当前位置:文档之家› 点焊方法和工艺

点焊方法和工艺

点焊方法和工艺
点焊方法和工艺

点焊方法和工艺

点焊方法和工艺

一、点焊方法分类

对焊件馈电进行电焊时,应遵循下列原则:①尽量缩短二次回路长度及减小回路所包含的空间面积,以节省能耗;②尽量减少伸入二次回路的铁磁体体积,特别是避免在焊接不同焊点时伸入体积有较大的变化,以减小焊接电流的波动,保证各点质量衡定(在使用工频交流时)。

1.双面单点焊所有的通用焊机均采用这个方案。从焊件两侧馈电,适用于小型零件和大型零件周边各焊点的焊接。

2.单面单点焊当零件的一侧电极可达性很差或零件较大、二次回路过长时,可采用这个方案。从焊件单侧馈电,需考虑另一侧加铜垫以减小分流并作为反作用力支点。

3.单面双点焊从一侧馈电时尽可能同时焊两点以提高生产率。单面馈电往往存在无效分流现象,浪费电能,当点距过小时将无法焊接。在某些场合,如设计允许,在上板二点之间冲一窄长缺口可使分流电流大幅下降。

4.双面双点焊图1b及j为双面双点的方案示意。图2-12b方案虽可在通用焊机上实施,但两点间电流难以均匀分配,较难保证两点质量一致。而图1j由于采用推挽式馈电方式,使分流和上下板不均匀加热现象大为改善,而且焊点可布置在任意位置。其唯一不足之处是须制作二个变压器,分别置于焊件两侧,这种方案亦称推挽式点焊。两变压器的通电需按极性进行。

5.多点焊当零件上焊点数较多,大规模生产时,常采用多点焊方案以提高生产率。多点焊机均为专用设备,大部分采用单侧馈电方式见图1h、i,以i方式较灵活,

二次回路不受焊件尺寸牵制,在要求较高的情况下,亦可采用推挽式点焊方案。目前一般采用一组变压器同时焊二或四点(后者有二组二次回路)。一台多点焊机可由多个变压器组成。可采用同时加压同时通电、同时加压分组通电和分组加压分组通电三种方案。可根据生产率、电网容量来选择合适方案。

二、点焊循环

点焊过程由预压、焊接、维持和休止四个基本程序组成焊接循环,必要时可增附加程序,其基本参数为电流和电极力随时间变化的规律。

1.预压(F>0,I=0)这个阶段包括电极压力的上升和恒定两部分。为保证在通电时电极压力恒定,预压时间必须保证,尤其当需连续点焊时,须充分考虑焊机运动机构动作所需时间,不能无限缩短。

预压的目的是建立稳定的电流通道,以保证焊接过程获得重复性好的电流密度。对厚板或刚度大的冲压零件,有条件时可在此期间先加大预压力,而后再回复到焊接时的电极力,使接触电阻恒定而又不太小,以提高热效率。

2.焊接(F=Fω,I=Iω)这个阶段是焊件加热熔化形成熔核的阶段。焊接电流可基本不变(指有效值),亦可为渐升或阶跃上升。在此期间焊件焊接区的温度分布经历复杂的变化后趋向稳定。起初输入热量大于散失热量,温度上升,形成高温塑性状态的连接区,并使中心与大气隔绝,保证随后熔化的金属不氧化,而后在中心部位首先出现熔化区。随着加热的进行熔化区扩大,而其外围的塑性壳(在金相试片上呈环状故称塑性环)亦向外扩大,最后当输入热量与散失热量平衡时达到稳定状态。当焊接参数适当时,可获得尺寸波动小于15%的熔化核心。在此期间可产生下列现象:

⑴液态金属的搅拌作用液态金属通电时受电磁力作用产生漩涡状流动,当把熔核视作地球状且电极端处为二极,其运动方向为——赤道部分由周围向球心流动而

后流经两极再沿外表向赤道呈封闭状流动。对于同种金属点焊,搅拌仅需将焊件表面的氧化膜搅碎即可,但异种金属点焊时,必须充分搅拌以获得均质的熔化核心。如通电时间太短,搅拌不充分将产生漩涡状的非均质熔核。

⑵飞溅飞溅按产生时期可分为前期和后期两种;按产生部位可分为内飞溅(处于两焊件间)和外飞溅(焊件与电极接触侧)两种。

前期飞溅产生的原因大致是:焊件表面清理不佳或接触面上压强分布严重不匀,造成局部电流密度过高引起早期熔化,此时因无塑性环保护必发生飞溅。

防止前期飞溅的措施有:加强焊件清理质量,注意预压前的对中。有条件时可采用渐升电流或增加预热电流来减慢加热速度,避免早期熔化而引起飞溅。

后期飞溅产生的原因是:熔化核心长大过度,超出电极压力有效作用范围,从而冲破塑性环在径向造成内飞溅,在轴向冲破板表面造成外飞溅。这种情况一般产生在电流较大、通电时间过长的场合。可用缩短通电时间及减小电流的方法来防止。

飞溅在外表面首先影响外观,其次产生的疤痕影响耐腐蚀及疲劳性能。内部飞溅的残迹有可能在运行时脱落,如进入管路(如油管)将造成堵塞等严重事故。

⑶胡须在加热到半熔化温度的熔核边缘,当某些材料(如高温合金)中低熔点夹杂物较多聚集在晶界处时,这部分杂质首先熔化并在电极压力的作用下被挤出呈空隙。在随后的过程中,空间有时能被液态金属充填满,但亦可能未充填满,这种组织形貌在金相试样上称为胡须,而未充填满的胡须犹如裂纹是一种危险缺陷。

3.维持(F>0,I=0)此阶段不再输入热量,熔核快速散热、冷却结晶。结晶过程遵循凝固理论。由于熔核体积小,且夹持在水冷电极间,冷却速度甚高,一般在几周内凝固结束。由于液态金属处于封闭的塑性壳内,如无外力,冷却收缩时将产生三维拉应力,极易产生缩孔、裂纹等缺陷,故在冷却时必须保持足够的电极压力来压缩熔核体积,补偿收缩。对厚板、铝合金和高温合金等零件希望增加顶锻力来

达到防止缩孔、裂纹。这时必须精确控制加顶锻力的时刻。过早将因液态金属因压强突然升高使塑性环被冲破,产生飞溅;过晚则因凝固缺陷已形成而无效。此外加后热缓冷电流,降低凝固速度,亦有利于防止缩孔和裂纹的产生。

4.休止(F>0,I=0)此阶段仅在焊接淬硬钢时采用,一般插在维持时间内,当焊接电流结束,熔核完全凝固且冷却到完成马氏体转变之后再插入,其目的是改善金相组织。

三、点焊焊接参数

当采用工频交流电源时,点焊参数主要有焊接电流、焊接(通电)时间、电极压力和电极尺寸。

1.焊接电流Iω析出热量与电流的平方成正比,所以焊接电流对焊点性能影响最敏感。在其它参数不变时,当电流小于某值熔核不能形成,超过此值后,随电流增加熔核快速增大,焊点强度上升,而后因散热量的增大而熔核增长速度减缓,焊点强度增加缓慢,如进一步提高电流则导致产生飞溅,焊点强度反而下降。所以一般建议选用对熔核直径变化不敏感的适中电流(BC段)来焊接。

在实际生产中,焊接电流的波动有时甚大,其原因有:

①电网电压本身波动或多台焊机同时通电;②铁磁体焊件伸入焊接回路的变化;

③前点对后点的分流等。除选择对焊接电流变化较不敏感的参数外,解决上述问题的方法是反馈控制。目前最常用的有网压补偿法、恒流法与群控法。网压补偿法可用于所有各种情况,恒流法主要用于第②种情况,不能用于第③种情况,群控法仅用于第①种情况。

2.焊接时间tω通电时间的长短直接影响输入热量的大小,在目前广为采用的同期控制点焊机上,通电时间是周(我国一周为20ms)的整倍数。在其它参数固定的情况下,只有通电时间超过某最小值时才开始出现熔核,而后随通电时间的增长,

熔核先快速增大,拉剪力亦提高。当选用的电流适中时,进一步增加通电时间熔核增长变慢,渐趋恒定。但由于加热时间过长,组织变差,正拉力下降,会使塑性指标(延性比Fσ/Fτ)下降。当选用的电流较大时,则熔核长大到一定极限后会产生飞溅。

3.电极压力F电极压力的大小一方面影响电阻的数值,从而影响析热量的多少,另一方面影响焊件向电极的散热情况。过小的电极压力将导致电阻增大、析热量过多且散热较差,引起前期飞溅;过大的电极压力将导致电阻减小、析热量少、散热良好、熔核尺寸缩小,尤其是焊透率显著下降。因此从节能角度来考虑,应选择不产生飞溅的最小电极压力。此值与电流值有关,可参照文献中广为推荐的临界飞溅曲线见图5。目前均建议选用临界飞溅曲线附近无飞溅区内的工作点。

4.电极工作面尺寸其工作面尺寸参见下表。目前点焊时主要采用锥台形和球面形两种电极。锥台形的端面直径d或球面形的端部圆弧半径R的大小,决定了电极与焊件接触面积的多少,在同等电流时,它决定了电流密度大小和电极压强分布范围。一般应选用比期望获得熔核直径大20%左右的工作面直径所需的端部尺寸。其次由于电极是内水冷却的,电极上散失的热量往往高达50%的输入总热量,因此端部工作面的波动或水冷孔端到电极表面的距离变化均将严重影响散热量的多少,从而引起熔核尺寸的波动。因此要求锥台形电极工作面直径在工作期间每增大15%左右必须修复。而水冷孔端至表面距离在耗损至仅存3~4mm时即应更换新电极。

点焊时各参数是相互影响的,对大多数场合均可选取多种各参数的组合。

目前常用材料的点焊参数均可在资料中以表格或计算图形式找到,但采用前应根据具体条件作调整试焊。

由于材料表面状态及清理情况每批不尽相同,生产车间网压有波动、设备状况有变化,为保证焊接质量,避免批量次品,往往希望事先取得焊接参数允许波动的

区间。所以大批量生产的场合,对每批材料、每台刚大修后的设备须作点焊时允许参数波动区间的试验,其试验步骤如下:

1)确定质量指标,例如熔核直径或单点拉剪力的上下限。

2)固定其它参数,作某参数(例如电流)与质量指标的关系曲线,而后改变固定参数中之一(例如通电时间),再作焊接电流与质量的关系曲线,如此获得关系曲线族。

3)再把质量指标中合格部分用作图法形成此二参数(例如电流与时间)允许波动区间的叶状曲线。

可同样获得例如焊接电流与电极压力等的叶状曲线。在生产中把参数控制在叶状曲线内的工作点上即可。

P+T焊接工艺参数

P+T焊接设备对不锈钢产品工艺的要求 一、P+T焊接设备: 该设备由纵缝机、环缝机组成,适用于碳钢、不锈钢以及某些有色金属对接焊接。 纵缝机参数: 1、3-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用填丝盖面。拖罩保护焊缝。 2、工件精度要求: 焊缝直线度要求10m长直线度误差≤2mm(直线度不能保障时,可通过摄像监控系统调整焊枪位置) 对接间隙≤1/10T(T 为试件板厚)且不大于 错边≤(T 为试件板厚)且不大于1mm 3.工作对象 ①直径范围:φ1500~φ3200mm ②工件壁厚: 2-14mm(一次熔透8mm,大于8mm需开坡口填丝) ③工件长度:≤2500 mm ④工件材质:不锈钢、碳钢、钛基合金等 工件施焊端面采用机械加工,拼缝要求规则均匀 4.设备参数

可夹持最小壁厚: 2mm 可夹持最大壁厚: 14mm 焊枪行走速度: 100-3000mm/min 跟踪滑板速度:≤200mm/min 液压升降台承载:≤6T 一、设备的用途: 等离子环缝焊接系统用于各类碳钢\合金钢(碳钢、不锈钢、钛基合金等)环缝焊接,采用等离子焊接工艺,壁厚8mm以下可不开坡口直接焊接一次性单面焊双面成形。对于较薄板直接用等离子焊接;对于8mm 板厚以上视情况采用等离子添丝焊接的方式。焊接时正面有拖罩保护焊缝,反面有背气保护系统 设备采用一套飞马特等离子焊接系统和一套KM4030焊接操作机,一套视频系统,一套20T可调式滚轮架,采用等离子高效焊接,实现工件的环缝焊接。 电控系统部分以三菱PLC为控制核心,能够准确控制设备的各种动作,操作盒上安装有触摸屏,便于修改各项控制参数,使用安全可靠,故障率低。 1、焊接成型工艺: 2-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用TIG填丝盖面。拖罩保护焊缝。

电焊工基础知识

电焊工培训资料 一、基本知识 1.什么叫焊接? 答:两种或两种以上材质(同种或异种),通过加热或加压或二者并用,来达到原子之间的结合而形成永久性连接的工艺过程叫焊接. 2.什么叫电弧? 答:由焊接电源供给的,在两极间产生强烈而持久的气体放电现象—叫电弧。 〈1〉按电流种类可分为:交流电弧、直流电弧和脉冲电弧。 〈2〉按电弧的状态可分为:自由电弧和压缩电弧(如等离子弧)。 〈3〉按电极材料可分为:熔化极电弧和不熔化极电弧。 3.什么叫母材? 答:被焊接的金属---叫做母材。 4.什么叫熔滴? 答:焊丝先端受热后熔化,并向熔池过渡的液态金属滴---叫做熔滴。 5.什么叫熔池? 答:熔焊时焊件上所形成的具有一定几何形状的液态金属部分---叫做熔池。 6.什么叫焊缝? 答:焊接后焊件中所形成的结合部分。 7.什么叫焊缝金属? 答:由熔化的母材和填充金属(焊丝、焊条等)凝固后形成的那部分金属。 8.什么叫保护气体? 答:焊接中用于保护金属熔滴以及熔池免受外界有害气体(氢、氧、氮)侵入的 ?--保护气体。 9.什么叫焊接技术? 答:各种焊接方法、焊接材料、焊接工艺以及焊接设备等及其基础理论的总称—叫焊接技术。 10.什么叫焊接工艺?它有哪些内容? 答:焊接过程中的一整套工艺程序及其技术规定。内容包括:焊接方法、焊前准备加工、装配、焊接材料、焊接设备、焊接顺序、焊接操作、焊接工艺参数以及焊后处理等。 11.什么叫CO2焊接? 答:用纯度> 99.98% 的CO2做保护气体的熔化极气体保护焊—称为CO2焊。 12.什么叫MAG焊接? 答:用混合气体75--95% Ar + 25--5 % CO2 ,(标准配比:80%Ar + 20%CO2 )做保护气体的熔化极气体保护焊—称为MAG焊。 13.什么叫MIG焊接? 答:〈1〉用高纯度氩气Ar≥ 99.99%做保护气体的熔化极气体保护焊接铝及铝合金、铜及铜合金等有色金属; 〈2〉用98% Ar + 2%O2 或95%Ar + 5%CO2做保护气体的熔化极气体保护焊接实心不锈钢焊丝的工艺方法--称为MIG焊。 〈3〉用氦+氩惰性混合气做保护的熔化极气体保护焊。 14.什么叫TIG(钨极氩弧焊)焊接? 答:用纯钨或活化钨(钍钨、铈钨、锆钨、镧钨)作为不熔化电极的惰性气体保护电弧焊,简称TIG焊。

点焊方法及工艺参数选择

点焊方法及工艺参数选择 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各

对电极均由单独的变压器供电,全部电极同时压住工件的型式(图 11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。 三、不等厚度和不同材料的点焊 当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一边偏移,偏移的结果将使薄件或导电、

焊接工艺基本知识

焊接工艺基本知识 1什么是焊接接头?它有哪几种类型? 用焊接方法连接的接头称为焊接接头(简称为接头)。它由焊缝、熔合区、热影响区及其邻近的母材组成。在焊接结构中焊接接头起两方面的作用,第一是连接作用,即把两焊件连接成一个整体;第二是传力作用,即传递焊件所承受的载荷。 根据GB/T3375—94《焊接名词术语》中的规定,焊接接头可分为10种类型,即对接接头、T形接头、十字接头、搭接接头、角接接头、端接接头、套管接头、斜对接接头、卷边接头和锁底接头,如图1。其中以对接接头和T形接头应用最为普遍。

2什么是坡口?常用坡口有哪些形式? 根据设计或工艺需要,将焊件的待焊部位加工成一定几何形状的沟槽称为坡口。开坡口的目的是为了得到在焊件厚度上全部焊透的焊缝。 坡口的形式由 GB985—88《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》、GB986—88《埋弧焊焊缝坡口的基本形式及尺寸》标准制定的:常用的坡口形式有I形坡口、Y型坡口、带钝边U形坡口、双Y形 坡口、带钝边单边V形坡口等,见图2。

⑴坡口面焊件上所开坡口的表面称为坡口面,见图3。

⑵坡口面角度和坡口角度焊件表面的垂直面与坡口面之间的夹角称为坡口面角度,两坡口面之间的夹 角称为坡口角度,见图4。

开单面坡口时,坡口角度等于坡口面角度;开双面对称坡口时,坡口角度等于两倍的坡口面角度。坡口角度(或坡口面角度)应保证焊条能自由伸入坡口内部,不和两侧坡口面相碰,但角度太大将会消耗太多的填充材料, 并降低劳动生产率。

⑶根部间隙焊前,在接头根部之间预留的空隙称为根部间隙。亦称装配间隙。根部间隙的作用在于焊接底层焊道时,能保证根部可以焊透。因此,根部间隙太小时,将在根部产生焊不透现象;但太大的根部间隙,又会使根部烧穿,形成焊瘤。 ⑷钝边焊件开坡口时,沿焊件厚度方向未开坡口的端面部分称为钝边。钝边的作用是防止根部烧穿,但钝边值太大,又会使根部焊不透。 ⑸根部半径 U形坡口底部的半径称为根部半径。根部半径的作用是增大坡口根部的横向空间,使焊条能够伸入根部,促使根部焊透。 4试比较Y形、带钝边U形、双Y形三种坡口各自的优缺点? 当焊件厚度相同时,三种坡口的几何形状见图5。

电阻焊基本知识及操作要求

电阻焊基本知识及操作要求 一.电阻焊 1.1 电阻焊概念: 将被焊工件置于两电极之间加压,并在焊接处通以电流,利用电流流经工件接触面及其临近区域产生锝电阻热将其加热到熔化或塑性状态,使之达到金属结合而形成牢固接头的工艺过程。 1.2 电阻焊设备 是指采用电阻加热的原理进行焊接操作的一种设备,它主要由以下部分组成: ①焊接回路:以阻焊变压器为中心,包括二次回路和工件。 ②机械装置:由机架、夹持、加压及传动机构组成。 ③气路系统:以气缸为中心,包括气体、控制等部分 ④冷却系统:冷却二次回路和工件,保证焊机正常工作。 ⑤控制部分:按要求接通电源,并能控制焊接循环的各段时间及调整焊接电流等。 常见的手工点焊焊钳有X型、C型及特制型等,X型、C型结构示意图如下:

注:X型焊钳主要用来焊接水平或基本处于水平位置的工件; C型焊钳主要用来焊接垂直或近似垂直位置的工件;而特制焊钳主要用来焊接有特殊位置或尺寸要求的工件。 1.3 电阻点焊操作注意事项: ①焊接过程中,在电极与工件接触时,尽量使电极与工件接触点所在的平面保持垂直。(不 垂直会使电极端面与工件的接触面积减小,通过接触面的电流密度就会增大,导致烧穿、熔核直径减小、飞溅增大等焊接缺陷。) ②焊接过程中,应避免焊钳与工件接触,以免两极电极短路。 ③电极头表面应保证无其它粘接杂物,发现电极头磨损严重或端部出现凹坑,必须立即更 换。(因为随着点焊的进行,电极端面逐渐墩粗,通过电极端面输入焊点区域的电流密度逐渐减小,熔核直径减小。当熔核直径小于标准规定的最小值,则产生弱焊或虚焊。 一般每打400∽450个焊点需用平锉修磨电极帽一次,每个电极帽在修磨9∽10次后需更换。) ④定期检查气路、水路系统,不允许有堵塞和泄露现象。 ⑤定期检查通水电缆,若发现部分导线折断,应及时更换。 ⑥停止使用时应将冷却水排放干净。 1.4 电阻焊的优缺点 电阻焊的优缺点(表1)

点焊工艺及全参数

点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合

焊线基础知识

焊线机调机过程 一.首先要了解所更换的材料是否要更换压板。更换时要注意:一定要让压爪与加热板相平或略低于加热板为 最佳,然后再把固定螺丝拧紧。 两条脚支架压板 319压板(可做289. 609) 压板分为三条脚支架压板 519压板 全彩支架压板 二.调整轨道高度。在WH MENU/Setup Lead Frame/Device Height中 02 支架为 2200左右 支架高度分为 03/04 支架为 3600左右 09 支架为 4000左右 注意:这里调的是支架的高度,是粗调。 微调要在WH MENU/ Device Dependent Offset/ Adjust/Track中调节,使压板压在支架碗杯底部为最佳,如图示1所示阴影部分(调轨道时,也会随之跟着变动)。 三.调步进. 在WH MENU/Fine Adjust/Adjust indexer offset中 出现提示框,↑↓控制压板关闭/打开,←→控制支架左右移动。调节至压板间隙要和碗杯间隙对齐为最佳。 注明:调∮8产品时,把Leadframe中5334改为3040,隔点焊就可以了 四.编辑程序。首先在Teach Program下编程,为了能更好的使机器的速度达到最大,所以,一般的情况 下,我们是找的第四颗,而不是第六颗。 输入参考点数为2,先把DIE0①对着第四颗LEAD的一个边缘处,再把DIE0②对着第一颗的LEAD相应边缘处,再接着把 蓝白光芯片,对着正电极(一般为圆PAD处正中心) DIE1① 正常芯片对着PAD的正中心 蓝白光芯片,对着负电极(一般为方PAD处正中心) DIE1② 正常芯片对着芯片边缘,也可以对着芯片正中心 但是DIE1,DIE2 两点不能重复,(老的339机台可以) 以上为参考点做完了,下一步为做参考点的PR 了。 0 lead PR pattern 先做LEAD PR ①②相同 1Adjust image 2 Search pattern 3Template 4 把十字线放到此处来调节1,3,4做PR 4change grade c 5change lens 6 auto setting enable 蓝白光芯片DIE1①可以做正极,DIE1②点可以做负极,也可以做整个DIE1 正常芯片 DIE1①可以做PAD正中心, DIE1②点可以做PAD的边缘部分, PR做完成有时会提示写几条线,是对于DIE来说的,蓝白光系列为两条线(双电极芯片),正常芯片为一条线(EAGLE 60V可以不用输入几条线) 接着,要把

钣金件点焊参数标准(DOC)

钣金件点焊参数标准 核准: 审核: 会签: 制定:付强红 发布日期:2011/07/06 海宁红狮宝盛科技有限公司发布

1.目的: 规范点焊过程参数不确定性及标准的不明确性,同时规范和明确焊接的使用,判定及检测方法,保证公司产品的焊接质量,并加以规定,以便检查工作的顺利进行和实施 2.范围: 适用部门:技术、生产部焊接及公司其它涉及焊接的车间;公司所生产的所有需点焊产品,但是有特殊要求的产品除外 适用客户:公司所生产的所有需点焊产品,如 BE,WINCOR 及其他客户,但是有特殊要求的产品除外. 3.引用标准: 1.BE PS-01-01_03 Welding焊接标准 2.国内点焊标准 3.国内点焊接检测方法 4.点焊参数规格及标准 电阻点焊(resistance spot welding),简称点焊。是焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊是一种高速、经济的重要连接方法,适用于制造可以采用搭接、接头不要求气密、厚度小于3mm的冲压、轧制的薄板构件。当然,它也可焊接厚度达6mm或更厚的金属构件,但这时其综合技术经济指标将不如某些熔焊方法。 如下为焊接参数规格及标准参考表: 1.点焊通常采用搭接接头或折边接头(图1).接头可以由两个或两个以上等厚度或不等厚度、相同材料或不相同材料的零件组成,焊点数量可为单点或多点.在电极可达性良好的条件下,接头主要尺寸设计可参见表1、表2和表3。 图1

2.焊前工件表面清理 点焊、凸焊和缝焊前,均需对焊件表面进行清理,以除掉表面脏物与氧化膜,获得小而均匀一致的接触电阻,这是避免电极粘结、喷溅、保证点焊质量和高生产率的主要前提.对于重要焊接结构和铝合金焊件等,尚需每批抽测施加一定电极压力下的两电极间总电阻R,以评定清理效果,一般情况下可由清理工艺保证。清理方法可有二类:机械法清理,主要有喷砂、刷光、抛光及磨光等;化学清理用溶液参见表5,也可查阅相关熔焊资料。 3、常用金属材料的点焊 判断金属材料点焊焊接性的主要标志:①材料的导电性和导热性,即电阻率小而热导率大的金属材料,其焊接性较差; ②材料的高温塑性及塑性温度范围,即高温屈服强度大的材料(如耐热合金)、塑性温度区间较窄的材料(如铝合金),其焊接性较差;③材料对热循环的敏感性,即易生成与热循环作用有关缺陷(裂纹、淬硬组织等)的材料(如65Mn),其焊接性较差;④熔点高、线膨胀系数大、硬度高等金属材料,其焊接性一般也较差。当然,评定某一金属材料点焊焊接性时,应综合、全面地考虑以上诸因素。 3.1 低碳钢的点焊(表6)

P+T焊接工艺参数

P+T焊接工艺参数-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

P+T焊接设备对不锈钢产品工艺的要求 一、P+T焊接设备: 该设备由纵缝机、环缝机组成,适用于碳钢、不锈钢以及某些有色金属对接焊接。 纵缝机参数: 1、3-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用填丝盖面。拖罩保护焊缝。 2、工件精度要求: 焊缝直线度要求10m长直线度误差≤2mm(直线度不能保障时,可通过摄像监控系统调整焊枪位置) 对接间隙≤1/10T(T 为试件板厚)且不大于0.5mm 错边≤0.2T(T 为试件板厚)且不大于1mm 3.工作对象 ①直径范围:φ1500~φ3200mm ②工件壁厚: 2-14mm(一次熔透8mm,大于8mm需开坡口填丝) ③工件长度:≤2500 mm ④工件材质:不锈钢、碳钢、钛基合金等 工件施焊端面采用机械加工,拼缝要求规则均匀 4.设备参数

可夹持最小壁厚: 2mm 可夹持最大壁厚: 14mm 焊枪行走速度: 100-3000mm/min 跟踪滑板速度:≤200mm/min 液压升降台承载:≤6T 一、设备的用途: 等离子环缝焊接系统用于各类碳钢\合金钢(碳钢、不锈钢、钛基合金等)环缝焊接,采用等离子焊接工艺,壁厚8mm以下可不开坡口直接焊接一次性单面焊双面成形。对于较薄板直接用等离子焊接;对于8mm 板厚以上视情况采用等离子添丝焊接的方式。焊接时正面有拖罩保护焊缝,反面有背气保护系统 设备采用一套飞马特等离子焊接系统和一套KM4030焊接操作机,一套视频系统,一套20T可调式滚轮架,采用等离子高效焊接,实现工件的环缝焊接。 电控系统部分以三菱PLC为控制核心,能够准确控制设备的各种动作,操作盒上安装有触摸屏,便于修改各项控制参数,使用安全可靠,故障率低。 1、焊接成型工艺: 2-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用TIG填丝盖面。拖罩保护焊缝。

点焊工艺基础知识

武汉兴园金属有限责任公司 点焊工艺基础知识 版本:A/0 1 主题内容与适用范围 2 焊点的形成与对其质量的一般要求 焊接是两种或两种以上同种或异种材料通过分子或原子间的结合和扩散而连成一体的工艺加工过程。 焊接包括:熔化焊、压焊、钎焊。 压焊包括:电阻焊、锻焊、摩擦焊、高频焊、超声波焊等等。 电阻焊包括:点焊、凸焊、对焊、缝焊。 电阻焊就是将工件置于两个电极之间加压,通以电流,利用工件的电阻产生热量并形成局部熔化,或达到塑性状态。断电后,压力继续作用,形成牢固接头。 2.1焊点的形成 点焊过程可分为彼此相联的三个阶段:预加压力、通电加热和锻压。 2.1.1预加压力 预加电极压力是为了使焊件在焊接处紧密接触。若压力不足,则接触电阻过大,导致焊件烧穿或将电极工作面烧损。因此,通电前电极力应达到预定值,以保证电极与焊件、焊件与焊件之间的接触电阻保持稳定。 2.1.2通电加热 通电加热是为了供焊件之间形成所需的熔化核心。在预加电极压力下通电,则在两电极接触表面之间的金属圆柱体内有最大的电流密度,靠焊件之间的接触电阻和焊件自身的电阻,产生相当大的热量,温度也很高。尤其是在焊件之间的接触面处,首先熔化,形成熔化核心。电极与焊件之间的接触

电阻也产生热量,但大部分被水冷的铜合金电极带走,于是电极与焊件之间接触处的温度远比焊件之间接触处为低。正常情况下是达不到熔化温度。在圆柱体周围的金属因电流密度小,温度不高,其中靠近熔化核心的金属温度较高,达到塑性状态,在压力作用下发生焊接,形成一个塑性金属环,紧密地包围着熔化核心,不使熔化金属向外溢出。 在通电加热过程中有两种情况可能引起飞溅:一种是开始时电极预压力过小,熔化核心周围未形成塑性金属环而向外飞溅;另一种是加热结束时,因加热进间过长,熔化核心过大,电极压力下,塑性金属环发生崩溃,熔化金属从焊件之间或焊件表面溢出。 2.1.3锻压 锻压是在切断焊接电流后,电极继续对焊点挤压的过程,对焊点起着压实作用。断电后,熔化核心是在封闭的金属“壳”内开始冷却结晶的,收缩不自由。如果此时没有压力作用,焊点易出现缩孔和裂纹,影响焊点强度。如果有电极挤压,产生的挤压变形使熔核收缩自由并变得密实。因此,电极压力必须在断电后继续维持到熔核金属全部凝固之后才能解除。锻压持续时间视焊件厚度而定。对于厚度1-8mm的钢板一般为0.1-2.5秒。 当焊件厚度较大,(铝合金为1.6-2mm,钢板为5-6mm)时,因熔核周围金属壳较厚,常需增加锻压力。加大压力的时间须控制好。过早,会把熔化金属挤出来变成飞溅,过晚,熔化金属已凝固而失去作用。一般断电后在0-0.2秒内加大锻压力。 以上是焊点形成的一般过程。在实际生产中,往往根据不同材料、结构以与对焊接质量的要求,采用一些特殊的工艺措施。例如:对热裂纹倾向较大的材料,可采用附加缓冷脉冲的点焊工艺,以降低熔核的凝固速度;对调质材料的焊接,可在两电极之间作焊后热处理,以改善因快速加热、冷却而

电阻点焊基础.

?局部结合?形成结构-自发牛成 电阻焊接基础什么是屯阻点焊

为什么采用电阻焊 ?快速 -价廉 -零件兀配容差 -可靠 -能焊度层材料 .相对简单 什么使用电阻焊?厚度从0.6mm到 3.5m m的钢板 -热浸镀锌 ?电镀锌 -铝材

?辆现代汽车包含有3000多个 电阻焊点xm GM-4488M - -产品工程和制造间的规范. WS-1 - -GM的电阻点焊手册 GM9621P— -工艺控制文件 WESS- -WS-1计算器 WS?4— -焊接认证流程 WS-2 — -设备规范- 2 3—; A J BUU'K 二.'

?电阻点焊是对两层或 以上的金属板材加压 并保持, 同时进行加 执 八■ ■ ? Heat =PRT -作为电阻焊的a 的,热量是由焊接电流和电阻形 成的. -钢铁的电阻值范围是6()到150微欧. -电阻焊接钢铁的焊接电流范围J^7{)0()-l8(X)()安培 ?焊接时间范围是8到48个周波 热量-压力 -时间 □ 着

TMAHSFORMER 典型焊接程序 1 ()()()()安 2 X ().000100 欧 X 0.24 秒(12周波) =2400 ws (焦耳) 基本构件 -控制器 ?变压器 ?电极 I ^SECOBDMV I rJ ---- < C I i / I 、伫? / L ---------------------------- > SECOMDUV 3?3t VBLTS AMPS

?电极施压? -焊接电流导入零件 -冷却零件表面 电极施压目的 ?压紧零件 ?维持焊接电阻 ?如果电阻太低,生成热量不够. ?如果电阻太高,牛成热量过多. ?建立封闭压力 ?当焊接热量形成,在压力F热量扩散至焊接金属.

点焊工艺及参数

一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c 为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。 三、不等厚度和不同材料的点焊 当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一边偏移,偏移的结果将使薄件或导电、导热性好的工件焊透率减小,焊点强度降低。熔核偏移是由两工件产热和散热条件不相同引起的。厚度不等时,厚件一边电阻大、交界面离电极远,故产热多而散热少,致使熔核偏向厚件;材料不同时,导电、导热性差的材料产热易而散热难,故熔核也偏向这种材料(见图11-8) 调整熔核偏移的原则是:增加薄板或导电、导热性好的工件的产热而减少其散热。常用的方法有:(1)采用强条件使工件间接触电阻产热的影响增大,电极散热的影响降低。电容储能焊机采用大电流和短的通电时间就能焊接厚度比很大的工件就是明显的例证。 (2)采用不同接触表面直径的电极在薄件或导电、导热性好的工件一侧采用较小直径,以增加这一侧的电流密度、并减少电极散热的影响。 (3)采用不同的电极材料薄板或导电、导热性好的工件一侧采用导热性较差的铜合金,以减少这一侧的热损失。 (4)采用工艺垫片在薄件或导电、导热性好的工件一侧垫一块由导热性较差的金属制成的垫片(厚度为),以减少这一侧的散热。

【精品】点焊工艺基础知识

点焊工艺基础知识 版本:A/0 1主题内容与适用范围 2焊点的形成及对其质量的一般要求 焊接是两种或两种以上同种或异种材料通过分子或原子间的结合和扩散而连成一体的工艺加工过程。 焊接包括:熔化焊、压焊、钎焊。 压焊包括:电阻焊、锻焊、摩擦焊、高频焊、超声波焊等等。 电阻焊包括:点焊、凸焊、对焊、缝焊。 电阻焊就是将工件置于两个电极之间加压,通以电流,利用工件的电阻产生热量并形成局部熔化,或达到塑性状态.断电后,压力继续作用,形成牢固接头。 2。1焊点的形成 点焊过程可分为彼此相联的三个阶段:预加压力、通电加热和锻压。

2。1。1预加压力 预加电极压力是为了使焊件在焊接处紧密接触。若压力不足,则接触电阻过大,导致焊件烧穿或将电极工作面烧损.因此,通电前电极力应达到预定值,以保证电极与焊件、焊件与焊件之间的接触电阻保持稳定。 2.1.2通电加热 通电加热是为了供焊件之间形成所需的熔化核心。在预加电极压力下通电,则在两电极接触表面之间的金属圆柱体内有最大的电流密度,靠焊件之间的接触电阻和焊件自身的电阻,产生相当大的热量,温度也很高.尤其是在焊件之间的接触面处,首先熔化,形成熔化核心。电极与焊件之间的接触电阻也产生热量,但大部分被水冷的铜合金电极带走,于是电极与焊件之间接触处的温度远比焊件之间接触处为低。正常情况下是达不到熔化温度.在圆柱体周围的金属因电流密度小,温度不高,其中靠近熔化核心的金属温度较高,达到塑性状态,在压力作用下发生焊接,形成一个塑性金属环,紧密地包围着熔化核心,不使熔化金属向外溢出. 在通电加热过程中有两种情况可能引起飞溅:一种是开始时电极预压力过小,熔化核心周围未形成塑性金属环而向外飞溅;另一种是加热结束时,因加热进间过长,熔化核心过大,电极压力下,塑性金属环发生崩溃,熔化金属从焊件之间或焊件表面溢出。 2。1.3锻压 锻压是在切断焊接电流后,电极继续对焊点挤压的过程,对焊点起着压实作用。断

焊工基础知识.

焊工基础知识培训手册 第一章焊接过程基本理论及分类 焊接是通过加热或加压,或两者兼用,并且用或不用填充材料,使焊件达到原子结合的一种加工方法叫做焊接。 焊接是一种生产不可拆卸的结构的工艺方法。随着近代科学技术的发展,焊接已发展成为一门独立的科学,焊接不仅可以解决各种钢材的连接,还可以解决铝、铜等有色金属及钛等特种金属材料的连接,因而已广泛用于国民经济的各个领域,如机械制造、造船、海洋开发、汽车制造、石油化工、航天技术、原子能、电力、电子技术及建筑等部门。据统计,每年仅需要进行焊接加工之后、使用的钢材就占钢材总产量的55%左右。可见焊接技术应用的前景是很广阔的。 一、焊接分类 焊接时的工艺特点和母材金属所处的状态,可以把焊接方法分成熔焊、压焊和钎焊三类,金属焊接的分类如下: 1.熔焊:焊接过程中,将焊件接头加热至熔化状态,不加压力的焊接方法,称为熔焊。 熔焊是目前应用最广泛的焊接方法。最常用的有手工电弧焊,埋弧焊,CO2气体保护焊及手工钨极氩弧焊弧焊等。 2.压焊:焊接过程中,必须对焊件施加压力,加热或不加热的焊接方法,称为压焊。压焊两种形式: (1)被焊金属的接触部位加热至塑性状态,或局部熔化状态,然后加一定的压力,使金属原子间相互结合形成焊接接头,如电阻焊、摩擦焊等。 (2)加热,仅在被焊金属接触面上施加足够大的压力,借助于压力引起的塑性变形,原子相互接近,从而获得牢固的压挤接头,如冷压焊、超声波焊、爆炸焊等。 3.钎焊:采用熔点比母材低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点,但低于母材熔点的温度,利用毛细作用使液态钎料润湿母材,填充接头间隙并与母材相互扩散,连接焊件的方法,称为钎焊。钎焊分为如下两种: (1)软钎焊用熔点低于4500C的钎料(铅、锡合金为主)进行焊接,接头强度较低。(2)硬钎焊用熔点高于4500C的钎焊(铜、银、镍合金为主)进行焊接,接头强度较高。

第五章电阻点焊_百度文库.

第五章电阻点焊 5.1概述 点焊是电阻焊的一种, 是将被焊工件压紧于两电极之间, 并通过电流利用电流流经工件接触面及邻近区域产生的电阻热将其加热到熔化或塑性状态, 使之形成金属结合的一种方法, 如图 5.1 所示。 点焊是一种高速、经济的连接方法。它适用于制造接头不要求气密,厚度小于3mm, 冲压、轧制的薄板搭接构件,广泛用于汽车、摩托车、航空航天、家具等行业产品的生产。 图 5.1 点焊示意图 5.2点焊的基本原理 5.2.1点焊过程(焊接循环 图 5.2为点焊的基本焊接循环, 图 5.33为点焊焊接过程示表图。点焊过程由四个基本阶段组成。 图 5.2 点焊的基本焊接循环图 5.3 点焊焊接过程示意图 (1 预压阶段—将待焊的两个焊件搭接起来,置于上、下铜电极之间,然后施加一定的电极压力,将两个焊件压紧。 (2 焊接时间—焊接电流通过工件,由电阻热将两工件接触表面加热到熔化温度,并逐渐向四周扩大形成熔核。 (3 维持时间—当熔核尺寸达到所要求的大小时,切断焊接电流,电极压力继续保持,熔核在电极压力作用下冷却结晶形成焊点。 (4 休止时间—焊点形成后,电极提起,去掉压力,到下一个待焊点压紧工件的时间。休止时间只适用于焊接循环重复进行的场合。 为了提高焊点的物理和化学性能,可以在基本焊接循环中加入下列其中之一或多个过程: (1 预压力使电极和工件紧密、贴合; (2 预热来降低工件上开始焊接时的温度梯度; (3 顶锻力压实熔核,防止产生裂纹和缩孔;

(4 回火、退火时间对硬化合金钢以达到所需求的强度; (5 后热以细化晶粒; (6 电流衰减以延迟AL 的冷却。 图 5.4 为一个比较复杂的焊接循环。 图 5.4 复杂的点焊焊接循环示例 5.2.2 焊接热的产生及其影响因素 5. 2.2.1焊接热量的产生 点焊时产生的热量由下式决定: Q=I2RT 式中: Q—产生的热量(J I—焊接电流(A R—电极间电阻( T—焊接时间(S 点焊时导电通路上的总电阻及热量分布如图 5.5所示。 图 5.5 点焊时导电通路上的电阻及热量分布 总电阻由以下七个部分组成: ①1,7—电极电阻,与电极材料有关; ②2,6—电极与工件之间的接触电阻,与电极和工件的表面状态,电极大小、形状及压力有关。此处产生的热量较多,但由于电极的热传导较好,并有水冷,母材达不到熔化温度。 ③3,5—母材本身电阻,正比于材料的电阻率和板厚,反比于导电面积。 ④4—母材间接触电阻,此处电阻最大,产热最多对焊接形核有作用的是接触电阻4,其它的电阻应尽可能减少。在一定的焊接循环 内,影响点焊接头热量多少的因素有:A.工件及电极电阻;B.工件间接触电阻以及工件与电极之间的接触电阻;C.工件及电极上的热量损失。 5. 2.2.2影响因素

点焊工艺

点焊培训资料 1.1点焊 利用电流通过圆柱形电极和搭接的两焊件产生电阻热,将焊件加热并局部熔化,形成一个熔核(其周围为塑性状态),然后在压力作用下熔核结晶,形成一个焊点。 1.2气动式交流点焊机 电极的运动和对焊件的加压,均由气路系统来实现,采用交流电,实现点焊功能的机械设备。 2设备结构 主要由机身、焊接变压器、压力传动装置、气路、水路系统、上下电极以及脚踏开关等部分组成。 2.1机身 机身用箱体式结构,全部结构件均由钢板折弯成型后焊接而成。该结构体积小、重量轻,能承受较大的冲击力,上悬臂安装加压传动装置及上电极部分,下悬臂安装有下电极部分,机身内部装有焊接变压器、进出水管、机身上面装有电磁气阀及气动三大件,机身下部的底脚上设有四个地脚安装孔,正常焊接时,必须装上4只 M10以上的地螺栓紧固后,方可使用。 2.2焊接变压器 焊接变压器为单相壳式结构,变压器的次级线圈由单只内置冷却铜水管的铸铜绕组组成,通过软铜带与上电极相联接,紫铜板与下电极相联接,焊接 1

变压器采用调节可控硅导通角来调节焊接变压器的初级电压,从而达到调节次级电压的目的,同时改变了焊接电流,适应不同的焊接规范,次级电压的调节范围,按焊接规范要求可连续可调。 2.3压力传动装置 压力传动装置主要由活塞、气缸、支承座与滑块下端与上电极部分相联,活塞杆与上电极连为一体,当活塞杆上下移动时,使上电极在支承座导轨内上下移动。气缸供气采用电磁气阀控制,推出或推进气缸右侧的行程插销,可调节二档上电极的工作行程。而三气室工作头则可在0~100mm行程范围内无级可调。 2.4气路系统 点焊机电极的运动和对焊件的加压,均由气路系统来实现,气路系统由带有气压表的减压阀和电磁阀等组成。从而达到控制上电极上下运动,电极压力的大小根据工件厚度和相应工艺规范确定。 2.5上下电极部分 电极部分由电极压块、电极座、端头、电极杆及电极头组成,电极压块内部通有冷却水,它的后端分别由软铜带和导电排与焊接变压器次级线圈相连接。电极杆紧固在电极臂与端头之间,凸焊机还带有上、下电极平台。与工件直接接触的上下电极头材料采用铬锆铜。 2.6冷却系统 点焊机在工作过程中会产生大量热量,需要循环水进行充分冷却,否则将严重影响焊接质量。 2

点焊工艺及参数

. ....................... 北為.............. ................ 点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用 大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c 为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为 单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点 焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区, 形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距I很大 时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。 三、不等厚度和不同材料的点焊 当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一边偏移,偏移的结果将使薄件或导电、导热性好的工件焊透率减小,焊点强度降低。熔核偏移是由两工件产热和散热条件不相同引起的。厚度不等时,厚件一边电阻大、交界面离电极远,故产热多而散热少,致使熔核偏向厚件;材料不同时,导电、导热性差的材料产热易而散热难,故熔核也偏向这种材料(见图11-8) 调整熔核偏移的原则是:增加薄板或导电、导热性好的工件的产热而减少其散热。常用的方法有: (1)采用强条件使工件间接触电阻产热的影响增大,电极散热的影响降低。电容储能焊机采用大电流和短的通电时间就能焊接厚度比很大的工件就是明显的例证。 (2)采用不同接触表面直径的电极在薄件或导电、导热性好的工件一侧采用较小直径,以增加这一侧的电流密度、并减少电极散热的影响。 (3)采用不同的电极材料薄板或导电、导热性好的工件一侧采用导热性较差的铜合金,以减少这一侧的热损失。

电阻焊中工艺参数电极工件材质等各方面基本知识

电阻焊中工艺参数电极工件材质等各方面 基本知识 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式是最常用的方式,这时工件的两侧均有电极压痕。大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式,单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。无分流的单面双点点焊,此时焊接电流全部流经焊接区。有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式,也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式.后一型式具有较

多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 点焊电极 点焊电极是保证点焊质量的重要零件,它的主要功能有:(1)向工件传导电流;(2)向工件传递压力;(3)迅速导散焊接区的热量。基于电极的上述功能,就要求制造电极的材料应具有足够高的电导率、热导率和高温硬度,电极的结构必须有足够的强度和刚度,以及充分冷却的条件。此外,电极与工件间的接触电阻应足够低,以防止工件表面熔化或电极与工件表面之间的合金化。电极材料按我国航空航天工业部航空工业标准HB5420-89的规定,分为4类,但常用的是前三类。1类高电导率、中等硬度的铜及铜合金。这类材料主要通过冷作变形方法达到其硬度要求。适用于制造焊铝及铝合金的电极,也可用于镀层钢板的点焊,但性能不如2类合金。1类合金还常用于制造不受力或低应力的导电部件。2类具有较高的电导率、硬度高于1类合金。这类合金可通•236•过冷作变形与热处理相结合的方法达到其性能要求。与1类合金相比,它具有较高的力学性能,适中的电导率,在中等程度的压力下,有较强的抗变形能力,因此是最通用的电极材料,广泛地用于点焊低碳钢、低合金钢、不锈钢、高温

相关主题
文本预览
相关文档 最新文档