当前位置:文档之家› 变流器基本原理

变流器基本原理

变流器基本原理
变流器基本原理

1、双馈型风力发电系统的运行原理

双馈型风力发电系统结构图如图1所示,由风轮机、齿轮箱、变桨结构、偏航机构、双馈电机、变流器、变压器、电网等构成。其工作过程为:当风吹动风轮机转动时,风轮机将其捕获的风能转化为机械能再通过齿轮箱传递到双馈电机,双馈电机将机械能转化为电能,再经变流器及变压器将其并入电网。通过系统控制器及变流器对桨叶、双馈电机进行合理的控制使整个系统实现风能最大捕获,同时,通过对变桨机构、变流器及Crowbar 保护电路的控制来应对电力系统的各种故障。

双馈异步发电机的定子与转子两侧都可以馈送能量,由于转子侧是通过变频器接入的低频电流起到了励磁作用,

因此又名交流励磁发电机。双馈异步发电机主机结构特点是:定子与一般三相交流发电机定子一样,具有分布式绕组;转子不是采用同步发电机的直流集中绕组,而是采用三相分布式交流绕组,与三相绕线式异步机的转子结构相似。正常工作时,定子绕组并入工频电网,转子绕组由一个频率、幅值、相位都可以调节的三相变频电源供电,转子励磁系统通常采用交-直-交变频电源供电。

图1、双馈风力发电系统结构图

双馈异步发电机在稳态运行时,定子旋转磁场和转子旋转磁场在空间上保持相对静止,此时有如下数学关系表达式:

12

r n n n =±2160

f n n f r p ±=

12

11

r n n n s n n ?==±式中,1n 、r n 、2n 分别为定子电流产生磁场的旋转速度、转子旋转速度和转子电流产生磁场相对于转子的旋转速度,1f 、2f 分别为定、转子电流频率,p n 为发电机极对数,s

s n n n s ?=为发电机的转差率。由上式可知,当发电机转子转速r n 发生变化时,若调节转子电流频率2f 相应变化,可使1f 保持恒定不变,实现双馈异步发电机的变速恒频控制。当r n <1n 时,电机处于亚同步速运行状态,转子旋转磁场相对于转子的旋转方向与转子旋转方向相同,变频器向转子提供交流励磁,定子向电网馈出电能;当r n >1n 时,电机处于超同步速运行状态,转子旋转磁场相对于转子的旋转方向与转子旋转方向相反,此时定、转子均向电网馈出电能;当r n =1n 时,2f =0,变频器向转子提供直流励磁,此时电机作为普通隐极式同步发电机运行。

双馈电机转子侧接变流器,其调速的基本思想就是要在转子回路上串入附加电势,通过调节附加电势的大小、相位和相序来实现双馈调速。与传统的直流励磁同步发电机相比,双馈异步发电机励磁系统的调节量由一个变为三个,即励磁电流的幅值、频率和相位。所以,调节励磁不仅可以调节发电机的无功功率,还可以调节发电机的有功功率和转子转速。因此,该电机在提高电力系统稳定性、变速运行能力方面有着优良的特性。

2.变速恒频双馈风力发电机运行工况

2.1双馈电机在不同工作状态下的功率分布流程

从上面对双馈电机的分析,我们可以建立双馈电机在不同情况下的运行状态,并且同时分析在该种情况下的功率流程。主要讨论的是定子侧功率1P (向电网输出电能时为正,吸收电网电能时为负),转差功率s P (向电网馈送电能时为正,吸收电网电能时为负)和机械功率mec P (电机吸收机械功率为正,电机输出机械功率时为负)。

1)双馈电机运行于超同步发电机情况下:

整个风机的机械效率

同步转速

图2、双馈电机超同步发电机时的功率流程

从上图中可以看到,21n n n ?=,由于2n 与1n 方向相反,所以n>1n ,转差S<0。并且电磁转矩em T 与n 反向,起制动作用。因而此时,双馈电机是吸收机械功率mec P ,然后通过定子侧向电网输出功率1P ,通过转子侧向电网馈送转差功率s P 。因此可得mec P =1P +s P 。2)双馈电机运行于超同步电动机状态:

图3、双馈电机超同步电动机时的功率流程

从上图中可以看到,21n n n ?=,由于2n 与1n 方向相反,所以n>1n ,转差率S<0。并且电磁转矩

em T 与n 同向,起驱动作用。因而此时,双馈电机是通过定子侧向电网吸收功率1P ,通过转子侧向电网吸收转差功率s P ,向外输出机械功率mec P 。因此可得mec P =1P +s P 。

3)双馈电机运行于亚同步发电机状态:

n1定子磁场转速

n2转子转速

n 转子磁场想对于转子旋转的转速n1-n/n1

亚同步

图4、双馈电机亚同步发电机时的功率流程

从上图中可以看到,21n n n ?=,由于2n 与1n 方向相同,所以n<1n ,转差率S>0。并且电磁转矩em T 与n 反向,起制动作用。因而此时,双馈电机是通过转子侧向电网吸收功率s P ,向外吸收机械功率mec P ,通过定子侧向电网输出转差功率1P 。因此可得1P =mec P +s P 。

4)双馈电机运行于亚同步电动机状态:

从图5中可以看到,21n n n ?=,由于2n 与1n 方向相同,所以n<1n ,转差率S >0。并且电磁转矩em T 与n 同向,起驱动作用。因而此时,双馈电机是通过定子侧向电网吸收功率1P ,向外输出机械功率mec P ,通过转子侧向电网输出转差功率s P 。因此可得1P =mec P +s P 。

图5、双馈电机亚同步电动机时的功率流程

上面一共讨论了双馈电机在四种情况下的运行特性,但是我们在风力发电中需要考虑的仅仅是1),3)两种发电机运行情况。并且还应当注意的是,由于1I =m I -2I ,可以调节转子侧绕组中电流2I 相位大小,来控制定子中定子电流1I 的相位和大小,从而实现通过转子

侧的少量无功功率来控制定子侧的大量无功功率。

3、双馈风力发电变流器控制

一、电机侧变流器的控制

图6电机侧变流器结构图

电机侧变流器拓扑结构如图所示,电机转子侧接三相电压型PWM变流器,其直流环节通常是恒定的,即直流侧电压恒定,交流侧转子量通常是变化的。

可以通过控制电机侧变流器的电流给定进行定子侧电流相位、幅值、频率的控制,并控制电机稳态运行时转速稳定,通过控制转子侧电流间接控制电机功率。

对于电机侧变流器的控制采用定子磁链定向的矢量控制(目前有多种方法)。

二、电网侧变流器的控制

图7电网侧变流器结构图

电网侧PWM变流器实际上是一个三相电压型PWM整流器,其控制目标是调节网侧功率因数,保持直流母线电压恒定。

具体控制方式采用电网电压定向矢量控制,即先建立电网侧PWM变流器的数学模型,将其转换至d-q轴坐标系下,将电网电压矢量定向在d轴上,在此基础上建立电网侧PWM变流器在电网电压矢量控制下的方程。

4、变流器主电路开关器件参数设计

风力发电系统所用交流-直流-交流变流器开关器件选用绝缘栅双极晶体管(IGBT),电机侧变流器和电网侧变流器均采用IGBT作为开关器件,对于IGBT的选型需要分别考虑电机侧最大持续电流峰值和电网侧最大持续电流峰值,同时还需要考虑到中间直流电压最高值来选择合适的开关器件参数。

4.1电机侧最大电流有效值计算

电机额定转速为1800r/min,而电机转速范围是:1000-2030r/min,当双馈发电机工作在转速1800r/min,即转差率0.2S =?的超同步工况时,发电机定子侧有功功率达到最大值为:

11156013001 1.2

s G P P kW kW s =×=×=?此时,定子电流和转子电流也达到最大值。下面分三种情况具体计算转子电流:

一、不考虑电网电压波动时的电机转子电流:

转速为n=1800r/min,定子侧电压峰值

为:690975.81sm U V =

=;计算转子电流为:1102.98sm

rd m

U i A L ω==534.3232s

rq m sm s P i A

L U L ==??

则转子侧电流峰值最大为:544.15r i A

==

则转子侧电流有效值最大为:384.83r ab i A ?==s L ——定子绕组在d-q 坐标系下的等效自感,r L ——转子绕组在d-q 坐标系下的等效自感;m L ——定、转子间绕组在d-q 坐标系下的等效互感。

二、考虑电网电压波动时的电机转子电流

转速为n=1800r/min,考虑电网电压波动,当电压跌落

10%时,定子侧电压峰值为:6900.9878.22sm U V =×=;

计算转子电流为:

192.687sm

rd m

U i A L ω==593.6932s

rq m sm s P i A

L U L ==??

则转子侧电流峰值最大为:600.88r i A

==

则转子侧电流有效值最大为:424.95r ab i A ?==三、当功率因数cos 0.9?=时,考虑电网电压波动时的电机转子电流

转速为

n=1800r/min,考虑电网电压波动时定子侧电压峰值为:

6900.9878.22sm U V =×=,

定子侧无功功率为:

s tan(arccos 0.9)1560

755.54Q kw kw =?=;

则转子侧q 轴电流rq i 不变,d 轴电流rd i 为:

1432.3332sm

s rd m m sm s

U Q i A L L U L ω=+=??则转子侧电流峰值最大为:734.423r i A

==综上所述,第三种情况时,电机转子侧电流最大,则电机侧变流器IGBT 额定电流为:12519.391468.83T i A A

=×=4.2电网侧最大电流有效值计算

当双馈发电机工作在转速2030r/min,即转差率0.353s

=?的超同步工况时,发电机

转子侧有功功率达到最大值为:

0.35315604071 1.353

r s P P kW kW s =×=×=?由于电网侧变流器并网功率因数恒为1,所以发电机转子侧有功功率Pr 与网侧变流器的有功功率r P 相等,则考虑电网电网电压波动10%时,变流器电网侧输出交流线路上的最大电流有效值为:

则电网侧变流器IGBT 4.3.采用滤波器原因:

风力发电系统中采用PWM 变流器驱动异步电机,在实际应用中,双馈变流器位于塔底,双馈发电机安装在塔顶,在变流器和发电机之间采用长线电缆传输时,当PWM 变流器发射脉冲经过长线电缆传至电机时会产生电压反射现象,导致在发电机端产生过电压、高频阻尼振荡,进一步加剧电机绕组的绝缘压力,造成电机在短期内绝缘击穿等事故,分析表明发电机端产生的过电压与变流器输出PWM 脉冲上升时间和电缆长度有关。

PWM 变流器的输出脉冲经过长线电缆传至发电机,由于长线电缆的分布特性,即存在漏电感和耦合电容,会产电压反射现象,在发电机端产生过电压、高频阻尼振荡,进一步加剧发电机绕组的绝缘压力。这种反射现象与变流器输出脉冲的上升时间以及电缆的长度有关。一般PWM 脉冲的传输速度约为光速的1/2,当脉冲由变流器传输到发电机的时间超过脉冲上升时间的1/3时,在发电机端发生垒反射,使电压近似加倍,从而使发电机的绝缘迅速5、低电压穿越技术概述

低电压穿越技术,关于双馈电机的低电压工作原理,简单地说,是在电网电压跌落及恢复期间,由于定子电压突变而磁链来不及变化,在磁链中产生直流分量和负序分量,该分量在转子中感应出较高电压(高达2000多伏),进而产生一系列的过电流和过电压现象。

低电压穿越,是指在风机并网点电压跌落时,风机能够保持并网,甚至向电网提供一定的无功功率以支持电网恢复,直到电网电压恢复正常,从而“穿越”这个低电压时间。目前各国都在相继制定新的电网运行准则,要求风电系统具有一定的低电压穿越能力。中国的电网运行准则目前还在制定中,暂时还没有明确的规定。最具代表性的是德国电网运营商E.ON Netz 对风电场风力机组提出的LVRT 要求[8],如图8所示。

1090

704515U /U N (%)图8德国E.ON Netz 公司LVRT 要求

在图8中,仅当电网电压值处于图示折线下方也就是图中所示的风机跳闸区时,才允

许风机脱网解列;而在折线以上区域,风机应继续保持并网,等待电网恢复。且当电压位于图中阴影区域时,还要求风机向电网提供无功功率支撑以帮助电网恢复。图中当电压跌落到额定电压的15%时,要求风机提供无功支持并保持并网至少625ms,而在电压跌落到90%以上时风机应一直保持并网运行。以上是电网对风力发电系统低电压穿越能力的具体要求。

电网电压跌落是电网运行中的常见故障之一,当电网出现故障导致电压跌落后,会使

风力发电机组出现过电压、过电流或转速上升等问题,对于风力发电机本身及其控制系统的安全运行产生影响。

为了抑制电网电压跌落对双馈型风力发电系统的影响,实现低电压穿越功能,诸多文献

对风力发电机LVRT 技术的做了研究,可主要归结为以下几种方案:基于转子撬棒(Crowbar)保护电路的LVRT 控制策略[9]、基于双馈电机暂态磁链补偿技术的LVRT 控制策略[10]、基于短暂中断(STI)的LVRT 控制策略[11]、基于提高转子电流环动态控制增益的LVRT 控制策略[12]、

基于能量管理技术的LVRT 控制策略[13]、基于双馈电机定子电压动态补偿控制的LVRT 控制策

略[14]等。

6、双馈电机控制方法简介

6.1矢量控制

20世纪70年代,德国西门子公司F.Blaschke 等人提出的“感应电机磁场定向的控制

原理”和美国学者P.C.Custman 与A.A.Clark 申请的专利“感应电机定子电压的坐标变换控制”奠定了矢量控制的基础。此后,经过许多学者和工程技术人员的不断完善和改进,最终形成了现已普遍应用的矢量控制变频调速系统[18]。采用矢量控制使得交流电机可以模拟他励直流电机转矩控制规律而加以控制,大大提高了交流电机的控制性能,使其几乎能与直流调速系统相媲美。

双馈电机起初多在传动系统中用作电动机运行,尤其是在窄范围大功率调速的工业场

合。随着电力电子技术和控制技术的发展,在一些发电场合,如水能、风能发电等,双馈电机有着其独特的优势。在双馈电机的多种应用场合,矢量控制被应用于双馈电机的控制策略之中,成为目前双馈电机的主要控制策略。

在双馈电机矢量控制策略中,依据其矢量定向的不同,又分为基于定子磁场定向的矢量

控制、

基于气隙磁场定向的矢量控制、基于转子磁场定向的矢量控制以及基于定子电压定向的矢量控制等矢量控制策略。对于鼠笼电机,控制从定子侧输入,转子侧短路;对于双馈电机控制从转子侧输入,定子侧接电网。对比双馈电机定子与鼠笼电机转子的广义Park 方程,可知两者存在对偶关系。鼠笼电机通常采用转子磁场定向控制以实现转矩和励磁电流的解耦控制,因此双馈电机可以采用定子磁场定向控制实现转矩和转子侧励磁电流的解耦控制,而误差小。同时,定子电压定向的矢量控制也可以实现转矩和转子侧励磁电流的解耦控制,定向方便等优点,所以此方法也广泛应用在双馈电机的控制中。

6.2直接转矩控制

20世纪80年代中期,德国的M.Depenbrock 和日本的I.Takahashi 提出了直接转矩控制理论[18],目前该技术已成功地应用在交流传动中。直接转矩控制是一种直接的转矩控制,它不是通过控制电流等量来间接控制转矩,而是把转矩作为被控量来直接控制,强调的是转矩的控制效果,采用离散的电压状态和近似圆形磁链轨迹的概念。

同其它电机类似,双馈电机也可以采用直接转矩控制方法。双馈感应电机直接转矩控制是基于电机转子侧进行控制的,采用转子磁链幅值给定值及转矩的指令值分别和它们的观测值做滞环比较,使被控制值波动限定在一定的容差范围内,然后通过开关表选择电机侧变流器功率器件的开关状态来实现对双馈电机转矩的直接控制。

直接转矩控制技术用空间矢量的分析方法,直接在静止坐标系下计算与控制电机的转矩,采用转子磁场定向,借助离散的两点式调节(Band-Band 控制)产生PWM 信号,直接对变流器的开关状态进行最佳控制,在维持转子磁链为圆形轨迹的同时,获得转矩的高动态性能。

直接转矩控制省掉了复杂的矢量变换,控制结构简单,且不明显依赖转子参数,故对转子参数的变化具有鲁棒性。同时,该控制系统的转矩响应迅速,是一种具有高动态性能的交流调速方法。然而,直接转矩控制是一种Band-Band 控制,会导致转矩和定转子电流的脉动。

图9双馈电机定子磁场定向矢量控制结构图

图10双馈电机定子电压定向矢量控制结构图

7、电网电压定向控制的基本原理

1电网电压定向控制一般采用电压外环、电流内环的双闭环结构,电流方向以电网电压空间矢量的方向为基准。电网电压定向控制系统能否实现较好的稳态性能和快速的动态响应,很大程度上依赖于电流内环的设计。在同步旋转坐标系下设计电流内环,各交流分量均转换为直流量,便于闭环PI调节器的设计,同时可以很方便的与正弦脉宽调制或空间矢量脉宽调制方式接口,利于电网侧滤波参数的设计,是目前应用最广泛的电网侧变流器的控制策略,以下文将对电网电压定向矢量控制进行详细分析。

图11同步旋转坐标系下电压定向控制框图

8、低电压时双馈电机系统的响应特性分析

目前,变速恒频风力发电系统,尤其是双馈型风力发电系统在应对电网电压跌落等故障能力方面存在很大的困难。本节将针对电网电压跌落及恢复时双馈风力发电系统的响应特性进行详细的分析,以便为后面对其低电压穿越控制方案的设计奠定基础。

在双馈型风力发电系统中,由于双馈电机的定子直接与电网相连接,因此在电网电压跌落时会导致其定子端电压跌落,由于定子磁链不能突变,导致定子磁链中含有直流成分,不对称电网电压跌落还会含有负序成分。由于双馈风力发电系统中的双馈电机的并网运行转速通常比较高,这一较高的转速相对于定子磁链中的直流成分和负序成分而言,均具有较大的转差率,从而在双馈电机转子电路中感生出较大的转子电压和转子电流。转子电路中较高的暂态电流量和电压量对转子变流器中半导体器件的安全运行构成了威胁,严重时会导致转子侧变流器保护电路动作甚至烧坏变流器[29]。

在电网电压跌落的过渡过程中,电网侧变流器传输功率的能力受到限制,因而其对直流侧电压的控制性能降低。因此,在电网电压跌落的动态过程中可能会引起背靠背变流器直流侧电压的升高,这也严重威胁到变流器半导体器件的安全运行。

在电网跌落的过渡过程中,尤其发生不对称跌落的过程中,会致使双馈电机的电磁转矩出现脉动,由于风轮机的惯性较大,这种脉动会给双馈型风力发电机、齿轮箱等机械部件造成冲击,从而影响风机的有效运行寿命。

在电网电压快速恢复过程中也存在类似的暂态过程,同样会对风电系统可靠运行产生严重的影响。为此必须采取一定的措施,对双馈电机系统进行控制,以使其具有较强的低电压穿越能力。

9、低电压穿越控制方案

基于转子Crowbar的LVRT控制方案是较早用于对双馈型风力发电机转子变流器保护的一项控制技术,可以分为无源Crowbar和有源Crowbar两大类。在风力发电尚未形成规模时,风力发电系统应用Crowbar技术主要进行自我保护,所采用的Crowbar多为被动式Crowbar,即所谓的无源Crowbar。随着风力发电装机容量的不断增大,在一些国家和地区风力发电已占有相当大的容量,并且未来将会有更多的风电场投入运行。为此电力系统开始对风力发电提出了新的要求,自2003年德国E.ON公司首次对风力发电提出并网要求以来,传统风机的无源Crowbar保护电路不再满足电力系统对风力发电提出的新要求。为了满足电力系统对风力发电的进一步要求,需要Crowbar电路动作后能在适当的时候断开,从而使得在风机在不脱离电网的情况下转子变流器可以重新工作,于是出现了新型的可以切断转子回路的主动式Crowbar保护电路,即所谓的有源Crowbar。

1.无源Crowbar:

图12无源Crowbar保护电路

图12是由二极管整流桥和晶闸管构成的常用无源Crowbar保护电路,当直流侧电压达到保护值时,通过触发晶闸管导通实现对转子绕组的短路,同时断开转子绕组与转子侧变流

器的连接以实现对转子侧变流器的保护功能。而保护电路与转子绕组一直保持连接,直到定子接触器将定子侧与电网断开且等转子电流衰减为零后,晶闸管恢复到阻断状态,待条件允许时双馈电机重新执行并网操作。显然,基于晶闸管的被动式撬棒完全是一种自我保护形式的Crowbar,因此,不能对故障状态下的电网电压提供支撑,并且在电网故障切除后也不能马上对电网提供能量。

无源Crowbar保护电路控制简单,能够在电网电压跌落时保护转子侧变流器。但是晶闸管不能自行关断,因此故障时电机必须解列;当故障消除后,系统不能自动恢复正常,必须重新并网。此电路都是被动式保护,难以适应新的电网规则要求,因此要选用主动Crowbar 保护电路。

1.有源Crowbar:

为了满足电力系统对风力发电的进一步要求,需要Crowbar电路动作后能在适当时刻断开,从而使得在风机在不脱网的情况下转子变流器可以重新开始工作,于是出现了新型的可以在适当时刻切断保护电路的有源Crowbar。在有源Crowbar保护电路中可采用能够换流的SCR、GTO、IGBT等可关断器件。常用的两种典型有源Crowbar保护电路应用结构如图4.2所示。图4.2(a)是在二极管整流桥后采用IGBT和电阻构成的斩波器,这种保护电路使转子侧变流器在电网故障时可以与转子保持连接,当故障消除后通过切除保护电路,使风电系统快速恢复正常运行,因而具有更大的灵活性。图13(b)是采用三相交流开关(常用SCR)和旁路电阻构成的保护电路,故障期间为转子侧可能出现的大电流提供通路。采用这种电路,当电网电压跌落发生及恢复时,转子侧变流器可以与转子保持连接,当故障消除后,切除旁路电阻使系统快速恢复正常运行。其中Crowbar电阻的取值比较关键,既要避免变流器直流侧过压,又要有效抑制转子侧过电流,其取值大小将在下一小节中介绍。

(a)二极管整流桥+IGBT+电阻(b)三相交流开关+旁路电阻

图13、有源Crowbar保护电路

其实这两种拓扑的实质是一样的,都属于有源Crowbar,都可以适应新的电网规则

要求,使风力发电机在故障不严重时保持不脱网运行。由于晶闸管的成本较低且它对过

电流的承受能力比较大,所以实验中采用三相晶闸管和旁路电阻组成的保护电路,详细

的实验方案设计将在下一节具体说明。

1010、、有源Crowbar的参数设计

对于三相晶闸管和Crowbar电阻组成的有源Crowbar保护电路方案,我们必须从实际系统的性能、可靠性及成本等方面考虑,对系统中的关键参数进行仔细的分析,确定最终的实验方案。以下将分别对撬棒电阻、晶闸管及控制参数的选择进行分析。

1.Crowbar电阻R的选择:

Crowbar电阻R的阻值的选取较为重要,阻值过小不能起到限制转子电流的作用,阻值

过大又会在转子侧变流器的出线端形成过电压,进而使直流侧过压,威胁到转子变流器的耐压安全。

当有源Crowbar 开始工作时,双馈电机基本等同于感应电机。文献[30]给出了双馈电机最大短路电流计算公式,其与Crowbar

电阻的关系如下

1max i ≈(4-14)

设转子允许的最大电压为U 2max

,Crowbar

电阻的最大值为

2max 1

cb R <(4-15)

2.晶闸管SCR 的选择:

对于晶闸管的选择要考虑其额定电压、额定电流、过电流能力、du/dt 及di/dt 等参数,还要考虑其类型、尺寸、价格等因素。同时,晶闸管的选择与撬棒电阻有很重要的关系,4.5.2节将给出晶闸管的电流及电压波形,通过波形可以为晶闸管的选择提供依据。

3.控制参数的选择:

在对有源Crowbar 保护电路进行控制时,必须弄清楚其被触发和禁止的逻辑关系:当电网电压跌落时,首先监视双馈电机系统的转子侧电流,若转子侧电流超过其设定的上限值时,立刻封锁转子侧变流器的脉冲,以防止转子变流器因过电流而损坏;同时监视双馈电机系统的直流母线电压,若直流母线电压超出其设定的上限值,触发转子Crowbar 保护电路动作,短路双馈电机的转子电路。在Crowbar 保护电路被触发动作后,一方面继续监视双馈电机转子侧电流和直流母线电压,一旦转子侧电流和直流母线电压都低于其设定的下限值,并且维持一段时间,则可关断Crowbar 保护电路,重新恢复对转子侧变流器的控制。在电网电压恢复时同样的按上述逻辑进行控制。

同时,在电网电压跌落时还必须考虑变流器对电网无功功率补偿的控制策略。DFIG 应对电网故障的无功功率支持既可以采用转子侧变流器,又可以电网侧变流器对无功功率进行补偿。首先考虑转子侧变流器具有对双馈电机进行控制能力时的情况,在电网电压跌落较轻微时转子变流器仍持续工作,考虑到双馈电机的设计特点,相比于通过网侧变流器对电网进行无功补偿而言,用双馈电机转子侧变流器对电网进行无功补偿,进而对电网电压实施控制较为有利。目前,对于双馈电机的无功功率进行控制的方案,概括起来可以分为三类:无功功率指令性控制、双馈电机定子侧功率因数控制和定子电压控制。当电网电压跌落深度较大转子侧变流器不工作时,可以采用网侧变流器进行无功功率的控制;同时在暂态过程结束后电机重新工作时,转子侧变流器也可以进行无功功率补偿以利于电网恢复。

电网电压对称跌落到15%15%时

时:在双馈型风力发电仿真系统中,电机侧变流器采用定子电压定向矢量控制策略,电网侧变流器采用电网电压定向矢量控制策略,双馈电机工作在额定状态下且定子侧及电网侧功率因数均为1。三相电网电压在0.5s 时刻跌落到其额定值的15%,1.125s 时刻恢复,此动态过程中系统的主要变量波形图如图14所示。

u A B C (V )

4i A B C (A )(a)定子电压波形

(b)定子电流波形i a b c (A

)U d c (V )(c)转子电流波形

(d)直流电压波形6P s ,Q s (e)定子有功及无功功率波形

图14电网电压对称跌落到15%时的主要变量波形

培训内容

10、变流器控制基本原理,包括直接转矩控制和矢量控制等

11、ABB变流器调试中的有关知识

12、其他变流器厂家的基本原理,例如:龙源电气、日立电气、alstone等

13、简要介绍调试中的故障处理

小班授课:授课顺序分别为2,1,4,3班

储能系统方案

1、方案简介 储能系统(EnergyStorageSystem,简称ESS)是一个可完成存储电能和供电的系统,具有平滑过渡、削峰填谷、调频调压等功能。可以使太阳能、风能发电平滑输出,减少其随机性、间歇性、波动性给电网和用户带来的冲击;通过谷价时段充电,峰价时段放电可以减少用户的电费支出;在大电网断电时,能够孤岛运行,确保对用户不间断供电。 储能系统是电力系统“采-发-输-配-用-储”的重要组成部分,是构建新能源微电网的基础。系统中引入储能环节后,可以有效地实现需求侧管理,消除昼夜间峰谷差,平抑负荷,不仅可以更有效地利用电力设备、降低用电成本,还可以促进可再生能源的应用,也可作为提高系统运行稳定性、参与调频调压、补偿负荷波动的一种有效手段。

储能系统包括锂离子电池、BMS系统、PCS系统、EMS系统等。其中,电池模组采用模块化设计,由若干电池串并联组成。每个电池模组配置一个电池管理单元,对单体电池的电压、温度等参数进行监测; 储能系统架构图 2.1电池 根据市场情况,储能电池选择为磷酸铁锂电池,磷酸铁锂电池具有一定的优势。 1)长循环寿命 由于风光资源的不确定性、间歇性,蓄电池经常处于部分荷电状态(PSOC)模式下运行。电池在这种状态下经常处于过充或欠充状态,

尤其是欠充状态会导致电池寿命提前终止,磷酸铁锂电池使用年限达到15年,循环次数4500次以上。 2)高能量转换效率 储能电池经常处于充放电循环,电池的能量转换效率高低对规模储能电站的经济性好坏有决定性的影响。磷酸铁锂电池改善了电池部分荷电态(PSOC)模式下的充电接受能力,充电接受能力较普通电池提升40%以上,使电池具有了优异的充放电效率(97%以上),整个储能电站的能量转换效率可达到90%以上。 3)经济性价比 寿命期内性价比是评估储能技术是否可行的一项重要指标。磷酸铁锂电池既保持了电池高能量密度,又具有快速充放电、循环寿命长、价格低等优势,收益/投资比可达2.0;相比铅碳电池、管式胶体电池、三元锂电池相比,具有更低的成本及更高的性价比,可有效的降低储能电站运行成本。 4)系统安全可靠性 储能电站具有较高的安全可靠性要求,磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。工作温度范围宽广(-20C--+75C),有耐高温特性磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。

08_储能变流器技术规范

国家新能源示范城市吐鲁番示范区屋顶光伏电站暨微电网试点工程 储能双向变流器 招标文件 (技术规范书) 招标人:龙源吐鲁番新能源有限公司 设计单位:龙源(北京)太阳能技术有限公司 二零一二年七月

目录 1 总则 (1) 2 工程概况 (3) 3 储能系统储能双向变流器技术规范 (5) 3.1相关概念及定义 (6) 3.2设计和运行条件 (6) 3.3规范和标准 (7) 3.4技术要求 (9) 3.4.1 储能双向变流器技术要求 (9) 3.4.2 变流器通讯设置要求 (14) 3.4.3设备及元器件品质承诺 (16) 3.5包装、装卸、运输与储存 (16) 3.5.1 概述 (16) 3.5.2 包装 (16) 3.5.3 装运及标记 (17) 3.5.4 装卸 (18) 3.5.5 随箱文件 (19) 3.5.6 储存 (19) 3.5.7 质量记录 (19) 3.6性能表(投标人细化填写) (19) 4 安装、调试、试运行 (21) 4.1安装 (21) 4.2设备调试 (22) 4.3设备试运行 (22) 5 质量保证和试验 (22) 5.1质量保证 (22)

5.2试验 (23) 5.3型式试验 (23) 5.4工厂试验FAT (23) 5.5现场试验SAT (24) 5.5.1 现场调试 (24) 5.5.2 现场试验 (24) 5.6整体考核验收 (24) 附录1 技术差异表 (25) 附录2 供货范围 (26) 附录3 技术资料及交付进度 (28) 附录4 设备检验和性能验收试验 (34) 附录5 技术服务和设计联络 (37) 附录6 投标文件附图 (41) 附录7 运行维护手册 (42) 附录8 投标人需要说明的其他技术问题 (43)

储能行业报告

储能行业报告 目录第一章中国储能行业发展综述第一节储能行业定义及分类(一)、储能行业定义 (二)、储能行业分类 (三)、储能行业生命周期分析第二节储能行业政策环境分析(一)、世界各国对储能产业的主要激励政策 (1)、日本储能产业激励政策 1.1 资金投入与对技术研发的支持 1.2 对资金、技术、市场、示范项目等方面的扶持 (2)、美国储能产业激励政策 2.1 立法支持 2.2 财政扶持与激励机制 (二)、各国储能激励政策对中国启示与参考 (1)、明确储能规划,并实现储能与新能源发展的同步进行(2)、价格政策、投资回报机制等激励性政策的制订 (3)、技术标准、管理规则的配套与规范 (三)、中国储能相关的产业政策第三节储能行业经济环境分析(一)、国际宏观经济环境分析 (1)、21xx年世界经济运行的主要特点 (2)、影响世界经济运行的主要因素 (3)、对2xxx年世界经济运行的初步判断

(4)、外部环境对我国经济的影响 (二)、国内宏观经济环境分析 (三)、行业宏观经济环境分析第二章中国储能行业必要性与前景分析第一节储能行业必要性分析 (一)、全球面临能源与环境的挑战 (1)、能源供需矛盾突显 (2)、环境污染、气候恶化形势严峻 (二)、应对挑战,能源领域亟需变革 (1)、能源供应的变革 (2)、能源输配的变革 (3)、能源使用的变革 (三)、储能技术已成为阻碍变革进程的技术瓶颈 (1)、新能源大规模使用与并网智能电网的矛盾 (2)、电网调峰与经济发展水平的矛盾 (3)、新能源汽车的推广,储能技术的突破是关键 (4)、节能环保需要储能技术的推动第二节储能行业发展状况(一)、抽水蓄能电站进入建设高峰期 (1)、规划总量分析 (2)、选点区域分析 (3)、核准建设项目分析 (二)、掌握部分电化学储能关键技术 (三)、锂离子电池是新增投资重点

智光电气:2019年度董事会工作报告

广州智光电气股份有限公司 2019年度董事会工作报告 2019年度,公司董事会紧密围绕公司发展战略部署和责任目标,积极改善公司的经营状况,严格按照《公司法》、《证券法》、《深圳证券交易所股票上市规则》、《深圳证券交易所上市公司规范运作指引》等法律法规以及《公司章程》、《董事会议事规则》等相关规定,本着对全体股东负责的精神,认真履行有关法律、法规赋予的职权,积极有效地推进董事会各项决议的实施,不断完善公司治理水平和规范运作,推动公司各项业务的健康稳定发展。 现将公司董事会2019年主要工作情况报告如下: 一、公司经营情况 (一)总体经营情况 2019年度,公司实现营业收入255,361.60万元,同比下降5.52%,实现归属于上市公司股东的净利润11,251.18万元,同比增长42.56%。 (二)各项业务经营情况 1、基于以电力电子技术为核心的研发平台,坚持技术创新提升产品综合竞争力 在高压变频领域,公司研发的第四代高压变频系统在报告期末已量产出货,新一代的高压变频系统,在整机体积、标准化程度及整体综合性能均等方面处于行业领先水平。公司主营高压变频系列产品继续保持重要行业领先地位,自主研制的超大容量高压变频系统仍是国产替代进口的强有力的产品。公司践行国家“一带一路”的发展战略,多个项目在不同国家开花结果,如非洲纳米比亚的海外变频项目成功投运、巴基斯坦2*300WM电厂一次风机高压变频完成调试并顺利交付、柬埔寨文龙水泥厂高压变频系统成功投运、神华印尼爪哇7号 2*1050MW 燃煤发电工程#1机组一次性通过168小时满负荷试运等重大项目。

在港口岸电领域,公司研发出新一代电压快速控制岸电电源技术,进一步提高岸电系统的响应速度和可靠性。2019年,岸电改造市场实现回暖,公司岸电业务同比增长。公司累计实施改造的高压岸电泊位数为全国领先,目前已广泛应用在天津、青岛、宁波、福州、厦门、深圳、广州等各大港口。 在储能电站领域,智光储能是级联型高压直挂储能技术的市场倡导与践行者,其高压级联型储能系统获得中电联组织的专家组“整体国际先进,部分指标国际领先”的评价。智光储能完成6kV储能系统、10kV储能系统、630kW高性能系列储能系统、6MW级储能检测平台、电池梯次利用储能系统的研制。6kV储能系统、10kV储能系统已通过中国电科院、广东电科院的现场技术测试,并承担相关标准的编制工作。报告期内五沙电热储能项目已投产,江苏万邦储能、茂名电厂、广州中新知识城粤芯电化学储能电站等储能项目正在建设中。 在大容量SVC产品领域,完成高功率密度与高可靠性技术升级设计及升级后产品的投运,为后续进入更大容量SVC系统奠定坚实基础;基于GOOSE技术的第四代消弧控制器的样机研制工作基本完成,为后续消弧选线产品的功能与性能提升,提供了技术保障。 在安全智能电源(UPS)领域,公司控股孙公司广东创电科技发展有限公司完成舰船大功率、轨道交通大功率可靠供电系统的研发,与某单位签署了用于舰船的特殊电源供货合同,同时中标北京轨道交通3号线、地铁房山线、成都地铁9号线、17号线、18号线部分UPS电源系统项目。 报告期内公司已完成并发布的团体标准《电化学储能系统用电池管理系统技术规范》、《电化学储能系统评价规范》; 2019年正在起草中的国家、行业及团体标准有《能源互联网与储能系统互动规范》、《消弧线圈并联低电阻接地装置》、《调速电气传动系统第7-202部分:电气传动系统的通用接口和使用规范2型规范说明》、《调速电气传动系统第3部分:电磁兼容性要求及其特定的试验方法》、《电化学储能电站检修规程》、《储能变流器与电池管理系统通讯协议》、《三相储能变流器上位机Modbus监控协议》。相关产品和系统的标准的参与起草也凸显公司以电力电子技术为核心的技

海上风电变流器研究现状与展望

海上风电变流器研究现状与展望 发表时间:2019-09-17T11:05:41.103Z 来源:《电力设备》2019年第7期作者:王艳伟王德恒[导读] 摘要:人们生活水平的提高,用电需求的不断增多,促进了我国电力产业的不断发展。 (保定龙源电气有限公司河北保定 071000) 摘要:人们生活水平的提高,用电需求的不断增多,促进了我国电力产业的不断发展。从风电行业发展现状看,我国的海上风电从2014年得到较大突破,从相关数据可知我国在2015年新增约36万kW,累计装机容量从世界排名第五位升至第四位。借力海上资源和政策扶持,我国提出了到2020年完成海上风电累计装机量或将达到40.3GW,我国有望成为海上风电发展的中坚力量。本文就海上风电变流器研究现状与展望展开探讨。 关键词:海上风电变流器;效率;可靠性;可用度引言 数据分析与统计结果表明,海上电子设备所发生的故障,50%以上是由环境因素造成的。随着电子设备复杂程度的增加、使用环境的恶劣,其可靠性问题显得越来越突出。因此,加强海上风电变流器设备或系统的防护,提高其可靠性是非常重要的。 1海上风电变流器主电路拓扑、器件及参数在风电变流器中,多采用电压源型变换器,有一些电流源型变换器的研究文献,但尚无应用案例。当前海上风电变流器的主流拓扑是两电平拓扑和三电平拓扑,两电平拓扑主要应用于低压风电变流器中,三电平拓扑在中、低压风电变流器中均被广泛应用。随着控制技术的成熟,更多电平的拓扑也开始应用于风电变流器。表1列出了当前主流商用风电变流器的技术参数。 表1主流商用风电变流器技术参数由表1可知,目前风电变流器低压和中压方案共存,多采用并联型的拓扑结构。多变换器并联能够有效提高变流器容量、降低生产成本、提高系统的运行可靠性。海上风电机组的大容量化和全功率变换是发展趋势,由于受到齿轮箱容量的制约,5MW以上风电机组的传动链采用直驱型较普遍。中、低压海上风电机组共存,其中690V低压机组历久弥新,3000V中压机组方兴未艾。海上风电机组的大容量化使得变流器的容量不断增大,需要采用更大功率等级的功率器件,或者采用多变换器并联的拓扑结构来满足大功率变换的要求。海上运维不便,对风电机组的运行可靠性提出了更高的要求,采用多变换器并联结构可以有效提升系统的可靠性。海上风电的投资高,必须提高系统效率,增加机组的发电量,才能提高海上风电的经济效益。因此,海上风电机组对效率、可靠性和可用性的要求越来越高。对于大容量风电机组,采用低压方案时,风电机和变流器的出口电流很大,不仅增加了电缆线路的传输损耗,而且带来诸多安装与可靠性问题。采用中压变流方案可以减小线路传输损耗,节省电缆成本,三电平拓扑还可提升功率变换效率,故中压变流方案备受欢迎。目前限制中压方案的瓶颈在于低速同步发电机出口电压的提升上。中压变流器技术上的问题已基本解决,变流器本身的成本偏高,如采用IGCT或者IEGT等开关器件,对水冷设备的特殊要求会进一步增加系统成本,因此中压变流方案的整体优势尚不明显,多MW级风电机组的低压和中压方案将会长期共存,10MW级以上中压方案可能是必然的选择。由于海上风电机组的运维不便,一旦停机将会造成巨大经济损失,因此,海上风电变流器往往采用多变流器并联结构,以提高其运行的可靠性。海上风电机组在大容量、全功率变换趋势下,与其功率匹配的风电变流器的容量也日趋增大。受到功率半导体器件的电气规格的限制,大功率海上风电变流器通常采用多变换器并联的技术方案来增加系统容量。此外,海上风电机组的运行维护的成本高,并联型变流器具有灵活的冗余控制特性,可提高海上风电变流器的运行可靠性。Siemens的海上直驱风电机组SWT-8.0-154采用双变流器并联的变流方案,Gamesa的海上半直驱机组G132-5.0MW采用4台变流器并联的变流方案。可见,多变换器并联是海上风电变流器的必然选择。并联型海上风电变流器主要分为两类:两电平并联型和三电平并联型,如图1所示。两电平并联型风电变流器主要用于低压变流系统,三电平并联型风电变流器应用于低压、中压变流系统。并联型风电变流器的高效、可靠运行控制是亟需攻克的关键技术。 图2海上风电变流器的主流拓扑结构

微电网电气系统项目立项报告书

微电网电气系统项目 立项报告书 中船重工(武汉)凌久电气有限公司2013年04月02日

一、立项背景 1.1 孤岛型微电网需求迫切 近年来随着我国经济的不断发展以及海洋权益维护局势的日益严峻以及西北偏远地区经济发展迅猛,引起了全社会的的高度关注,岛屿的战略价值和经济价值都非常高,而很多西北内陆也是国家经济、旅游事业的发展重点。由于这些待开发的区域地处偏远,大电网无法延伸至此,通常使用柴油发电作为主要能源,甚至是唯一提供电力的能源,这种供电方式,需要持续性地提供柴油补给,不仅用电成本高,而且柴油的补给受到地理、气候、成本以及技术等多方面原因的影响。因此,有效开发利用可再生能源,为偏远地域提供可靠、高效、可持续供应的清洁能源将关系到未来区域经济、资源的开发与发展。 因此,为增强在新能源领域的影响力,拓展微电网领域的经济布局,重庆海装风电设备有限公司(以下简称海装风电)结合自身在风电行业的发展特点,充分利用其在西北地区的市场资源以及集团公司在海军市场的独特优势,正在积极进入孤岛型微电网供电系统项目的市场,以谋求在该领域发展初期就能取得良好开局,为今后新能源的微电网系统项目的发展打下坚实基础。 1.2 孤岛型微网控制与配电系统研发的必要性 根据我国军事、经济等战略需求,关于孤岛型微电网,海装风电提出一种以风能为主、柴油为辅的孤岛式发电系统,风力发电与柴油发电机组属于不同形式的能源,其发电原理及输电、配电设计上存在一定差异,因此,该系统则需要对微电网供电系统重新规划、设计,研制出一个稳定的、健壮的、最大利用风能的微电网供电系统。当前海装风电已与敦煌雅丹国家地质公园达成协议,进行孤岛型微电网供电系统的项目开发合作。 我公司是海装风电股东单位,与海装风电技术合作已有8年,主要为重庆海装提供风电控制系统。此次海装风电进入孤岛型微电网项目也为我们进入该领域的控制与配电迎来了一个良好的发展契机。根据市场咨询公司M&M发布的一份报告,全球未来10年在微电网系统的年增长率预计12%,主要分区域有:北美、欧洲、亚太地区及其他。亚太地区将是增长最快的市场,中国、印度将领导亚太地

2018年储能双向变流器及储能系统集成产业化项目可行性研究报告

2018年储能双向变流器及储能系统集成产业化项目可行性研究报告 2018年12月

目录 一、项目概况 (3) 二、项目建设背景 (3) 1、储能商业化应用提速发展 (3) 2、国内储能扶持政策逐步加力 (4) 三、项目建设必要性 (6) 1、迅速占领市场,赢得市场先机 (6) 2、优化产品结构,形成新的利润增长点 (6) 3、发挥与光伏逆变器业务的协同优势 (6) 四、项目产品和技术方案 (7) 7 1、集中式交流储能变流器 .................................................................................... 7 2、分布式直流储能变流器 .................................................................................... 五、项目建设方案 (8) 1、主要原材料和辅料供应情况 (8) 8 2、项目建设方案 .................................................................................................... (1)工程费用 (8) (2)设备费用 (8) 六、项目经济效益分析 (10)

一、项目概况 项目建设期为18个月,在项目期内将完成厂房建设、储能双向变流器生产线建设、办公及配套设施建设、人员配置等。 项目总投资11,477万元,具体概算如下: 二、项目建设背景 1、储能商业化应用提速发展 当前全球能源转型迫在眉睫,伴随新能源产业的迅速发展,全球的储能行业革命正在进一步的深化过程中。储能技术应用广泛,市场需求潜力较大,是能源互联网中的关键环节,主要体现在以下几个方面: 第一,光伏与风电等间歇性电源输出不稳定,光伏发电集中在白天阳光充足的时间,风力发电受风量风速等直接影响,当其发电量提升时,其不稳定电量会对电网造成一定的冲击,这就需要配套一定比

储能系统技术要求

储能系统技术要求 1、电储能系统涉及的标准及规范 IEC62619:2017《含碱性或其他非酸性电解质的锂蓄电池和锂蓄电池组工业用锂蓄电池和锂蓄电池组的安全性要求》 GB/T34131-2017《电化学储能电站用锂离子电池管理系统技术规范》 2、电池储能容量按250kW*4h设计,其主要功能如下: 1)削峰填谷 即根据系统负荷的峰谷特性,在负荷低谷期储存多余的光能,同时还可以从电网吸收功率和能量;在负荷高峰期释放储能电池中储存的能量,从而减少电网负荷的峰谷差,降低电网供电负担,一定程度上还能使光伏发电在负荷高峰期发电出力更稳定。 2)平滑波动 通过储能系统快速调节,可防止负载波动、电压下跌和其他外界干扰所引起的电网波动对系统造成大的影响,保证电力输出的品质和可靠性。储能系统不仅保证系统的稳定可靠,还是解决诸如电压脉冲、涌流、电压跌落和瞬时供电中断等动态电能质量问题的有效途径。 电池储能装置的布置和安装应方便施工、调试、维护和检修,若有特殊要求应特别注明。 储能电池日历寿命需大于11年(仍然可以保持一定容量的充放电能力,整个储能系统仍然可以正常运行)。 在电池仓内环境温度控制的环境下,运行容量不小于1MWh,锂电池按照0.5C 充放电及DOD 90%设计,投标人需保证循环次数不得低于4000次。 冷却方式若为风冷,应配有风管接口。 电池在充放电过程中外部遇明火、撞击、雷电、短路、过充过放等

各种意外因素,不应发生燃烧或爆炸。 在技术解决方案中,投标人应明确说明为保证电池各项指标的均衡性所采取的措施,避免因单体电池或电池模块电池特性差异较大而引起整组电池性能和寿命下降。 投标人需要提供的特性说明及特性曲线: ●可选的充放电方式; ●循环次数与充放电深度关系曲线(含单体电池及电池组曲线); ●循环次数与充放电功率的关系曲线(含单体电池及电池组曲线); ●不同运行功率下变流器的效率曲线; ●运行电压与温度关系曲线(含单体电池及电池组曲线); ●电池容量与温度关系曲线(含单体电池及电池组曲线); ●电池充放电倍率与容量关系曲线(含单体电池及电池组曲线); ●在一定条件下,年度电池容量衰减的保证值(单元系统的保证值); ●电池充电特性曲线(单体电池曲线); ●电池放电特性曲线(单体电池曲线); ●电池耐过充能力说明(单体电池曲线); ●电池长期正常运行后的端电压偏差范围(单体电池曲线); ●电池系统的电池巡检和保护功能; ●电池系统的电磁兼容性能测试报告; ●箱体保温、散热、防雨、防腐措施及方案及类似箱体成功运行案例。上述文件投标方需完整提供,并承诺与实际提供产品完全保持一致。 储能电池短名单厂家:宁德时代、杉杉储能、阳光电源、比亚迪、科陆电子或同等品牌。

电力电子技术在我国的发展现状及对策

龙源期刊网 https://www.doczj.com/doc/8418214662.html, 电力电子技术在我国的发展现状及对策 作者:冯茂娥 来源:《商场现代化》2009年第28期 [摘要] 文章阐述了电力电子的含义和任务,分析了电力电子技术目前在我国的发展、应用现状和存在的问题,指出在我国建立一个自主创新的、强大的、达到世界先进水平的电力电子 产业是十分迫切和重要的,并提出了相应的对策。 [关键词] 电力电子技术现状对策 一、引言 我国是一个发展中的国家,目前尚处于前工业化阶段,传统产业仍然是我国国民经济的主力军,因此在近期或在较长一段时期内,传统产业的改造和发展将在很大程度上决定着我国经济的发展。电力、机械、冶金、石油、化工、交通运输是传统产业的重要支柱,这些产业技术水平 的高低直接关系到我国工业基础的强弱。特别是,近年来随着经济的稳步发展,巨大的电力缺口与人们对电力的强烈需求之间的矛盾越来越明显。由于我国常规能源资源的有限性和环保的巨大压力,能源建设必须走节电和开发利用可再生能源之路,这就决定了在今后相当长的一段时期内,我国国民经济的发展和巨大的用户市场对电力电子技术具有巨大的、持久的需求,这就意味着我国电力电子和电力传动产业面临着良好的机遇。 今后世界市场的竞争主要表现为高新技术的竞争,谁拥有电力电子这种先进的高新科技产品,谁就掌握竞争的优势。面临我国已加入世贸组织和必须适应国际大循环的形势,我们面临着严峻的挑战,因为总体说来我国当前电力电子技术的水平落后于国际先进水平,远远跟不上我国国民经济发展的需要,特别是还面临着国外产品严重冲击,因此,我们必需清醒地认识到这一挑战并且要勇敢地面对。 二、电力电子的含义和任务 从学科的角度讲,电力电子的主要任务是研究电力电子(功率半导体)器件、变流器拓扑及其控制和电力电子应用系统,实现对电、磁能量的变换、控制、传输和存贮,以达到合理、高效地使用各种形式的电能,为人类提供高质量电、磁能量。电力电子的研究范围与研究内容主要包括:(1)电力电子元、器件及功率集成电路。(2)电力电子变流技术,其研究内容主要包括新型的或适用于电源、节能及电力电子新能源利用、军用和太空等特种应用中的电力电子变流技术;电力电子变流器智能化技术;电力电子系统中的控制和计算机仿真、建模等。(3)电力电子应用技术,其研究内容主要包括超大功率变流器在节能、可再生能源发电、钢铁、冶金、电力、电力 牵引、舰船推进中的应用;电力电子系统信息与网络化;电力电子系统故障分析和可靠性;复杂电

三相储能变流器操作手册

版本号 V1.0 PSCONVERTER-I10/3 三相储能变流器 用户使用手册 天津天海源电气技术有限责任公司 Tianjin THY -Electric Power Technology Co., Ltd

目录 一关于本手册的说明 (1) 1.1 前言 (2) 1.2 内容介绍 (2) 1.3 面向读者 (3) 1.4 手册使用 (3) 二安全须知 (4) 2.1 用户须知 (5) 2.2 安全标志约定 (5) 2.3 安全注意事项 (5) 三PSCONVERTER-I10/3三相储能变流器简介 (7) 3.1 简介 (8) 3.2 产品性能特点 (8) 3.3 产品原理图 (10) 四操作指导 (12) 4.1 上电前检查 (13) 4.2 上电操作 (14) 4.3 断电操作 (15) 4.4 变流器工作状态 (16) 五触摸屏监视终端和上位机监控软件操作说明 (17) 5.1 触摸屏监视终端 (18) 5.1.1 触摸屏监视终端简介 (18) 5.1.2 触摸屏监视终端操作步骤 (20) 5.2 上位机监控软件 (20) 5.2.2 上位机监控软件功能简介 (21) 5.2.2 上位机监控软件功能操作步骤 (23) 六故障诊断及排除 (24) 6.1 故障和告警类型 (25) 6.2 上位机监控软件故障 (26) 6.3 其他故障 (26) 七例行维护 (27) 7.1 维护周期 (28) 7.2 可视化检查系统状态 (28) 7.2.1 变流器箱体 (28) 7.2.2 变流器周围的环境 (29) 7.3 接线端子紧固性检查 (29) 7.3.1 内部器件检查 (29) 7.3.2 插头的安装检查 (30) 7.4断路器的检查与维护 (30) 八典型应用 (31)

中国化学与物理电源行业协会团体标准

中国化学与物理电源行业协会团体标准 《储能变流器与电池管理系统通信协议第1部分:CAN通信协议》编 制说明 一、工作简况 1、任务来源 随着我国能源结构的转型,储能系统的重要性日益凸显,而电化学储能系统具有适应频繁的充放电转换、毫秒级的响应速度、较高的容量等特点,得到了快速的发展和广泛的应用。电化学储能系统中电池管理系统(BMS)与储能变流器(PCS)的通信直接影响系统的安全可靠运行,通过通信可以有效上送电池的健康状态,请求正确的充放电功率,在电池故障时及时发送停机指令确保系统安全。对于不同厂家生产的BMS及PCS,规范通信接口及通信协议可以极大减少系统软件开发的工作量,有效实现储能系统的标准化,提高储能系统的可靠性,对于行业发展具有重大意义。 目前,国内外尚无公开的关于PCS与BMS间通信协议的国家标准或行业标准。随着国内储能应用场景日渐增多,各储能系统厂家采用的通信协议差异较大,从而严重阻碍了行业的发展和进步,因而急需制定PCS与BMS通信协议标准。根据当前行业技术现状,应用的主流通信协议包括CAN通信协议、Modbus通信协议和基于以太网的通信协议。本项目针对CAN通信协议在PCS与BMS通信中的应用进行标准化工作。 本标准由中国化学与物理电源行业协会提出和组织,科华恒盛股份有限公司和上海电气国轩新能源科技有限公司等国内主要的储能系统厂家、运营商、研究所和认证机构共同参加《储能变流器与电池管理系统通信协议第1部分:CAN通信协议》协会团体标准的编制。 2、主要工作过程 为了做好标准启动工作,2019年07月10日,中国化学与物理电源行业协会下发了“关于征集团体标准《储能变流器与电池管理系统通讯协议》起草工作组成员的通知”,吸纳国内外主要储能系统厂家、运营商、研究所和认证机构加入《储能变流器与电池管理系统通讯协议》协会团体标准工作组。 2019年8月21号,中国化学与物理电源行业协会组织标准起草工作组在天津召开第一次工作会议,共有48家单位56名代表参与此次会议。与会专家对以科华恒盛股份有限公司牵

储能电源的应用及其意义

储能系统可以说是调节微电源性能、保证负荷供电质量、维持电网稳定地重要环节,因此研究储能系统设计、开发储能在微网技术中地应用具有十分重要地意义. 、微网地储能技术种类及其特性 伴随着科技地发展,已发明地储能技术形式多种多样.根据微网地特点,适用于微网地储能技术可以分为物理储能、电化学储能和电磁储能,电化学储能可以分为铅酸电池、镉镍电池、氢镍电池、锂离子电池等.物理储能包括抽水蓄能、压缩空气储能、飞轮储能,电磁储能包括超级电容储能和超导磁储能等.文档来自于网络搜索 .蓄电池储能系统构成 蓄电池储能系统主要由电池组、电池管理系统( )、()、隔离变压器、双向变流器、变流器监控装置及辅助设备.系统可以满足频繁充放电及微网孤岛运行功能地需求.系统可根据上级调度指令完成各种充电、放电等高级控制策略,在微电网中应用最为广泛且最具有发展前途.文档来自于网络搜索 能量控制装置控制器通过通信信道接收后台控制指令,根据功率指令地符号及大小控制变流器对电池进行充电或放电,实现对电网有功功率及无功功率地调节. 控制器通过接口与电池管理系统通讯,获取电池组状态信息,可实现对电池地保护性充放电,确保电池运行安全.文档来自于网络搜索 .铅酸电池 铅酸电池主要由铅及其氧化物构成,电解液是硫酸溶液.荷电状态下,主要成分为二氧化铅,主要成分为铅;放电状态下,正负极地主要成分均为硫酸铅,以密度为.~./ (浓度为%~%)地硫酸溶液作为电解液,统称为铅酸蓄电池(亦称“铅蓄电池”).目前铅酸蓄电池在电力系统应用领域地研究重点是电力调峰、提高系统运行稳定性和提高供电质量.阀控铅酸电池地电化学反应式如下:文档来自于网络搜索 充电: (电解池)阳极:,一一阴极:当溶液地密度升到.时,应停止充电:放电: (电解池)负极:一一正极:一文档来自于网络搜索 .锂离子电池 目前锂离子电池地负极一般采用石墨或其嵌锂化合物,正极为氧化钴锂:、:及等过渡金属氧化物,电解液采用锂盐液态非水电解液.锂离子电池地性能主要取决于正负极材料,磷酸铁锂作为新兴地正极材料,其安全性能与循环寿命较其它正极材料具有明显优势.锂电池具有以下几个特点:能量密度高,其理论比容量为/,产品实际比容量可超过 (.,℃);储能密度高;工作电压适中(单体工作电压为.或. );寿命长;正常使用条件下,次循环后电池放电容量不低于初始容量地%;无害,不含任何对人体有害地重金属元素;充放电转化率高(%以上).但是,锂离子电池性能易受工艺和环境温度等因素地影响.文档来自于网络搜索 .超级电容器 超级电容器是一种新型储能装置,通过极化电解质来储能.由于随着超级电容器放电,正、负极板上地电荷被泄放,电解液地界面上地电荷响应减少.由此可以看出:超级电容器地充放电过程始终是物理过程,没有化学反应,因此性能是稳定地,与利用化学反应地蓄电池是不同地.超级电容器具有比功率大、充电速度快地优点,适合大电流和短时间充放电地场合,且使用寿命长,不易老化,是一种绿色能源,缺点是能量存储率有限,价格较为昂贵,还不能完全取代蓄电池提供能源,在电力系统中多用于短时间、大功率功率输出地场合.文档来自于网络搜索 .飞轮储能技术 飞轮储能以动能地形式存储能量,经过功率变换器,完成机械能一电能相互转换.飞轮储能比功率一般大于/,比能量超过/,循环使用寿命长,工作温区较宽,无噪声,无污染,

锂电池储能系统技术要求

锂电池储能系统技术要求 1.产品清单 2?方案要求 2.1项目概况: 该项目为室内储能,系统应用场所为室内使用,应用场景主要为削峰填谷,PCS负载为100kW。 初步总体方案是: 装配总功率100kW的储能变流器(PCS),储能电池总装配电量为101.376k Wh,共为1个电池簇构成

2.3储能电池: (1)电芯性能 电芯采用磷酸铁锂电芯,容量120Ah ,标称电压3.2V ,电芯月自放电率 €%,电芯需通过 GBT 31484-2015、GBT 31485-2015和 GBT 31486-2015 国家强 检测试,安全性能符合国家标准。详细参数见电芯规格书。 基本特性参数 备注 —、单体电芯~Cell 电芯类型 磷酸铁锂 电芯容量 120Ah 电芯额定电压 3.2V 取大充电电压 3.65V 放电截止电压 2.5V 标准充电电流 120A 标准放电电流 120A 2.2系统拓扑图: 电恚 (L4I0/母线 能 统 储系

2.4 BMS功能要求 1)模拟量测量功能:能实时测量单体电压、温度,测量电池组端电压、电流等参数。确保电池安全、可靠、稳定运行,保证单体电池使用寿命要求,满足对单体电池、电池组的运行优化控制要求。 2)在线SOC诊断:在实时数据采集的基础上,建立专家数学分析诊断模型,在线测量电池的剩余电量SOC。同时,智能化地根据电池的放电电流和环境温度等对SOC 预测进行校正,给出更符合变化负荷下的电池剩余容量及可靠使用时间。 3)电池系统运行报警功能:在电池系统运行出现过压、欠压、过流、高温、低温、通信异常、BMS异常等状态时,能显示并上报告警信息。 4)电池系统保护功能:对运行过程中可能出现的电池严重过压、欠压、过流(短路)等异常故障情况,通过高压控制单元 实现快速切断电池回路,并隔离故障点、及时输出声光报警信息,保证系统安全可

风电变流器的技术现状与发展 陈建

风电变流器的技术现状与发展陈建 发表时间:2018-10-19T09:47:55.313Z 来源:《电力设备》2018年第18期作者:陈建 [导读] 摘要:我们对于风能使用的历史十分的久远。 (国电南瑞科技股份有限公司江苏南京 210000) 摘要:我们对于风能使用的历史十分的久远。公元之前,我国的先人们就已经开始使用风力这一能源进行灌溉以及提水等农活和船舶航行的动力了。可是在这几千年里风能的使用仅仅只停留在直接进行使用的层面上,对于发展风能的利用技术仍十分的慢。本篇文章对于风电发展中存在的相关的问题以及相关的技术发展进行了深入的研究,并对于风电变流器技术的现状与发展趋势进行概述。 关键词:风电发展;变流器技术;发展趋势 1 风电行业的现状以及发展趋势 中国开始进行风力发电相比于西方国家来说比较晚,在1985年我国刚刚开始了对于风力发电机组并网类型的研发。又因为我国起步较晚其风电相关的技术相对较弱,所以对于自主研发的引进路线正在持续的发展之中。我国风力发电的总量在2010年已经达到了501亿千瓦的数值。翻身变为了世界排名第四,在亚洲排名第一的风力发电的国家,也是在美国之后有实力的第二个风力发电发展迅速的国家。尽管我国的风力发电在迅速的发展之中,但是在大功率风机的制造问题上面我国还不能够和西方一些先进国家相比较,更严重的是对于风电的重要技术严重缺乏,我国本身的知识产权和基础比较薄弱,其技术的先进性已经落后了十年之久。而永磁直驱风力以及变速变频发电技术作为风力发电的先进技术,一些我国的风电企业已经研究出来了,可若是和国外的相关技术比较,我国的技术还不够成熟,不仅功率低,而且并没有达到国产和大功率的水准。不仅如此,我国使用国外技术在大型风力发电的设备制造商还没有完全掌握对于功率很大风机进行制造的核心技术。而且,风力发电所导致的上网难在很大程度上限制了我国风电的发展,这主要是因为电网调峰能力有限和风力发电场离负荷的中心很远等问题导致的。尽管我国的风力发电这一行业仍然具有许许多多的问题,可是国家也正在致力于风电的发展之中,在国家的政策辅助下,我国的风电行业的发展将会越来越好。 2 风电变流器产业的现状和发展 通常来讲,我们一般将风力发电系统按照其类型分为直驱型风力发电机以及双馈型风力发电机这两种类型。而双馈型变流器以及全功率型变流器则是变流器相应的类型。在这之中,前者双馈型变流器其在双馈型风力发电系统之中得到了充分的应用,后者全功率型变流器则是在直驱型风力发电系统之中得到了应用,例如利用低速、中速以及高速的永磁同步发电机等等的风力发电系统。对于系统所集成的技术以及大功率的电力电子方面的技术和控制软件的动态响应能力在不同风况的情况下都是风电变流器所体现的主要技术。 风电变流器在我国所使用的技术大部分都是来源于国外的一些先进国家,我国所研发的国产技术在最近几年才刚刚兴起,到目前为止,我国开始了对于国产技术的研发之中,从而减少了变流器在国外的价格以及技术的垄断。现在,作为拥有自主研发技术的我国,已经将国产的变流器技术面向了市场进行不断地发展,并已经被广泛的应用,我国在风电变流器方面的技术也在日渐成熟之中,这种成熟成功影响了我国电力行业的发展,对其有促进的作用。再者,对于完全由我国自身所研制出来的技术对于我国的知识产权的完善也有着推动的作用。通常来说,要是想要将风能的利用率增加,特别是在海上进行发电,这一利用率的增加显得十分的重要,因此,在对于研究风电变流器功率的提高为又一大研究方向。 因为双馈式异步发电机在双馈型机组中具有许多的优点,如其技术成熟、体积较小且成本较低,从而能够使得双馈式风电变流器市场所占据的份额正在不断的增加,而双馈式风电变流器也已经是我国风电变流器的核心。但是与发电机电网间的无直接耦合、捕获风能范围宽、可靠性高的优点是直驱型风力发电系统所具备的,市场的份额也在一直的增长中,所以使用全功率的变流器在直驱式的风力发电系统中的发展也是其发展的必然趋势。 3 风电变流器的技术发展 我国的风电技术正在不断地发展与完善之中,其发展的方向将会变得越来越友好、智能以及可靠。 (1)为了风电机组对友好的要求,需要不断的优化控制技术 由于风能所拥有的波动性以及间歇性十分的随机,而且将容量相对较大的风电连入将会很大程度上面对更多挑战,尤其是电力的平衡、电力系统的安全以及电能存在的质量问题等。以风电场方面来看,为了将电网发生波动的情况下让风机能够保证不会解列就需要风机能够拥有低电压穿越这一技术能力。需要风电变流器能够对电网进行补无功让电网进行恢复,特别是面对相当常见的三相不对称的电压瞬降问题的时候。到现在为止,我们国家所进行的风电的开发以及利用都是距离较远的传输,在不断发展的过程中经常会碰到消纳以及送出十分困难的现象。而进行实地考察将分布式发电机不断地发展,使风电能够就近的连接到负荷侧,从而将风电发展所遇到的瓶颈进行有效的缓解。 (2)拥有故障的智能诊断功能以及远程的监控功能 进行远程监控与控制的主要原因在于风电场所建造的地区一般都比较的偏僻,而且现场经常会没有人进行看守和值班。因此,风机变流器所具有的远程监控功能应该能够做到把现场的工作信息状态如实清晰的进行反馈,从而根据监控所看到的内容对其变流器系统的可靠程度进行评估,不仅如此,还要检测一些零件的使用年限,从而按时的对机器进行检修以及维护;在发生故障的时候,风电变流器应该能够自动的把故障发生时如电压电流值等相关的信息存储下来,并交由专业的检修技术人员进行分析处理。 4 风电系统的低电压穿越技术 当风机并网这一点产生了电压突然下降的情况时,风机却依然可以将并网保持住,并能够将功率给予电网,促进电网的恢复,并有无限的可能性将电网完全的进行恢复,这就是所谓的低电压穿越技术。当然电压若是发生了跌落的现象一定会将电机的工作暂时打断,如果电压过度、电流过度或者流转的速度变快,若是问题十分的严重将会对风机安全控制系统产生不可避免的影响。一般来说,当电网出现问题的时候,风机将会进入到自我保护的程序中将会马上进行解列,当风力发电电网的穿透率低的时候,这样可以对风机的正常运行加以保障,但是如果穿透率很高的话,系统进行恢复将会十分的困哪,将会使整个系统的故障程度增加,甚至造成解列瘫痪的现象,因此,能够将风场电网稳定下来的技术就是低电压穿越技术。当电网的电压产生了跌落的现象时对于并网的风机继续按照并网要求运行为低电压穿越技术,当然在各不相同的国家以及地区其面对低电压穿越技术所要求的规定也是不同的,在德国,由于其所在的地点风机数量很多密度高,因此在这个地区里面对于风力机组的低电压穿越技术是高要求高标准的。据此我们可以知道风力发电低电压穿越技术无论是操作的难

储能逆变器检测平台

储能逆变器检测平台 储能逆变器检测平台是由群菱公司专业生产集成,目前储能并网逆变器、双向变流器技术标准暂缺,关键技术要求检测群菱公司依据光伏逆变器检测、充电就性能检测产考充电机技术标准,同时本方案安参照了国家电网公司Q/GDW676-2011《储能系统接入电网测试标准》,Q/GDW697-2011《储能系统接入配电网监控系统功能规范》的相关技术要求,依据国家能源行业标准NB/T31016-2011《电池储能功率控制系统技术条件》开展,可以测量储能双向逆变器容量达到500KW,完成测试项目包括: 1、并网工作的电气性能检测:包括防孤岛效应、过欠压保护、过欠 频保护等等; 2、储能变流器BMS性能检测:模拟各类电池组状态,精确测量BMS 灵敏度及工作性能; 3、储能变流器的效率检测:充电效率检测、逆变效率检测; 4、储能控制器对储能装置(电池、电容)的充电功能,测试充电过 程曲线,分析储能控制器的充放电特性; 5、测试储能控制器的输入、输出的直流特性,包括稳压精度、稳流 精度、效率实验、限压特性、限流特性、恒功率特性、纹波系数、 输入输出过欠压报警保护试验、反接保护实验、短路保护实验、 软启动性能实验; 6、储能控制器对能量流向的控制,自动控制各能量设备接入时间和 切离时间;

7、测试各能量设备切入切出对系统的影响,是否实现无缝切换、无 功率波动切换; 8、测试储能控制器在不同负荷状态下的工作效率; 9、测试工作过程,各个部件的温度变化情况,考核设备的温升功能; 10、测试带有BMS电池管理系统的储能电池组的工作特性; 11、通过锂电池模拟检测平台,可以测试BMS电池管理系统的性能。

张树森-离网型储能电站设计对相关电气设备的主要技术要求

离网型储能电站设计 对相关电气设备的 主要技术要求
张树森 2015年5月12日 于深圳市

演讲主要内容
1 2 3 4
引言 标准编制及执行情况 典型系统接线图及主要技术原则 特殊说明的几个问题
2

1 引言
?《关于实施金太阳示范工程的通知》财建[2009]397
号。财
政部 科技部 国家能源局 二〇〇九年七月十六日
?“偏远无电地区的独立光伏发电系统按总投资的 70% 给予
补助。”
?2012 年,青海省科技厅组织中广核电力公司实施金太阳工
程项目。
?2013年 12月 11日,世界最大规模离网光伏电站 ——青海省
玉树藏族自治州曲麻莱县7.203 MWp分布式离网光伏电站建 成试运行。
3

1 引言
工程实施阶段离网储能电站的设计和产品标准配 套不全,所以相关工程设计当中参考、参照了电力 系统、智能化、火力发电厂、输变电工程的设计理 念。由于设计和产品标准的不统一,所以在工程实 践当中有很多实验及示范技术应用。
?
4

2 标准编制及执行情况
参审国标、能标、企标包括:
?《电化学储能电站设计规范》
GB 51048-2014 ; 》GB ; NB/T 32015-2013; GB ;
?《风光储输联合发电站设计规范
?《分布式电源接入配电网技术规定》 ?《电化学储能电站施工及验收规范》
?《 电 化 学 储 能 系 统 接 入 电 网 运 行 控 制 规 范 》NB/T
33014-2014 。
?《电化学储能系统接入配电网技术规定
》NB/T 330155
2014 ;

相关主题
文本预览
相关文档 最新文档