当前位置:文档之家› 巨磁电阻效应及其应用

巨磁电阻效应及其应用

巨磁电阻效应及其应用
巨磁电阻效应及其应用

巨磁电阻效应及其应用

2007年7月27日来源:《国际电子变压器》2007年7月刊作者:

余声明

1 前言

磁性金属和合金一般都有磁电阻效应,所谓磁电阻是指在一定磁场下电阻发生改变的现象。所谓巨磁阻就是指在一定的磁场下电阻急剧变化而比常规磁电阻要大一个数量级以上的效应,是近十多年来发现的一种新现象。

在过去十多年中,已经发现了三种技术上可行的磁电阻:“巨磁电阻”(Giant Magneto-Resistive,GMR)、“超巨磁电阻”(Colossal Magneto-Resistance,CMR)和“穿隧磁电阻”(Tunneling Magneto-Resistive,TMR)。它们都具有三层结构:上下两层为磁性层引发电子自旋、产生磁场的层级;中间为非磁性层,其功能是产生变化的电阻。不同类型的磁电阻的非磁性层所使用的材料有所不同:GMR使用的是金属铜,CMR使用的是稀土锰氧化物,TMR则是使用氧化铝。

本文只就GMR效应、器件与应用作一论述。

2 巨磁电阻效应

1986年德国的Grunberg和C.F.Majkrgak等人发现了Y/Gd、Y/Dy和Fe/Cr/Fe多层膜中的层间耦合现象。1988年法国的M.N.Baibich等人首次在纳米级的Fe/Cr多层膜中发现

其Δρ/ρ在 4.2K低温下可达50%以上,由此提出了GMR 效应的概念,在学术界引起了很大的反响。由此与之相关的研究工作相继展开,陆续研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、Co/Ag、Co/Au……等具有显著GMR效应的层间耦合多层膜。1988年后的3年,人们便研制出可在低磁场(10-2~10-6T)出现GMR效应的多层膜如[CoNiFe/CoFe/AgCu/CoFe/CoNiFe]等结构,此后更掀起了GMR效应的研发热潮。

GMR是一个量子力学效应,它是在层状的磁性薄膜结构中观察到的。这种结构由铁磁材料和非磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。三层结构的与自旋有关的输运性质如图1所示,上下两层为铁磁材料,中间夹层是非磁材料。铁磁材料磁矩的方向是由加到材料的外磁场控制的。现在可以制造出对小的磁场就能得到很大电阻变化的材料,并且可以在室温下工作。

巨磁电阻效应从发现到器件的商品应用也是一个迅速转化的过程。现已广泛应用于电子、磁信息存储等技术领域,还出现了许多GMR 器件,如磁盘驱动器的读写磁头和随机存储器(RAM)等。

磁电子新技术的实用化,源于纳米磁性材料和纳米制造技

术的成功开发。发现GMR效应后,在应用电子随机自旋度的道路上迈开了第一步。最近10多年来,对自旋输运电子技术的应用开发取得迅速的进展,收到明显的经济效益和社会效益。1995年,美国NVE公司开始制造和销售GMR电桥元件,1997年推出制作在半导体芯片上的数字式GMR传感器;1998年IBM公司开发成功自旋阀(SV)GMR读出磁头并正式上市,使硬磁盘驱动器(HDD)的面记录密度提高到20Gbpi。据统计,目前这种磁头已占领磁记录磁头市场份额的95%,每季度的产值可达10亿美元。2000年,富士通公司开发出记录密度达56.3Gbpi的SV GMR磁头;1998年,西门子公司开发的旋转检测GMR传感器上市;从1999年至2001年,美国的IBM、摩托罗拉,德国的Infineon 等公司先后研制成功实用的MRAM芯片。

美国国防部高级研究计划局(DARPA)于1995年创立了一个联合企业,并拟订了一个正式的DARPA计划——“Spintronics"(自旋电子技术)。该项计划的核心内容是应用GMR效应,开发各种磁传感器和非易失存储器。同时,还拥有开发GMR以外的其他器件的特许权,其中包括自旋相关隧道结构及实用的磁性氧化物。DARPA计划排定日程,将在以后的几年内制造出1MbitMRAM芯片,开发出实用的军用和民用磁传感器和磁存储器。同时,着手Spin - FET、Spin -LED自旋共振隧道效应器件、自旋相关器件和

自旋量子化器件等多种新型磁电子器件的研究与开发。

目前磁电子技术的实用化进程可以说是日新月异。

3 巨磁电阻器件

运用GMR效应制成了许多实用的磁电子器件,它是近几年才出现的新型高技术产品,是采用纳米制造技术把微小尺寸的磁性元件与传统的半导体器件结合在一起,得到全新的或者高功能的器件,它们是:

3.1 SV-GMR磁头和传感器

构成GMR磁头和传感器的核心元件是自旋阀(SpinValve)元件。它的基本结构是由钉扎磁性层(例如Co)、Cu间隔层和自由磁性层(例如NiFe等易磁化层)组成的多层膜。钉扎层的磁矩固定不变,由于钉扎层的磁矩与自由磁层的磁矩之间的夹角发生变化会导致SV-GMR元件的电阻值改变,进而使读出电流发生变化。为了提高SV元件的灵敏度,必须把自由磁层做得很薄。但是,这样又将导致界面传导电子的不规则反射而降低电阻的变化率。因此,后来又增设了一层氧化物,使电子成镜面反射,故而又把这种元件叫做“镜面SV元件”。从2001年起,GMR磁头制造商正式采用镜面SV元件。据报告,用这种镜面SV GMR磁头,可以读出100Gbpi面记录信息。

1995年,在用绝缘隧道势垒层代替SV元件中的Cu间隔层时,发现了室温自旋相关隧道(SDT)效应,称为隧道结磁

电阻(TMR)效应。目前,由这种现象感生电阻的变化率已高达40%,是GMR效应的数倍至10倍,较之GMR元件,检测灵敏度有很大的提高。现在正在积极研究和开发这种TMR 元件。

实际上,磁头是一种检测磁场强弱、把磁信号变换成电信号的磁传感器。使用软磁合金薄膜,利用其磁电阻(MR)效应工作的磁传感器,除了用作磁记录读出磁头外,还在检测电流、位置、位移、旋转角度等方面获得了广泛的应用。运用SV-GMR元件的磁传感器,检测灵敏度比使用MR 元件的器件高1至数个量级,更容易集成化,封装尺寸更小,可靠性更高。它不仅可以取代以前的MR传感器,还可以制成传感器阵列,实现智能化,用来表述通行车辆,飞机机翼、建筑防护装置或管道系统中隐蔽缺陷的特征,跟踪地磁场的异常现象等。还有人提出可以作为抗体和生物标本检验的传感元件,应用范围较之MR传感器显著扩大。当前,GMR传感器已在液压汽缸位置传感、真假纸币识别、轴承编码、电流检测与控制、旋转位置检测、车辆通行情况检测等领域得到应用。在军事上,GMR传感器有着更加重要的应用价值。美国军方正在研制高g军火用捷联式(Strop Down)MEMS传感器,用在制导、导航和控制(GN&C)或时空位置信息(TSPI)中,为测评部门进行飞行中的诊断和用于惯性测量(IMU)。按陆军的“加固次小型化遥测装置

和传感系统(HSTSS)”计划,将提供一大宗商品性成品和组装技术,用于诊断高g和高自旋军火,如火炮、导弹、坦克等。ARL完成了MEMS压力、加速度、角速度和磁场传感器的若干地面和飞行实验。用磁场传感器可以推断与磁场相关的角速度,且简便易行。1996年,ARL用遥测装置和MR磁场传感器(如测自旋速率的Honeywell1002,SCSA50型),检测120mm动能飞弹。在他们新近开发的遥测精密跟踪插塞(20×35mm)中,使用了新的GMR传感器,成功地用于105mm动能训练飞弹试验。

3.2 巨磁电阻随机存取存储器(MRAM)

这是采用纳米制造技术,把沉积在基片上的SV-GMR薄膜或TMR薄膜制成图形阵列,形成存储单元,以相对两磁性层的平行磁化状态和反平行磁化状态分别代表信息“1”和“0”;与半导体存储器一样,是用电检测由磁化状态变化产生的电阻值之差进行信息读出的一种新型磁存储器。给导体图形加上脉冲电流,只使两磁性层中的一层(自由磁层)磁化反转,完成信息写入。在用SV-GMR膜作存储单元时,由于其中一磁性层的磁化被反铁磁性层(钉扎层)固定在一个方向上,所以,存储器只用另一层的磁化反转工作。这样,在读出时一旦记录的信息被消去(破坏读出),只要把两磁性层做成厚度不同或者矫顽力值不同的准SV-GMR膜,通过调节工作电流,就能够以各磁性层单独地

磁化反转达到非破坏读出。为了有选择地将信息写入2元排列的存储单元群,使用由字线和位线电流产生的合成磁场来实现。目前认为,读信息时单元选择最有希望的是CMOS-FET电路;它基本上是用磁性体代替DRAM中的电容器构成的。在实际的MRAM中,尚需加上位地址指定编码电路、施加脉冲电流的驱动电路及读出用传感放大电路等。

MRAM潜在的重要优点是非易失性,抗辐射能力强、寿命长。这些是DRAM、SRAM等半导体存储器所不具备的性能。同时,它又兼有后者具有的大容量、高速存取、低成本、高集成度等特点。因此,MRAM不仅被军事和宇航业界所看重,而且在迅速普及的数码照相、移动电话及多媒体信息处理等广阔的民用市场中得到应用。正因为如此,美、日、欧等发达国家和地区及高新技术产业界都十分重视这项新技术,正投巨资加快产品的商业化。据Infineon公司报告,他们将在2004年使256MbMRAM芯片商品化。日本行家估计,1Gb的产品将在2006年~2007年上市。

3.3 量子化磁盘(QMD)

QMD的基本概念是在非磁性盘基中独立地埋入若干单畴磁性元件,每个元件都有精确规定的形状和预先指定的位置。最重要的是,这些元件有强的磁化。这种磁化和MRAM一样,是不加外磁场的磁化,并且只有两个稳定的状态:数量相等而方向相反的状态。每个单畴元件的磁化方向代表一个

二进制信息位“0”或者“1”。根据磁化方向,QMD可以有两种模式:垂直磁化QMD和横向磁化QMD。前者用磁柱,后者用磁条带。这些磁性柱子或条带,采用X射线或电子束平版印刷,辅以反应离子刻蚀而成。最近,还开发出一种高效低成本的nanoimprit lithography印刷术。开关(转换)磁化方向需要的磁场,通过精心设计的元件尺寸和形状来控制。

和传统的HDD比较,QMD有如下几个优点:每位的磁化会自行量子化;量化写入过程,可以消除对写入头高精度定位的要求;细小而平滑的分立转变层,允许高密度数据堆积,存储密度在100Gbpi以上,而开关噪声可接近零;有内置的读/写位置精密跟踪机构;克服了现有磁存储器存在的超顺磁性极限的一大缺点。nanoimpritlithography印刷术的开发成功,为QMD的商品化开辟了光明的前景。

当然巨磁阻器件还不止这些,其它不再论及。

4 GMR效应的应用

4.1 巨磁电阻(GMR)传感器

a.GMR磁场传感器可用来导航及用于高速公路的车辆监控系统

地球是一个大磁铁,地球表面的磁场大约为0.5Oe,地磁场平行地球表面并始终指向北方。利用GMR薄膜可做成用来探测地磁场的高级罗盘。当可以同时探测平面内磁场X和Y

方向分量的GMR磁场传感器固定在交通工具上,瞬间航向与地球北极的夹角可通过GMR传感器的X和Y方向的电压相对改变而确定下来。图2显示这种传感器的具体工作原理。GMR磁场传感器随轮船的方向改变而改变其和地磁场的夹角,相对来说,也可以等效为地磁场的方向在改变。我们已研制出能够探测磁场X和Y方向分量的集成GMR传感器。此传感器可作为罗盘并应用在各种交通工具上作为导航装置。美国的NVE公司已经把GMR传感器用在车辆的交通控制系统。我们知道,各种不同的车辆(物体)在外界都有其自身特征的磁场分布。通过用GMR弱场传感器可探测各种车辆的磁场分布进而确定该车辆的型号。利用GMR 传感器不仅可探测静止车辆的状况进而用在交通灯处的交通控制和停车场处停车位置的监控,而且也可探测移动车辆的情况。具体来说,放置在高速公路边的GMR传感器可以计算和区别通过传感器的车辆。如果同时分开放置两个GMR传感器,还可以探测出通过车辆的速度和车辆的长度,当然GMR也可用在公路的收费亭,从而实现收费的自动控制。另外高灵敏度和低磁场的传感器可以用在航空、航天及卫星通信技术上。大家知道,在军事工业中随着吸波技术的发展,军事物件可以通过覆盖一层吸波材料而隐蔽,但是它们无论如何都会产生磁场,因此通过GMR磁场传感器可以把隐蔽的物体找出来。当然,GMR磁场传感器可以应

用在卫星上,用来探测地球表面上的物体和底下的矿藏分布。

b.GMR磁场传感器可来探测DC、AC电流及用作隔离器和电子线路中的反馈系统(开关电源)

众所周知,通电导线周围将产生磁场,其磁场的强弱与通电电流的大小成正比。若将GMR磁场传感器及环形软磁集磁通器放置在通电导线附近,则由GMR传感器的输出电压可以测量导线中通过的电流。我们已利用反铁磁耦合的FeNi/FeCo/Cu的多层膜和集成的永磁薄膜作为偏场,并研制出线性测量范围正负200Oe的惠斯通电桥传感器。利用这种传感器可探测电流高达10,000安培的直流和交流。目前有三种办法可用来探测电流:电阻短路的办法,其缺点在于引入一电压降和这种方法不能提供上下级的隔离。电流转换器则基于安培定理,但是其仅仅用来探测直流。GMR 磁场传感器不仅可用来探测直流和交流而且还可保证上下级隔离。随着半导体集成技术的发展,目前已把GMR薄膜传感器和集成线路板结合在一起,从而实现了小型化、集成化,提高了灵敏度和降低了成本。另外电流探测原理,目前已经用作隔离器、开关电源和无刷直流电机系统。隔离器主要是把高电压及高电流情况下的初级信号通过电压/频率转换并传给下一级,在下一级再通过频率/电压转换成为电压或电流信号,因此上下级而不相互干扰。这种探

测电流大小的隔离器已被葡萄牙的一家公司所采用。至于开关电源,我们利用两次沉积自旋阀多层膜的办法,已研制出可探测微安级的交直流及探测磁场范围在正负20Oe的GMR磁场传感器。并且与西班牙的一所大学合作,成功地把这种传感器用在开关电源线路中作为反馈系统,可改善其频率输出特性高达1MHz。至于在无刷直流电机的应用:大家知道,有刷直流电机是用接触碳刷或金属片做整流子供电,使转子旋转。这种接触式整流子因摩擦给电机带来非常不好的影响,比如使用寿命短、噪音大、有火花、产生干扰电磁波等。如果用GMR传感器代替电机的摩擦整流子,那么就可以避免因电刷摩擦而带来的影响,而且还可以实现电机高速旋转及其调速和稳速的目的。因此,它的稳定性和可靠性都非常高。另外,这种无刷电机转矩-重量比较大,速度转矩特性的线性度比较好。图3给出了测量电流的原理图。

c.GMR医用及生物磁场传感器

人体之中存在着各种形式的机械运动,它们是机体完成必要的生理功能的前提和保证,因此检测这些生物机械运动,无论对基础医学还是对临床医学来讲,都具有十分重要的意义。以前,由于必须利用体积大和功率高、价格贵的超导量子磁强计而限制了在医学中的发展。高灵敏度及集成化的GMR磁敏传感器的出现为这些机械运动和病变部位的

非接触式的探测提供了方便,并推动其发展。下面介绍几种特殊在此方面的应用。磁性生物传感器的原理如图4所示:首先各种各样的细胞、蛋白质、抗体、病原体、病毒、DNA可以用纳米级的磁性小颗粒来标记,也就是首先是这些被探测的对象磁性化,进而在用高灵敏度的GMR磁场传感器来探测它们的具体位置。这种也可用于医学及临床分析、DNA分析、环境污染监测等领域。高灵敏度的GMR传感器也可用在脑电图、心电图等的高精度的仪器设备上,来诊断类似于脑肿瘤病变的问题。利用GMR磁场传感器可以检测眼球运动、眼睑运动的方法,这有助于定量评价和研究困倦、视力疲劳现象,和诊断某些眼科疾病。

其它还有很多,不一一列举。

4.2 GMR读出磁头在计算机信息存储中的应用

由于利用了SPIN-VALVE GMR材料而研制的新一代硬盘读出磁头,已经把存储密度提高到目前(2000年)的560亿位/平方英寸,并且GMR磁头已占领磁头市场的百分之九十到九十五。现在磁记录存储密度已超过所有的存储方式。正是利用GMR材料,才使得存储密度在最近几年内每年的增长速度达到3—4倍。随着低电阻高信号的TMR的获得,实现存储密度到1000亿位/平方英寸,将是近一两年的目标。

4.3 GMR在随机存储(MRAM)中的应用

利用SPIN-VAVLE,TMR材料和半导体集成技术正在研制一

种新的计算随机存储器芯片,由于0和1状态的设置的原理来源于磁性材料特有的磁滞效应,因此在突然断电时也不会丢失信息。半导体的非易失存储器是以极微小的电容器,是利用存储一份电荷来保存信息。如果断电,这份电荷就要耗尽,信息就会丢失。另外采用GMR的磁随机存储器将比半导体的非易失存储器速度快而廉价,美国的IBM 和摩托罗拉及欧洲的菲利普、西门子和INESC都在加紧研究。

4.4 GMR在各种逻辑元件和全金属计算机中的应用

利用GMR材料可研制出磁性二极管、三极管和各种逻辑元件。目前正在把磁性GMR多层膜和半导体材料集成在一起,主要是利用电子的自旋注入(SPIN—INJECTION)来开发新的磁性器件。全金属的计算机将成为可能。

4.5 发展前景

人类利用电子的荷电性在半导体芯片上创造了今天的信息时代,自旋极化输运给人类带来的也许又是一片广阔的天地。磁电子学给予人类以梦想和希望,同时也给予我们更多、更大的挑战。事实上人类对于自旋极化输运的了解还处于一个非常肤浅的阶段,对新出现的新现象、新效应的理解基本上还是一种“拼凑式”的、半经典的唯象理论。作为磁学和微电子学的交叉学科,磁电子学将无论在基础研究还是在应用开发上都将是凝聚态物理学工作者和电子

工程技术人员大显身手的新领域。

5 结束语

GMR效应是磁电子学的主要内容之一,磁落千丈zz电子学是一项方兴未艾的事业,其发展必定带来人类技术文明的进一步发展。由GMR效应作成的实用器件对电子信息的贡献是不言而喻的。

巨磁电阻效应及其应用 实验报告

巨磁电阻效应及其应用 【实验目的】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【实验原理】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率 ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

磁电阻与巨磁电阻实验报告

磁电阻与巨磁电阻 姓名:刘一宁班级:核32 指导教师:王合英实验日期:2015.03.13 【摘要】:本实验使用了由基本电路原理配合巨磁电阻原件制作的一套巨磁电阻实验仪,通过改变巨磁电阻处的磁场测量了巨磁电阻的磁阻特性曲线、磁电转换特性曲线,并在体验了其在测量电流、测量转速、磁读写等方面的应用。最后获得了巨磁电阻词组特性曲线、GMR 模拟传感器的磁电转换曲线、GMR开关传感器的磁电转换特性曲线、巨磁电阻测量电流的数据、齿轮旋转过程中巨磁电阻梯度传感器输出电压曲线、磁信号读出情况,自旋阀磁电阻两个不同角度的磁阻特性曲线。发现巨磁电阻的磁阻随磁场变大而减小,且与方向无关,但是其存在磁滞现象。而自旋阀磁电阻则在磁场由一个方向磁饱和变化到另一个方向磁饱和的过程中磁电阻不断减小或增加,这与磁电阻和磁场的角度有关,且在0磁场附近变化特别明显。 关键词:巨磁电阻、自旋阀磁电阻、磁阻特性曲线、磁电转换特性 一、引言: 1988年法国巴黎大学的肯特教授研究小组首先在Fe/Cr多层膜中发现了巨磁电阻效应,在国际上引起了很大的反响。20世纪90年代,人们在Fe/Cu,Fe/Al,Fe/Au,Co/Cu,Co/Ag和Co/Au 等纳米结构的多层膜中观察到了显著的巨磁阻效应。 1994年,IBM公司研制成巨磁电阻效应的读出磁头,将磁盘记录密度一下子提高了17倍,达5Gbit/in2,最近达到11Gbit/in2,从而在与光盘竞争中磁盘重新处于领先地位。由于巨磁电阻效应大,易使器件小型化,廉价化,除读出磁头外同样可应用于测量位移,角度等传感器中,可广泛地应用于数控机床,汽车测速,非接触开关,旋转编码器中,与光电等传感器相比,它具有功耗小,可靠性高,体积小,

巨磁电阻效应及其传感器的原理..

巨磁阻效应及其传感器的原理和应用 一、概述 对于物质磁电阻特性的研究由来已久,早在20世纪40年代人们就发现了磁电阻效应。所谓磁电阻是指导体在磁场中电阻的变化,通常用电阻变化率Δr/r 描述。研究发现,一般金属导体的Δr/r很小,只有约10-5%;对于磁性金属或合金材料(例如坡莫合金),Δr/r可达(3~5)%。所谓巨磁电阻(GMR)效应,是指某些磁性或合金材料的磁电阻在一定磁场作用下急剧减小,而Δr/r急剧增大的特性,一般增大的幅度比通常的磁性与合金材料的磁电阻约高10倍。利用这一效应制成的传感器称为GMR传感器。 1、分类 GMR材料按其结构可分为具有层间偶 合特性的多层膜(例如Fe/Cr)、自旋阀多层膜 (例如FeMn/FeNi/Cu/FeNi)、颗粒型多层膜(例 如Fe-Co)和钙钛矿氧化物型多层膜(例如 AMnO3)等结构;其中自旋阀(spin valve)多层膜又分为简单型和对称型两 类;也有将其分为钉扎(pinning)和非钉扎型两类 的。 2、巨磁电阻材料的进展 1986年德国的Grunberg和C.F.Majkrgak 等人发现了Y/Gd、Y/Dy和Fe/Cr/Fe多层膜中 的层间偶合现象。1988年法国的M.N.Baibich 等人首次在纳米级的Fe/Cr多层膜中发现其Δ r/r在4.2K低温下可达50%以上,由此提出了 GMR效应的概念,在学术界引起了很大的反 响。由此与之相关的研究工作相继展开,陆续 研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、 Co/Ag、Co/Au……等具有显著GMR效应的层 间偶合多层膜。自1988年发现GMR效应后仅 3年,人们便研制出可在低磁场(10-2~10-6T) 出现GMR效应的多层膜(如 [CoNiFe/CoFe/AgCu/CoFe/CoNiFe]n)。 1992年人们利用两种磁矫顽力差别大的 材料(例如Co和Fe20Ni80)制成Co/Cu/ Fe20Ni80/Cu多层膜,他们发现,当Cu 层厚度大于5nm时,层间偶合较弱,此时利用 磁场的强弱可改变磁矩的方向,以自旋取向的 不同来控制膜电阻的大小,从而获得GMR效 应,故称为自旋阀。

巨磁电阻实验报告

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、了解GMR效应的原理 2、测量GMR模拟传感器的磁电转换 特性曲线 3、测量GMR的磁阻特性曲线 4、用GMR传感器测量电流 5、用GMR梯度传感器测量齿轮的角 位移,了解GMR转速(速度)传感器的原理【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律R=ρl/S中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺

度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 电 阻 \ 欧 姆

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图 2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

巨磁电阻效应及应用实验

巨磁电阻效应及其应用 2007年诺贝尔物理学奖授予了巨磁电阻( Giant magneto resistance,简称GMR)效应的发现者:法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格尔( Peter Grunberg )。诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它使计算机硬盘的容量从几百、几千兆,一跃而提高几百倍,达到几百G乃至上千G。” 凝聚态物理研究原子,分子在构成物质时的微观结构,它们之间的相互作用力,及其与宏观物理性质之间的联系。 人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。量子力学出现后,德国科学家海森伯(W. Heisenberg,1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。 图 1 反铁磁有序 后来发现很多的过渡金属和稀土金属的化合物具有反铁磁有序状态,即在有序排列的磁材料中,相邻原子因受负的交换作用,自旋为反平行排列,如错误!未找到引用源。所示。则磁矩虽处于有序状态,但总的净磁矩在不受外场作用时仍为零。这种磁有序状态称为反铁磁性。法国科学家奈尔(L. E. F. Neel)因为系统地研究反铁磁性而获1970年诺贝尔奖。在解释反铁磁性时认为,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。另外,在稀土金属中也出现了磁有序,其中原子的固有磁矩来自4f电子壳层。相邻稀土原子的距离远大于4f电子壳层直径,所以稀土金属中的传导电子担当了中介,将相邻的稀土原子磁矩耦合起来,这就是RKKY型间接交换作用。 直接交换作用的特征长度为0.1~0.3nm,间接交换作用可以长达1nm以上。1nm已经是实验室中人工微结构材料可以实现的尺度。1970年美国IBM实验室的江崎和朱兆祥提出了超晶格的概念,所谓的超晶格就是指由两种(或两种以上)组分(或导电类型)不同、厚度d极小的薄层材料交替生长在一起而得到的一种多周期结构材料。由于这种复合材料的周期长度比各薄膜单晶的晶格常数大几倍或更长,因此取得“超晶格”的名称。上世纪八十年代,由于摆脱了以往难以制作高质量的纳米尺度样品的限制,金属超晶格成为研究前沿,凝聚态物理工作者对这类人工材料的磁有序,层间耦合,电子输运等进行了广泛的基础方面的研究。 德国尤利希科研中心的物理学家彼得·格伦贝格尔一直致力于研究铁磁性金属薄膜表面和界面上的磁有序状态。研究对象是一个三明治结构的薄膜,两层厚度约10nm的铁层之间夹有厚度为1nm 的铬层。选择这个材料系统并不是偶然的,首先金属铁和铬是周期表上相近的元素,具有类似的电子壳层,容易实现两者的电子状态匹配。其次,金属铁和铬的晶格对称性和晶格常数相同,它们之间晶格结构也是匹配的,这两类匹配非常有利于基本物理过程的探索。但是,很长时间以来制成的三明治薄膜都是多晶体,格伦贝格尔和很多研究者一样,并没有特别的发现。直到1986年,他采用了分子束外延(MBE)方法制备薄膜,样品成分还是铁-铬-铁三层膜,不过已经是结构完整的单晶。在

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用 物质在一定磁场下电阻改变的现象,称为磁阻效应。磁性金属和合金材料一般都有这种现象。一般情况下,物质的电阻率在磁场中仅发生微小的变化,在某种条件下,电阻减小的幅度相当大,比通常情况下约高十余倍,称为巨磁阻效应(GMR )。 要说这种效应的原理,不得不说一下电子轨道及自旋。种角动量在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角动量、自旋角动量和总角动量。表征其性质的量子数是主量子数n 、角量子数l 、自旋量子数s =1/2,和总角动量量子数j 。主量子数(n=1,2,3,4 …)会视电子与原子核间的距离(即半径座标r )而定。平均距离会随着n 增大,因此不同量子数的量子态会被说成属于不同的电子层。 角量子数(l=0,1 … n-1)(又称方位角量子数或轨道量子数)通过关系式来代表轨道角动量。在化学中,这个量子数是非常重要的,因为它表明了一轨道的形状,并对化学键及键角有重大形响。有些时候,不同角量子数的轨道有不同代号,l=0的轨道叫s 轨道,l=1的叫p 轨道,l=2的叫d 轨道,而l=3的则叫f 轨道。磁量子数(ml= -l ,-l+1 … 0 … l-1,l )代表特征值,。这是轨道角动量沿某指定轴的射影。 从光谱学中所得的结果指出一个轨道最多可容纳两个电子。然而两个电子绝不能拥有完全相同的量子态(泡利不相容原理),故也绝不能拥有同一组量子数。所以为此特别提出一个假设来解决这问题,就是设存在一个有两个可能值的第四个量子数—自旋量子数。这假设以后能被相对论性量子力学所解释。 “我们对过渡金属的电导率有了如下认识:电流由s 电子传递,其有效质量近乎于自由电子。然而电阻则取决于电子从 s 带跃迁到 d 带的散射过程,因为跃迁几率与终态的态密度成正比,而局域性的 d 带在费米面上的态密度是很大的。 这就是过渡金属电阻率高的原因。这种 s-d 散射率取决于 s 电子与 d 电子自旋的相对取向。 巨磁电阻(GMR )效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。GMR 是一个量子力学效应,它是在层状的磁性薄膜结构中观察到的。这种结构由铁磁材料和非磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。关于这种效应可以用两自选电流模型来解释: 普通磁电阻 (正, 极小, 各向异性) 巨磁电阻 (负, 巨大 , 各向同性) [])(/)0()(H R R H R MR -=[][] ) ()()0() 0()()0(21S S S H R H R R MR R H R R MR -=-=

巨磁电阻效应

巨磁电阻效应 ――GMR 模拟传感器的磁电转换特性测量 【实验目的】 1. 掌握GMR 效应的定义; 2. 了解GMR 效应的原理; 3. 熟悉GMR 模拟传感器的构成; 4. 测量GMR 磁阻特性曲线。 【实验仪器】 ZKY-JCZ 巨磁电阻效应及应用实验仪、基本特性组件、导线 【实验原理】 一、巨磁电阻效应定义及发展过程 1、定义 2007年10月,科学界的最高盛典—瑞典皇家科学院颁发的诺贝尔奖揭晓了。本年度,法国科学家阿尔贝·费尔(Albert Fert)和德国科学家彼得·格林贝格尔(Peter Grunberg)因分别独立发现巨磁阻效应而共同获得2007年诺贝尔物理学奖。瑞典皇家科学院在评价这项成就时表示,今年的诺贝尔物理学奖主要奖励“用于读取硬盘数据的技术,得益于这项技术,硬盘在近年来迅速变得越来越小”。 巨磁阻到底是什么? 诺贝尔评委会主席佩尔·卡尔松用比较通俗的语言解答了这个问题。他用两张图片的对比说明了巨磁阻的重大意义:一台1954年体积占满整间屋子的电脑,和一个如今非常普通、手掌般大小的硬盘。正因为有了这两位科学家的发现,单位面积介质存储的信息量才得以大幅度提升。目前,根据该效应开发的小型大容量硬盘已得到了广泛的应用。 “巨磁电阻”效应(GMR ,Giant Magneto Resistance)是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。也就是说,非常弱小的磁性变化就能导致巨大电阻变化的特殊效应,变化的幅度比通常磁性金属与合金材料的磁电阻数值高10余倍。 2、发展过程 人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。量子力学出现后,德国科学家海森伯(W. Heisenberg)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。后来发现很多的过渡金属和稀土金属的化合物具有反铁磁(或亚铁磁)有序状态,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。直接交换作用的特征长度为0.1-0.3nm ,间接交换作用可以长达1nm 以上。1nm 已经是实验室中人工微结构材料可以实现的尺度,所以1970年之后,科学家就探索人工微结构 中的磁性交换作用。 1988年法国的M.N.Baibich 等人在美国物理学会主办的Physical Review Letters 上发表了有关Fe/Cr 巨磁电阻效应的著名论文,首次报告了采用分子外延生长工艺(MBE )制成 图1(Fe/Cr )n 多层膜的GMR 效应特性曲线

巨磁电阻传感器

The magnetoresistance is the change of electrical resistance of a conductor when subjected to an external magnetic field. In bulk ferromagnetic conductors, the leading contribution to the magnetoresistance is due to the anisotropic magnetoresistance (AMR) discovered in 1857 by W. Thomson (Lord Kelvin) (Proc. R. Soc. London A8, 546 (1857)). This originates from the spin-orbit interaction, which leads to a different electrical resistivity for a current direction parallel or perpendicular to the magnetization direction. As a magnetic field is applied, misoriented magnetic domains tend to align their magnetization along the field direction, giving rise to a resistance change of the order of a few percent. Magnetoresistive effects are of great interest for industrial applications, and the AMR has been applied for making magnetic sensors and read-out heads for magnetic disks. Until 1988, the 130 years old AMR remained the most important contribution to the magnetoresistance of ferromagnets. The situation at that time is best summarized by the following pessimistic quotation, taken from an authorative treatise on magnetic sensor technology written in 1988: “More t han t wo decades of research and development have established the principle of magnetoresistive sensors. (...). It is doubtful, however, whether magnet oresist ive layers t hemselves will be improved considerably in t he coming years.”(From“Sensors, A Comprehensive Survey, Vol. 5: Magnetic Sensors”, VCH (1989)). It was therefore a great sensation when, in 1988, Albert Fert and Peter Grünberg independently discovered that a much greater magnetoresistive effect (hence dubbed “giant magnetoresistance” or GMR) can be obtained in magnetic multilayers. These systems essentially consist of an alternate stack of ferromagnetic (e.g., Fe, Co, Ni, and their alloys) and non-ferromagnetic (e.g., Cr, Cu, Ru, etc.) metallic layers. Each individual layer in these multilayers is only a few atomic layers thick. Fert and Grünberg discovered that when the relative orientation of the magnetization of the successive ferromagnetic layers is changed from antiparallel to parallel by applying an external magnetic field, the electrical resistance of the multilayers is reduced by as much as 50% as shown schematically in Figure 1.

磁性材料及巨磁电阻效应简介.

磁性材料及巨磁电阻效应简介 物理系隋淞印学号SC11002094 引言 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料, 人们对物质磁性的认识源远流长。 磁性材料的进展大致上分几个历史阶段:当人类进入铁器时代, 除表征生产力的进步外,还意味着金属磁性材料的开端,直到18世纪金属镍、钻相继被提炼成功, 这一漫长的历史时期是3d 过渡族金属磁性材料生产与原始应用的阶段; 20世纪初期(1900-1932, FeSi、FeNi 、FeCoNi 磁性合金人工制备成功,并广泛地应用于电力工业、电机工业等行业, 成为3d 过渡族金属磁性材料的鼎盛时期, 从此以后, 电与磁开始了不解之缘; 20世纪后期, 从50年代开始, 3d 过渡族的磁性氧化物(铁氧体 逐步进入生产旺期, 由于铁氧体具有高电阻率, 高频损耗低, 从而为当时兴起的无线电、雷达等工业的发展提供了所必需的磁性材料, 标志着磁性材料进入到铁氧体的历史阶段; 1967年, SmCo 合金问世, 这是磁性材料进入稀土—3d 过渡族化合物领域的历史性开端。1983年,高磁能积的钕铁硼(Nd—FeB 稀土永磁材料研制成功。现已誉为当代永磁王。TbFe 巨磁致收缩材料与稀土磁光材料的问世更丰富了稀土一3d 过渡族化合物磁性材料的内涵。1972年的非晶磁性材料与1988年的纳米微晶材料的呈现, 更添磁性材料新风采。1988年, 磁电阻效应的发现揭开了自旋电子学的序幕。因此从20世纪后期延续至今, 磁性材料进入了前所未有的兴旺发达时期, 并融入到信息行业, 成为信息时代重要的基础性材料之一。 磁性材料的分类 磁性材料应用十分广泛, 品种繁多, 存在以下多种分类方式。按物理性质分类:(1按静磁特性:即根据静态磁滞回线上的参量,如矫顽力、剩磁等来确定 磁性材料的类型。例如:永磁属高矫顽力一类磁性材料; 软磁属低矫顽力的一类 磁性材料; 矩磁属高剩磁、低矫顽力的一类磁性材料; 磁记录介质属于中等矫顽

巨磁阻效应实验报告

巨磁阻效应实验报告 篇一:磁阻效应实验报告 近代物理实验报告 专业2011级应用物理学班级(2) 指导教师彭云雄姓名同组人 实验时间 2013 年 12 月23 日实验地点 K7-108 实验名称磁阻效应实验 一、实验目的 1、 2、 3、 4、测量电磁铁的磁感应强度与励磁电流的关系和电磁铁磁场分布。测量锑化铟传感器的电阻与磁感应强度的关系。作出锑化铟传感器的电阻变化与磁感应强度的关系曲线。对此关系曲线的非线性区域和线性区域分别进行拟合。 二、实验原理 图1磁阻效应原理 1 一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍耳电场。 如果霍耳电场作用和某一速度载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大,表现出横向磁阻效应。若将图1中a端和b端短路,则磁阻效应更明显。通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻在磁感应强度为B的磁场中电阻率为ρ(B),则

Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相对变化率ΔR/R(0)正比于 Δρ/ρ(0),这里ΔR=R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量 ΔR/R(0)来表示磁阻效应的大小。 图2 图2所示实验装置,用于测量磁电阻的电阻值R与磁感应强度B之间的关系。实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。 2 如果半导体材料磁阻传感器处于角频率为ω的弱正弦波交流磁场中,由于磁电阻相对变化量ΔR/R(0)正比于B,则磁阻传感器的电阻值R将随角频率2ω作周期性变化。即在弱正弦波交流磁场中,磁阻传感器具有交流电倍频性能。若外界交流磁场的磁感应强度B为 B=B0COSωt (1) (1)式中,B0为磁感应强度的振幅,ω为角频率,t为时间。 2设在弱磁场中ΔR/R(0)=KB(2) (2)式中,K为常量。由(1)式和(2)式可得 R(B)=R(0)+ΔR=R(0)+R(0)×[ΔR/R(0)] 22=R(0)+R(0)KB0COSωt 2 1212R(0)KB0+R(0)KB0COS2ωt (3) 22 1122(3)式中,R(0)+R(0)KB0为不随时间变化的电阻值,而R(0)KB0cos2ωt为以角频22=R(0)+ 率2ω作余弦变化的电阻值。因此,磁阻传感器的电阻值在弱正弦波交流磁场中,将产生倍频交流电阻阻值变化。

巨磁电阻效应及应用

实验十四巨磁电阻效应及应用 【实验目的】 1.了解GMR效应的原理 2.测量GMR模拟传感器的磁电转换特性曲线 3.测量GMR的磁阻特性曲线 4.测量GMR开关(数字)传感器的磁电转换特性曲线 5.用GMR传感器测量电流 6.用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理 7.通过实验了解磁记录与读出的原理 【实验仪器】 巨磁电阻效应及应用实验仪 【实验原理】 2007年诺贝尔物理学奖授予了巨磁电阻( Giant magneto resistance,简称GMR)效应的发现者:法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格尔( Peter Grunberg )。诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它使计算机硬盘的容量从几百、几千兆,一跃而提高几百倍,达到几百G 乃至上千G。” 凝聚态物理研究原子,分子在构成物质时的微观结构,它们之间的相互作用力,及其与宏观物理性质之间的联系。 GMR作为自旋电子学的开端具有深远的科学意义。传统的电子学是以电子的电荷移动为基础的,电子自旋往往被忽略了。巨磁电阻效应表明,电子自旋对于电流的影响非常强烈,电子的电荷与自旋两者都可能载运信息。自旋电子学的研究和发展,引发了电子技术与信息技术的一场新的革命。目前电脑,音乐播放器等各类数码电子产品中所装备的硬盘磁头,基本上都应用了巨磁电阻效应。利用巨磁电阻效应制成的多种传感器,已广泛应用于各种测量和控制领域。除利用铁磁膜-金属膜-铁磁膜的GMR效应外,由两层铁磁膜夹一极薄的绝缘膜或半导体膜构成的隧穿磁阻(TMR)效应,已显示出比GMR效应更高的灵敏度。除在多层膜结构中发现GMR效应,并已实现产业化外,在单晶,多晶等多种形态的钙钛矿结构的稀土锰酸盐中,以及一些磁性半导体中,都发现了巨磁电阻效应。 本实验介绍多层膜GMR效应的原理,并通过实验让学生了解几种GMR传感器的结构、特性及应用领域。 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规则散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自 221

磁电阻测量实验报告

竭诚为您提供优质文档/双击可除磁电阻测量实验报告 篇一:巨磁电阻实验报告 实验报告班 姓名张涛学号1003120505指导老师徐富新 实验时间20XX年5月25日,第十三周,星期日 篇二:_磁电阻特性_实验报告 实验8-1Insb磁电阻特性研究 【实验目的】 1、掌握磁感应强度的测量方法; 2、了解磁电阻的一些基本知识; 3、测量和分析Insb材料磁电阻特性;【实验原理】 磁电阻(magnetoResistance,mR)通常定义为 ?RR(0) ? R(b)?R(0) R(0) (8-1-1)

其中:R(0)是零外场下的电阻,R(b)是外场b下的电阻。有时,上式也可以表示为目前,已被研究的磁性材料的磁电阻效应大致包括:由磁场直接引起的磁性材料的正常磁电阻、与技术磁化相联系的各向异性磁电阻、掺杂稀土氧化物中特大磁电阻、磁性多层膜和颗粒膜中特有的巨磁电阻、以及隧道磁电阻等。图8-1-2列出了几种磁电阻阻值R随外磁场μ0h的变化形式。在以上磁电阻效应中,正常磁电阻应用最为普遍。 图8-1-1几种典型的磁电阻效应 正常磁电阻普遍存在于所有磁性与非磁性材料中,其来源于外磁场对载流子的洛仑兹力,它导致载流子运动发生偏转或产生螺旋运动,从而使载流子碰撞几率增加,造成电阻升高,因而,在正常磁电阻中,??//、??T和???均为正,并且有?T??//。正常磁电阻与外场的关系如图8-1-2所示。在特定的温度,随外场的增加,在低场区域,正常磁电阻近似地与外场成平方关系。对于单晶样品,在较高的磁场区域,??//显示了饱和的趋势(曲线 图8-1-2 B),而??T和???显示出各向异性,即随外场增加或正 比于(曲线A)或趋于饱和(曲线b)。对于多晶样品,在强场中,正常磁电阻则显示出与外场h的线性关系(曲线c)。正 常磁电阻的各项异性来源于费米面的褶皱。

巨磁电阻实验

巨磁电阻效应及其应用巨磁电阻(Giant magneto resistance, 简称GMR)效应表示在一个巨磁电阻系统中, 非常弱小的磁性变化就能导致巨大的电阻变化的特殊效应. 法国科学家阿尔贝·费尔(Albert Fert)和德国科学家彼得·格林贝格尔(Peter Grunberg )因分别独立发现巨磁阻效应而共同荣膺2007年诺贝尔物理学奖. G MR是一种量子力学和凝聚态物理学现象, 是磁阻效应的一种, 可以在磁性材料和非磁性材料相间的薄膜层(几个纳米厚)结构中观察到. 在量子力学出现后, 德国科学家海森伯(W. Heisenberg, 1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用, 这个交换作用是短程的, 称为直接交换作用. 随后, 科学家们又发现很多的过渡金属和稀土金属的化合物也具有反铁磁有序状态, 即在有序排列的磁材料中, 相邻原子因受负的交换作用, 自旋为反平行排列, 如图1所示. 此时磁矩虽处于有序状态, 但总的净磁矩在不受外场作用时仍为零. 这种磁有序状态称为反铁磁性. 反铁磁性通过化合物中的氧离子(或其他非金属离子)将最近的磁性原子的磁矩耦合起来, 属于间接交换作用. 此外, 在稀土金属中也出现了磁有序, 其中原子的固有磁矩来自4f电子壳层. 相邻稀土原子的距离远大于4f电子壳层直径, 所以稀土金属中的传导电子担当了中介, 将相邻的稀土原子磁矩耦合起来, 这就是RKKY 型间接交换作用. 直接交换作用的特征长度为0.1—0.3nm, 间接交换作用可以长达1nm以上. 据此美国IBM实验室的江崎和朱兆祥提出了超晶格的概念.所谓的超晶格就是指由两种(或两种以上)组分(或导电类型)不同、厚度极小的薄层材料交替生长在一起而得到的一种多周期结构材料, 其特点是这种复合材料的周期长度比各薄膜单晶的晶格常数大几倍或更长. 上世纪八十年代, 制作高质量的纳米尺度样品技术的出现使得金属超晶格成为研究前沿. 因此凝聚态物理工作者对这类人工材料的磁有序, 层间耦合, 电子输运等进行了广泛的基础方面的研究. 其中相关的代表性研究工作简介如下. 其一是德国尤利希科研中心的物理学家彼得·格伦贝格尔. 他一直致力于研究铁磁性金属薄膜表面和界面上的磁有序状态, 其研究对象是一个三明治结构的薄膜, 两层厚度约10nm的铁层之间夹有厚度为1nm的铬层. 之所以选择选择这一材料系统, 首先是因为金属铁和铬是周期表上相近的元素, 具有类似的电子壳层, 容易实现两者的电子状态匹配. 其次, 金属铁和铬的晶格对称性和晶格常数相同, 它们之间晶格结构相匹配. 这两类匹配非常有利于对基本物理过程进行探索. 尽管如此, 长期以来该课题组所获得的三明治薄膜仅为多晶体. 随着制备薄膜技术的发展, 分子束外延(MBE)方法的应用才使得结构完整的单晶样品得以问世, 其成分依然是铁-铬-铁三层膜. 此后,

巨磁电阻

实验38 巨磁电阻效应及其应用 人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态,后来发现很多的过渡金属和稀土金属的化合物具有反铁磁(或亚铁磁)有序状态,相关理论指出这些状态源于铁磁性原子磁矩之间的直接交换作用和间接交换作用.直接交换作用的特征长度为0.1-0.3nm,间接交换作用可以长达1nm以上.1nm已经是实验室中人工微结构材料可以实现的尺度,所以,科学家们开始了探索人工微结构中的磁性交换作用. 1986年德国物理学家彼得·格伦贝格尔( Peter Grunberg )采用分子束外延(MBE)方法制备了铁-铬-铁三层单晶结构薄膜.发现对于非铁磁层铬的某个特定厚度,没有外磁场时,两边铁磁层磁矩是反平行的,这个新现象成为巨磁电阻( Giant magneto resistance,简称GMR)效应出现的前提.进一步发现两个磁矩反平行时对应高电阻状态,平行时对应低电阻状态,两个电阻的差别高达10%. 1988年法国物理学家阿尔贝·费尔(Albert Fert)的研究小组将铁、铬薄膜交替制成几十个周期的铁-铬超晶格薄膜,发现当改变磁场强度时,超晶格薄膜的电阻下降近一半,磁电阻比率达到50%.这个前所未有的电阻巨大变化现象被称为巨磁电阻效应. GMR效应的发现,导致了新的自旋电子学的创立.GMR效应的应用使计算机硬盘的容量提高几百倍,从几百Mbit,提高到几百Gbit甚至上千Gbit. 阿尔贝·费尔和彼得·格伦贝格尔因此获得2007年诺贝尔物理学奖. 【实验目的】 1. 了解多层膜GMR效应的原理. 2. 测量GMR的磁阻特性. 3. 了解GMR模拟传感器的结构、特点,并掌握用GMR传感器测量电流的方法. 【实验仪器】 巨磁电阻效应及应用实验仪,基本特性组件,电流测量组件. 【实验原理】 1. GMR效应的原理 根据导电的微观机理,金属中电子在导电时并不是沿电场直线前进,而是不断与处于晶格位置的原子实产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速和随机散射运动的叠加.电子在两次散射之间运动的平均路程称为平均自由程,电子散射几率越小,平均自由程就越长,电阻率就低.欧姆定律R=ρl/S应用于宏观材料时,通常忽略边界效应,把电阻率ρ视为常数.当材料的几何尺度小到纳米量级,只有几

巨磁电阻效应及其应用实验报告记录

巨磁电阻效应及其应用实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

巨磁电阻效应及其应用 【实验目的】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【实验原理】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 顶层铁磁膜 中间导电层 底层铁磁膜 无外磁场时底层磁场方向 图2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率 ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

巨磁电阻效应及其应用

巨磁电阻效应及其应用 2007年7月27日来源:《国际电子变压器》2007年7月刊作者: 余声明 1 前言 磁性金属和合金一般都有磁电阻效应,所谓磁电阻是指在一定磁场下电阻发生改变的现象。所谓巨磁阻就是指在一定的磁场下电阻急剧变化而比常规磁电阻要大一个数量级以上的效应,是近十多年来发现的一种新现象。 在过去十多年中,已经发现了三种技术上可行的磁电阻:“巨磁电阻”(Giant Magneto-Resistive,GMR)、“超巨磁电阻”(Colossal Magneto-Resistance,CMR)和“穿隧磁电阻”(Tunneling Magneto-Resistive,TMR)。它们都具有三层结构:上下两层为磁性层引发电子自旋、产生磁场的层级;中间为非磁性层,其功能是产生变化的电阻。不同类型的磁电阻的非磁性层所使用的材料有所不同:GMR使用的是金属铜,CMR使用的是稀土锰氧化物,TMR则是使用氧化铝。 本文只就GMR效应、器件与应用作一论述。 2 巨磁电阻效应 1986年德国的Grunberg和C.F.Majkrgak等人发现了Y/Gd、Y/Dy和Fe/Cr/Fe多层膜中的层间耦合现象。1988年法国的M.N.Baibich等人首次在纳米级的Fe/Cr多层膜中发现

其Δρ/ρ在 4.2K低温下可达50%以上,由此提出了GMR 效应的概念,在学术界引起了很大的反响。由此与之相关的研究工作相继展开,陆续研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、Co/Ag、Co/Au……等具有显著GMR效应的层间耦合多层膜。1988年后的3年,人们便研制出可在低磁场(10-2~10-6T)出现GMR效应的多层膜如[CoNiFe/CoFe/AgCu/CoFe/CoNiFe]等结构,此后更掀起了GMR效应的研发热潮。 GMR是一个量子力学效应,它是在层状的磁性薄膜结构中观察到的。这种结构由铁磁材料和非磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。三层结构的与自旋有关的输运性质如图1所示,上下两层为铁磁材料,中间夹层是非磁材料。铁磁材料磁矩的方向是由加到材料的外磁场控制的。现在可以制造出对小的磁场就能得到很大电阻变化的材料,并且可以在室温下工作。 巨磁电阻效应从发现到器件的商品应用也是一个迅速转化的过程。现已广泛应用于电子、磁信息存储等技术领域,还出现了许多GMR 器件,如磁盘驱动器的读写磁头和随机存储器(RAM)等。 磁电子新技术的实用化,源于纳米磁性材料和纳米制造技

相关主题
文本预览
相关文档 最新文档