当前位置:文档之家› 线形代数讲义

线形代数讲义

线形代数讲义
线形代数讲义

前言

各位同学:大家好!

欢迎大家学习《线性代数(经管类)》这门课程。

我们共同努力的目标是:

掌握线性代数的基本概念、基本公式、基本方法、基本思想,顺利地通过高等教育自学考试。同时还希望你们通过这门课的学习,磨练意志,增强信心,改进学习方法,提高自学能力、逻辑推理能力和分析问题解决问题的能力。

1.树立信心

首先,希望大家要有信心,有了信心,往往就成功了一半。

2.坚持不懈,持之以恒

信心来自于坚持不懈的努力。能否坚持不懈是成败的关键。

3.正确的学习方法也是十分重要的

(1)数学是科学的语言,为学好数学必须努力提高理解、运用数学语言的能力,这就要像学英语一样,要会叙述(背诵)重要的定义、定理。熟记重要公式。

(2)要通过做习题使你更深刻地理解基本概念和基本公式。达到会使用基本概念、基本公式解决基本问题的目的。在做练习之前要先复习,能将主要概念和公式背诵出来,能把课上例题独立地做出来。然后再做练习。

(3)学会作总结。每节课一小结,每一章作一个总结。要总结每部分的主要定义、主要定理、主要公式、典型习题的解题方法,抓住主要的知识点。(最好在不看书、不看笔记的情况下作此总结! 实在想不起来时再看一下书。)在每一章总结的基础上,做这章的练习题和历届自学考试的真题。

让我们共同努力!预祝大家取得成功。

第一部分行列式

本章概述

行列式在线性代数的考试中占很大的比例。从考试大纲来看。虽然只占13%左右。但在其他章的试

1.1 行列式的定义

1.1.1 二阶行列式与三阶行列式的定义

一、二元一次方程组和二阶行列式

例1.求二元一次方程组

的解。

【答疑编号12010101】

解:应用消元法得

当时。得

同理得

定义称为二阶行列式。称为二阶行列式的值。

记为。

于是

由此可知。若。则二元一次方程组的解可表示为:

例2

【答疑编号12010102】

二阶行列式的结果是一个数。我们称它为该二阶行列式的值。

二、三元一次方程组和三阶行列式

考虑三元一次方程组

希望适当选择。使得当后将消去。得一元一次方程

若,能解出

其中要满足

为解出。在(6),(7)的两边都除以得

这是以为未知数的二元一次方程组。

定义1.1.1 在三阶行列式中,称

于是原方程组的解为;

类似地得

这就将二元一次方程组解的公式推广到了三元一次方程组。

例3 计算

【答疑编号12010103】

例4 (1)

【答疑编号12010104】

(2)

【答疑编号12010105】

例5 当x取何值时,?【答疑编号12010106】

为将此结果推广到n元一次方程组。需先将二阶、三阶行列式推广到n阶行列式。

1.1.2 n阶行列式的定义

定义1.1.2 当n时,一阶行列式就是一个数。当时,称

为n阶行列式。

定义(其所在的位置可记为的余子式

的代数余子式。

定义为该n阶行列式的值。即

容易看出,第j列元素的余子式和代数余子式都与第j列元素无关;类似地,第i行元素的余子式和代数余子式都与第i行元素无关。n阶行列式为一个数。

例6 求出行列式第三列各元素的代数余子式。

【答疑编号12010107】

例7(上三角行列式)

【答疑编号12010108】

1.2 行列式按行(列)展开

定理1.2.1(行列式按行(列)展开定理)

例1 下三角行列式=主对角线元素的乘积。【答疑编号12010201】

例2 计算行列式

【答疑编号12010202】

例3 求n阶行列式

【答疑编号12010203】

小结

1.行列式中元素的余子式和代数余子式的定义。

2.二阶行列式的定义。

3.阶行列式的定义。即。

4.行列式按行(列)展开的定理和应用这个定理将行列式降阶的方法。

作业p8 习题1.1 1(1)(2)(3)(5)(6),3

作业 p11习题1.2 1,2,3(1),(2),4

1.3 行列式的性质及计算

1.3.1 行列式的性质

给定行列式

将它的行列互换所得的新行列式称为D的转置行列式,记为或。

性质1 转置的行列式与原行列式相等。即

性质2用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。

推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。

性质3 行列式的两行(列)互换,行列式的值改变符号。

以二阶为例

推论3 若行列式某两行(列),完全相同,则行列式的值为零。

证设中,第i行与第j行元素完全相同,则

所以,D=0。

性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。

性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和,即

只要看

注意性质中是指某一行(列)而不是每一行。

可见

性质6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。

.

1.3.2 行列式的计算

人们认识事物的基本方法是化未知为已知。

对行列式,先看何为已知,(1)二,三阶行列式的计算;(2)三角形行列式的计算。因此,我们计算行列式的基本方法是利用行列式的性质把行列式化为三角形,或降阶。

例1 计算

【答疑编号12010204】

在行列式计算中如何造零是个重要技巧,主要是应用性质6。

例2 计算

【答疑编号12010205】

例3 计算

【答疑编号12010206】

例4 计算

【答疑编号12010207】

例5 计算

【答疑编号12010208】

扩展

计算

【答疑编号12010209】

例6 计算

【答疑编号12010301】方法1

方法2

扩展:计算

【答疑编号12010302】

例7 计算

【答疑编号12010303】

例8 计算

【答疑编号12010304】

扩展:计算

【答疑编号12010305】例9 计算n阶行列式

【答疑编号12010306】

解按第一列展开,得

例10 范德蒙行列式……

【答疑编号12010307】

. 【答疑编号12010308】

例11 计算

【答疑编号12010309】

例12 证明

【答疑编号12010310】

小结

1.准确叙述行列式的性质;

2.应用行列式的性质计算行列式的方法

(1)低阶的数字行列式和简单的文字行列式;

(2)各行元素之和为相同的值的情况

(3)有一行(列)只有一个或两个非零元的情况

作业 p22 习题1.3 1(1)(3),2,5,6(1)(3)(4)(5)(10)(11)(12)

1.4 克拉默法则

这一节将把二元一次方程组解的公式推广到n个未知数,n个方程的线性方程组。为此先介绍下面的定理。

定理1.4.1 对于n阶行列式

证由定理1.2.1知,注意改变第二列的元素,并不改变第二列元素的代数余子式

类似地,可证明该定理的剩余部分。

定理1.4.2 如果n个未知数,n个方程的线性方程组

的系数行列式

则方程组有惟一的解:

其中

西安交通大学电机学课件 免费下载

第一篇 直流电机 一. 直流电机(DC Machines)概述 直流电机是电机的主要类型之一。直流电机可作为发电机使用,也可作为电动机使用。 用作发电机可以获得直流电源,用作电动机,由于其具有良好的调速性能,在许多调速性能要求较高的场合,得到广泛使用。 直流电机的用途:作电源用:发电机;作动力用:电动机;信号的传递:测速发电机,伺服电机 作电源用:直流发电机将机械能转化为直 流电能 作动力用:直流电动机将直流电能转化为机械能 信号传递:直流测速发电机将机械信号转 换为电信号 信号传递-直流伺服电动机将控制电信号转换为机 械信号 二. 直流电机的优缺点 1.直流发电机的电势波形较好,受电磁干扰的影响小。 2.直流电动机的调速范围宽广,调速特性平滑。 3.直流电动机过载能力较强,起动和制动转矩较大。 4.由于存在换向器,其制造复杂,成本较高。 第1章 直流电机的工作原理和结构

1-1 直流电机工作原理 一、原理图(物理模型图) 磁极对N、S不动, 线圈(绕组)abcd 旋转, 换向片1、2旋转, 电刷及出线A、B不动 二、直流发电机原理(机械能--->直流电能)( Principles of DC Generator) 1.原动机拖动电枢以转速n(r/min)旋转; 2.电机内部有磁场存在;或定子(不动部件)上的励磁绕组通过直流电流(称为励磁电流 I f)时产生恒定磁场(励磁磁场,主磁场) (magnetic field, field pole) 3.电枢线圈的导体中将产生感应电势 e = B l v ,但导体电势为交流电,而经过换向器 与电刷的作用可以引出直流电势E AB,以便输出直流电能。(看原理图1,看原理图2) (commutator and brush)

极坐标与参数方程讲义

极坐标与参数方程 一、极坐标知识点 1.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点0,叫做极点,自极点0引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴 为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可?但极 坐标系和平面直角坐标系都是平面坐标系? (2)极坐标 设M是平面内一点,极点0与点M的距离|0M|叫做点M的极径,记为;以极轴0X为始边,射线0M为终边的角XOM叫做点M的极角,记为?有序数对(,)叫做点M的极坐标,记作M (,). 一般地,不作特殊说明时,我们认为0,可取任意实数? 特别地,当点M在极点时,它的极坐标为(0,)(€ R).和直角坐标不同,平面内一个 点的极坐标有无数种表示? 如果规定0,0 2 ,那么除极点外,平面内的点可用唯一的极坐标(,)表示; 同时,极坐标(,)表示的点也是唯一确定的? 2.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系 中取相同的长度单位,如图所示: ⑵互化公式:设M是坐标平面内任意一点,它的直角坐标是(x,y),极坐标是(,)( 0),于是极坐标与直角坐标的互化公式如表:

在一般情况下,由tan确定角时,可根据点M所在的象限最小正角 注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2 ),(, ),(, ),都表示同一点的坐标,这与点的直角坐标的 唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足 极坐标方程即可.例如对于极坐标方程,点M(,)可以表示为 4 4 5 (, 2 )或(, 2 )或(-, 等多种形式,其中,只有(,)的极坐标满足方 4 4 4 4 4 4 4 4 程 、考点阐述考点1、极坐标与直角坐标互化

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

电机学课后答案上课讲义

第二章 变压器 2-1 什么叫变压器的主磁通,什么叫漏磁通?空载和负载时,主磁通的大小取决于哪些因素? 答:变压器工作过程中,与原、副边同时交链的磁通叫主磁通,只与原边或副边绕组交链的磁通叫漏磁通。 由感应电动势公式 Φ=1144.4fN E 可知,空载或负载情况下11E U ≈,主磁通的大小取决于外加电压1U 、频率f 和绕组 匝数 1N 。 2-2 一台50Hz 的变压器接到60Hz 的电源上运行时,若额定电压不变,问激磁电流、铁耗、漏抗会怎样变化 答:(1)额定电压不变,则 '1'11144.444.4Φ=Φ=≈N f fN E U N 又 5060'=f f ?60 50 '=ΦΦ, 即 Φ=Φ65'磁通降低,此时可认为磁路为线性的,磁阻s l R m μ= 不变,励磁磁势m m R N I Φ=?1,∴m m I I 65' =; (2)铁耗: β αf B p m Fe ∝,βα>Θ铁耗稍有减小; (3) σσσπ11''1562x L f x = ?=, σσσπ22' '25 62x L f x =?= 2-3 在导出变压器的等效电路时,为什么要进行归算?归算是在什么条件下进行的? 答:因为变压器原、副边只有磁的联系,没有电的联系,两边电压 21E E ≠、电流不匹配,必须通过归算,才能得到两边直接连接的等效 电路; 归算原则:保持归算前后副边的磁动势不变。 2-4 利用T 型等效电路进行实际问题计算时,算出的一次和二次侧电压、电流和损耗、功率是否为实际值,为什么? 答:一次侧没有经过归算,所以为实际值; 二次侧电压、电流不是实际值,因为归算前后绕组匝数不同,但损耗、功率为实际值。 2-5 变压器的激磁阻抗和等效漏阻抗如何测定? 答:激磁阻抗由空载试验测量;等效漏阻抗由短路试验测量。 (具体测量方法略) 2-14 有一台三相变压器,额定容量 kKA S N 5000=,额定电压kV kV U U N N 3.61021=,Y ,d 联结,试求:(1)一次、 二次侧的额定电流;(2)一次、二次侧的额定相电压和相电流。 解:(1)A A U S I N N N 68.2881035000311=?== A A U S I N N N 21.4583 .635000 322=?== (2)原边Y 联结: kV kV U U N N 77.53 10 311=== Φ A I I N N 68.28811==Φ 副边 ?联结:kV U U N N 3.611==Φ

发电机基础教材知识培训讲义

发电机基础知识 培训讲义
发电机技术处 周华翔 南京汽轮电机(集团)有限责任公司

1. 电机发展的历史 2. 发电机原理 3. 发电机结构 4. 发电机图纸和文件 5. 发电机成套范围

1. 电机发展的历史
在人类的科技发
展史中,对于电现象 和磁现象很早就有认 识了。但对于两者之 间的联系,却直到 183 年 前 才 发 现 。 这 个发现者的名字叫法 拉第,他是一位英国 物理学家。

早在1821年,法拉第发现了载流 导体在磁场中会受到力的作用的现象, 1831年又发现了电磁感应定律,并很 快就出现了原始模型电机。从此电机的 研究和应用迅速发展起来,至今已有 180多年。

z 电机发展的初期主要是直流电机
z 1869年法国电气工程师格拉姆发明了 第一台实用的直流发电机
z 1882年美国发明家爱迪生指挥建造了 第一个用于商业中心的直流照明系
z 1883年塞尔维亚裔美国人特斯拉发明 了第一台两相感应电机
z 1888年俄国电气工程师多利沃-多勃鲁 夫斯基发明了三相感应电机。

? 1912年英国派生斯公司已能生产4极 25MW汽轮发电机。
? 上世纪20年代美国和欧洲一些其他国 家已能生产类似的汽轮发电机,其中德 国西门子公司、匈牙利冈茨厂对发电机 的通风冷却有较多的创新,为后来汽轮 发电机冷却系统的发展奠定了基础。
? 上世纪30年代许多欧美国家可以生产 50~60MW的汽轮发电机。

2018届高三文科数学讲义 极坐标和参数方程

2018届高三文科数学讲义 极坐标和参数方程 一:极坐标 公式:cos x ρθ=,sin y ρθ=,222x y ρ=+,tan y x θ=(0x ≠) (一):自我训练: 1.将以下极坐标转化为直角坐标 (1) ??? ??32π, (2?? ? ??324π, 2.由直角坐标(x.y )转化为极坐标()θρ, (1)()2-2-, (2)(4,0) (3)(0,4) 3.将直角坐标方程转化为极坐标方程 (1)直角坐标方程x+y+2=0转化为极坐标方程为: (2). 圆直角坐标方程122=+y x 转化为极坐标方程为: 4、将极坐标方程转化为直角坐标方程 (1)直线2)4cos(=-π θρ的斜率为: (2)直线4 π θ=的直角坐标方程为: (3)化极坐标方程2cos ρθ=为直角坐标方程为: (4)圆的极坐标方程是 2=ρ,则其表示的曲线方程为 二 参数方程 参考公式: 1cos sin 22=+αα, αααcos sin 22sin ?=, ααα2 2s i n 211c o s 22c o s -=-= 直线的参数方程为:?? ?+=+=α αsin cos 00t y y t x x )(为参数t ,其中α为直线的倾斜角; 圆2 2 2 )()(r b y a x =-+-的参数方程为:?? ?+=+=θθ sin cos r b y r a x )(为参数θ 椭圆)0(,122 22>>=+b a b y a x 的参数方程为:?? ?==θ θsin cos b y a x )(为参数θ 一、直线方程的互化 1.直线 ? ??==t y t x 2)(为参数t 的普通方程为 ,斜率为:

极坐标插补摘要

摘要:在车削中心加工中,其极坐标切能的应用很广泛。它解决了在一次装 夹中完成回转体零件的车削及其端面异形轮廓的铣削等多道工序,达到高 效、高精度的目的。 数控车床一般只能加工回转体类零件,而要在回转类零件的端面加工孔系、矩形轮廓、矩形槽等形状,则不能直接在数控车床上加工,只能再由数控铣床继续加工,这样将影响零件的加工精度和增加零件的加工时间、降低生产效率。而在车削中心上加工此类零件就比较方便,车削中心是在原有直角坐标的基础上,增加了个极坐标功能,使得机床能够把回转类零件和它端面的矩形轮廓或矩形槽在一次装夹中连续加工完成,另外运用极坐标的功能还可以加工盘形凸轮和刻字等。 1 车削中心坐标轴运动 车削中心除能车削回转体工件外,还能够加工的工件。加工回转体工件时,工件的旋转是主运动,刀具的横向或纵向移动是从运动。而在加工工件的端面轮廓槽或刻字时,主轴及工件将转换成分度旋转运动,装在刀架台上的刀具的旋转运动是主运动,由内置于刀架台内的伺服电机带动,刀具还可以进行横向或纵向运动。当使用极坐标功能后,是通过主轴或工件的旋转运动和刀具的协调运动来完成轮厚阵槽或刻字等工作。 2 车削中心的极坐标功能 在使用FANUC-0T控制系统的车削中心上研究极坐标功能,其概念与数学中的极坐标概念有所不同。在Z轴垂直的平面内,由相互垂直的实轴(第一轴)尤和虚轴(第二轴)C 组成,极坐标系的坐标原点与程序原点重合,且虚轴C的单位不是度或弧度,而是与实轴X轴的单位一样,均为mm。 极坐标插补:将直角坐标指令下的直线轴的移动(刀具的移动)切换为回转轴的移动(工件回转),控制其轮廓的机能称为极坐标插补。 极坐标插补模式: G112 极坐标插补模式(进行极坐标插补) G113 取消极坐标插补模式(不进行极坐标插补) 对于刚接通电源和复位(置O或切换)时,机床取消极坐标插补,即处于G113模式。在进行极坐标补偿前,要预先设置直线轴及回转轴的初参量(参数为291、292) 。执行 G112指令,转换为极坐标插补模式,将工件坐标系的原点设为极坐标工作的原点,极

电机学知识点讲义汇总

电机学知识点讲义汇总 第一章 基本电磁定律和磁路 电机的基本工作原理是建立在电磁感应定律、全电流定律、电路定律、磁路定律和电磁力定律等定律的基础上的,掌握这些基本定律,是研究电机基本理论的基础。 ▲ 全电流定律 全电流定律 ∑? = I Hdl l 式中,当电流方向与积分路径方向符合右手螺旋关系时,电流取正号。 在电机和变压器的磁路计算中,上式可简化为 ∑∑=Ni Hl ▲电磁感应定律 ①电磁感应定律 e=- dt d N dt d Φ -=ψ 式中,感应电动势方向与磁通方向应符合右手螺旋关系。 ②变压器电动势 磁场与导体间无相对运动,由于磁通的变化而感应的电势称为变压器电动势。电机中的磁通Φ通常是随时间按正弦规律变化的,线圈中感应电动势的有效值为 m fN E φ44.4= ③运动电动势 e=Blv ④自感电动势 dt di L e L -= ⑤互感电动势 e M1=-dt di 2 e M2 =-dt di 1 ▲电磁力定律 f=Bli ▲磁路基本定律 ① 磁路欧姆定律 Φ= A l Ni μ=m R F =Λm F 式中,F=Ni ——磁动势,单位为A ; R m = A l μ——磁阻,单位为H -1; Λm = l A R m μ=1——磁导,单位为H 。

② 磁路的基尔霍夫第一定律 0=?s Bds 上式表明,穿入(或穿出)任一封闭面的磁通等于零。 ③ 磁路的基尔霍夫第二定律 ∑∑∑==m R Hl F φ 上式表明,在磁路中,沿任何闭合磁路,磁动势的代数和等于次压降的代数和。 磁路和电路的比较 第二章 直流电动机 一、直流电机的磁路、电枢绕组和电枢反应 ▲磁场是电机中机电能量转换的媒介。穿过气隙而同时与定、转子绕组交链的磁通为主磁通;仅交链一侧绕组的磁通为漏磁通。直流电机空载时的气隙磁场是由励磁磁动势建立的。空载时,主磁通Φ0与励磁磁动势F 0的关系曲线Φ0=f (F 0)为电机的磁化曲线。从磁化曲线可以看出电机的饱和程度,饱和程度对电机的性能有很大的影响。 ▲ 电机的磁化曲线仅和电机的几何尺寸及所用的材料有关,而与电机的励磁方式无关。电 机的运行特性与磁化曲线密切相关。设计电机时,一般使额定工作点位于磁化曲线开始弯曲的部分,这样既可保证一定的可调节度,又不至于浪费材料。 ▲ 直流电机电枢绕组各元件间通过换向器连接,构成一个闭合回路,回路内各元件的电动 势互相抵消,从而不产生环流。元件内的电动势和电流均为交变量,通过换向器和电刷间的相对运动实现交直流转换。电刷的放置原则是:空载时正、负电刷之间获得最大的电动势,这时被电刷短路的元件的电动势为零。因此,电刷应放在换向器的几何中性线上。对端接对称的元件,换向器的几何中性线应与主极轴线重合。 ▲ 不同型式的电枢绕组均有①S=K=Z ;②y 1=Z i /2p ε=整数;③y=y 1+y 2。其中,S 为元 件数,K 为换向片数,Z i 为虚槽数,p 为极对数,y 1为第一节距,y 2为第二节距,y 为合成节距,ε为小于1的分数,用来把y 1凑成整数。对单叠绕组,y=±1,y 2小于0,并联支路对数a=p ,即每极下元件串联构成一条支路。对单波绕组,y 2大于零,a=1,即所有同极性下元件串联构成一条支路。

高中数学 选修4-4参数方程讲义

——基础梳理—— 1.椭圆的参数方程 (1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是__________.规定参数φ的取值范围为__________. (2)中心在(h ,k)的椭圆的普通方程为-a2+-b2=1,则其参数方程为__________. 2.双曲线的参数方程 (1)中心在原点,焦点在x 轴上的双曲线x2a2-y2b2 =1(a >0,b >0)的参数方程是__________.规定参数φ的取值范围为__________. (2)中心在原点,焦点在y 轴上的双曲线y2a2-x2b2 =1(a >0,b >0)的参数方程是__________. 3.抛物线的参数方程 (1)抛物线y2=2px(p >0)的参数方程为__________,t ∈__________. (2)参数t 的几何意义是__________. [答案] 1.(1)????? x =acos φy =bsin φ(φ为参数) [0,2π) (2)????? x =h +acos φy =k +bsin φ (φ为参数) 2.(1)????? x =asec φy =btan φ (φ为参数) [0,2π),且φ≠π2,φ≠3π2 (2)????? x =btan φy =asec φ(φ为参数) 3.(1)????? x =2pt2y =2pt (t 为参数) (-∞,+∞) (2)抛物线上除顶点外的任意一点与原点连线的斜率的倒数 自主演练 1.已知方程x2+my2=1表示焦点在y 轴上的椭圆,则() A .m <1 B .-1<m <1 C .m >1 D .0<m <1 [解析]方程化为x2+y21m =1,若要表示焦点在y 轴上的椭圆,需要1m >1,解得0<m <1.故应选D.

车铣加工中心极坐标系的原理及应用

车铣加工中心极坐标系的原理及应用实验 以往的数控车床一般只能加工回转体类零件,对于需要在回转类零件的端面加工矩形轮廓或矩形槽类形状的零件,不能直接在数控车床上加工,只能再由数控铣床装夹找正后继续加工,这样势必影响零件的加工精度和增加零件的加工时间,从而降低生产效率,然而在数控车铣加工中心上,在原有直角坐标系的基础上,又增加了一个极坐标系的功能,使得机床能够把回转类零件和它端面的矩形轮廓或矩形槽在一次装夹中连续加工完成,运用极坐标的功能甚至还可以加工盘形凸轮和刻字。 一、实验目的 1、掌握车铣加工中心极坐标系的建立、构成和使用。 2、在极坐标系中编制数控加工程序。 3、在车铣加工中心上进行端面轮廓的铣削加工。 二、实验设备 1、数控车铣加工中心一台 2、计算机一台 三、实验原理 1、极坐标系的建立 在数学中的极坐标系是由极点、极轴和极角组成,然而在数控车铣加工中心上的极坐标系的概念与数学中的极坐标系完全不同,在车铣加工中心上的极坐标系是在与机床Z轴垂直的平面内,由相互垂直的实轴(第一轴)X和虚轴(第二轴)C组成,极坐标系的坐标原点与程序原点重合,且虚轴C的单位不是度或弧度,而是与实轴X轴的单位一样,均为毫米。如图a 。 2、极坐标系指令的使用 ⑴ G112:进入极坐标系插补模式。 ⑵ G113:取消极坐标系插补模式。 3、在数控车铣加工中心上运用极坐标系功能编程时注意的几点注意事项: ⑴G112(进入极坐标系插补模式)指令和G113(取消极坐标系插补模式)指令均必须 放在一个单独的语句中; ⑵程序中的实轴X的坐标用直径值,虚轴C的坐标用半径值; ⑶在机床处于刀具左补偿(G41)和刀具右补偿(G42)状态下,G112指令不能被执行, 要进入极坐标系插补模式机床必须处于刀具补偿取消(G40)状态; ⑷在G112状态下,刀具进给速度下的单位为mm/min ; ⑸在G112状态下,应把所用铣刀的半径值输入到机床中作为刀具的几何补偿; ⑹在程序由极坐标系转换为直角坐标系之前,必须先执行G113指令。 四、实验内容与步骤 1、编制如图a 所示零件的端面轮廓的加工程序。(使用φ12mm 的铣刀加工) X X C 图 a

线性方程组的直接解法及matlab的实现

本科毕业论文 ( 2010 届) 题目线性方程组的直接解法及matlab的实现 学院数学与信息工程学院 专业数学与应用数学 班级2006级数学1 班 学号0604010127 学生姓名胡婷婷 指导教师王洁 完成日期2010年5月

摘要 随着科技技术的发展及人类对自然界的不断探索模拟.在自然科学和工程问题中的很多问题的解决常常归结为线性代数问题! 本文的主要内容是对线性方程组求解方法的探讨,主要介绍了四种求解线性方程组的方法,第一种是教科书上常见的消元法,我们称之为基本法.第二种方法是标准上三角形求解法,即将增广矩阵经过初等变换后化成标准上三角形,然后求解.它改进了一般教科书上的常见方法,与常见方法比较有如下优点:1)规范了自由未知量的选取;2)只用矩阵运算;3)减少了计算量.第三种方法是对特定的方程组(系数矩阵A为n阶对称正定矩阵,且A的顺序主子式均不为零.)的求解方法进行描述,并且为这种线性方程的求解提供了固定的公式化的方法.第四种方法是对现在实际问题中常常会遇到的系数矩阵为三对角矩阵的方程组的求解方法.同时给出这几种方法的数值解法(matlab程序),由于运用电脑软件求解,所以必须考虑计算方法的时间、空间上的效率以及算法的数值稳定性问题,所以针对不同类型的线性方程组有不同的解法.但是,基本的方法可以归结为两大类,即直接法和迭代法. 关键词 高斯消去法;三角分解法;乔莱斯基分解法;追赶法

Abstract Systems of linear equations are associated with many problems in engineering and scinence ,as well as with applications of mathematics to the social sciences and the quantitative study of business and economic problems. The main content of this article is the method for solving linear equations, we introduce four methods for solving linear equations in this paper. The first is the elimination method which is commonly found in textbooks, and we call the Basic Law. The second method is Standard on the triangle Solution, that first change Augmented matrix into standards in primary triangle, and then solving. It improves the general textbook on common methods, compared with the common method has the following advantages:1) Specification of the free choice of unknowns; 2)Only matrix operations;3) Reduce the computation. The third method describes a way to solve a Specific equations(N coefficient matrix A is symmetric positive definite matrix, and A are not zero-order principal minor), And for this linear equation provides a fixed formulaic approach. The fourth method is to present practical problems often encountered in the coefficient matrix is tridiagonal matrix method for solving the equations. These methods are given numerical solution of (matlab program), As the use of computer software to solve, it is necessary to consider ways of computing time and space efficiency and numerical stability of algorithms, Therefore, different types of linear equations have a different solution. However, the basic method can be classified into two categories, namely direct methods and iterative methods. Key words Gaussian elimination; Triangular decomposition; Cholesky decomposition method; Thomas algorithm

(完整word版)高中数学讲义-极坐标与参数方程

极坐标与参数方程 一、教学目标 本次课是一堂新课,通过本次课的学习,让学生理解极坐标和参数方程的概念等基础知识,掌握极坐标与直角坐标的相互转化,掌握一般常见曲线和直线的极坐标方程和参数方程。深刻理解参数方程所代表的数学思想——换元思想。 二、考纲解读 极坐标和参数方程是新课标考纲里的选考内容之一,只有理科生选学。在每年的高考试卷中,极坐标和参数方程都是放在一道填空题中,与平面几何作为二选一的考题出现的。由于极坐标是新添的内容,考纲要求比较简单,所以在考试中一般以基础题出现,不会有很难的题目。 三、知识点回顾 (一)曲线的参数方程的定义: 在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ? ? ?==)() (t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线: α αsin cos 00t y y t x x +=+= (t 为参数) 其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离. 根据t 的几何意义,有以下结论. ○ 1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ?--4)(2. ○ 2.线段AB 的中点所对应的参数值等于2 B A t t +. 2.中心在(x 0,y 0),半径等于r 的圆:

极坐标指令

极坐标指令 一、FANUC系统极坐标指令(G15、G16) G15——取消极坐标指令,取消极坐标方式 G16——极坐标指令 1、功能 终点的坐标值可以用极坐标(半径和角度)输入。角度的正向是所选平面的第一轴正向的逆时针转向,而负向是沿顺时针转动的转向。半径和角度两者可以用绝对值指令或增量值指令(G90、G91)。 2、指令格式 G16 . G15 3、说明 (1)设定工件坐标系零点作为极坐标系的原点。用绝对值编程指令指定半径(零点和编程点之间的距离)。(2)设定当前位置作为极坐标系的原点。用增量值编程指令指定半径(当前位置和编程点之间的距离)。(3)用绝对值指令指定角度和半径。 X——半径值 Y——角度值 (4)用增量值指令指定角度和绝对值指令指定极径。 G90、G91混和编程。 (5)限制 在极坐标方式中,对于圆弧插补或螺旋线切削(G02、G03)用R指定半径。在极坐标方式中不能指定任意角度倒角和拐角圆弧过渡。 二、SIEMENS系统极坐标指令(G110/G111/G112) 1、指令解释 G110:极坐标参数,相对于刀具最近到达的位置点定义极点。 G111:极坐标参数,相对于当前工件坐标系的原点定义极点。 G112:极坐标参数,相对于上一个有效极点定义极点。 AP=______:极角 RP=______:极半径 2、定义极点坐标 (1)在直角坐标系中定义极点:G110/G111/G112 X_____Y_____Z_____ (2)在极坐标系中定义极点:G110/G111/G112 AP=____ RP=____ 3、在极坐标系中位移指令的编程格式 (1)极坐标系里的快速移动指令编程:G00 AP=____ RP=___ (2)极坐标系里的直线插补指令编程:G01 AP=____ RP=___ (3)极坐标系里的顺圆插补指令编程:G02 AP=____ RP=___ (4)极坐标系里的逆圆插补指令编程:G03 AP=____ RP=___

解线性方程组的直接解法

解线性方程组的直接解法 一、实验目的及要求 关于线性方程组的数值解法一般分为两大类:直接法与迭代法。直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。 二、相关理论知识 求解线性方程组的直接方法有以下几种: 1、利用左除运算符直接求解 线性方程组为b x\ =即可。 A Ax=,则输入b 2、列主元的高斯消元法 程序流程图: 输入系数矩阵A,向量b,输出线性方程组的解x。 根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行; 对于1 p :1- =n 选择第p列中最大元,并且交换行; 消元计算; 回代求解。(此部分可以参看课本第150页相关算法) 3、利用矩阵的分解求解线性方程组 (1)LU分解 调用matlab中的函数lu即可,调用格式如下: [L,U]=lu(A) 注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。 (2)平方根法

调用matlab 中的函数chol 即可,调用格式如下: R=chol (A ) 输出的是一个上三角矩阵R ,使得R R A T =。 三、研究、解答以下问题 问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数): ??????? ??--------=19631699723723312312A ,?????? ? ??-=71636b 解答: 程序: A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19]; R=chol(A) b=[6 3 -16 7]'; y=inv(R')*b %y=R'\b x=inv(R)*y %x=R\y 结果: R =3.4641 -0.8660 0.5774 0.2887 0 4.7170 -1.3780 -0.5830 0 0 9.8371 -0.7085 0 0 0 4.2514 y =1.7321 0.9540 -1.5945 1.3940 x =0.5463 0.2023 -0.1385 0.3279 问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数): ?????????? ??----=8162517623158765211331056897031354376231A ,????????? ? ??-=715513252b

极坐标与参数方程数学讲义知识讲解

极坐标与参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程. 二、知识结构 1.参数方程的概念 在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数 ? ? ?==),(), (t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。 相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 常见的曲线的参数方程 2.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数,其几何意义是.....PM ..的数量...) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ? ? ?+=+=bt y y at x x 00(t 为参数,1 tan t α=) ② 3.圆锥曲线的参数方程 (1)圆 圆心在(a,b),半径为r 的圆的参数方程是?? ?+=+=? ? sin cos r b y r a x (φ是参数) (2)椭圆 椭圆122 22 =+b y a x (a >b >0)的参数方程是?? ?==?? sin cos b y a x (φ为参数) 椭圆122 22=+b y a y (a >b >0)的参数方程是 ?? ?==? ? sin cos a y b x (φ为参数) (3)抛物线 抛物线px y 22 =的参数方程为()为参数t pt y pt x ? ? ?==222 4.极坐标 极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴. ①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,

线性方程组的直接解法 实验报告

本科实验报告 课程名称:数值计算方法B 实验项目:线性方程组的直接解法 最小二乘拟合多项式 实验地点:ZSA401 专业班级:学号:201000 学生姓名: 指导教师:李志 2012年4月13日

线性方程组的直接解法 一、实验目的和要求 实验目的:合理利用Gauss 消元法、LU 分解法或追赶法求解方程组。 实验要求:利用高斯消元法,LU 分解法或追赶法进行编程,求解题中所给的方程组。 二、实验内容和原理 实验内容:合理利用Gauss 消元法、LU 分解法或追赶法求解下列方程组: ① ?? ?? ? ?????=????????????????????13814142210321321x x x ②??? ? ?? ??????=????????????????????? ?? ? ??--?-2178.4617.5911212592.1121130.6291.513 14 .59103.043 2115x x x x ③?? ??? ??? ? ???????----=????????????????????????????????-55572112112112121 n n x x x x (n=5,10,100,…) 实验原理:这个实验我选用的是高斯消元法。高斯消元法:先按照 L ik =a ik^(k-1)/a kk^(k-1) , a ij^(k)=a ij^(k-1)-l ik a kj^(k-1) [其中k=1,2,…,n-1;i=k+1,k+2,…,n;j=k+1,k+2,…,n+1] 将方程组变为上三角矩阵,再经过回代,即可求解出方程组的解。 三.计算公式 通过消元、再回代的求解方法称为高斯消元法。特点是始终消去主对角线 下方的元素。 四、操作方法与实验步骤 #include "Stdio.h" #define N 3 main() { double a[N][N+1],b[N]; int i,j,k,x=0; for(i=0;i

线性方程组的直接解法

第4章 线性方程组的直接解法 本章主要内容 线性方程组的直接解法——消元法(高斯消元法、主元消元法). 矩阵的三角分解法( Doolittle 分解、Crout 分解、 LDU 分解) 紧凑格式 改进平方根法. 本章重点、难点 一、消元法(高斯消元法、列主元消元法) 本章求解的是n 阶线性方程组Ax=b 的(即方程的个数和未知量的个数相等的线性方程组) ?????????=+???++????????????? ??=+???++=+???++n n nn n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 3222212111212111 1. 高斯消元法 ①高斯消元法的基本思想:通过对线性方程组Ax=b 的进行同解消元变换(也可以用矩阵的初等行变换法进行线性方程组的消元变换),将线性方程组化为上三角形方程组,然后用回代法求出此线性方程组的解。 ②高斯消元法计算公式: ????? ? ? ????????--=-=--==? ????? ????? ???? +=-=-=====-+=------------∑)1,..., 2,1()1,..., 2,1(,...,1,,,,...,2,1) ,...,2,1,(,) 1(1)1()1()1() 1() 1()1() 1()1()() 1()1()1()1()(,)0()0(n n i a x a b x n n i a b x n k j i b a a b b a a a a a n k n j i b b a a i ii n i j j i ij i i i n nn n n n k k k kk k ik k i k i k kj k kk k ik k ij k ij i i ij ij 对回代公式: 消元公式:

电气--电机知识点讲义整理

电机学知识点讲义汇总 第一章 基本电磁定律和磁路 电机的基本工作原理是建立在电磁感应定律、全电流定律、电路定律、磁路定律和电 磁力定律等定律的基础上的,掌握这些基本定律,是研究电机基本理论的基础。 ▲ 全电流定律 全电流定律 ∑?=I Hdl l 式中,当电流方向与积分路径方向符合右手螺旋关系时,电流取正号。 在电机和变压器的磁路计算中,上式可简化为 ∑∑=Ni Hl ▲电磁感应定律 ①电磁感应定律 e=- dt d N dt d Φ-=ψ 式中,感应电动势方向与磁通方向应符合右手螺旋关系。 ②变压器电动势 磁场与导体间无相对运动,由于磁通的变化而感应的电势称为变压器电动势。电机中的 磁通Φ通常是随时间按正弦规律变化的,线圈中感应电动势的有效值为 m fN E φ44.4= ③运动电动势 e=Blv ④自感电动势 dt di L e L -= ⑤互感电动势 e M1=- dt di 2 e M2 =-dt di 1 ▲电磁力定律 f=Bli ▲磁路基本定律 ① 磁路欧姆定律 Φ=A l Ni μ=m R F =Λm F 式中,F=Ni ——磁动势,单位为A ; R m =A l μ——磁阻,单位为H -1; Λm = l A R m μ=1——磁导,单位为H 。

② 磁路的基尔霍夫第一定律 0=?s Bds 上式表明,穿入(或穿出)任一封闭面的磁通等于零。 ③ 磁路的基尔霍夫第二定律 ∑∑∑==m R Hl F φ 上式表明,在磁路中,沿任何闭合磁路,磁动势的代数和等于次压降的代数和。 磁路和电路的比较 第二章 直流电动机 一、直流电机的磁路、电枢绕组和电枢反应 ▲磁场是电机中机电能量转换的媒介。穿过气隙而同时与定、转子绕组交链的磁通为主磁 通;仅交链一侧绕组的磁通为漏磁通。直流电机空载时的气隙磁场是由励磁磁动势建立 的。空载时,主磁通Φ0与励磁磁动势F 0的关系曲线Φ0=f (F 0)为电机的磁化曲线。从磁 化曲线可以看出电机的饱和程度,饱和程度对电机的性能有很大的影响。 ▲ 电机的磁化曲线仅和电机的几何尺寸及所用的材料有关,而与电机的励磁方式无关。 电机的运行特性与磁化曲线密切相关。设计电机时,一般使额定工作点位于磁化曲线 开始弯曲的部分,这样既可保证一定的可调节度,又不至于浪费材料。 ▲ 直流电机电枢绕组各元件间通过换向器连接,构成一个闭合回路,回路内各元件的电 动势互相抵消,从而不产生环流。元件内的电动势和电流均为交变量,通过换向器和 电刷间的相对运动实现交直流转换。电刷的放置原则是:空载时正、负电刷之间获得 最大的电动势,这时被电刷短路的元件的电动势为零。因此,电刷应放在换向器的几 何中性线上。对端接对称的元件,换向器的几何中性线应与主极轴线重合。 ▲ 不同型式的电枢绕组均有①S=K=Z ;②y 1=Z i /2p ε=整数;③y=y 1+y 2。其中,S 为元 件数,K 为换向片数,Z i 为虚槽数,p 为极对数,y 1为第一节距,y 2为第二节距,y 为 合成节距,ε为小于1的分数,用来把y 1凑成整数。对单叠绕组,y=±1,y 2小于 0,并联支路对数a=p ,即每极下元件串联构成一条支路。对单波绕组,y 2大于零, a=1,即所有同极性下元件串联构成一条支路。

极坐标参数方程讲义--2016

极坐标参数方程讲义 2016-6 姓名 班级 一、基本知识 1、极坐标方程与直角坐标方程的互化:极坐标P (),,θρθ为终边与极轴的逆时针交角 [)()πθρθρθρ2,0,0sin cos ∈≥???==y x ()?? ? ??≠=+=0tan 2 22x x y y x θρ 2、常见的参数方程的标准形式 (1)圆:[)()πααα α 2,0,sin cos 00∈?? ?+=+=为参数r y y r x x (2)椭圆:[)()παααα 2,0,sin cos ∈? ??==为参数b y a x ,a ,b 为半轴长 (3)直线:()为参数t t y y t x x ?? ?+=+=θ θ sin cos 00 其中M 0(x 0,y 0)是直线上的一个定点,M (x,y )表示直线上的动点, ||0t M M =ρ (注意方向),t>o,M 在M 0上方,t

1、(2010福建)在直角坐标系xoy 中,直线l 的参数方程为()为参数t t y t x ??? ????+=- =22522 3。在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为25sin ρθ=。 (Ⅰ)求圆C 的直角坐标方程; (Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为(3,5),求|PA|+|PB|。 2、(2015昆明摸底)已知曲线C 的极坐标方程是ρ﹣2cos θ﹣4sin θ=0,以极点为平面直角坐 标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,设直线l 的参数方程是 (t 是参数). (1)将曲线C 的极坐标方程化为直角坐标方程,将直线l 的参数方程化为普通方程; (2)若直线l 与曲线C 相交于A 、B 两点,与y 轴交于点E ,求|EA|+|EB|. 3、(2015鞍山一模)在直角坐标系xOy 中,曲线C 的方程为(x ﹣1)2+(y ﹣1)2=2,直线l 的倾斜角为45°且经过点P (﹣1,0) (Ⅰ)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求曲线C 的极坐标方程 (Ⅱ)设直线l 与曲线C 交于两点A ,B ,求|PA|2+|PB|2的值.

相关主题
文本预览
相关文档 最新文档