题?结合实际情况谈谈如何保护好我国的土壤资源。 答:存在问题:1)耕地面积的快速减少2)土壤退化严重3)不同区域的主要土壤资源问题如何保护:1)加强法律法规建设,实施严格的的土壤资源保护措施2)提高粮食安全与生态环境安全方面的忧患意识3)提高土壤学的研究水平,提高土壤资源保护的科技含量4)增加土壤保护退化方面的投入。 1不同质地与不同质地剖面类型的肥力性状及其利用改良措施。 答:不同质地剖面的肥力特征:土壤质地剖面:土壤不同质地层次在土体中的排列状况。 质地剖面模式:一通体均一型二上粗下细型(农业最理想的模式)三上细下粗型四中间夹砂型和中间夹黏型 改良措施:(1)掺砂掺黏,客土调剂。(2)翻淤压砂或翻砂压淤。(3)引洪漫淤或引洪漫砂。(4)增施有机肥,改良土性。

相关主题
文本预览
相关文档 最新文档