当前位置:文档之家› 非通风状态新型地下粮仓储粮温度场的CFD数值模拟_王振清

非通风状态新型地下粮仓储粮温度场的CFD数值模拟_王振清

非通风状态新型地下粮仓储粮温度场的CFD数值模拟_王振清
非通风状态新型地下粮仓储粮温度场的CFD数值模拟_王振清

第七 章 CFD仿真模拟

第七章CFD仿真模拟 一.初识CFD CFD是英文Computational Fluid Dynamics(计算流体动力学)的简称。它是伴随着计算机技术、数值计算技术的发展而发展的。简单地说,CFD相当于"虚拟"地在计算机做实验,用以模拟仿真实际的流体流动情况。而其基本原理则是数值求解控制流体流动的微分方程,得出流体流动的流场在连续区域上的离散分布,从而近似模拟流体流动情况。可以认为CFD是现代模拟仿真技术的一种。 1933年,英国人Thom首次用手摇计算机数值求解了二维粘性流体偏微分方程,CFD由此而生。1974年,丹麦的Nielsen首次将CFD用于暖通空调工程领域,对通风房间内的空气流动进行模拟。之后短短的20多年内,CFD技术在暖通空调工程中的研究和应用进行得如火如荼。如今,CFD技术逐渐成为广大空调工程师和建筑师解决分析工程问题的有力工具。 二.为什么用CFD CFD是一种模拟仿真技术,在暖通空调工程中的应用主要在于模拟预测室内外或设备内的空气或其他工质流体的流动情况。以预测室内空气分布为例,目前在暖通空调工程中采用的方法主要有四种:射流公式,Zonal model,CFD以及模型实验。 由于建筑空间越来越向复杂化、多样化和大型化发展,实际空调通风房间的气流组织形式变化多样,而传统的射流理论分析方法采用的是基于某些标准或理想条件理论分析或试验得到的射流公式对空调送风口射流的轴心速度和温度、射流轨迹等进行预测,势必会带来较大的误差。并且,射流分析方法只能给出室内的一些集总参数性的信息,不能给出设计人员所需的详细资料,无法满足设计者详细了解室内空气分布情况的要求; Zonal model是将房间划分为一些有限的宏观区域,认为区域内的相关参数如温度、浓度相等,而区域间存在热质交换,通过建立质量和能量守恒方程并充分考虑了区域间压差和流动的关系来研究房间内的温度分布以及流动情况,因此模拟得到的实际上还只是一种相对"精确"的集总结果,且在机械通风中的应用还存在较多问题; 模型实验虽然能够得到设计人员所需要的各种数据,但需要较长的实验周期和昂贵的实验费用,搭建实验模型耗资很大,有文献指出单个实验通常耗资3000~20000美元,而对于不同的条件,可能还需要多个实验,耗资更多,周期也长达数月以上,难于在工程设计中广泛采用。 另一方面,CFD具有成本低、速度快、资料完备且可模拟各种不同的工况等独特的优点,故其逐渐受到人们的青睐。由表1给出的四种室内空气分布预测方法的对比可见,就目前的三种理论预测室内空气分布的方法而言,CFD方法确实具有不可比拟的优点,且由于当前计算机技术的发展,CFD方法的计算周期和成本完全可以为工程应用所接受。尽管CFD方法还存在可靠性和对实际问题的可算性等问题,但这些问题已经逐步得到发展和解决。因此,CFD方法可应用于对室内空气分布情况进行模拟和预测,从而得到房间内速度、温度、湿度以及有害物浓度等物理量的详细分布情况。 进一步而言,对于室外空气流动以及其它设备内的流体流动的模拟预测,一般只有模型实验或CFD方法适用。表1的比较同样表明了CFD方法比模型实验的优越性。故此,CFD方法可作为解决暖通空调工程的流动和传热传质问题的强有力工具而推广应用。 表1四种暖通空调房间空气分布的预测方法比较 比较项目 1射流公式 2 ZONAL MODEL 3CFD 4模型实验 房间形状复杂程度简单较复杂基本不限基本不限 ?对经验参数的依赖性几乎完全很依赖一些不依赖

维导热物体温度场的数值模拟

传热大作业 二维导热物体温度场的数值模拟(等温边界条件) 姓名: 班级: 学号:

墙角稳态导热数值模拟(等温条件) 一、物理问题 有一个用砖砌成的长方形截面的冷空气空道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。在下列两种情况下试计算: (1)砖墙横截面上的温度分布; (2)垂直于纸面方向的每米长度上通过砖墙的导热量。外矩形长为,宽为;内矩形长为,宽为。 第一种情况:内外壁分别均匀地维持在0℃及30℃; 第二种情况:内外表面均为第三类边界条件,且已知: 外壁:30℃,h1=10W/m2·℃, 内壁:10℃,h2= 4 W/m2·℃ 砖墙的导热系数λ= W/m·℃ 由于对称性,仅研究1/4部分即可。 二、数学描写 对于二维稳态导热问题,描写物体温度分布的微分方程为拉普拉斯方程

02222=??+??y t x t 这是描写实验情景的控制方程。 三、方程离散 用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为确定温度值的空间位置,即节点。每一个节点都可以看成是以它为中心的一个小区域的代表。由于对称性,仅研究1/4部分即可。依照实验时得点划分网格: 建立节点物理量的代数方程 对于内部节点,由?x=?y ,有 )(411,1,,1,1,-+-++++=n m n m n m n m n m t t t t t 由于本实验为恒壁温,不涉及对流,故内角点,边界点代数方程与该式相同。

设立迭代初场,求解代数方程组。图中,除边界上各节点温度为已知且不变外,其余各节点均需建立类似3中的离散方程,构成一个封闭的代数方程组。以C t 000 为场的初始温度,代入方程组迭代,直至相邻两次内外传热值之差小于,认为已达到迭代收敛。 四、编程及结果 1) 源程序 #include <> #include <> int main() { int k=0,n=0; double t[16][12]={0},s[16][12]={0}; double epsilon=; double lambda=,error=0; double daore_in=0,daore_out=0,daore=0; FILE *fp; fp=fopen("data3","w"); for (int i=0;i<=15;i++) for (int j=0;j<=11;j++) { if ((i==0) || (j==0)) s[i][j]=30; if (i==5) if (j>=5 && j<=11) s[i][j]=0; if (j==5) if (i>=5 && i<=15) s[i][j]=0; } for (int i=0;i<=15;i++)

一维CFD模拟仿真设计

CFD simulation in Laval nozzle SIAE 090441313 Abstract We aim to simulate the quasi one dimension flow in the Laval nozzle based on CFD computation in this paper .We consider the change of the temperature ,the pressure ,the density and the speed of the flow to study the flow.The analytic solution of the flow in the Laval nozzle is provided when the input velocity is supersonic.We use the Mac-Cormack Explicit Difference Scheme to slove the question. Key words :Laval nozzle ,CFD,throat narrow. Contents Abstract .................................................. . (1) Introduction .............................................. .. (2) Simulation of one-dimensional steady flow (3)

Basis equations ................................................. (3) Dimensionless .......................................... . (10) Mac -Cormack Explicit Difference Scheme (11) Boundary conditions ................................................ (13) Reference .............................................. (13) Annex .................................................. .. (14) Introduction Laval nozzle is the most commonly used components of rocket engines and aero-engine, constituted by two tapered tube, one shrink tube, another expansion tube. Laval nozzle is an important part of the thrust chamber. The first half of the nozzle from large to small contraction to a narrow throat to the middle. Narrow throat and then expand

空调房间气流组织数值模拟和优化课程

毕业设计说明书 作者:学号: 学院: 系(专业):热能与动力工程 题目:空调房间气流组织数值模拟和优化指导者:讲师 (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2012 年 6 月2 日 毕业设计(论文)中文摘要

毕业设计(论文)外文摘要 Title Numerical simulation of air-conditioned room air distribution and optimization Abstract Airflow-organizing in air-conditioned indoor air environment, air quality has an important effect is directly related to the indoor temperature, area, flow rate and air-conditioning energy consumption is an important part of the air-conditioned. Effective ventilation and airflow organization has an important significance for improving indoor air quality, to ensure the realization of healthy buildings, healthy comfort air conditioning. The main factors to affect the flow in room inlet velocity, the location of the air inlet into the return air relative position Firstly, the establishment of a physical model and mesh using Gambit software, and numerical simulations using Fluent software, said in an intuitive way the temperature field and velocity field of airflow under different air distribution program, analyzing the draw for office and other similar air-conditioned room, Side of the send side back, on sending the next time, on to send back, next to send back to the four air distribution are more appropriate. But the better Side of the send side back and on to send back on the air current forms of organization. Keywords:Airflow-organizing;Numerical simulation; Turbulence model;Temperature field;Velocity field.

CFD仿真验证及有效性指南

CFD仿真验证及有效性指南 摘要 本文提出评估CFD建模和仿真可信性的指导方法。评估可信度的两个主要原则是:验证和有效。验证,即确定计算模拟是否准确表现概念模型的过程,但不要求仿真和现实世界相关联。有效,即确定计算模拟是否表现真实世界的过程。本文定义一些重要术语,讨论基本概念,并指定进行CFD仿真验证和有效的一般程序。本文目的在于提供验证和有效的重要问题和概念的基础,因为一些尚未解决的重要问题,本文不建议作为该领域的标准。希望该指南通过建立验证和有效的共同术语和方法,以助于CFD仿真的研究、发展和使用。这些术语和方法也可用于其他工程和科学学科。 前言 现在,使用计算机模拟流体的流动过程,用于设计,研究和工程系统的运行,并确定这些系统在不同工况下的性能。CFD模拟也用于提高对流体物理和化学性质的理解,如湍流和燃烧,有助于天气预报和海洋。虽然CFD模拟广泛用于工业、政府和学术界,但目前评估其可信度的方法还很少。这些指导原则基于以下概念,没有适用于所有CFD模拟的固定的可信度和精确度。模拟所需的精确度取决于模拟的目的。 建立可信度的两个主要原则是验证和有效(V&V)。这里定义,验证即确定模型能准确表现设计者概念模型的描述和模型解决方案的过程,有效即确定预期模型对现实世界表现的准确度的过程。该定义表明,V&V的定义还在变动,还没有一个明确的最终定义。通常完成或充分由实际问题决定,如预算限制和模型的预期用途。复合建模和计算模拟没有任何包括准确性的证明,如在数学分析方面的发展。V&V的定义也强调准确度的评价,一般在验证过程中,准确度以对简化模型问题的基准解决方法符合性确定;有效性时,准确度以对实验数据即现实的符合性确定。 通常,不确定性和误差可视为与建模和仿真准确度相关的正常损失。不确定性,即在任一建模过程中由于缺乏知识导致的潜在缺陷。知识缺乏通常是由对物理特性或参数的不完全了解造成的,如对涡轮叶片表面粗糙度分布的不充分描述。知识缺乏的另一个原因是物理过程的复杂性,如湍流燃烧。误差即在建模和

西安交通大学——温度场数值模拟(matlab)

温度场模拟matlab代码: clear,clc,clf L1=8;L2=8;N=9;M=9;% 边长为8cm的正方形划分为8*8的格子 T0=500;Tw=100; % 初始和稳态温度 a=0.05; % 导温系数 tmax=600;dt=0.2; % 时间限10min和时间步长0.2s dx=L1/(M-1);dy=L2/(N-1); M1=a*dt/(dx^2);M2=a*dt/(dy^2); T=T0*ones(M,N); T1=T0*ones(M,N); t=0;l=0;k=0; Tc=zeros(1,600);% 中心点温度,每一秒采集一个点 for i=1:9 for j=1:9 if(i==1|i==9|j==1|j==9) T(i,j)=Tw;% 边界点温度为100℃ else T(i,j)=T0; end end end if(2*M1+2*M2<=1) % 判断是否满足稳定性条件 while(t

end i=1:9;j=1:9; [x,y]=meshgrid(i); figure(1); subplot(1,2,1); mesh(x,y,T(i,j))% 画出10min 后的温度场 axis tight; xlabel('x','FontSize',14);ylabel('y','FontSize',14);zlabel('T/℃','FontSize',14) title('1min 后二维温度场模拟图','FontSize',18) subplot(1,2,2); [C,H]=contour(x,y,T(i,j)); clabel(C,H);axis square; xlabel('x','FontSize',14);ylabel('y','FontSize',14); title('1min 后模拟等温线图','FontSize',18) figure(2); xx=1:600; plot(xx,Tc,'k-','linewidth',2) xlabel('时间/s','FontSize',14);ylabel('温度/℃','FontSize',14);title('中心点的冷却曲线','FontSize',18) else disp('Error!') % 如果不满足稳定性条件,显示“Error !” end 实验结果: 时间/s 温度/℃ 中心点的冷却曲线

车流量仿真分析-Flotran CFD

2006年用户年会论文 基于ANSYS流体动力学的车流量仿真分析1 [刘长虹,郑杰,朱晓华,张海波,黄虎,陈力华] [上海工程技术大学汽车工程学院,上海,201600] [ 摘要 ] 将交通流比拟为管道流体模型并且利用有限元分析软件ANSYS中的FLOTRAN CFD流体分析模块对隧道口交通流进行比拟及仿真,得出相应交通流量模型和车辆流动模拟图。并对不同车速下 交叉道口的通行能力进行模拟,确定出最佳车速比。且对不同入口形状进行车流通畅度的 ANSYA软件比较模拟,通过模拟直观的展示出不同道路入口形状对车流和道路的影响。最后对 高峰路段路口设计提出有关建议。 [ 关键词]交通流,交通流模型,ANSYS,模拟 Simulating to Traffic Flux By the ANSYS Fluid Dynamic Analysis [Liu Changhong, Zheng Jie, Zhu Xiaohua, Zhang Haibo, Huang Hu, Chen Lihua] [Automobile College Shanghai University of Engineering Science, Shanghai 201600] [Abstract ] Firstly, based on the fluid dynamic mechanics of channel, a traffic flow model is built. Secondly, the traffic flow model on cross road is simulated with the finite element method software (ANSYS). Then according to the calculating results, the simulating traffic ability at the entrance of the roadl in different speed and the different entrance figures are calculated directly. Finally, some suggestions of designing the heavy road are given. [ Keyword ] traffic flow, traffic flow simulation, ANSYS, Simulation. 1.前言 当前,社会经济的迅速发展与交通建设的相对滞后,已经构成非常突出的世界性矛盾,在发展中国家尤其突出。在我国许多大城市中,交通堵塞,事故频繁,成了众所周知的“都市顽症”。以上海市为例,上世纪九十年代的资料表明,在交通高峰期,市中心机动车平均车速不到15km/h,最低的车速仅仅为4km/h,即低于正常的步行速度。解决这个矛盾的一个重要办法是大力进行市政交通建设,实现交通的立体化,现代化。同时还要保证建设道路的合理性。交通流理论是解决这类方法的一种理论方法[1,2],其中有根据流体动力学理 1上海市教委基金项目(041NE31)和上海市科委基金项目(04QMX1452)资助

室内气流组织数值模拟与舒适度分析

室内气流组织数值模拟与舒适度分析 摘要:分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的室内空调室内气流的速度场和温度场进行了数值模拟,并对其结 果进行了实验验证。根据ADPI指标对这几种送回风方式进行了热舒适性评价。 结果表明,分层空调和置换通风是室内中较好的气流组织方式。 关键词:室内;气流组织;速度场;温度场;数值模拟;热舒适 引言 传统空调系统的气流组织是以送风射流为基础的,通过反复迭代检查温度和 速度。最后,找到合理的回风方案和参数。空调房间内的供气射流大多是多个非 等温湍流射流,一般设计方法是基于单股等温紊流射流的规律,射流约束修正系数、射流重合度和非等温射流的修正系数。介绍。这种方法忽略了很多其他因素,如排风口的尺寸和位置、热源的性质和位置等,因此必然有一定的误差,在某些 情况下甚至有很大的误差。若简单地将这种方法用于空间空调系统的气流组织设计,是不合适的。 空间空调系统的气流设计没有成熟的理论和实验结论。主要研究方法是将气 流的数值分析与模型相结合。由于气流的数值分析涉及到各种可能的内部扰动、 边界条件和初始条件,所以可以完全反映房间内的气流分布,从而确定气流的最 佳方案。 1室内空气流动的有限元数值模拟 机械通风房间内的空气流动多属于非稳态湍流流动,直接模拟尚不现实。在 解决实际问题时,需要对物理模型进行一定的假设和简化处理。笔者作了以下假设: 1)室内空气为低速不可压缩气体,且符合 Boussinesq 假设; 2)室内空气流动为准稳态湍流流动; 3)忽略能量方程中粘性效应引起的能量耗散。 2各种送风方式下大空间室内气流组织数值模拟 2.1研宄对象 本文的研宄对象为有内热源、尺寸为12 mX &4 mX5.0 m(长X宽X高)的长 方体建筑模型(如图1所示),风口设在外墙侧。人员和设备由于不断放出热量,对室内气流分布特性有重要影响,将其视作内热源处理。内热源模型为0.4 mX 1.2 mX 1.3 m(长X宽X高)的长方体。在内热源模型内部不求解控制方程,把它的内表面视作速度为0的壁面。考虑模型的对称性,取一个空调送风单元(3 mX 4.2 mX 5.0 m)进行模拟计算分析。本文主要讨论0.1 m和1.1m高度的情况,这 两个平面之间的区域可以代表工作区。 2.2边界条件的处理 室内温度设定为(26±2)°C,内墙的温度设定为26°C,外墙为26.5屋顶为26°C。人体和设备的发热功率之和为600 W。本文应用有限元的非统一网格,在 人体和设备周围、外墙附近及风口附近对网格进行加密,在壁面附近采用壁面函 数法。非线性方程组由FIDAP(流体力学有限元软件包)的求解器通过迭代求解。 2.3常用送回风方式下室内气流组织模拟及气流分布特性评价

二维导热物体温度场的数值模拟

金属凝固过程计算机模拟题目:二维导热物体温度场的数值模拟 Solidworks十字接头的传热分析 作者:张杰 学号:S2******* 学院:北京有色金属研究总院 专业:材料科学与工程 成绩: 2015 年12 月

二维导热物体温度场的数值模拟 图1 二维均质物体的网格划分 用有限差分法模拟二维导热物体的温度场,首先将二维物体划分为如图1所示的网格,x ?与y ?可以是不变的常量,即等步长,也可以是变量(即在区域内的不同处是不同的),即变步长?如果区域内各点处的温度梯度相差很大,则在温度变化剧烈处,网格布得密些,在温度变化不剧烈处,网格布得疏些?至于网格多少,步长取多少为宜,要根据计算精度与计算工作量等因素而定? 在有限的区域内,将二维不稳定导热方程式应用于节点 ,)i j (可写成: ,2222 ,i j P P p i j T T T C x y ρλτ?????=+ ?????? ,1 , ,()i j P P P i j i j T T T οτττ+-???= +? ????? () , 1 , , 1 ,22 2()i j P P P P i j i j i j T T T T x x x ο+--+??? =+? ????? () , ,1 , ,122 2()i j P P P P i j i j i j T T T T y y y ο+--+???=+? ?????τ?、x ?、y ? 当τ?、x ?、y ?较小时,忽略()οτ?、2()x ο?、2 ()y ο?项。当x y ?=?时, 即x 、y 方向网格划分步长相等?最后得到节点 ,)i j (的差分方程: ()1 , ,0 1 , 1 , ,1 ,1 ,4P P P P P P P i j i j i j i j i j i j i j T T F T T T T T ++-+-=++++- 式中:() 02 p F C x λτ ρ?= ??

大空间建筑室内气流组织数值模拟与舒适性分析

大空间建筑室内气流组织数值模拟与舒适性分析 发表时间:2019-04-30T10:40:18.810Z 来源:《基层建设》2019年第4期作者:王雷谢恩 [导读] 摘要:在我国快速发展的过程中,我国的国民经济得到了快速的发展,分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的大空间建筑空调室内气流的速度场和温度场进行了数值模拟,并对其结果进行了实验验证。 中建三局第一建设工程有限责任公司湖北武汉 430040 摘要:在我国快速发展的过程中,我国的国民经济得到了快速的发展,分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的大空间建筑空调室内气流的速度场和温度场进行了数值模拟,并对其结果进行了实验验证。根据ADPI指标对这几种送回风方式进行了热舒适性评价。结果表明,分层空调和置换通风是大空间建筑中较好的气流组织方式。 关键词:大空间建筑;气流组织;速度场;温度场;数值模拟 引言 常规空调系统气流组织的设计是以送风射流为基础,通过反复迭代对温度和速度进行校核,最后找到合理的送回风方案和参数。空调房间的送风射流大多属于多股非等温受限湍流射流,而一般的设计方法是在单股等温湍流送风射流规律的基础上,引入射流受限、射流重合和非等温射流修正系数,这种方法忽略了很多其他因素,如排风口的尺寸和位置、热源的性质和位置等,因此必然有一定的误差,在某些情况下甚至有很大的误差。若简单地将这种方法用于高大空间空调系统的气流组织设计,是不合适的。对于高大空间空调系统的气流组织设计,目前尚无成熟的理论和实验结论,主要研究手段是将气流数值分析和模型相结合。由于气流数值分析涉及室内各种可能的内扰、边界条件和初始条件,因此能全面地反映室内的气流分布情况,从而便于确定最优的气流组织方案。 1大空间气流组织的研究意义 对于现代的工艺空调车间,不但要满足工艺方面的要求,而且还要营造良好的室内人工环境。在生产过程中必须保证生产工艺所要求的温度、风速、湿度,为生产提供条件,同时也要求提供合适的新风量,保证一定的洁净度和噪声标准,为工作人员提供良好的工作环境。在各类工艺空调建筑内,空气调节是实现这些人工环境的最佳手段。在大空间空调中,经过处理的空气由送风口进入,与室内空气进行热湿交换,经过回风口排出。空气的进入与排出,必然引起室内空气的流动,而不同的空气流动状况有不同的空调效果,合理组织室内空气的流动,使室内空气的温度、湿度、流动速度等能更好地满足工艺要求,符合人们的舒适感觉。由此可见,大空间气流组织直接影响室内的空调效果,是关系到工作区的温湿度基数、精度及区域温差、工作区的气流速度及洁净度和人们舒适感觉的重要因素,是空气调节的重要环节,对其进行研究己口渐成为一项重要的课题。 2大空间建筑室内气流组织有限元法数值模拟 2.1物理模型假设 机械通风房间内的空气流动多属于非稳态湍流流动,直接模拟尚不现实。在解决实际问题时,需要对物理模型进行一定的假设和简化处理。笔者作了以下假设:1)室内空气为低速不可压缩气体,且符合Boussinesq假设;2)室内空气流动为准稳态湍流流动;3)忽略能量方程中由于黏性作用引起的能量耗散。4)控制方程求解与罚函数的采用应用K-ε两方程模型模拟湍流,加上连续性方程、动量方程、能量方程组成控制方程组。方程组中空气密度ρ=1.1941kg/m3,黏度μ=1.81×10-5Pas,6个经验系数的取值如下:Cμ=0.09,C1=1.44,C2=1.92,σT=0.9~ 1.0,σK=1.0,σε=1.3。对流场控制方程用有限元法求解。为防止病态方程组出现,本文采用罚函数法。罚函数模型是压力速度模型的变形形式,把连续方程作为罚函数约束导入动量方程从而消去压力项,得到只有速度项的动量方程,即令p=-λp(v)(1)式中λp是罚参数。在求解其他变量之前,将压力从全部未知量中消去,这将减少求解未知量的数目。压力在其他变量求出后重新求得。 2.2各种送风方式下大空间室内气流组织数值模拟 2.2.1下送风方式(置换通风)室内气流组织模拟 置换通风气流组织的影响因素很多,例如热源的大小和位置、送风温度以及障碍物的高度和位置等。由于长方体内热源模型的假设不能很好反映置换通风的流动特点,所以在此将内热源简化为一个处于房间底部正中间的面积为0.4m×0.4m的面热源,热源温度为40℃。为了模拟热源气流的上升,假设送风速度为0.3m/s,考虑冷气流的特点,假定地面温度为22℃,其余边界条件与前文相同。置换通风的送风温差一般为2~4℃,本文取4℃,则送风温度为22℃,送风速度为0.25m/s,送风口尺寸为1.0m×0.5m。尺寸为1.0m×0.5m的回风口布置在屋顶靠近置换装置的一侧,回风速度为0.35m/s。模拟显示z=0.1m断面上平均温度为22.66℃,平均速度为0.025m/s。 2.2.2边界条件的处理 室内温度设定为(26±2)℃,内墙的温度设定为26℃,外墙为26.5℃,屋顶为26℃。人体和设备的发热功率之和为600W。本文应用有限元的非统一网格,在人体和设备周围、外墙附近及风口附近对网格进行加密,在壁面附近采用壁面函数法。非线性方程组由FIDAP(流体力学有限元软件包)的求解器通过迭代求解。 2.3五种送回风方式室内气流分布特性评价 对舒适性空调来说,评价标准不外乎舒适性和经济性两个方面,前者是对气流在工作区形成的温度场、速度场能否满足人员的卫生和舒适要求的评价,后者则考虑为消除工作区的余热,送风的耗冷量是否最低。对气流组织性能有多种评价指标,如温度不均匀系数kt,速度不均匀系数kv,符合给定条件测点比例数F,以及能量利用系数η等。 3送回风参数对地面附近温度场和速度场的影响 前面我们对子午胎车间在冬夏两季最不利情况下进行了气流组织模拟预测,并对其设计效果进行了评价,结果表明原来的设计将使车间内冬季温度偏高,夏季温度偏低,不利于节能。这一章中我们将对夏季最不利工况进行研究,模拟预测子午胎车间在不同送风参数和回风口高度下的温度场和速度场,对比分析找出最佳送风参数和回风口高度,力图得出同类大空间车间的设计规律。 4结论 从流场情况看,上送风的几种形式中,百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调有相似的气流流动规律,但分层空调较为节能;喷口送风工作区平均温度、速度均较低,垂直温差、不均匀系数均较小,能量利用系数较大;散流器顶送下回方式气流在整个空间的分布较均匀,可较好地减少内热源对周围环境的热影响(z=1.1m平面上最高温度值比其他方式小),但其平均速度较大,在风口下部的人有吹风感;百叶

基于生死单元的激光熔覆温度场数值模拟

基于生死单元的激光熔覆温度场数值模拟 基于生死单元的激光熔覆温度场数值模拟 摘要:计算了不同激光功率条件下粉末颗粒到达基底前的温升,并以粉末颗粒到达基底前的温度为初始条件。用生死单元法研究了单通道和多通道激光熔覆温度场。利用熔池的大小和形态,验证了模型的可靠性。结果表明,粉末颗粒的温升与激光功率呈线性关系。单个包层的温度变化是锯齿状的。温升过程近似为直线,温降曲线近似为双曲线。在多通道熔覆过程中,温度场呈微椭圆形。节点上的热循环经过一个逐渐增加的峰值。峰值温度最终趋于稳定。0系列 激光熔覆根据送粉工艺不同可分为两种类型,即粉末预置法和同步送粉法。本发明具有易于自动控制、激光能量吸收率高、无内部气孔的优点。特别是对于覆层金属陶瓷,覆层的抗裂性可以显著提高,并且硬质陶瓷相可以均匀地分布在覆层中。有广阔的应用空间。国内学者利用ANSYS [1-4对激光熔覆过程的温度场和应力场进行了大量的研究工作。目前,利用ANSYS模拟激光熔覆温度场的研究没有考虑激光束与粉末的相互作用。事实上,激光束首先作用于粉末。除了损失的能量,部分激光束被包覆粉末吸收。另一部分通过粉末被基质吸收。除了直接吸收激光束能量,基质还吸收从粉末转移到基质的能量。因此,有必要在仿真前弄清激光能量的分布,使所建立的模型更接近实际,仿真结果更有说服力。本文将粉末在到达基体前吸收能量后的温升作为初始温度场加载到基体上。同时,利用有限元分析软件

ANSYS中的生死单元技术模拟了熔覆单元的生长过程。高斯体热源加载基体吸收的能量,模拟送粉激光熔覆的温度场分布。在此基础上,模拟了多道次激光熔覆的温度场,研究了多道次激光熔覆的温度场。当屏蔽激光时, 1粉末到达基体前的温度为 粉末。它还吸收部分激光能量,从而提高其温度。事实上,粒子直接吸收激光辐射能量并发射辐射能量,而不考虑等离子体的影响(能量密度低于105W /cm2)。在空气中,粉末颗粒也因空气对流而耗散能量,并且颗粒也相互加热。这些能量在总能量中的比例非常小。目前,关于粉体颗粒温升的模型很少。此外,有必要在模型[5]中建立假设条件。为了便于计算,模型中假设: (1)气体-粉末射流中粉末颗粒的体积分数很低,并且受到激光反射、折射、颗粒离子间相互加热和束屏蔽等的影响。可以忽略。(2)粉末颗粒是半径为rP的球体。由于粉末颗粒足够小,它们被认为是能量计算中的一个点。颗粒的导热性是无限的,即粉末颗粒的温度被认为是均匀的,并且在光接收表面和背光表面之间没有差异。(3)粉末颗粒仅吸收光接收表面上的能量,但是外部辐射发生在整个球体的表面上。(4)粉末不吸收来自基质的光反射。基于上述假设,粉末颗粒的温升可以根据颗粒的能量方程来计算。这个方程是一个非线性方程。利用Matlab软件,采用迭代法求解方程。当激光功率P=2 kW时,方程的解在1500 ~ 1600k范围内,因此初始值被设置为t = 1500k,并且通过迭代发现方程的一个实根是t = 1570k。改变激光功率,获得了当

室内空气净化器气流组织的数值模拟研究

室内空气净化器气流组织的数值模拟研究 李喜玉刘伟龙 (珠海格力电器股份有限公司家电技术研究院广东珠海 519070) 摘要:用AIRPAK软件模拟室内流场分布,并以速度不均匀系数为判据来分析各种情况下的流场;建立室内速度不均匀系数与洁净空气量的关系。 关键词:AIRPAK、速度不均匀系数、洁净空气量 Numerical Simulation and Research of Airflow Distribution for the Room with the Air Purifier LI Xi-yu,LIU Wei-long (Household Electric Institute of Gree Electric Appliances, Inc.of Zhuhai,519070,Guangdong,China)Abstract: An air purifier room was numerical simulated using AIRPAK, and in the same room analyses various kinds of valley distribution with the criterion which is established by asymmetric coefficient of velocity .The purpose is to establish an context between Asymmetric coefficient of velocity and CADR . Keywords: AIRPAK、Asymmetric coefficient of velocity 、CADR 0引言 空气净化器的目的是为了更好的净化空气中的有害物质,洁净空气量、净化效果和室内的流场分布有很大的关系。 设计一款同种类型的空气净化器时,需要根据房间的面积(A)确定空气净化器的送风量,而目前送审的联合企业标准中已经有根据房间面积确定洁净空气量(CADR)的标准:A=0.1* CADR,需要洁净空气量与送风量之间的关系,这样就可以由房间面积来设计合适风量的空气净化器,因CADR值是一个和室内气流组织分布有直接关系的参数,室内气流组织的分布目前还缺乏一种定量合理的评价体系,本文以速度不均匀系数评价室内气流组织,所以,本文旨在建立洁净空气量和速度不均匀系数的关系曲线,根据该曲线可以得到相应的CADR值所需要的K值,然后我们根据房间大小建立模型,给定一系列的风量数值,用AIRPAK仿真得到该K值下所需要的风量数值,即是所需的空气净化器风量值[1-2]。 1 Airpak简介 Airpak是Fluent Inc.公司推出的专门针对HVAC(暖通空调)领域开发的一款CFD软件,专门为暖通专业设计,内置了许多模型,如房间、墙、风口、人员、热源等,能够自动网格化,能生成报表、动画、功能虽然没有Fluent全面,但比Fluent专业;其界面较粗糙,仍采用Fluent作为求解器。对于比较规则的建筑物的模拟比较精确,对于特殊外形的建筑物建模过程比较繁琐,可以准确地模拟通风系统的空气流动、空气品质、传热、污染和舒适度等问题[6]。本文是应用AIRPAK软件对空气净化器室内气流组织进行仿真,并输出室内各节点的速度数值,运用Matlab软件进行编程,计算出室内流场分布的速度不均匀系数,从而指导空气净化器的方案定制。 2 评价标准和设计方案 2.1室内气流组织的评价标准 设计一款空气净化器时,需要根据房间的面积确定空气净化器的送风量,而目前已送审的联合企业标准中已经有根据房间面积确定洁净空气量的标准:A=0.1×CADR,需要洁净空气量与送风量之

CFD案例5-发动机仿真

ANSYS对航空工业解决方案(三)航空发动机仿真方案_2 发表时间:2008-10-23 作者: 安世亚太来源: 安世亚太 关键字: 航空航天 CAE 仿真解决方案 ANSYS 安世亚太 第三章航空发动机仿真方案航空发动机行业概况航空发动机研制中的典型CAE问题航空发动机结构力学计算需求及ANSYS实现航空发动机流体力学和温度场的计算需求及ANSYS实现航空发动机电磁场计算需求及ANSYS实现航空发动机耦合场计算需求及ANSYS实现航空发动机关键零部件的设计分析流程简要说明 4航空发动机流体力学和温度场的计算需求及ANSYS实现 航空燃气涡轮发动机内的流场很复杂,不仅动静流场同时存在,同时还伴有多相流、传热、燃烧等现象,即使从物理上进行很大的简化,模型最后仍然是三维、有粘、非定常的可压流动。航空发动机流场数值计算的发展经历了S2流面法、基于一元管道的流线曲率法、有限差分方法求解非正交曲线坐标系中的S1、S2流面基本方程、有限差分、有限体积和有限差分与流线曲率混合的方法对S1流面跨音速流场的计算,而现在由S1与S2流面相互迭代形成的准三元和全三元计算也发展起来了。现在的采用有限体积法求解NS方程全三维流场计算已经广泛采用,航空发动机的流场数值计算已趋于成熟,可以充分考虑旋转流动、转静干涉问题、多相流、燃烧、亚超跨音速等复杂现象。而且现在求解的规模也不断扩大,利用并行等成熟的CFD技术可以计算达几千万甚至上亿的计算网格。因此结果也更为真实有效。 ANSYSCFX凭借TASCFLOW在叶轮机旋转流动的传统优势,结合更为先进的网格处理技术和高效的求解器,更适合航空发动机流动的复杂性,求解问题的规模和计算精度大大提高,一直处于航空发动机流动模拟的最前沿。

某会议厅室内气流组织数值模拟与舒适度分析

某会议厅室内气流组织数值模拟与舒适度分析高大空间建筑现今已经成为世界范围内较为普遍的建筑形式,它是时代发展的产物,同时也体现了人们对建筑美学、室内装修、室内热舒适度、室内气流组织的均匀性分布等各种要素的更高要求。根据不同建筑形式及建筑使用功能,每种高大空间都具有其特殊的结构、负荷、能耗等特点,在空调系统气流组织设计时要同时考虑温度、湿度和风速的分布情况、能耗的大小和舒适性好坏等各种综合因素。人们逐渐将注意力及研究重心转移到对高大空间空调系统末端的气流组织设计研究上。近几时年来,计算流体动力学(CFD, Computational Fluid Dynamics)技术发展的很快,利用CFD数值模拟技术模拟预测高大空间的温度场、速度场、热舒适性并优化气流组织设计方案的方法技术已经比较成熟。 本论文选取北京市某公共建筑的高大空间会议厅为研究对象。首先,根据建筑的设计空间尺寸、基础空调设计参数、空调系统设计方案等,选取所要研究的物理模型及数学计算模型,借助FLUENT公司为暖通专业开发的AIRPAK2.1软件对空调系统设计方案温度分布、速度分布及热舒适性进行三维数值模拟研究。通过对一系列不同工况的比较、分析优选出较为完善方案并将其应用到实际工程中。其中数学模型模拟计算采用k ε两方程紊流模型。 然后,对所研究的高大空间会议厅进行现场实际测试,并将完善后的气流组织模拟所得结果与实际测试结果作对比,达到验证CFD模拟技术的可靠性目的。研究结果表明:1.在一个设计良好的气流组织设计中,送风口的送风速度及送风口的型式都是需要重点考察的的设计参数。本论文通过对不同工况的比较分析,综合考虑,最终完善方案采用侧送下回与上送下回相结合的气流组织型式;2. 通过对不同工况、不同的气流组织型式进行数值模拟并定性分析、定量比较,最终综合各方因素选定比较合理的气流组织方案,为实际工程设计提供有利参考; 3.通过对本工程夏季空调工况下实测值和数值模拟数值的对比分析,可以验证CFD数值模拟技术的可靠性,并证明由FLUENT软件公司开发的针对模拟室内环 境的AIRPAK2.1软件能够为高大空间类建筑空调系统优化方案设计、预测气流组织分布、评价热舒适指标等。

相关主题
文本预览
相关文档 最新文档