人教版初中数学中考综合复习试卷6-含答案
- 格式:docx
- 大小:171.80 KB
- 文档页数:8
人教版初中数学中考总复习试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣5的绝对值是()A.B.C.+5D.﹣52.下列图形中是轴对称图形的是()A.B.C.D.3.对于函数,下列说法错误的是()A.这个函数的图象位于第二、第四象限B.当x>0时,y随x的增大而增大C.这个函数的图象既是轴对称图形又是中心对称图形D.当x<0时,y随x的增大而减小4.如图所示,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0B.a﹣b>0C.﹣a<b D.a+b<05.如图,△ABC内接于⊙O,A B为直径,CD为弦,连接AD,若∠ADC=55°,则∠CAB的度数为()A.25°B.35°C.36°D.40°6.在新冠肺炎防控期间,要了解某学校以下情况,其中适合用普查的有()①了解学校口罩、洗手液、消毒片的储备情况;②了解全体师生在寒假期间的离校情况;③了解全体师生入校时的体温情况;④了解全体师生对“七步洗手法”的运用情况.A.1个B.2个C.3个D.47.下列命题中,正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.平行四边形的对角线平分且相等D.顺次连接菱形各边中点所得的四边形是矩形8.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的平均数、众数、中位数分别为()A.37、37、32B.33.8、37、35C.37、33.8、35D.33.8、37、329.运用你学习函数的经验,判断以下哪个函数的图象如图所示()A.y=B.y=C.y=D.y=10.已知M(b,m)和N(b+1,n)是二次函数y=x2﹣bx+c(其中b,c是常数)上不同的两点,则判断m和n 的大小关系正确的是()A.b>0时,m>n B.b<0时,m<n C.b>﹣1时,m<n D.b<1时,m>n二.填空题(共7小题,满分21分,每小题3分)11.2020年12月9日世卫组织公布,全球新冠肺炎确诊病例超6810万例,请用科学记数法表示6810万例为例.12.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为个.13.在Rt△ABC中,∠C=90°,BC=6,AB=10,则cos A=.14.在等腰三角形ABC中,它的两边长分别为7cm和3cm,则它的周长为cm.15.已知△ABC中,D是BC上一点,添加一个条件使得△ABC∽△DAC,则添加的条件可以是.16.在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,若四边形BCFE为菱形,则线段AF的长度为.17.在△ABC中,AB=AC=1,BC边上有2018个不同的点P1,P2,…P2018,记m i=AP i2+BP i•P∁i(i=1,2…2018),则m1+m2+…m2018=.三.解答题(共8小题,满分69分)18.(6分)计算:|﹣|+(π﹣3)0﹣+3tan30°.19.(4分)分解因式:(1)﹣3a2+6ab﹣3b2;(2)9a2(x﹣y)+4b2(y﹣x).20.(5分)解方程.(1)﹣3x2﹣4x+4=0;(2)x2﹣6x+9=(2x﹣1)2.21.(8分)如图,AB为⊙O的直径,C,E为⊙O上的两点,若AC平分∠EAB,CD⊥AE交于点D.(1)求证:D C是⊙O切线.(2)若AD=,AB=5,求DE的长.22.(10分)我区的数学爱好者申请了一项省级课题﹣﹣《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?23.(10分)甲乙两人分别驾车从A、B同时出发,沿同一条线路相向而行,甲从A地以速度52km/h匀速去B地,乙开始以速度v1km/h匀速行驶,中途速度改为v2km/h匀速行驶,到A恰好用时0.7h,两人距离A地的路程与各自离开出发地的时间之间的图象如图所示,求(1)A、B两地之间的路程为多少km及乙开始的速度v1;(2)当两人相距6km时,求t的值.24.(12分)(1)如图1,正方形ABCD和正方形DEFG(其中AB>DE),连接CE,AG交于点H,请直接写出线段AG与CE的数量关系,位置关系;(2)如图2,矩形ABCD和矩形DEFG,AD=2DG,AB=2DE,AD=DE,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),连接AG,CE交于点H,(1)中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段AG,CE的数量关系和位置关系,并说明理由;(3)矩形ABCD和矩形DEFG,AD=2DG=6,AB=2DE=8,将矩形DEFG绕点D逆时针旋转α(0°<α<360°),直线AG,CE交于点H,当点E与点H重合时,请直接写出线段AE的长.25.(14分)如图,直线y=x﹣4与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B两点,与x 轴的另一交点为C,连接BC.(1)求抛物线的解析式;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的横坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发沿线段BC由B向C运动,P,Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P,Q同时停止运动,问在坐标平面内是否存在点D,使P,Q运动过程中的某些时刻t,以C,D,P,Q为顶点的四边形为菱形?若存在,直接写出t的值;若不存在,说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:|﹣5|=5.故选:C.2.解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.3.解:A、∵k=﹣2<0,∴这个函数的图象位于第二、第四象限,故本选项正确;B、∵k=﹣2<0,∴当x>0时,y随x的增大而增大,故本选项正确;C、∵此函数是反比例函数,∴这个函数的图象既是轴对称图形又是中心对称图形,故本选项正确;D、∵k=﹣2<0,∴当x<0时,y随x的增大而增大,故本选项错误.故选:D.4.解:由数轴可得:a<0<b,|a|<|b|选项A:由于a,b异号,故不正确;选项B:由于a<b,则a﹣b<0,故不正确;选项C:﹣a<b,正确;选项D:异号两数相加,取绝对值较大的加数的符号为和的符号,而b的绝对值大,故不正确.综上,只有C正确.故选:C.5.解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠B=∠ADC=55°,∴∠CAB=90°﹣∠B=90°﹣55°=35°;故选:B.6.解:①了解学校口罩、洗手液、消毒片的储备情况适合普查;②了解全体师生在寒假期间的离锡情况适合普查;③了解全体师生入校时的体温情况适合普查;④了解全体师生对“七步洗手法”的运用情况适合抽样调查.故选:C.7.解:A、对角线相等的平行四边形是矩形,原命题是假命题,不符合题意;B、对角线互相垂直的平行四边形是菱形,原命题是假命题,不符合题意;C、平行四边形的对角线平分,原命题是假命题,不符合题意;D、顺次连接菱形各边中点所得的四边形是矩形,是真命题,符合题意;故选:D.8.解:平均数=(28+37+32+37+35)=33.8,∵该组数据中出现次数最多的数是37,∴该组数据的众数是37,将该组数据按从小到大依次排列为:28,32,35,37,37,处于中间位置的数为35,则中位数为35.故选:B.9.解:A.当x=﹣2时,y=﹣1,这与题中函数图象不符;B.当x=0时,y=无意义,这与题中函数图象不符;C.当自变量x取其相反数时,y==,且x=0时y=1,这与函数图象相符合;D.当x=﹣1时,函数y=无意义,这与题中函数图象不符;故选:C.10.解:∵M(b,m)和N(b+1,n)是二次函数y=x2﹣bx+c(其中b,c是常数)上不同的两点,∴m=b2﹣b2+c=c,n=(b+1)2﹣b(b+1)+c=b+1+c,当b+1>0时,则b+1+c>c,即b>﹣1时,n<m,当b+1=0时,则b+1+c=c,即b=﹣1时,n=m,当b+1<0时,则b+1+c<c,即b<﹣1时,n>m,故选:C.二.填空题(共7小题,满分21分,每小题3分)11.解:6810万=68100000=6.81×107.故选:6.81×107.12.解:∵在一个不透明的盒子中装有8个白球,从中随机摸出一个球,它是白球的概率为,设黄球有x个,根据题意得出:∴=,解得:x=4.故答案为:4.13.解:如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,∴AC===8,∴cos A===,故答案为:.14.解:当7cm为腰,3cm为底,此时周长=7+7+3=17(cm);当7cm为底,3cm为腰,则3+3<7无法构成三角形,故舍去.故其周长是17cm.故答案为:17.15.解:添加∠B=∠DAC,又∵∠C=∠C,∴△ABC∽△DAC,故答案为:∠B=∠DAC(答案不唯一).16.解:分两种情况:①如图1所示:当点F在点D右侧时,在矩形ABCD中,AD=5,AB=4,∴CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,∵四边形BCFE为菱形,∴CF=EF=BE=BC=5,∴DF===3,∴AF=AD+DF=5+3=8;②如图2所示:当点F在点D左侧时,同①可得DF=3,∴AF=AD﹣DF=5﹣3=2.故答案为:2或8.17.解:如图所示:过点A作AD⊥BC于D,∵AB=AC,∴BD=CD.在Rt△ABD中,AB2=AD2+BD2①在Rt△APD中,AP12=AD2+P1D2②①﹣②得:AB2﹣AP12=BD2﹣P1D2=(BD+P1D)(BD﹣P1D)=P1C•BP1,∴m1=AB2=AP12+BP1•P1C=1,同理:m2=AB2=AP22+BP2•P2C=1,m3=AB2=AP32+BP3•P3C…m1+m2+…+m2018=1×2018=2018,故答案为:2018.三.解答题(共8小题,满分69分)18.解:|﹣|+(π﹣3)0﹣+3tan30°=+1﹣+3×=1+.19.解:(1)原式=﹣3(a2﹣2ab+b2)=﹣3(a﹣b)2;(2)原式=(x﹣y)(3a+2b)(3a﹣2b).20.解:(1)∵a=﹣3,b=﹣4,c=4,∴b2﹣4ac=16﹣4×(﹣3)×4=64>0,∴x===,∴x1=﹣2,x2=;(2)x2﹣6x+9=(2x﹣1)2,x2﹣6x+9=4x2﹣4x+1,3x2+2x﹣8=0,(3x﹣4)(x+2)=0,解得x1=,x2=﹣2.21.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠DAB,∴∠DAC=∠CAO,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥DC,∴OC⊥DC,∵OC为半径,∴DC为⊙O的切线;(2)解:连接CE,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠D,又∵∠OAC=∠OCA,∴△ADC∽△ACB,∴,即AC2=AD•AB,∵AD=,AB=5,∴AC=4,∴DC===,BC===3,∵∠DAC=∠CAO,∴=,∴CE=BC=3,∴DE===.22.解:(1)本次调查共抽取学生为:=400(名),∴不太了解的学生为:400﹣120﹣160﹣20=100(名),补全条形统计图如下:(2)“理解”所占扇形的圆心角是:×360°=108°;(3)8000×(40%+)=5600(名),所以“理解”和“了解”的共有学生5600名.23.解:(1)由图象可得A、B两地之间的路程为26km,乙开始的速度v1:(26﹣16)÷0.2=50(km/h),(2)甲走完全程所用时间为:26÷52=0.5(h);如图,点A、B、C、D的坐标分别为:(0,26),(0.2,16),(0.7,0),(0.5,26),由甲从A地以速度52km/h匀速去B地,可知直线OD的解析式为:y1=52t(0≤t≤0.5);设直线AB的解析式为y2=kt+26,将(0.2,16)代入得:16=0.2k+26,解得:k=﹣50,∴y2=﹣50t+26(0≤t≤0.2),设直线BC的解析式为y3=mt+n,将(0.2,16),(0.7,0)代入得:,解得:,∴直线BC的解析式为y3=﹣32t+22.4(0.2<≤t≤0.7).①当0≤t≤0.2时,﹣50t+26﹣52t=6,解得:t=(h).②当0.2<≤t≤0.5时,52t﹣(﹣32t+22.4)=6,解得:t=(h),综上,当t=或(h)时,两人相距6km.24.解:(1)如图1,在正方形ABCD和正方形DEFG中,∠ADC=∠EDG=90°,∴∠ADE+∠EDG=∠ADC+∠ADE,即∠ADG=∠CDE,∵DG=DE,DA=DC,∴△GDA≌△EDC(SAS),∴AG=CE,∠GAD=∠ECD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE,故答案为:相等,垂直;(2)不成立,CE=2AG,AG⊥CE,理由如下:如图2,由(1)知,∠EDC=∠ADG,∵AD=2DG,AB=2DE,AD=DE,∴,==,∴=,∴△GDA∽△EDC,∴=,即CE=2AG,∵△GDA∽△EDC,∴∠ECD=∠GAD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE;(3)①当点E在线段AG上时,如图3,在Rt△EGD中,DG=3,ED=4,则EG=5,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,∴△DGP∽△EGD,∴=,即,∴PD=,PG=,则AP===,则AE=AG﹣GE=AP+GP﹣GE=+﹣5=;②当点G在线段AE上时,如图4,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,同理得:PD=,AP=,由勾股定理得:PE==,则AE=AP+PE=+=;综上,AE的长为.25.解:(1)直线解析式y=x﹣4,令x=0,得y=﹣4;令y=0,得x=4.∴A(4,0)、B(0,﹣4).∵点A、B在抛物线y=x2+bx+c上,∴,解得,∴抛物线解析式为:y=x2﹣x﹣4.(2)设M(x,y),令y=x2﹣x﹣4=0,解得:x=﹣3或x=4,∴C(﹣3,0).①当BM⊥BC时,如答图2﹣1所示.∵∠ABO=45°,∴∠MBA+∠CBO=45°,故点M满足条件.过点M1作M1E⊥y轴于点E,则M1E=x,OE=﹣y,∴BE=4+y.∵tan∠M1BE=tan∠BCO=,∴,∴直线BM1的解析式为:y=x﹣4,∴∴(舍去),∴点M1的坐标(,﹣)②当BM与BC关于y轴对称时,如答图2﹣2所示.∵∠ABO=∠MBA+∠MBO=45°,∠MBO=∠CBO,∴∠MBA+∠CBO=45°,故点M满足条件.过点M2作M2E⊥y轴于点E,则M2E=x,OE=y,∴BE=4+y.∵tan∠M2BE=tan∠CBO=,∴,∴直线BM2的解析式为:y=x﹣4,∴∴(舍去),∴点M2的坐标(5,),综上所述:点M的横坐标为:或5;(3)设∠BCO=θ,则tanθ=,sinθ=,cosθ=.假设存在满足条件的点D,设菱形的对角线交于点E,设运动时间为t.①若以CQ为菱形对角线,如答图3﹣1.此时BQ=t,菱形边长=t.∴CE=CQ=(5﹣t).在Rt△PCE中,cosθ===,解得t=.②若以PQ为菱形对角线,如答图3﹣2.此时BQ=t,菱形边长=t.∵BQ=CQ=t,∴t=,③若以CP为菱形对角线,如答图3﹣3.此时BQ=t,菱形边长=5﹣t.在Rt△CE Q中,cosθ===,解得t=.综上所述,当t=或或时,以C,D,P,Q为顶点的四边形为菱形.。
2020初中数学中考专题复习——图形变换旋转综合题专项训练6(附答案详解) 1.如图,正方形ABCD 的边长为1,点A 与原点重合,点B 在y 轴的正半轴上,点D在x 轴的负半轴上,将正方形ABCD 绕点A 逆时针旋转30°至正方形AB ′C ′D ′的位置,B ′C ′与CD 相交于点M ,则M 的坐标为( )A .(1,33)B .(﹣1,33)C .(1,32)D .(﹣1,32) 2.如图,现有一张三角形纸片ABC ∆,8BC =,28ABC S ∆=,点D ,E 分别是AB ,AC 中点,点M 是DE 上一定点,点N 是BC 上一动点。
将纸片依次沿DE ,MN 剪开,得到Ⅰ、Ⅱ和Ⅲ三部分,将Ⅱ绕点D 顺时针旋转,DB 与DA 重合,将Ⅲ绕点E 逆时针旋转,使EC 与EA 重合,拼成了一个新的图形,则这个新图形周长的最小值是( )A .15B .20C .23D .303.如图,D 为等边三角形ABC 内的一点,DA =5,DB =4,DC =3,将线段AD 以点A 为旋转中心逆时针旋转60°得到线段AD′,下列结论:①点D 与点D′的距离为5;②∠ADC =150°;③△ACD′可以由△ABD 绕点A 逆时针旋转60°得到;④点D 到CD′的距离为3;⑤S 四边形ADCD′ =6+2532.其中正确的有( )A .2个B .3个C .4个D .5个4.如图,AOB 为等腰三角形,顶点 A 的坐标为 (5,底边 OB 在 x 轴上.将 AOB 绕点 B 按顺时针方向旋转一定角度后得 11A O B ,点 A 的对应点 1A 在 x 轴上,那么点 1O 的横坐标是( )A .163B .173C .193D .203 5.如图,边长为2的正方形ABCD 绕点A 逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC 交于点O ,则四边形AB′OD 的周长是( )A .42B .6C .22D .2+22 6.如图,在Rt △ABC 中,90C =∠,2AC BC ==;若将△ABC 绕点B 逆时针旋转60°到△''A BC 的位置,连接'C A ,则'C A 的长为( )A .622B 62-C .222-D .22-7.如图,在平面直角坐标系,ABC 上的顶点A 和C 分别在x 轴、y 轴的正半轴上,且//AB y 轴,点()1,3B ,将ABC 以点B 为旋转中心顺时针方向旋转90o 得到DBE ,恰好有一反比例函数k y x= 图象恰好过点D ,则k 的值为( )A.9B.9-C.6-D.68.如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5 B.1.4 C.1.3 D.1.29.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E,若AB=3,则△AEC的面积为()A.3 B.1.5 C.23D.310.如图所示,将Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,连接AD,若∠BAC=25°,则∠ADE的度数为()A.35°B.30°C.25°D.20°11.如图,将足够大的等腰直角三角板PCD的锐角顶点P放在另一个等腰直角三角板PAB的直角顶点处,三角板PCD绕点P在平面内转动,且∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,设AB=2,AN=x,BM=y,则能反映y 与x的函数关系的图象大致是()A .B .C .D . 12.如图,在直角坐标系中,点()(0,4,3,0,)A B C -是线段AB 的中点,D 为x 轴上一个动点,以AD 为直角边作等腰直角ADE (点,,A D E 以顺时针方向排列),其中90DAE ∠=︒,则点E 的横坐标等于_____________,连结CE ,当CE 达到最小值时,DE 的长为___________________.13.如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚2次后点B 的对应点B 2的坐标是_____,翻滚100次后AB 中点M 经过的路径长为_____.14.如图,在等腰直角△ABC 中,∠C =90°,将△ABC 绕顶点A 逆时针旋转80°后得到△AB′C′,则∠CAB′的度数为_____.15.如图,四边形ABCD 的∠BAD =∠C =90°,AB =AD ,AE ⊥BC 于E ,△ABE 绕着点A 旋转后能与△ADF 重合,若AF =5cm ,则四边形ABCD 的面积为_____.16.如图,P 是等边三角形ABC 内一点,将线段BP 绕点B 逆时针旋转60°得到线段BQ ,连接AQ .若PA=4,PB=5,PC=3,则四边形APBQ 的面积为_______.17.如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是_____.18.正方形ABCD 的边长为2cm ,O 点是正方形ABCD 的中心,将此正方形沿直线AB 滚动(无滑动),且每一次滚动的角度都等于90°.例如:B 点不动,滚动正方形ABCD ,当B 点上方相邻的点C 落在直线AB 上时为第1次滚动.如果将正方形ABCD 滚动2020次,那么O 点经过的路程等于__________.(结果不取近似值)19.如图,在ABC ∆中,90ACB ∠=︒,3sin 5B =,将ABC ∆绕顶点C 顺时针旋转,得到11A B C ∆,点A 、B 分别与点1A 、1B 对应,边11A B 分别交边AB 、BC 于点D 、E ,如果点E 是边11A B 的中点,那么1:A D DB =______.20.如图,正方形ABCD 边长为2,以直线AB 为轴,将正方形旋转一周,•所得圆柱的主视图(正视图)的周长是________.21.规定:有一角重合,且角的两边叠合在一起的两个相似四边形叫做“嵌套四边形”,如图,四边形ABCD 和AMPN 就是嵌套四边形.(1)问题联想如图①,嵌套四边形ABCD ,AMPN 都是正方形,现把正方形AMPN 以A 为中心顺时针旋转150°得到正方形AM'P'N',连接BM',DN'交于点O ,则BM'与DN'的数量关系为_____,位置关系为_____;(2)类比探究如图②,将(1)中的正方形换成菱形,∠BAD=∠MAN=60,其他条件不变,则(1)中的结论还成立吗? 若成立,请说明理由;若不成立,请给出正确的结论,并说明理由;(3)拓展延伸如图3,将(1)中的嵌套四边形ABCD 和AMPN 换成是长和宽之比为2:1的矩形,旋转角换成α(90°<α<180°),其他条件不变,请直接写出BM'与DN'的数量关系和位置关系.22.正方形ABCD 中,点E F ,分别在边BC ,CD 上,且45EAF CEF ∠=∠=. (1)将ADF ∆绕着点A 顺时针旋转90°,得到ABG ∆(如图①),求证:AEG AEF ∆≅∆;(2)若直线EF 与AB ,AD 的延长线分别交于点M N ,(如图②),求证:222EF ME NF =+;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系 .(不要求书写证明过程)23.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.24.在平面直角坐标系xOy 中,如图所示,已知Rt DOE △,90DOE ∠=,3OD =,点D 在y 轴上,点E 在x 轴上,在ABC 中,点A ,C 在x 轴上,5AC =.180ACB ODE ∠+∠=,ABC OED ∠=∠,BC DE =.按下列要求画图(保留作图痕迹):(1)将ODE 绕O 点按逆时针方向旋转90°得到OMN (其中点D 的对应点为点M ,点E 的对应点为点N ),画出OMN .(2)将ABC 沿x 轴向右平移得到A B C '''(其中点A ,B ,C 的对应点分别为点A ',B ',C '),使得边B C ''与(1)中的OMN 的边NM 重合. (3)求OE 的长.25.如图1,在△ABC 中,∠A =36°,AB =AC ,∠ABC 的平分线BE 交AC 于E .(1)求证:AE =BC ;(2)如图2,过点E 作EF ∥BC 交AB 于F ,将△AEF 绕点A 逆时针旋转角α(0°<α<144°)得到△AE ′F ′,连结CE ′、BF ′,求证:CE ′=BF ′.26.如图,点O 是等边三角形ABC 内一点,∠AOB=110°,∠BOC=β.将△BOC 绕点C 按顺时针方向旋转60°得到△ADC ,连接OD .(1)求证:△COD 是等边三角形;(2)当β=150°时,试判断△AOD 的形状,并说明理由;(3)探究:当β为多少度时,△AOD 是以OD 为底边的等腰三角形?27.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PM 与PN 的积的最大值.28.已知:△ABC是等边三角形,点D是△ABC(包含边界)平面内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点P.(1)观察填空:当点D在图1所示的位置时,填空:①与△ACD全等的三角形是______.②∠APB的度数为______.(2)猜想证明:在图1中,猜想线段PD,PE,PC之间有什么数量关系?并证明你的猜想.(3)拓展应用:如图2,当△ABC边长为4,AD=2时,请直接写出线段CE的最大值.29.直线DE上有一点O,过点O在直线DE上方作射线OC,将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB 在直线DE上方.将直角三角板绕点O按每秒10°的速度逆时针旋转得到三角形A'OB',三角形AOB旋转一周后停止旋转,设旋转时间为t秒.若射线OC的位置保持不变,∠COD=40°.(1)如图1,在旋转过程中,当边A'B'与直线DE相交于点F时,请用含t的代数式分别表示∠A'OC和∠B'OF的度数,并求出∠A'OC-∠B'OF的值;(2)如图2,当t=7时,试说明直线A'B'//OC;(3)在旋转过程中,若t=7,是否还存在某一时刻,使得A'B'//OC;若存在,请求出符合条件的t值;若不存在,请说明理由.30.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE(1)求证:AD=ED(2)连接BE,猜想△BEC的形状,并说明理由参考答案1.B【解析】【分析】连接AM ,易得∠B′AD =60°,利用HL 判定Rt △ADM ≌Rt △AB′M ,进而得到∠DAM =30°,再根据DM =AD·tan ∠DAM 求出DM ,即可得到M 的坐标. 【详解】解:如图,连接AM ,∵将边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB'C′D′,∴AD =AB′=1,∠BAB′=30°,∴∠B′AD =60°,在Rt △ADM 和Rt △AB′M 中,AD AB AM AM'⎧=⎨=⎩ ∴Rt △ADM ≌Rt △AB′M (HL ),∴∠DAM =∠B′AM =12∠B′AD =30°, ∴DM =AD·tan ∠DAM =1×33 ∴点M 的坐标为(﹣13, 故选:B .【点睛】 本题主要考查旋转的性质、正方形的性质,全等三角形的判定与性质以及三角函数的应用,解题的关键是利用旋转角度和全等三角形求出∠DAM=30°. 2.C【解析】【分析】如图,作AJ⊥BC交DE于O,由题意旋转后的新图形是平行四边形GHPQ,周长=2DE+BC+2MN=16+2MN,当MN最小时,周长的值最小,根据垂线段最短求出MN的最小值即可解决问题.【详解】解:如图,作AJ⊥BC交DE于O,由题意旋转后的新图形是平行四边形GHPQ,周长=2DE+BC+2MN,∵AD=DB,AE=EC,∴DE∥BC,DE=12BC=4,∵S△ABC=12•BC•AJ=28,∴AJ=7,∵AD=DB,DE∥BC,∴AO=OJ=72,∴四边形GHPQ的周长=16+2MN,∴当MN最小时,周长的值最小,根据垂线段最短可知MN的最小值为12,∴四边形GHPQ的周长的最小值为16+7=23,故选:C.【点睛】本题考查利用旋转设计图案,三角形的中位线定理,垂线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3.B【解析】【分析】连结DD′,根据旋转的性质得AD=AD′,∠DAD′=60°,可判断△ADD′为等边三角形,则DD′=5,可对①进行判断;由△ABC为等边三角形得到AB=AC,∠BAC=60°,则把△ABD 逆时针旋转60°后,AB与AC重合,AD与AD′重合,于是可对③进行判断;再根据勾股定理的逆定理得到△DD′C为直角三角形,则可对②④进行判断;由于四边形ADCD′的面积=△ADD′的面积+△D′DC的面积,利用等边三角形的面积公式和直角三角形面积公式计算后可对⑤进行判断.【详解】解:连结DD′,如图,∵线段AD以点A为旋转中心逆时针旋转60°得到线段AD′,∴AD=AD′,∠DAD′=60°,∴△ADD′为等边三角形,∴DD′=5,所以①正确;∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∴把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,∴△ACD′可以由△ABD绕点A逆时针旋转60°得到,所以③正确;∴D′C=DB=4,∵DC=3,在△DD′C中,∵32+42=52,∴DC2+D′C2=DD′2,∴△DD′C为直角三角形,∴∠DCD′=90°,∵△ADD′为等边三角形,∴∠ADD′=60°,∴∠ADC≠150°,所以②错误;∵∠DCD′=90°,∴DC⊥CD′,∴点D到CD′的距离为3,所以④正确;∵S△ADD′+S△D′DC2153442=⨯+⨯⨯=6所以⑤错误.故选:B.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.4.D【解析】【分析】过点A作AC⊥OB于C,过点O1作O1D⊥A1B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO1=OB,∠A1BO1=∠ABO,然后解直角三角形求出O1D、BD,再求出OD,然后写出点O1的坐标即可.【详解】解:如图,过点A作AC⊥OB于C,过点O1作O1D⊥A1B于D,∵A(2,∴OC=BC=2,由勾股定理得,,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO1=OB=4,∠A1BO1=∠ABO,∴BD=BO1×cos∠ABC=4×23=83,∴OD=OB+BD=4+83=203,∴点O1的横坐标为20 3.故选:D.【点睛】本题考查了坐标与图形变化-旋转,主要利用了勾股定理,等腰三角形的性质,解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.5.A【解析】【分析】连接B′C,由边长为2的正方形ABCD绕点A逆时针旋转45度后得到正方形A B′C′D′,先求B′C,再根据等腰直角三角形的性质,勾股定理可求B′O,OD,从而可求四边形AB′OD 的周长.【详解】解:连接B′C,∵旋转角∠BAB′=45°,∠BAC=45°,∴B′在对角线AC上,∵AB=AB′=2,在Rt△ABC中,AC22AB BC=22,∴B′C =﹣2,在等腰Rt △OB′C 中,OB′=B′C =﹣2,在直角三角形OB′C 中,OC(﹣2)=4﹣,∴OD =2﹣OC =﹣2,∴四边形AB′OD 的周长是:2AD+OB′+OD =﹣﹣2=.故选:A .【点睛】本题考查了正方形的性质,旋转的性质以及等腰直角三角形的性质.此题难度适中,注意连接B′C 构造等腰Rt △OB′C 是解题的关键,注意旋转中的对应关系.6.B【解析】【分析】连接AA′,延长AC′交A′B 于点D ,易证:∆A′BA 是等边三角形,得,易证:∆A′AC′≅∆BAC′,从而得∠A′AC′=∠BAC′,AD ⊥A′B ,A′D=BD=1'2A B,由勾股定理可得:AD ,C′D 的值,进而求出答案.【详解】将△ABC 绕点B 逆时针旋转60°到△''A BC 的位置,连接AA′,延长AC′交A′B 于点D.∵A′B=AB ,∠A′BA=60°,∴∆A′BA 是等边三角形,∵在Rt △ABC 中,90C =∠,2AC BC ==,∴,在∆A′AC′和∆BAC′中, ∵''''''AA AB AC AC A C BC =⎧⎪=⎨⎪=⎩,∴∆A′AC′≌∆BAC′(SSS),∴∠A′AC′=∠BAC′, ∴AD ⊥A′B ,A′D=BD=1'2A B =2, ∴2222(22)26AD AB BD =-=-=,2222''222C D C B BD =-=-=,∴C′A=AD -C′D=62-.故选B.【点睛】本题主要考查等腰直角三角形的性质和等边三角形的判定和性质,添加合适的辅助线,构造等边三角形是解题的关键.7.C【解析】【分析】首先根据旋转的性质得出DB=AB=3,进而得出点D 的坐标,然后将其代入反比例函数,即可得解.【详解】∵//AB y 轴,点()1,3B 以及旋转的性质∴DB=AB=3∴D (-2,3)将其代入反比例函数得32k =- 6k =-故答案为C.【点睛】本题主要考查了平面直角坐标系中利用三角形的旋转性质求坐标与反比例函数的综合应用,熟练掌握,即可解题.8.B【解析】【分析】运用旋转变换的性质得到AD=AB,进而得到△ABD为等边三角形,求出BD即可解决问题.【详解】解:如图,由题意得:AD=AB,且∠B=60°,∴△ABD为等边三角形,∴BD=AB=2,∴CD=3.6﹣2.2=1.4.故选:B.【点睛】该题主要考查了旋转变换的性质、等边三角形的判定等几何知识点及其应用问题;牢固掌握旋转变换的性质是解题的关键.9.D【解析】【详解】解:∵旋转后AC的中点恰好与D点重合,即AD=12AC′=12AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD.根据勾股定理得:222(3)(3)x x =-+,解得:x =2, ∴EC =2,则S △AEC =12EC •AD =3. 故选D .10.D【解析】解:∵Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC ,∴AC =CD ,∠CDE =∠BAC =25°,∴△ACD 是等腰直角三角形,∴∠CDA =45°,∴∠ADE =∠CDA ﹣∠EDC =45°﹣25°=20°.故选D .点睛:本题考查了旋转的性质,等腰直角三角形的判定与性质,熟记各性质并准确识图是解题的关键.11.A【解析】试题分析:作PH ⊥AB 于H ,如图,∵△PAB 为等腰直角三角形,∴∠A=∠B=45°,AH=BH=AB=1,∴△PAH 和△PBH 都是等腰直角三角形,∴PA=PB=AH=,∠HPB=45°,∵∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N而∠CPD=45°,∴1≤AN≤2,即1≤x≤2,∵∠2=∠1+∠B=∠1+45°,∠BPM=∠1+∠CPD=∠1+45°,∴∠2=∠BPM ,而∠A=∠B ,∴△ANP ∽△BPM ,∴,即,∴y=,∴y 与x 的函数关系的图象为反比例函数图象,且自变量为1≤x≤2.故选A .考点:动点问题的函数图象.12. 4- 210【解析】【分析】(1)过E 点作EF ⊥y 轴于点F ,求证AEF ∆≅()DAO AAS ∆,即可的到点E 的横坐标; (2)设点E 坐标,表示出2CE 的解析式,得到CE 的最小值进而得到点E 坐标,再由AEF DAO ∆≅∆得到点D 坐标,进而得到DE 的长.【详解】(1)如下图,过E 点作EF ⊥y 轴于点F∵EF ⊥y 轴,90DAE ∠=︒∴90AEF EAF ∠+∠=︒,90OAD EAF ∠+∠=︒∴AEF DAO ∠=∠∵ADE ∆为等腰直角三角形∴AE DA =在AEF ∆与DAO ∆中AFE DOA AEF DAO AE DA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ∆≅()DAO AAS ∆∴EF AO =∵()0,4A∴4EF AO ==∴点E 的横坐标等于4-;(2)根据(1)设(4,)E m -∵()0,4A ,(3,0)B -,C 是线段AB 的中点 ∴3(,2)2C -∴2222325(4)(2)(2)24CE m m =-++-=-+ ∴当2m =时,2CE 有最小值,即CE 有最小值∴(4,2)E -∵()0,4A∴2AF =∵AEF ∆≅DAO ∆∴2OD =∴(2,0)D∴DE ==故答案为:4-;【点睛】本题主要考查了三角形全等的判定,点坐标的表示,二次函数的最值问题,两点之间的距离公式等,熟练掌握综合题的解决技巧是解决本题的关键.13.(2,0)44)π+【解析】 【分析】 观察图象可知3三次一个循环,一个循环点M 的运动路径为1203180π+1201180π+1201180π=(2343+)π,由此即可解决问题 【详解】如图作B 3E ⊥x 轴于E ,易知OE=5,B 3E=3,∴B 3(5,3),观察图象可知3三次一个循环,一个循环点M 的运动路径为1203180π+1201180π+1201180π=(2343+)π, ∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672•(234+)π+23π=(13463+896)π.14.125°【解析】【分析】根据等腰直角三角形的性质得到∠CAB =45°,根据旋转的性质得到∠BAB′=80°,结合图形计算即可.【详解】解:∵△ABC 是等腰直角三角形,∴∠CAB =45°,由旋转的性质可知,∠BAB′=80°,∴∠CAB′=∠CAB+∠BAB′=125°,故答案为:125°.【点睛】本题考查旋转的性质,关键在于熟练掌握基础性质.15.25cm2【解析】【分析】根据垂直的定义可得∠AEB=∠AEC=90°,根据旋转变换只改变图形的位置不改变图形的形状与大小可得△ADF和△ABE全等,根据全等三角形对应角相等可得∠AEB=∠F,全等三角形对应边相等可得AE=AF,然后证明四边形是矩形,再根据邻边相等的矩形是正方形可得四边形AECF是正方形,然后根据正方形的面积公式列式计算即可得解.【详解】解:∵AE⊥BC,∴∠AEB=∠AEC=90°,∵AB=AD,△BEA旋转后能与△DFA重合,∴△ADF≌△ABE,∴∠AEB=∠F,AE=AF,∵∠C=90°,∴∠AEC=∠C=∠F=90°,∴四边形AECF是矩形,又∵AE=AF,∴矩形AECF是正方形,∵AF=5cm,∴四边形ABCD的面积=四边形AECF的面积=52=25cm2.故答案为:25cm2.【点睛】本题是对几何知识的综合考查,熟练掌握旋转几何知识是解决本题的关键.166【解析】【分析】由旋转的性质可得△BPQ 是等边三角形,由全等三角形的判定可得△ABQ ≌△CBP(SAS),由勾股定理的逆定理可得△APQ 是直角三角形,求四边形的面积转化为求两个特殊三角形的面积即可.【详解】解:连接PQ ,由旋转的性质可得,BP=BQ ,又∵∠PBQ=60°,∴△BPQ 是等边三角形,∴PQ=BP ,在等边三角形ABC 中,∠CBA=60°,AB=BC ,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ 与△CBP 中BQ BP ABQ CBP AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABQ ≌△CBP(SAS),∴AQ=PC ,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ 中,因为2229,16,25AQ AP PQ ===,25=16+9,∴由勾股定理的逆定理可知△APQ 是直角三角形,∴2315346424BPQ APQ APBQ S S S =+=+⨯⨯=+四边形, 故答案为:64+【点睛】本题主要考查了旋转的性质、全等三角形的判定、勾股定理的逆定理及特殊三角形的面积,解题的关键是作出辅助线,转化为特殊三角形进行求解.17.8﹣π【解析】分析:如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得阴影部分的面积.详解:如下图,过点D作DH⊥AE于点H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴223213+=由旋转的性质结合已知条件易得:13,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF=22 9031190(13)325236022ππ⨯⨯+⨯⨯+⨯⨯=8π-.故答案为:8π-.点睛:作出如图所示的辅助线,利用旋转的性质证得△DEH≌△BAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF来计算是解答本题的关键.18.10102cmπ【解析】【分析】根据题意,画出图形,求出每次滚动点O的运动路程乘滚动次数即可求出结论.【详解】解:如下图所示,∵正方形ABCD的边长为2cm∴AB=AD,BO=12 BD∴2222AB AD+=∴2cm∵每一次滚动的角度都等于90°∴每一次滚动,点O的运动轨迹为以90°2cm的弧长∴O点经过的路程为9022020180π⨯=2cmπ故答案为:cm .【点睛】此题考查的是求一个点在运动过程中经过的路程,掌握正方形的性质和弧长公式是解决此题的关键.19.512【解析】【分析】设AC =3x ,AB =5x ,可求BC =4x ,由旋转的性质可得CB 1=BC =4x ,A 1B 1=5x ,∠ACB=∠A 1CB 1,由题意可证△CEB 1∽△DEB ,可得11 1.53=2.55BD BE DE x B C B E CE x ===,即可表示出BD,DE ,再得到A 1D 的长,故可求解.【详解】∵∠ACB =90°,sin B =35AC AB =, ∴设AC =3x ,AB =5x ,∴BC4x ,∵将△ABC 绕顶点C 顺时针旋转,得到△A 1B 1C ,∴CB 1=BC =4x ,A 1B 1=5x ,∠ACB =∠A 1CB 1,∵点E 是A 1B 1的中点,∴CE =12A 1B 1=2.5x =B 1E=A 1E , ∴BE =BC−CE =1.5x ,∵∠B =∠B 1,∠CEB 1=∠BED∴△CEB 1∽△DEB ∴11 1.53=2.55BD BE DE x B C B E CE x === ∴BD=125x ,DE=1.5x, ∴A 1D= A 1E- DE=x, 则1:A D DB =x:125x =512故答案为:512. 【点睛】 本题考查了旋转的性质,解直角三角形,相似三角形的判定和性质,证△CEB 1∽△DEB 是本题的关键.20.12【解析】主视图为长方形,主视图(正视图)的周长是(24)212+⨯= .21.(1)BM DN ''=,BM DN ''⊥;(2)BM DN ''=成立,BM DN ''⊥不成立,BM '与DN '相交,且夹角为60︒.理由见解析;(3)2BM DN ''=,BM DN ''⊥.【解析】【分析】(1)根据SAS 证明△ABM’≌△AND’,进而得到BM DN ''=,∠ABM’=∠ADN’,再利用三角形内角和可推出∠BOD=90°,即BM DN ''⊥;(2)根据旋转和菱形的性质证明ABM ADN ''∆∆≌,再推出60BOD BAD ∠=∠=︒,故可求解;(3)根据旋转和矩形的性质证明ABM ADN ''∆∆,得到2BM DN ''=,再推出90BOD BAD ∠=∠=︒即可求解.【详解】(1)如图设AB ,DN '交于点H ,,∵四边形ABCD ,AMPN 都是正方形,把正方形AMPN 以A 为中心顺时针旋转150°得到正方形AM'P'N',∴AB=AD,AM’=AD’, 150BAM DAN ''∠=∠=︒∴△ABM’≌△AND’,∴BM DN ''=,∠ABM’=∠ADN’,∵∠ADN’+∠DHA+∠DAH=180°,∠ABM’+∠BHO+∠BOD=180°,又∠DHA=∠BHO∴90BOD BAD ∠=∠=︒,即BM DN ''⊥故答案为:BM DN ''=,BM DN ''⊥;(2)BM DN ''=成立,BM DN ''⊥不成立,BM '与DN '相交,且夹角为60︒. 理由:设AB ,DN '交于点E ,由旋转的性质可得150BAM DAN ''∠=∠=︒.∵四边形ABCD ,AM P N '''都是菱形,∴AB AD =,AM AN ''=,∴ABM ADN ''∆∆≌,∴BM DN ''=,ABM ADN ''∠=∠.又∵BEO DEA ∠=∠,∴60BOD BAD ∠=∠=︒;故BM '与DN '相交,且夹角为60︒;(3)2BM DN ''=,BM DN ''⊥,理由如下:设AB ,DN '交于点E ,由旋转的性质可得BAM DAN α''∠=∠=.∵四边形ABCD 和AMPN 是长和宽之比为2:1的矩形∴2AB AD =,2AM AN ''=,∴'2'AB AM AD AN == ∴ABM ADN ''∆∆, ∴2BM DN ''=,ABM ADN ''∠=∠.又∵BEO DEA ∠=∠,∴90BOD BAD ∠=∠=︒∴2BM DN ''=,BM DN ''⊥.【点睛】此题主要考查正方形、矩形、菱形的性质,全等三角形、相似三角形的判定与性质,运用了类比的思想方法,体现了逻辑推理的核心素养.22.(1)证明见解析;(2)证明见解析;(3)()2222EF BE DF=+【解析】【分析】(1)根据旋转的性质可知AF=AG ,∠EAF=∠GAE=45°,故可证△AEG ≌△AEF ;(2)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,连结GM .由(1)知△AEG ≌△AEF ,则EG=EF .再由△BME 、△DNF 、△CEF 均为等腰直角三角形,得出CE=CF ,BE=BM ,2DF ,然后证明∠GME=90°,MG=NF ,利用勾股定理得出EG 2=ME 2+MG 2,等量代换即可证明EF 2=ME 2+NF 2;(3)延长EF 交AB 延长线于M 点,交AD 延长线于N 点,将△ADF 绕着点A 顺时针旋转90°,得到△AGH ,连结HM ,HE .由(1)知△AEH ≌△AEF ,结合勾股定理以及相等线段可得(GH+BE )2+(BE-GH )2=EF 2,所以2(DF 2+BE 2)=EF 2.【详解】解:(1)证明:ADF∆绕着点A顺时针旋转90︒,得到ABG∆,AF AG∴=,90FAG∠=︒,45EAF∠=︒,45GAE∴∠=︒,在AGE∆与AFE∆中,AG AFGAE FAEAE AE=⎧⎪∠=∠⎨⎪=⎩,()AGE AFE SAS∴∆≅∆;(2)证明:设正方形ABCD的边长为a.将ADF∆绕着点A顺时针旋转90︒,得到ABG∆,连结GM.则ADF ABG∆≅∆,DF BG=.由(1)知AEG AEF∆≅∆,EG EF∴=.45CEF∠=︒,BME∴∆、DNF∆、CEF∆均为等腰直角三角形,CE CF∴=,BE BM=,2NF DF,a BE a DF∴-=-,BE DF∴=,BE BM DF BG∴===,45BMG∴∠=︒,454590GME∴∠=︒+︒=︒,222EG ME MG∴=+,EG EF=,22MG BM DF NF==,222EF ME NF ∴=+;(3)解:22222EF BE DF =+.如图所示,延长EF 交AB 延长线于M 点,交AD 延长线于N 点,将ADF ∆绕着点A 顺时针旋转90︒,得到AGH ∆,连结HM ,HE .由(1)知AEH AEF ∆≅∆,则由勾股定理有222()GH BE BG EH ++=,即222()()GH BE BM GM EH ++-=,又EF HE ∴=,DF GH GM ==,BE BM =,∴有222()()GH BE BE GH EF ++-=,∴()()222DF BE BE DF EF ++-=,即2222()DF BE EF +=.【点睛】本题是四边形综合题,其中涉及到正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,矩形的性质,勾股定理.准确作出辅助线利用数形结合及类比思想是解题的关键.23.(1)证明见解析(22-1【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以,于是利用BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴,∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24.(1)见解析;(2)见解析;(3)6【解析】(1)以点O为圆心,以OE为半径画弧,与y轴正半轴相交于点N,以OD为半径画弧,与x轴负半轴相交于点M,连接MN即可;(2)以M为圆心,以AC长为半径画弧与x轴负半轴相交于点A',B'与N重合,C'与M重合,然后顺次连接即可;(3)设OE=x,则ON=x,作MF⊥A'B'于点F,判断出B'C'平分∠A'B'O,再根据全等三角形的性质可得B'F=B'O=OE=x,FC'=OC'=OD=3,利用勾股定理列式求出A'F,然后表示出A'B'、A'O.在Rt△A'B'O中,利用勾股定理列出方程求解即可.【详解】(1)△OMN如图所示;(2)△A'B'C'如图所示;(3)设OE=x,则ON=x,作MF⊥A'B'于点F,由作图可知:B'C'平分∠A'B'O,且C'O⊥OB',∴∠B'FM=∠MON=90°,∠FB'M=∠OB'M.∵B'M=B'M,∴△FB'M≌△OB'M,∴B'F=B'O=OE=x,FC'=OC'=OD=3.∵A'C'=AC=5,∴A'F22=-=4,53∴A'B'=x+4,A'O=5+3=8,在Rt△A'B'O中,x2+82=(4+x)2,解得:x=6,即OE=6.本题考查了利用旋转变换作图,平移变换作图,勾股定理,熟练掌握旋转变换与平移变换的性质是解答本题的关键.25.(1)见解析;(2)见解析.【解析】【分析】(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC =∠F′AB ,AE′=AF′,根据全等三角形证明方法得出即可;【详解】(1)证明:∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°,又∵BE 平分∠ABC ,∴∠ABE =∠CBE =36°,∴∠BEC =180°﹣∠C ﹣∠CBE =72°,∴∠ABE =∠A ,∠BEC =∠C ,∴AE =BE ,BE =BC ,∴AE =BC .(2)证明:∵AC =AB 且EF ∥BC ,∴AE =AF ;由旋转的性质可知:E AC F AB ''∠∠=,AE AF ''=,∵在△CAE ′和△BAF ′中AC AB E AC F AB AE AF ''=⎧⎪∠=''∠⎨⎪=⎩,∴△CAE ′≌△BAF ′(SAS ),∴CE ′=BF ′.【点睛】此题主要考查了旋转的性质以及等腰三角形的性质等知识,根据数形结合熟练掌握相关定理是解题关键.26.(1)证明见解析;(2)△AOD是直角三角形,理由见解析;(3)125°.【解析】【分析】(1)根据图形旋转的性质,得OC=DC,∠OCD=60°,进而即可得到结论;(2)由等边三角形的性质得∠ODC=60°,结合∠ADC=∠BOC=β=150°,即可得到结论;(3)由题意得∠AOD=β-60°,结合周角的定义,列出关于β的方程,即可求解.【详解】(1)∵将△BOC绕点C按顺时针方向旋转60°得到△ADC,∴ OC=DC,∠OCD=60°,∴△COD是等边三角形;(2)△AOD是直角三角形,理由如下:∵△COD是等边三角形,∴∠ODC=60°,∵∠ADC=∠BOC=β=150°,∴∠ADO=∠ADC-∠CDO=150°-60°=90°,∴△AOD是直角三角形;(3)∵△AOD是以OD为底边的等腰三角形,∴∠ADO=∠AOD=∠ADC-60°=β-60°,∵110°+β+(60°+∠AOD)=360°,∴110°+β+(60°+β-60°)=360°,∴β=125°,∴当β=125°时,△AOD 是以OD 为底边的等腰三角形.【点睛】本题主要考查旋转的性质,直角三角形的判定,等腰三角形的性质以及等边三角形的判定和性质,掌握等边三角形和等腰三角形的性质定理,是解题的关键.27.(1)是;(2)是,理由详见解析;(3)49【解析】【分析】(1)根据题意,利用等腰三角形和三角形中位线定理得出PM PN =,∠MPN=90°判定即可;(2)由旋转和三角形中位线的性质得出PM PN =,再由中位线定理进行等角转换,得出∠MPN=90°,即可判定;(3)由题意,得出BD 最大时,PM 与PN 的积最大,点D 在BA 的延长线上,再由(1)(2)结论,12PM PN BD ==得出PM 与PN 的积的最大值. 【详解】(1)是;∵AB AC =,AD AE =∴DB=EC ,∠ADE=∠AED=∠B=∠ACB∴DE ∥BC∴∠EDC=∠DCB∵点M 、P 、N 分别为DE 、DC 、BC 的中点∴PM ∥EC ,PN ∥BD ,11,22PM EC PN BD == ∴PM PN =,∠DPM=∠DCE ,∠PNC=∠DBC∵∠DPN=∠PNC+∠DCB∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°∴线段PM 与PN 是“等垂线段”;(2)由旋转知BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ∆≌ACE ∆(SAS )∴ABD ACE ∠=∠,BD CE =利用三角形的中位线得12PN BD =,12PM CE =, ∴PM PN =由中位线定理可得//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠ BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∵90BAC ∠=∴90ACB ABC ∠+∠=∴90MPN ∠=∴PM 与PN 为“等垂线段”;(3)PM 与PN 的积的最大值为49;由(1)(2)知,12PM PN BD == ∴BD 最大时,PM 与PN 的积最大∴点D 在BA 的延长线上,如图所示:∴14BD AB AD =+=∴7PM =∴249PM PN PM •==.【点睛】。
2022—2023学年人教版数学九年级下册综合复习卷一、单选题1.下列生活现象不是利用投影的是( )A .放电影B .照相C .树影D .皮影2.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =12,BD =16,则菱形的高AE 为( )A .9.6B .4.8C .10D .53.下面的图形都可以看作某种特殊的“细胞”,它们分裂时能同时分裂为全等的4个小细胞,分裂的小细胞与原图形相似,则相似比为( )A .1:4B .1:3C .1:2D .14.反比例函数6y x=-的图象位于( ) A .第一、三象限 B .第二、四象限 C .第二、三象限 D .第一、二象限5.如图所示的几何体的俯视图是( )A .B .C .D . 6.已知Rt ABC Rt A B C '''∽,90C C ∠=∠'=︒,且2AB A B ='' ,则sinA与sin A '的关系为 ( )A .sin 2sin A A ='B .sin sin A A ='C .2sin sin A A ='D .不确定7.两相似多边形的面积比是9:16,较小多边形的周长为18cm ,则较大多边形的周长为( ) A .24cm B .27cm C .28cm D .32cm8.如果一个正比例函数y =kx 的图象经过不同象限的两点(m ,1)、(2,n ),那么一定有( )A .m >0,n >0B .m <0,n <0C .m >0,n <0D .m <0,n >09.如图,点C 在线段BD 上,AB ⊥BD 于B ,ED ⊥BD 于D .⊥ACE =90°,且AC =5cm ,CE =6cm ,点P 以2cm/s 的速度沿A →C →E 向终点E 运动,同时点Q 以3cm/s 的速度从E 开始,在线段EC 上往返运动(即沿E →C →E →C →…运动),当点P 到达终点时,P ,Q 同时停止运动.过P ,Q 分别作BD 的垂线,垂足为M ,N .设运动时间为t s ,当以P ,C ,M 为顶点的三角形与⊥QCN 全等时,t 的值为( )A .1或3B .1或115C .1或115或235D .1或115或5 10.如图是孔明设计用手电来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知 AB ⊥BD ,CD ⊥BD ,且测得AB =6米,BP =9米,PD =15米,那么该古城墙的高度是( )A .6米B .8米C .10米D .15米11.已知正比例函数y=k 1x (k 1≠0)与反比例函数()220k y k x=≠的图象有一个交点的坐标为(﹣2,﹣1),则它们的另一个交点的坐标是( )A .( 2,﹣1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,1)12.如图,该几何体由6个相同的小立方体无缝隙地搭成,在它的三视图中,面积相等的视图是 ( )A .主视图与俯视图B .主视图与左视图C .俯视图与左视图D .主视图、左视图、俯视图13.如图,四边形ABCD 是正方形,直线L 1、L 2、L 3,若L 1与L 2的距离为5,L 2与L 3的距离7,则正方形ABCD 的面积等于( )A .70B .74C .144D .14814.平面直角坐标系中,矩形OABC 如图放置,y =k x(k >0,x >0)的图象与矩形的边AB 、BC 分别交于E 、F 两点,下列命题:⊥若E 、F 重合,则S 矩形OABC =k ;⊥若E 、F 不重合,则线段EF 与矩形对角线AC 平行;⊥若E 为AB 的中点,则S 矩形OABC =2k ,其中真命题的个数是( )A .0B .1C .2D .315.在边长为1的44⨯方格上建立直角坐标系(如图甲),在第一象限内画出反比例函数1664y y y x x x===,,,的图象,它们分别经过方格中的一个格点、二个格点、三个格点;在边长为1的10×10方格上建立直角坐标系(如图乙),在第一象限内画出反比例函数的图象,使它们经过方格中的三个或四个格点,则最多可画出几条 ( )A .12B .13C .25D .50二、填空题16.根据下面三视图一共需要________块小正方体.17.如图,学校某数学兴趣小组想测量操场对面旗杆AB 的高度,他们在C 点测得旗杆顶部A 的仰角为35︒,再沿着坡度为3:4的楼梯向下走了3.5米到达D 处,再继续向旗杆方向走了15米到达E 处在E 处测得旗杆顶部A 的仰角为65︒,已知旗杆AB 所在平台BF 的高度为3.5米,则旗杆的高度AB 为 __(结果精确到0.1,参考数据:tan350.7︒≈,tan 65 2.1)︒≈.18.如图所示,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD⊥AC 于点D .则CD 的长为_______.19.某种蓄电池的电压为定值,使用此电源时,电流()I A 与可变电阻()R Ω之间的函数关系如图所示,当用电器的电流为12A 时,用电器的可变电阻为________Ω.20.如图,在等腰直角ABC 中,90C ∠=︒,AB =ABC 沿某直线翻折,使得点B 落在AC 的中点上,如果折痕与AB 的交点为M ,那么AM 的长为______.三、解答题21.已知反比例函数21k y x--=(为常数).(1)若点11)P y 和点221()2P y -,是该反比例函数图象上的两点,试利用反比例函数的性质比较1y 和2y 的大小;(2)设点P m n (,)(0m >)是其图象上的一点,过点P 作PM x ⊥轴于点M ,若tan 2POM ∠=,PO =O 为坐标原点),求k 的值,并直接写出不等式210k kx x++>的解集. 22.已知,如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE //AC ,AE //BD .(1)求证:四边形AODE 是矩形:(2)若10AB =,120BCD ∠=︒,求四边形AODE 的面积.23.我们规定:函数ax k y x b +=+(a 、b 、k 是常数,k≠ab )叫奇特函数.当a=b=0时,奇特函数ax k y x b +=+就是反比例函数k y x=(k 是常数,k≠0). (1)如果某一矩形两边长分别是2和3,当它们分别增加x 和y 后,得到新矩形的面积为8.求y 与x 之间的函数表达式,并判断它是否为奇特函数;(2)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A 、C 坐标分别为(6,0)、(0,3),点D 是OA 中点,连接OB 、CD 交于E ,若奇特函数4ax k y x +=-的图象经过点B 、E ,求该奇特函数的表达式;(3)把反比例函数2y x =的图象向右平移4个单位,再向上平移 个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE 中点M 的一条直线l 与这个奇特函数图象交于P ,Q 两点(P 在Q 右侧),如果以B 、E 、P 、Q 为顶点组成的四边形面积为16,请直接写出点P 的坐标.24.如图,在平面直角坐标系中,直线AB 的解析式为y =kx +3分别交x 轴、y 轴于点A 、B ,⊥BAO =45°.(1)求直线AB 的解析式;(2)点C 在x 轴负半轴上,连接CB ,过点B 作BC 的垂线交x 轴于点P ,设点P 的横坐标为t ,BAP 的面积为S ,求S 与t 之间的函数解析式,(不要求写出自变量t 的取值范围);(3)在(2)的条件下,延长BC 至Q ,使BQ =BP ,过点Q 作x 轴的垂线交x 轴于点D ,点E 为线段CQ 的中点,过点E 作BQ 的垂线交BD 的延长线与点F ,若EF ,求Q点坐标.25.如图,在正方形ABCD中,E是BC上一点(不与点B,C重合),连接DE,点C关于直线DE的对称点为C′,AC′并延长交直线DE于点P,过点D,B分别作DF⊥AP于F,BK⊥AP 于K.(1)求⊥FDP的度数(2)连接BP,试证明BP AF.(3)连接BC,若正方形ABCD,请直接写出⊥BCP面积的最大值.26.如图,已知抛物线y=﹣2x+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标;∥轴,且PM交抛物线于点M,交x (2)若点P为线段BC上一点(不与B,C重合),PM y轴于点N,当⊥BCM的面积最大时,求点P的坐标;(3)在(2)的条件下,当⊥BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得⊥CNQ 为直角三角形,求点Q的坐标.参考答案1--10BACBD BABCC 11--15DABDB16.1317.18.3米18 19.320 21.(1)解:⊥210k --<,⊥反比例函数21k y x--=在象限内y 随x 的增大而增大,⊥102-<<, ⊥12y y >.(2)解:点()P m n ,在反比例函数21k y x--=的图象上,且0m >, ⊥0n <,⊥OM m =,PM n =-,⊥tan 2POM ∠=, ⊥2PM n OM m-==, ⊥2n m -=,⊥PO =⊥()225m n +-=,⊥1m =,2n =-, ⊥()12P -,, ⊥212k --=-,解得:1k =±,⊥当1k =-时,不等式210k kx x ++>的解集为:x <02x ;⊥当1k =时,不等式210k kx x++>的解集为:0x >. 22.(1)证明:⊥DE //AC ,AE //BD ,⊥四边形AODE 是平行四边形,在菱形ABCD 中AC ⊥BD ,⊥⊥AOD =90°,⊥四边形AODE 是矩形.(2)解:在菱形ABCD 中10AB AD ==,AD ⊥BC ,BD 平分⊥ADC ,AC ⊥BD ,⊥+180BCD ADC ∠=︒∠,又120BCD ∠=︒,⊥⊥ADC =60°,又BD 平分⊥ADC ,⊥⊥ADB =ADC 1302,⊥AC ⊥BD ,10AD =,⊥OA =152AD =, 在Rt⊥AOD 中,OD⊥四边形AODE 的面积为5×23.(1)由题意得,(2+x)(3+y)=8. 即832y x +=+. ⊥832y x =-+322x x -+=+. 根据定义,322x y x -+=+是奇特函数. (2)由题意得,B (6,3)、D (3,0), ⊥点E (2,1).将点B (6,3)和E (2,1)代入4ax k y x +=-得63,64{21.24a k a k +=-+=- 解得2,{ 6.a k ==-⊥奇特函数的表达式为264x y x -=- (3)2.(4)P 1(4)、P 2(8.24.解:(1)将x =0代入y =kx +3得:y =3,⊥OB =3,⊥⊥BAO =45°,⊥BOA =90°,⊥⊥OBA =90°-⊥BAO =45°=⊥BAO ,⊥OA =OB =3,⊥点A 的坐标为(3,0),将x =3,y =0代入y =kx +3得:0=3k +3,解得:k =-1,⊥直线AB 的解析式为y =-x +3;(2)⊥点P 的横坐标为t ,⊥OP =t ,⊥AP =OP -OA =t -3, ⊥12BAP SAP OB =⋅⋅ ()1332t =⋅-⋅ 3922t =-, ⊥S 与t 之间的函数解析式为3922S t =-; (3)如图,过点Q 作QH ⊥y 轴于点H ,过点F 作FM ⊥QD 于点M ,作FN ⊥x 轴于点N ,连接FQ ,FC ,⊥BP ⊥BC ,⊥⊥PBC =90°,⊥⊥PBO +⊥QBH =90°,⊥QH ⊥y 轴,⊥BOP =90°,⊥⊥QHB =⊥BOP =90°,⊥⊥PBO +⊥BPO =90°,⊥⊥BPO =⊥QBH ,在QBH 与BPO 中,QHB BOP QBH BPO QB BP ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥()QBH BPO AAS ≌,⊥QH =OB =3,⊥QH ⊥y 轴,QD ⊥x 轴,⊥DOH =90°,⊥四边形QDOH 为矩形,⊥OD =QH =OB =3,又⊥⊥DOB =90°,⊥⊥ODB =⊥OBD =45°,⊥⊥FDN =⊥ODB =45°,又⊥⊥QDN =90°,⊥⊥FDM =90°-⊥FDN =45°=⊥FDN ,⊥FD 平分⊥MDN ,又⊥FM ⊥QD ,FN ⊥x 轴,⊥FM =FN ,⊥FNC =⊥FMQ =90°,⊥点E 为线段CQ 的中点,FE ⊥CQ ,⊥FC =FQ ,在Rt FNC 与Rt FMQ 中,FC FQ FN FM =⎧⎨=⎩, ⊥()Rt FNC Rt FMQ HL ≌,⊥⊥NFC =⊥MFQ ,⊥⊥NFC +⊥MFC =⊥MFQ +⊥MFC ,即⊥NFM =⊥CFQ ,⊥⊥FNC =⊥FMQ =⊥MDN =90°,FM =FN ,⊥四边形MDNF 为正方形,⊥⊥CFQ =⊥NFM =90°,FM =DM ,⊥⊥CFQ =90°,点E 为线段CQ 的中点,EF ,⊥EQ =EC =EF⊥FQ⊥OD =OB =3,⊥DOB =90°,⊥BD =设FM =DM =m ,则FD =,⊥FB FD BD =++⊥⊥CFQ =90°,FC =FQ ,⊥⊥FQC =⊥FCQ =45°,⊥⊥FQC =⊥OBD ,⊥QD ⊥x 轴,y 轴⊥x 轴,⊥QD ∥y 轴,⊥⊥DQC =⊥OBC ,⊥⊥FQC -⊥DQC =⊥OBD -⊥OBC ,即⊥FQM =⊥FBE ,又⊥⊥FMQ =⊥FEB =90°,⊥FMQ FEB ∽, ⊥FM FQ EF FB=,=, 解得:12m =,25m =-(不符合题意,舍去),⊥FM =DM =2,⊥4MQ =, ⊥QD =DM +MQ =6,又⊥点Q 在第三象限,OD =3,⊥点Q 的坐标为(-3,-6).25.解:(1)由对称得:CD =C 'D ,⊥CDE =⊥C 'DE ,在正方形ABCD 中,AD =CD ,⊥ADC =90°,⊥AD =C 'D ,⊥F 是AC '的中点,⊥DF ⊥AC ',⊥ADF =⊥C 'DF ,⊥⊥FDP =⊥FDC '+⊥EDC '=12⊥ADC =45°;(2)如图,作AP '⊥AP 交PD 的延长线于P ',⊥⊥P AP '=90°,在正方形ABCD 中,DA =BA ,⊥BAD =90°,⊥⊥DAP '=⊥BAP ,由(1)可知:⊥FDP =45°,⊥⊥DFP =90°,⊥⊥APD =45°,⊥⊥P '=45°,⊥AP =AP ',DP PF ,在⊥BAP 和⊥DAP '中,BA DA BAP DAP AP AP =⎧⎪'∠=∠⎨⎪'=⎩, ⊥⊥BAP ⊥⊥DAP '(SAS ),⊥BP =DP ',⊥DP +BP =PP,⊥DP +BPPF +BP,⊥BPAP -PF );(3)作正方形的外接圆,圆心为O ,由(2)得:⊥APD =45°,又⊥AOD =90°,⊥点P 在圆O 上,在⊥BPC 中,BC⊥当点P 距离BC 最大时,⊥PBC 的面积最大,连接OP ,与BC 交于点Q ,则当点P 位于弧BC 的中点时,点P 到BC 的距离PQ 最大, ⊥OC =12AC =112,⊥OP =OC =1,而OQ⊥PQ =OP -OQ =1,此时⊥BPC 的面积为12BC PQ ⨯⨯12. 26.(1)解:在y =﹣2x +2x +3中,令x =0可得y =3,,⊥C (0,3).令y =0,可得﹣2x +2x +3=0,解得x =3或x =﹣1,⊥A (﹣1,0),B (3,0);(2) 解:设直线BC 的解析式为y =kx +b ,则有:303k b b +=⎧⎨=⎩,解得:13k b =-⎧⎨=⎩, ⊥直线BC 的解析式为y =﹣x +3.设P (t ,﹣t +3),则M (t ,﹣2t +2t +3),⊥PM =(﹣2t +2t +3)﹣(﹣t +3)=﹣2t +3t ,⊥S △BCM =12PM •(ON +BN ) =12PM •OB =12×3(﹣2t +3t ) =23327()228t --+, ⊥﹣32<0, ⊥当t =32时,⊥BCM 的面积最大,此时P 点坐标为(32,32). (3)解:⊥y =﹣2x +2x +3=﹣2(1)4x -+,⊥抛物线的对称轴为直线x =1,⊥设Q (1,m ),且C (0,3),N ( 32,0),⊥CN ,CQNQ⊥⊥CNQ 为直角三角形,⊥分点C 为直角顶点、点Q 为直角顶点和点N 为直角顶点三种情况:⊥当点C 为直角顶点时,则有CN 2+CQ 2=NQ 2,即2221(610)4m m m +-+=+, 解得m =72, 此时Q 点坐标为(1,72);⊥当点Q 为直角顶点时,则有222NQ CQ CN +=,即221(610)4m m m -+++= ,解得x = 或x =此时Q 点坐标为(1,32+)或(1,32);⊥当点N 为直角顶点时,则有222NQ CN CQ +=,即22216104m m m ++=-+, 解得m =﹣14, 此时Q 点坐标为(1,﹣14);综上可知Q 点的坐标为(1,72)或(1)或(11,﹣14).。
人教版数学中考模拟测试学校________ 班级________ 姓名________ 成绩________一、选择题1.计算()23-的结果为( )A. 5B. 6C. 9D. 9-2.如图,数轴上表示绝对值大于4的数的点是( )A. 点CB. 点DC. 点ED. 点F 3.已知直线12l l ,把一个含60︒角的三角尺按如图所示的位置摆放,则1∠的度数为( )A. 110︒B. 120︒C. 130︒D. 150︒ 4.图是一个正方体的表面展开图,将它折成正方体后,“法”字在上面,那么在下面的一定是()A. 明B. 诚C. 信D. 制5.计算111x x x ÷--的结果为( )A. 21x x --B. x -C. 1x - D. 1x6.使二次根式2x -在实数范围内有意义的x 的取值范围在数轴上表示为( )A. B.C. D.7.若代数式38x -和617x +互为相反数,则x 的值为( )A. 1B. 1-C. 3-D. 8-8.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于4的数的概率是( )A. 13B. 23C. 16D. 129.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ,则AOB 的面积为( )A. 6B. 5C. 3D. 1.510.王涵将如图1所示的等边三角形绕三条角平分线的交点旋转一定角度后可得到如图2所示的图形,则王涵的旋转方法可以是( )A. 逆时针旋转60︒B. 顺时针旋转60︒C. 逆时针旋转90︒D. 顺时针旋转120︒ 11.在一次数学活动中,嘉淇利用一根拴有小锤细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,嘉淇与假山的水平距离BD 为6m ,他的眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60︒刻度线,则假山的高度CD 为( )A. ()23 1.6m +B. ()22 1.6m +C. ()43 1.6m +D. 23m12.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定...是直角的是( ) A. B.C. D.13.已知,如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,求证:12BC AB =.在证明该结论时,需添加辅助线,则作法不正确的是( )A. 延长BC 至点D ,使CD BC =,连接ADB. 在ACB ∠中作BCE B ∠=∠,CE 交AB 于点EC. 取AB 的中点P ,连接CPD. 作ACB ∠的平分线CM ,交AB 于点M14.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A . 28cmB. 26cmC. 24cmD. 22cm 15.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC 的三个顶点都在格点上,过点C 作△ABC 外接圆的切线,则该切线经过的格点个数是( )A. 1B. 2C. 3D. 4 16.如图,已知()4,1A --,线段AB 与x 轴平行,且2AB =,抛物线2y x mx n =-++经过点()0,3C 和()3,0D ,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是( )A. 010t ≤≤B. 210t ≤≤C. 28t ≤≤D. 210t <<二、填空题17.点()5,2M -关于x 轴的对称点的坐标是______.18.用若干个全等的正方形和正三角形按如图所示的方式进行拼接,围成一圈后中间形成一个正多方形,则该正多边形的内角和为__________.19.根据如图所示的程序计算,若输入的x 值为2000,则第一次完成虚线框内的计算时,__________(填“能”或“不能”)直接输出结果;若输入的x 值为4-,则输出的结果为:__________.三、解答题20.我们定义一种关于“★”的新运算:a ★b ab a b =+-,试根据条件回答问题.(1)计算:2★()3-= ;(2)若x ★()11x +=,求x 的值;(3)请你判断按这种方式定义的新运算是否满足交换律,若不满足,请举一个反例;若满足,请说明理由. 21.某公司销售部为了调动销售员的积极性,决定实行目标管理,根据目标完成的情况对销售员进行适当的奖励.为了确定一个适当的月销售目标,该公司统计了销售部每位销售员在某月的销售额(单位:万元),并将结果绘制成如图所示的统计图.图1 图2(1)补全如图1所示的统计图;(2)月销售额在 万元的人数最多,该公司销售部人均月销售额是 万元;(3)若想让一半左右的销售员都能达到销售目标,你认为月销售额定为多少合适?22.如图,已知AB CD ∥,BC CD ⊥,且212CD AB ==,8BC =,E 是AD 的中点.(1)请你用直尺(无刻度)作出一条与BE 相等的线段,并利用三角形全等证明该线段与BE 相等; (2)求BE 的长.23.已知一个两位数,用a 表示十位上的数,用b 表示个位上的数.(1)用含a ,b 的式子表示这个两位数;(2)把这个两位数个位上的数字与十位上的数字交换位置,得到一个新的两位数.①若原数个位上的数是十位上的数的3倍,且新数与原数的差是36,求原来的两位数是多少?②列式表示所得新数的平方与原数的平方的差(结果要化简),并判断其是11的倍数吗?24.如图,在平面直角坐标系中,直线11:3l y k x =+分别与x 轴,y 轴交于()30A -,,B 两点,与直线22:l y k x =交于点C ,9AOC S =△.(1)求tan BAO ∠的值;(2)求出直线2l 的解析式;(3)P 为线段AC 上一点(不含端点),连接OP ,一动点H 从点O 出发,沿线段OP 以每秒1个单位长度的速度运动到P ,再沿线段PC 以每秒2个单位长度的速度运动到点C 后停止,请直接..写出点H 在整个运动过程的最少用时.(提示:过点P 和点C ,分别作x 轴,y 轴的垂线PQ ,CQ ,两垂线交于点Q ) 25.有一座抛物线型拱桥,在正常水位时水面AB 的宽为18米,拱顶O 离水面AB 的距离OM 为9米,建立如图所示的平面直角坐标系.(1)求此抛物线的解析式;(2)一艘货船在水面上的部分的横断面是矩形CDEF .①如果限定矩形的长CD 为12米,那么要使船通过拱桥,矩形的高DE 不能超过多少米?②若点E ,F 都在抛物线上,设L EF DE CF =++,当L 的值最大时,求矩形CDEF 的高.26.如图,已知正方形ABCD 的边长为4,P 是边BC 上的一个动点,连接DP ,过点P 作DP 的垂线交AB 于点E ,以PE 为边作正方形PEFG ,顶点G 在线段DP 上,对角线EG ,PF 相交于点O .BP=,则BE=;(1)若1(2)①求证:点O一定在BPE的外接圆上;②当点P从点B运动到点C时,点O也随之运动,求点O经过的路径长;(3)在点P从点B到点C大值.的运动过程中,BPE的外接圆的圆心也随之运动,求该圆心到边BC的距离的最答案与解析一、选择题1.计算()23-的结果为( )A. 5B. 6C. 9D. 9- 【答案】C【解析】【分析】 按照乘方运算法则进行计算即可.【详解】解:()23=9-故应选:C 【点睛】本题考查了有理数的乘方运算,解答关键是按照运算法则进行计算.2.如图,数轴上表示绝对值大于4的数的点是( )A . 点CB. 点DC. 点ED. 点F 【答案】C【解析】【分析】根据绝对值的几何意义,比较各点到原点的距离即可.【详解】解:由数轴可知,数轴上各点中C 、D 、F 各点对应的数到原点距离均小于或等于4,点E 对应的点到原点的距离大于4故应选:C .【点睛】本题考查了有理数的绝对值的几何意义,解答过程中要注意数形结合.3.已知直线12l l ,把一个含60︒角的三角尺按如图所示的位置摆放,则1∠的度数为( )A. 110︒B. 120︒C. 130︒D. 150︒【答案】B【解析】【分析】根据两直线平行同位角相等和邻补角的定义问题可解.【详解】解:如图,∵l1∥l2,∴∠2=∠3=60°,又∵∠1+∠3=180°,∴∠1=180°-∠3-∠4=180°-60°=120°,故应选:B.【点睛】本题主要考查了平行线的性质,角度的计算,解题关键是利用平行线的性质.4.图是一个正方体的表面展开图,将它折成正方体后,“法”字在上面,那么在下面的一定是()A. 明B. 诚C. 信D. 制【答案】C【解析】【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,这一特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴与“法”字相对的面上的汉字是“信”.故应选:C.【点睛】本题主要考查了正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键5.计算111xx x÷--的结果为()A. 21x x --B. x -C. 1x -D. 1x【答案】C【解析】【分析】根据分式除法法则进行计算即可.【详解】解:1111111x x x x x x x-÷=⋅=---- 故应选:C【点睛】本题考查了分式的除法运算,解答关键是按照运算法则进行计算.6.使二次根式2x -在实数范围内有意义的x 的取值范围在数轴上表示为( )A. B. C.D.【答案】B【解析】【分析】 根据被开方数大于等于0列式计算即可得到x 的取值范围,然后在数轴上表示即可得解.【详解】解:根据题意得,x ﹣2≥0,解得x ≥2,在数轴上表示如下:.故选:B .【点睛】本题主要考查了二次根式的被开方数是非负数,属于基础题.7.若代数式38x -和617x +互为相反数,则x 的值为( )A. 1B. 1-C. 3-D. 8- 【答案】B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:3x-8+617x +=0,移项合并得:9x=-9,解得:x=-1,故应选:B【点睛】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.8.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于4的数的概率是( )A. 13B. 23C. 16D. 12【答案】A【解析】【分析】根据概率的求法,确定全部情况的数目,以及符合条件的情况数目即可.【详解】解:∵总共有6个数,大于4的数有5,6,∴4)(2163P ==大于的数, 故答案为:A .【点睛】本题考查了概率的计算,解题的关键是熟知等可能事件概率的计算公式.9.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ,则AOB 的面积为( )A. 6B. 5C. 3D. 1.5【答案】C【解析】【分析】先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解.【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3∴23y x =--则点B (0,-3)∴AOB 的面积为132=32⨯⨯ 故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想. 10.王涵将如图1所示的等边三角形绕三条角平分线的交点旋转一定角度后可得到如图2所示的图形,则王涵的旋转方法可以是( )A. 逆时针旋转60︒B. 顺时针旋转60︒C. 逆时针旋转90︒D. 顺时针旋转120︒【答案】B【解析】【分析】 根据等边三角形性质得到中心角,再通过图形旋转的得到旋转角度和方向.【详解】解:由等边三角形内角平分线的交点是等边三角形的中心,可知中心与相邻顶点连线的夹角是120度则由图形旋转可知,图形顺时针旋转180-120=60度.故应选:B【点睛】本题考查了生活中的旋转现象,解决问题的关键掌握旋转三要素:①旋转中心; ②旋转方向; ③旋转角度.11.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,嘉淇与假山的水平距离BD 为6m ,他的眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60︒刻度线,则假山的高度CD 为( )A. ()23 1.6m +B. ()22 1.6m +C. ()43 1.6m +D. 23m【答案】A【解析】【分析】 根据已知得出AK=BD=6m ,再利用tan30°= 6CK CK AK =,进而得出CD 的长. 【详解】解:如图,过点A 作AK ⊥CD 于点K∵BD=6米,李明的眼睛高AB=1.6米,∠AOE=60°,∴DB=AK ,AB=KD=1.6米,∠CAK=30°,∴tan30°=6CK CK AK =, 解得:CK=23即CD=CK+DK=23+1.6=(23+1.6)m .故选:A .【点睛】本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.12.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定...是直角的是( ) A. B.C. D.【答案】C【解析】【分析】根据作图痕迹,分别探究各选项所做的几何图形问题可解.【详解】解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角.选项B 中,AO 为BC 边上的高,则AOB ∠是直角.选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角.故应选C【点睛】本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键. 13.已知,如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,求证:12BC AB =.在证明该结论时,需添加辅助线,则作法不正确的是( )A. 延长BC 至点D ,使CD BC =,连接ADB. 在ACB ∠中作BCE B ∠=∠,CE 交AB 于点EC. 取AB 的中点P ,连接CPD. 作ACB ∠的平分线CM ,交AB 于点M【答案】D【解析】【分析】分别根据各选项的要求进行证明,推出正确结论,则问题可解.【详解】解:选项A : 如图,由辅助线可知,ABC ADC ≅,则有AB=AD ,再由90ACB ∠=︒,由30BAC ∠=︒,则60B ∠=︒,∴ABD △是等边三角形 ∴1122BC DB AB == 故选项A 正确;选项B:如图,由辅助线可知,EBD △是等边三角形则60BEC EAC ECA ∠=∠+∠=︒,BE=EC∵30A ∠=︒∴30ECA A ∠=∠=︒∴AE=EC∴12BC AB = 故选项B 正确选项C 如图,有辅助线可知,CP 为直角三角形斜边上的中线∴AP=CP=BP∵30A ∠=︒∴60B ∠=︒∴PBC 是等边三角形 ∴12BC BP AB == 综上可知选项D 错误故应选D【点睛】此题主要考查了全等三角形的判定,等边三角形的判定与性质的综合应用,根据条件选择正确的证明方法是解题的关键.14.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A. 28cmB. 26cmC. 24cmD. 22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14 【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.15.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC 的三个顶点都在格点上,过点C 作△ABC 外接圆的切线,则该切线经过的格点个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】 作△ABC 的外接圆,作出过点C 的切线,两条图象法即可解决问题.【详解】如图⊙O 即为所求,观察图象可知,过点C 作△ABC 外接圆的切线,则该切线经过的格点个数是3个,故选C .【点睛】考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.16.如图,已知()4,1A --,线段AB 与x 轴平行,且2AB =,抛物线2y x mx n =-++经过点()0,3C 和()3,0D ,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是( )A. 010t ≤≤B. 210t ≤≤C. 28t ≤≤D. 210t <<【答案】B【解析】【分析】直接利用待定系数法求出二次函数,得出B 点坐标,分别得出当抛物线l 经过点B 时,当抛物线l 经过点A 时,求出y 的值,进而得出t 的取值范围;【详解】解:(1)把点C (0,3)和D (3,0)的坐标代入y=-x 2+mx+n 中,得,23330n m n =⎧⎨-++=⎩ 解得32n m =⎧⎨=⎩∴抛物线l 解析式为y=-x 2+2x+3,设点B 的坐标为(-2,-1-2t ),点A 的坐标为(-4,-1-2t ),当抛物线l 经过点B 时,有y=-(-2)2+2×(-2)+3=-5,当抛物线l 经过点A 时,有y=-(-4)2+2×(-4)+3=-21,当抛物线l 与线段AB 总有公共点时,有-21≤-1-2t≤-5,解得:2≤t≤10.故应选B【点睛】此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关于t 的不等式是解题关键.二、填空题17.点()5,2M -关于x 轴的对称点的坐标是______.【答案】()5,2【解析】【分析】根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,直接得出答案.【详解】解:点()5,2M -关于x 轴的对称点的坐标是:(5,2),故答案为:(5,2).【点睛】此题主要考查了关于x 轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键. 18.用若干个全等的正方形和正三角形按如图所示的方式进行拼接,围成一圈后中间形成一个正多方形,则该正多边形的内角和为__________.【答案】720°【解析】【分析】根据题意,求出围成的正多边形的内角,进而得出边数,则问题可解.【详解】解:由题意,围成的正多边形内角为360°-90°-90°-60°=120° ∴正多边形外角为180°-120°=60° ∴正多边形的边数为360606= ∴正多边形的内角和为(6-4)×180°=720° 故答案为:720°【点睛】本题考查了正多边形的镶嵌问题,解答关键是求出在密铺条件下需要的正多边形的一个内角的度数 19.根据如图所示的程序计算,若输入的x 值为2000,则第一次完成虚线框内的计算时,__________(填“能”或“不能”)直接输出结果;若输入的x 值为4-,则输出的结果为:__________.【答案】 (1). 不能 (2). 2021【解析】【分析】(1)将2000代入计算问题可解;(2)将-4代入按要求循环计算问题可解;【详解】解:(1)将2000代入得()220006220032019⨯+÷=< ;则不能直接输出结果故答案为:不能(2)由已知,是将x 循环代入2632x x +=+中,故当将x=-4代入再循环代入,依次得到-1,2,5,8,…,2018,20212021>2019故输出结果为2021故答案为:2021【点睛】本题考查了有理数的混合运算,解答本题的关键就是弄清楚题图给出的计算程序,根据程序列出算式,找到数据变化规律.三、解答题20.我们定义一种关于“★”的新运算:a ★b ab a b =+-,试根据条件回答问题.(1)计算:2★()3-= ;(2)若x ★()11x +=,求x 的值;(3)请你判断按这种方式定义的新运算是否满足交换律,若不满足,请举一个反例;若满足,请说明理由.【答案】(1)-1;(2)x 的值为1或-2;(3)按这种方式定义的新运算不满足交换律;反例:1★2=1,2★1=3.(反例不唯一,正确即可)【解析】【分析】(1)根据运算的定义即可直接求解;(2)根据运算的定义构造方程求解即可;(3)根据运算定义,给出反例问题可解.【详解】解:(1)2★()3-=2×()3-+2-(-3)=-1;(2)由x ★()()()21111x x x x x x x +=++-+=+- 则有211x x +-=解得x 值为1或-2;(3)按这种方式定义的新运算不满足交换律;反例:1★2=1,2★1=3.【点睛】本题考查了有理数的混合运算以及解一元二次方程的知识,正确理解运算的定义,将问题转化为数学模型是关键.21.某公司销售部为了调动销售员的积极性,决定实行目标管理,根据目标完成的情况对销售员进行适当的奖励.为了确定一个适当的月销售目标,该公司统计了销售部每位销售员在某月的销售额(单位:万元),并将结果绘制成如图所示的统计图.图1 图2(1)补全如图1所示的统计图;(2)月销售额在 万元的人数最多,该公司销售部人均月销售额是 万元;(3)若想让一半左右的销售员都能达到销售目标,你认为月销售额定为多少合适?【答案】(1)详见解析;(2)13;13.7;(3)想让一半左右的销售员都能达到销售目标,月销售额定为14万元合适.【解析】【分析】(1)结合条形图和扇形图得出样本容量,再得到13万对应的人数,从而画出条形图;(2)根据条形图得到人数最多的销售额,再根据加权平均数公式计算加权平均数即可;(3)由条形图得到中位数问题可解.【详解】解:(1)销售人员总数为:605=30360︒÷︒人 则月销售额为13万的人数为:30-3-4-6-5-5=7人画条形图如图;(2)由条形图可知,月销售额在13万元的人数最多;该公司销售部人均月销售额是311412713614515516=13.730⨯+⨯+⨯+⨯+⨯+⨯万元 ; 故答案为13;13.7;(3)由条形图可知,数据的中位数为14万元,因此,想让一半左右的销售员都能达到销售目标,月销售额定为14万元合适.【点睛】本题考查了众数、中位数和平均数的意义和应用.众数是数据中出现最多的数;一组数据的中位数是先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数;平均数是所有数据的平均值.22.如图,已知AB CD ∥,BC CD ⊥,且212CD AB ==,8BC =,E 是AD 的中点.(1)请你用直尺(无刻度)作出一条与BE 相等的线段,并利用三角形全等证明该线段与BE 相等; (2)求BE 的长.【答案】(1)详见解析;(2)5【解析】【分析】(1)延长BE 与CD 相交于点F ,则EF=BE ,证明△AEB ≌△△DEF ,根据全等三角形的性质证明结论; (2)根据全等三角形的性质得到DF=AB=6,根据勾股定理求出BF ,根据全等三角形的性质计算.【详解】解:(1)延长BE 与CD 相交于点F ,则EF=BE,证明:∵AB ∥CD ,∴∠A=∠D ,∠ABE=∠DFE ,∵E 是AD 的中点,∴AE=DE ,在△AEB 与△DEF 中,A D ABE DFE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEB ≌△△DEF (AAS ),∴BE=EF ;(2)∵△AEB ≌△△DEF ,∴DF=AB=6,BE=EF=12BF , ∴CF=CD-DF=6,∵BC ⊥CD ,∴BF=∴BE=12BF=5 【点睛】本题考查的是全等三角形的判定和性质,平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.已知一个两位数,用a 表示十位上的数,用b 表示个位上的数.(1)用含a ,b 的式子表示这个两位数;(2)把这个两位数个位上的数字与十位上的数字交换位置,得到一个新的两位数.①若原数个位上的数是十位上的数的3倍,且新数与原数的差是36,求原来的两位数是多少?②列式表示所得新数的平方与原数的平方的差(结果要化简),并判断其是11的倍数吗?【答案】(1)这个两位数为10a+b ;(2)①原来的两位数是26;②(10b+a )2-(10a+b )2=99(b 2-a 2);该差是11的倍数.【解析】【分析】(1)将十位数字乘以10,再加上个位数字可得;(2)①根据题意列出关于a 、b 的方程组,解之可得;② 根据题意列出代数式,并进行因式分解则问题可解.【详解】解:(1)由题意,这个两位数为10a+b ;(2)①新两位数为10b+a ,根据题意,得:39936b a b a =⎧⎨-=⎩解得,26a b =⎧⎨=⎩ 故原来的两位数是26;②(10b+a )2-(10a+b )2=99(b 2-a 2);99(b 2-a 2)=9×11×(b 2-a 2)则两数的差是11的倍数.【点睛】本题主要考查列代数式、因式分解等知识,解题关键是列代数式表示两位数.24.如图,在平面直角坐标系中,直线11:3l y k x =+分别与x 轴,y 轴交于()30A -,,B 两点,与直线22:l y k x =交于点C ,9AOC S =△.(1)求tan BAO ∠的值;(2)求出直线2l 的解析式;(3)P 为线段AC 上一点(不含端点),连接OP ,一动点H 从点O 出发,沿线段OP 以每秒1个单位长度的速度运动到P ,再沿线段PC 2个单位长度的速度运动到点C 后停止,请直接..写出点H 在整个运动过程的最少用时.(提示:过点P 和点C ,分别作x 轴,y 轴的垂线PQ ,CQ ,两垂线交于点Q )【答案】(1)1;(2)y=2x ;(3)点H 在整个运动过程的最少用时是6秒.【解析】【分析】(1)先求直线l1的解析式,从而可以求点B ,点A 的坐标,求出OA 和OB 即可求得tan 1OB BAO OA ∠==. (2)由S △AOC =9,OA=3即可求点C 的纵坐标,点C 是直线l 1与直线l 2的交点,即可求出直线l 2的解析式 (3)过点C 作CJ ⊥y 轴于J ,过点P 作PQ ⊥CJ 于点Q ,由题意得,点H 在整个运动过程的用时t =12OP OP QP +=+,即点H 在整个运动过程所用的时间是线段PO 与PH 的长度之和,也就是点O 、P 、Q 共线时有最小值.【详解】解:(1)∵直线11:y=k 1x+3经过点A (-3,0),∴0=-3k 1+3,即k 1=1且OA=3故直线11的解析式为:y=x+3∴直线l 1:y=x+3与y 轴交点是B (0,3)即OB=3 ∴tan 1OB BAO OA∠== (2)∵S △AOC =9,OA=3∴点C 到OA 也就是到x 轴的距离是6,由图可设C (x ,6)∴2636x k x =+⎧⎨=⎩ ,解得2=3=2x k ⎧⎨⎩ 故直线l 2的解析式是:y=2x(3)如图过点C 作CJ ⊥y 轴于J ,过点P 作PQ ⊥CJ 于点Q ,∵动点H 从点O 出发,沿线段OP 以每秒1个单位长度的速度运动到P ,遭到沿线段PC 2个单位长度的速度运动到点C 后停止∴点H 在整个运动过程的用时t =12OP + ∵tan ∠BAO=1OB OA=,则∠BAO=45° 故∠CPQ=∠ABO=45°∴PQ=PC•cos ∠22PC =∴t =12OP OP QP +=+, 即点H 在整个运动过程所用的时间是线段PO 与PH 的长度之和∴当点P 与点B 重合,也就是点O 、P 、Q 共线时,OP+QP 取得最小值,且(OP+QP )最小=OJ=6, 即点H 在整个运动过程所用时间的最小值为6秒.【点睛】本题是一次函数和几何图形的综合问题,考查了一次函数的解析式、直线距离最段和锐角三角函数的相关知识.灵活运用一次函数图象的点坐标的特征是解题关键.25.有一座抛物线型拱桥,在正常水位时水面AB 的宽为18米,拱顶O 离水面AB 的距离OM 为9米,建立如图所示的平面直角坐标系.(1)求此抛物线的解析式;(2)一艘货船在水面上的部分的横断面是矩形CDEF.①如果限定矩形的长CD为12米,那么要使船通过拱桥,矩形的高DE不能超过多少米?②若点E,F都在抛物线上,设L EF DE CF=++,当L的值最大时,求矩形CDEF的高.【答案】(1)此抛物线的解析式为y=-19x2;(2)①要使船通过拱桥,矩形的高DE不能超过5米;②矩形CDEF的高为274米.【解析】【分析】(1)根据题意设抛物线的解析式为y=ax2(a≠0).把已知坐标(9,-9)代入解析式求得a即可;(2)①已知CD=12,把已知坐标代入函数关系式可求解;②设DM=a米,可得EF=CD=2DM=2a米、DE=FC=9-19a2,根据L=EF+DE+CF求得L的值最大时a的值,代入DE=9-19a2问题可解.【详解】解:(1)根据题意,设抛物线解析式为:y=ax2,将点B(9,-9)代入,得:81a=-9,解得:a=-19,此抛物线的解析式为y=-19x2;(2)①当x=6时,y=-19×36=-4,∵9-4=5,∴矩形的高DE不能超过5米,才能使船通过拱桥;要使船通过拱桥,矩形的高DE不能超过5米;②设DM=a米,则EF=CD=2DM=2a米,当x=a时,y=-19a2,∴DE=FC=9-19a2,则L=2a+2(9-19a2)=-29a2+2a+18=-29(a-92)2+452,∴当a=92时,L取得最大值,矩形CDEF的高为274米【点睛】本题考查了运用待定系数法求二次函数的解析式及二次函数的应用,根据已知条件得出L的函数关系式及其最值情况是解题关键.26.如图,已知正方形ABCD的边长为4,P是边BC上的一个动点,连接DP,过点P作DP的垂线交AB于点E,以PE为边作正方形PEFG,顶点G在线段DP上,对角线EG,PF相交于点O.(1)若1BP=,则BE=;(2)①求证:点O一定在BPE的外接圆上;②当点P从点B运动到点C时,点O也随之运动,求点O经过的路径长;(3)在点P从点B到点C的运动过程中,BPE的外接圆的圆心也随之运动,求该圆心到边BC的距离的最大值.【答案】(1)34;(2)①详见解析;②2;(3)12【解析】【分析】(1)由正方形的性质得出∠C=∠B=∠EPG=90°,PF⊥EG,CD=BC=4,∠OEP=45°,由角的互余关系证出∠BEP=∠DPC,得出△CDP∽△BPE,得出对应边成比例即可求出BE的长;(2)①B、P、O、E四点共圆,即可得出结论;②连接BO、BD,由勾股定理求出2,由圆周角定理得出∠OBP=∠OEP=45°,周长点O在BD上,当P 运动到点C时,O为BD的中点,即可得出答案;(3)设BPE的外接圆的圆心为M,作MN⊥CB于N,由三角形中位线定理得出MN=12BE,设BP=x,则CP=4-x,由相似三角形的对应边成比例求出BE=x-14x2=-14(x-2)2+1,由二次函数的最大值求出BE的最大值为1,得出MN的最大值=12即可.【详解】解:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠C=∠B=∠EPG=90°,PF⊥EG,CD=BC=4,∠OEP=45°,∴∠BEP+∠BPE=90°,∠DPC+∠BPE=90°,∴∠BEP=∠DPC,∴△CDP∽△BPE;∴BE PCBP DC=,即314BE=∴BE=3 4(2)①证明:如图,取PE的中点Q,连接BQ,OQ,∵∠POE=90°,∴OQ=12 PE,∵△BPE是直角三角形,∴点Q是Rt△BPE外接圆的圆心,∴BQ=12 PE,∴OQ=BQ,∴点O一定在△APE的外接圆上;(到圆心的距离等于半径的点必在此圆上)②解:连接OB、BD,如图所示:∵四边形ABCD是正方形,∴∠ABC=90°,∠DBC=45°,。
人教版九年级下册数学全册综合复习练习试卷一.选择题(共10小题,每小题2分,共20分)1.反比例函数y=的图象生经过点(1,﹣2),则k的值为()A.﹣1 B.﹣2 C.1 D.2【答案】B【精准解析】解:∵反比例函数y=的图象生经过点(1,﹣2),∴k=1×(﹣2)=﹣2.故选B.2.如图,点A(1.5,3)在第一象限,OA与x轴所夹的锐角为α,tanα=()A.1 B.1.5 C.2 D.3【答案】C【精准解析】解:根据题意得:tanα==2;故选:C.3.如图,不能判定△AOB和△DOC相似的条件是()A.AO•CO=BO•DO B.C.∠A=∠D D.∠B=∠C【答案】B【精准解析】解:A、能判定.利用两边成比例夹角相等.B、不能判定.C、能判定.两角对应相等的两个三角形相似.D、能判定.两角对应相等的两个三角形相似.故选B.4.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【答案】D【精准解析】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.5.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)【答案】B【精准解析】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD 是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选:B.6.一个三角形三遍的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是()A.6 B.9 C.10 D.15【答案】B【精准解析】解:设与它相似的三角形的最短边的长为x,∵一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,∴=,解得:x=9.故选B.7.如图所示,平行四边形ABCD中,点E是AD边的中点,BE交对角线AC于点F.若AF=2,则对角线AC的长为()A.4 B.5 C.6 D.8【答案】C【精准解析】解:∵四边形ABCD是平行四边形,AD=BC,∴AD∥BC,∴△AEF∽△CBF.∵E是A的中点,∴AE=AD=BC,∴==∵AF=2,∴CF=4.∴AC=AF+CF=6.故选:C.8.在同一平面直角坐标系中,函数y=mx+m与y=﹣(m≠0)的图象可能是()A.B.C.D.【答案】B【精准解析】解:方法一:A、y=﹣的图象在一三象限,则﹣m>0,即m<0.y=mx+m 中,与y轴相交于正半轴,则常数项m>0,y随x的增大而增大,则一次项系数m>0,三个m 不同号,故选项错误;B、y=﹣的图象在一三象限,则﹣m>0,即m<0.y=mx+m中,与y轴相交于负半轴,则常数项m<0,y随x的增大而增大,则一次项系数m<0,三个m同号,故选项正确;C、y=﹣的图象在二、四象限,则﹣m<0,即m>0.y=mx+m中,与y轴相交于正半轴,则常数项m>0,y随x的增大而减小,则一次项系数m<0,三个m不同号,故选项错误;D、y=﹣的图象在二、四象限,则﹣m<0,即m>0.y=mx+m中,与y轴相交于负半轴,则常数项m<0,y随x的增大而增大,则一次项系数m>0,三个m不同号,故选项错误.故选B.方法二:①当m>0时,一次函数y=mx+m的图象过第一、二、三象限,符合一次函数图象的只有A选项,反比例函数y=﹣的图象过点第二、四象限,符合反比例函数图象的有C,D选项,∴同时符合的一次函数和反比例函数图形的选项没有;②当m<0时,一次函数y=mx+m的图象过第二、三、四象限,符合一次函数图象的只有B选项,反比例函数y=﹣的图象过点第一、三象限,符合反比例函数图形的有A,B选项,∴同时符合一次函数图象和反比例函数图象的选项是B,故选B.9.反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y2【答案】D【精准解析】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选D.10.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论正确的是()①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.A.①②③B.①②④C.①③④D.①②③④【答案】C【精准解析】解:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴,∵点E是AB的中点,∴AE=BE,∴,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=HE,在△AEF和△HEF中,∴△AEF≌△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若=,则cot∠BCE═=,∴∠BCE=30°,∴∠DCF=∠ECF=30°,在△CEF和△CDF中,,∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故选C.二.填空题(共10小题,每小题2分,共20分)11.已知C是线段AB上一点,若=,则=.【答案】【精准解析】解:∵C是线段AB上一点,=,∴=,即=.故答案为.12.如图是某超市楼梯示意图,若BA与CA的夹角为α,∠C=90°,AC=6米,则楼梯高度BC为米.【答案】6tanα【精准解析】解:在Rt△ABC中,=tanα;即=tanα,BC=6tanα米.故答案为6tanα.13.如图,小明想测量院子里一棵树的高度,在某一时刻,他站在该树的影子上,前后移动,直到他本身的影子的顶端正好与树影的顶端重叠.此时,他与该树的水平距离2m,小明身高1.5m,他的影长是1.2m,那么该树的高度为.【答案】4m【精准解析】解:如图,CE=1.5m,∵CE∥BD,∴△ACE∽△ABD,∴=,即=,∴BD=4(m),即树的高度为4m.故答案为:4m.14.在平面直角坐标系中,直线y=x+1与反比例函数y=的图象的一个交点A(a,2),则k 的值为.【答案】2【精准解析】解:当y=x+1=2时,x=1,∴点A的坐标为(1,2).∵点A(1,2)在反比例函数y=的图象上,∴k=1×2=2.故答案为:2.15.在△ABC中,∠A,∠B都是锐角,cosA=,sinB=,则△ABC的形状是.【答案】等边三角形【解析】解:∵cosA=,sinB=,∴∠A=60°,∠B=60°.∴∠C=60°.则△ABC是等边三角形.16.小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,如图,出发时,在B 点他观察到仓库A在他的北偏东30°处,骑行20分钟后到达C点,发现此时这座仓库正好在他的东南方向,则这座仓库到公路的距离为千米.(参考数据:≈1.732,结果保留两位有效数字)【答案】1.8【解析】解:过点A作AD⊥BC于点D.设AD=x,则BD=x.∵△ACD是等腰直角三角形,∴CD=AD=x.∵小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,骑行20分钟后到达C点,∴15×=5,∴BC=5.∴x+x=5.∴x=≈1.8(千米).即仓库到公路的距离为1.8千米.17.若α为锐角,且3tan2α﹣4tanα+3=0,则α的度数为.【答案】60°或30°【解析】解:∵α为锐角,∴tanα=x(x>0),则由原方程,得3x2﹣4x+3=0,∴x==,∴x1=,x2=;当x1=,即tanα=时,α=60°;当x2=,即tanα=时,α=30°;综上所述,α的度数为60°或30°;故答案是:60°或30°.18.如图,等边△OAB和等边△BCD的顶点A、C分别在双曲线y=的图象上,若OA=1,则点C的坐标为.【答案】(,)【解析】解:过A作AE⊥OB于E,过C作CF⊥BD于F,∵△OAB是等边三角形,∴∠AOB=∠OAB=60°,OB=OA=1,∴OE=,AE=,∴k=,∴双曲线的解析式为y=,设等边三角形CBD的边长为2a,∴BF=a,CF=a,∴C(1+a,a),∴(1+a)•a=,∴a=,(负值舍去),∴C(,).故答案为:(,).19.如图,△ABB1,△A1B1B2,…,△A n﹣2B n﹣2B n﹣1,△A n﹣1B n﹣1B n是n个全等的等腰三角形,其中AB=2,BB1=1,底边BB1,B1B2,…,B n﹣2B n﹣1,B n﹣1B n在同一条直线上,连接AB n 交A n﹣2B n﹣1于点P,则PB n﹣1的值为.【答案】【解析】解:∵△ABB1,△A1B1B2,…,△A n﹣2B n﹣2B n﹣1,△A n﹣1B n﹣1B n是n个全等的等腰三角形,∴∠AB1B=∠PB n﹣1B,∴AB1∥PB n﹣1,∴PB n B n﹣1∽△AB n B1,∴=,∵AB1=AB=2,B1B n=n﹣1,B n B n﹣1=1,∴=,∴PB n﹣1=.故答案为:.20.如图,矩形ABCD的一边BC与⊙O相切于G,DC=6,且对角线BD经过圆心O,AD 交⊙O于点E,连接BE,BE恰好是⊙O的切线,已知点P在对角线BD上运动,若以B、P、G三点构成的三角形与△BED相似,则BP=.【答案】4或12【解析】解:连接OE、OG、DG,如图,GO的延长线交AD于H,∵BE和BG为⊙O的切线,∴BG=BE,OB平分∠GBE,OG⊥BC,而BC∥AD,∴GH⊥AD,∴EH=DH,易得四边形CDHG为矩形,∴CG=DH,∴DE=2CG,∵∠EDB=∠CBD,∴∠EBD=∠EDB,∴EB=ED,∴BE=BG=DE,∴AE=CG,四边形BGDE为菱形,在Rt△ABE中,∵sin∠ABE==,∴∠ABE=30°,∴∠EBD=∠CBD=30°,∴BC=6,BD=12,∴BE=DE=BG=4,当=时,△PBG∽△EBD,即=,解得PB=4;当=时,△PBG∽△DBE,即=,解得PB=12,综上所述,BP的长为4或12.故答案为4或12.三.解答题(共10小题,每小题6分,共60分)21.(1)计算sin245°+cos30°•tan60°(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.【答案】解:(1)sin245°+cos30°•tan60°=+=2;(2)∵∠B=90°﹣∠A=90°﹣60°=30°,tanB==,∴AC=3•tanB=3tan30°=3×=.22.已知点P(﹣2,3)在反比例函数y=(k为常数,且k≠0)的图象上.(1)求这个函数的解析式;(2)判断该反比例函数图象是否经过点A(﹣1,﹣3),并说明理由.【答案】解:(1)∵将P(﹣2,3)代入反比例函数y=,得3=,解得,k=﹣6.∴反比例函数表达式为:y=﹣;(2)反比例函数图象不经过点A.理由是:∵将x=﹣1代入y=,得y=6≠﹣3,∴反比例函数图象不经过点A.【解析】(1)直接把点P(﹣2,3)代入反比例函数y=,求出k的值即可;(2)把点A (﹣1,﹣3)代入反比例函数的解析式进行检验即可.23.如图,四边形ABCD是平行四边形,E为边CD延长线上一点,连接BE交边AD于点F.请找出一对相似三角形,并加以证明.【答案】解:△ABF∽△DEF.①选择:△ABF∽△DEF理由:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠ABF=∠E,∠A=∠FDE,∴△ABF∽△DEF.②选择:△EDF∽△ECB理由:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠C=∠FDE.又∵∠E=∠E,∴△EDF∽△ECB.③选择:△ABF∽△CEB理由:∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C.∴∠ABF=∠E.∴△ABF∽△CEB.【解析】选择△ABF∽△DEF,根据四边形ABCD是平行四边形可知AB∥CD,再由平行线的性质得出∠ABF=∠E,∠A=∠FDE,据此可得出结论.24.如图,已知∠A=36°,线段AB=6.(1)尺规作图:求作菱形ABCD,使线段AB是菱形的边,顶点C在射线AP上;(2)求(1)中菱形对角线AC的长.(精确到0.1,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan36°≈0.7265)【答案】解:(1)如图,菱形ABCD为所求作的图形.(2)连接BD交AC于点O.∵四边形ABCD是菱形,∴BD⊥AC,AC=2AO.在Rt△ABO中,∠A=36°,AB=6.∵cos∠BAO=,∴AO=AB•cos36°≈4.85.∴AC=2AO≈9.7.【解析】(1)根据菱形的性质画出图形即可;(2)连接BD交AC于点O,根据菱形的性质可知BD⊥AC,AC=2AO,再由锐角三角函数的定义即可得出结论.25.近年来交通事故发生率逐年上升,交通问题成为重大民生问题,鄱阳二中数学兴趣小组为检测汽车的速度设计了如下实验:如图,在公路MN(近似看作直线)旁选取一点C,测得C到公路的距离为30米,再在MN上选取A、B两点,测得∠CAN=30°,∠CBN=60°;(1)求AB的长;(精确到0.1米,参考数据=1.41,=1.73)(2)若本路段汽车限定速度为40千米/小时,某车从A到B用时3秒,该车是否超速?【答案】解:(1)作CD⊥MN于D,如图所示:则CD=30米,在Rt△CBD中,BC===20≈34.6(米),又∵∠CBN=60°,∠CAN=30°,∴∠ACB=60°﹣30°=30°=∠CAN,∴AB=BC=34.6米;(2)∵40千米/小时≈11.1米/秒,34.6÷3≈11.53(米/秒),11.1<11.53,∴该车是超速.(1)作CD⊥MN于D,则CD=30米,在Rt△CBD中,由三角函数求出BC=【解析】≈34.6(米),由三角形的外角性质求出∠ACB=∠CAN,得出AB=BC=34.6米即可;(2)求出汽车的速度,即可得出答案.26.如图,在正方形ABCD中,点A在y轴正半轴上,点B的坐标为(0,﹣3),反比例函数y=﹣的图象经过点C.(1)求点C的坐标;(2)若点P是反比例函数图象上的一点且S△PAD=S正方形ABCD;求点P的坐标.【答案】解:(1)∵点B的坐标为(0,﹣3),∴点C的纵坐标为﹣3,把y=﹣3代入y=﹣得,﹣3=﹣,解得x=5,∴点C的坐标为(5,﹣3);(2)∵C(5,﹣3),∴BC=5,∵四边形ABCD是正方形,∴AD=5,设点P到AD的距离为h.∵S△PAD=S正方形ABCD,∴×5×h=52,解得h=10,①当点P在第二象限时,y P=h+2=12,此时,x P==﹣,∴点P的坐标为(﹣,12),②当点P在第四象限时,y P=﹣(h﹣2)=﹣8,此时,x P==,∴点P的坐标为(,﹣8).综上所述,点P的坐标为(﹣,12)或(,﹣8).【解析】(1)先由点B的坐标为(0,﹣3)得到C的纵坐标为﹣3,然后代入反比例函数的解析式求得横坐标为5,即可求得点C的坐标为(5,﹣3);(2)设点P到AD的距离为h,利用△PAD的面积恰好等于正方形ABCD的面积得到h=10,再分类讨论:当点P在第二象限时,则P点的纵坐标y P=h+2=12,可求的P点的横坐标,得到点P的坐标为(﹣,12);②当点P在第四象限时,P点的纵坐标为y P=﹣(h﹣2)=﹣8,再计算出P点的横坐标.于是得到点P的坐标为(,﹣8).27.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡脚∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,≈1.7)【答案】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在直角三角形AHD中,∵∠DAH=30°,AD=6,∴DH=3,AH=3,∴CG=3,设BC为x,在直角三角形ABC中,AC==,∴DG=3+,BG=x﹣3,在直角三角形BDG中,∵BG=DG•tan30°,∴x﹣3=(3+)×,解得:x≈13,∴BC=13米,答:大树的高度为13米.【解析】过点D作DG⊥BC于G,DH⊥CE于H,设BC为x,根据矩形性质得出DG=CH,CG=DH,再利用锐角三角函数的性质求x的值即可.28.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.【答案】解:(1)∵点E(4,n)在边AB上,∴OA=4,在Rt△AOB中,∵tan∠BOA=,∴AB=OA×tan∠BOA=4×=2;(2)根据(1),可得点B的坐标为(4,2),∵点D为OB的中点,∴点D(2,1)∴=1,解得k=2,∴反比例函数解析式为y=,又∵点E(4,n)在反比例函数图象上,∴=n,解得n=;(3)如图,设点F(a,2),∵反比例函数的图象与矩形的边BC交于点F,∴=2,解得a=1,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=.【解析】(1)根据点E的纵坐标判断出OA=4,再根据tan∠BOA=即可求出AB的长度;(2)根据(1)求出点B的坐标,再根据点D是OB的中点求出点D的坐标,然后利用待定系数法求函数解析式求出反比例函数解析式,再把点E的坐标代入进行计算即可求出n的值;(3)先利用反比例函数解析式求出点F的坐标,从而得到CF的长度,连接FG,根据折叠的性质可得FG=OG,然后用OG表示出CG的长度,再利用勾股定理列式计算即可求出OG的长度.29.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.【答案】(1)证明:∵GE是AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC中,,∴△AGD≌△BGC(SAS),∴AD=BC;(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC,在△AGB和△DGC中,,∴△AGB∽△DGC,∴,又∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF;(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴,又∵△AGD∽△EGF,∴==.【解析】(1)由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD≌△BGC,得出对应边相等即可;(2)先证出∠AGB=∠DGC,由,证出△AGB∽△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;(3)延长AD交GB 于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGB=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.30.如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)【答案】解:(1)∵B(4,1),C(4,3),∴BC∥y轴,BC=2,又∵四边形ABCD是平行四边形,∴AD=BC=2,AD∥y轴,而A(1,0),∴D(1,2),∴由反比例函数y=的图象经过点D,可得k=1×2=2,∴反比例函数的解析式为y=;(2)∵在一次函数y=mx+3﹣4m中,当x=4时,y=4m+3﹣4m=3,∴一次函数y=mx+3﹣4m的图象一定过点C(4,3);(3)点P的横坐标的取值范围:<x<4.如图所示,过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,当y=3时,3=,即x=,∴点E的横坐标为;由点C的横坐标为4,可得F的横坐标为4;∵一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,∴直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,∴点P的横坐标的取值范围是<x<4.【解析】(1)根据四边形ABCD是平行四边形,可得AD=BC=2,AD∥y轴,进而得出D(1,2),再根据反比例函数y=的图象经过点D,可得反比例函数的解析式;(2)在一次函数y=mx+3﹣4m中,当x=4时,y=3,据此可得一次函数y=mx+3﹣4m的图象一定过点C;(3)过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,根据一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,可知直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,据此可得点P的横坐标的取值范围.训练小能手1.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣3x的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3 C.4 D.5【答案】D【解析】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=5.故选D.2.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】解:如图所示几何体的左视图是.故选:B.3.由下列光源产生的投影,是平行投影的是()A.太阳B.路灯C.手电筒D.台灯【答案】A【解析】解:用光线照射物体所产生的投影为平行投影,而用路灯、手电筒、台灯等照射物体所产生的投影为中心投影.故选A.4.如图,以点O为位似中心,将△ABC缩小后得到△DEF,已知OD=1,OA=3.若△DEF的面积为S,则△ABC的面积为()A.2S B.3S C.4S D.9S【答案】D【解析】解:∵△ABC与△DEF位似,∴=()2=,∴△ABC的面积=9S.故选D.5.如图,菱形ABCD的对角线BD与x轴平行,点B、C的坐标分别是(0,1)、(2,0),点A、D在函数y=(x>0)的图象上,则k的值为.【答案】4【解析】解:连结AC,如图,∵四边形ABCD为菱形,∴AC与BD互相垂直平分,∵BD∥x轴,∴AC⊥x轴,∴A点坐标为(2,2),∴k=2×2=4.故答案为4.6.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB 于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:EF2=CD•BF.【答案】(1)证明:如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.∵∠BEF=∠EHF=90°,∠BFE=∠EFH,∴△BEF∽△EHF,∴EF2=HF•BF,∴EF2=CD•BF.【解析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)连结DE,先根据AAS证明△CDE ≌△HFE,再由全等三角形的对应边相等即可得出CD=HF,证明∴△BEF∽△EHF,得出对应边成比例,即可得出结论.例7.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.【答案】解:(1)∵二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),设二次函数的解析式为:y=a(x+2)(x﹣1),把C(0,2)代入得:2=a(0+2)(0﹣1),解得a=﹣1,∴y=﹣(x+2)(x﹣1)=﹣x2﹣x+2,∴二次函数的解析式为:y=﹣x2﹣x+2;(2)如图1,过N作ND∥y轴,交AC于D,设N(n,﹣n2﹣n+2),设直线AC的解析式为:y=kx+b,把A(﹣2,0)、C(0,2)代入得:,解得:,∴直线AC的解析式为:y=x+2,∴D(n,n+2),∴ND=(﹣n2﹣n+2)﹣(n+2)=﹣n2﹣2n,∴S△ANC=×2×[﹣n2﹣2n]=﹣n2﹣2n=﹣(n+1)2+1,∴当n=﹣1时,△ANC的面积有最大值为1,此时N(﹣1,2),(3)存在,分三种情况:①如图2,当BC=CM1时,M1(﹣1,0);②如图2,由勾股定理得:BC==,以B为圆心,以BC为半径画圆,交x轴于M2、M3,则BC=BM2=BM3=,此时,M2(1﹣,0),M3(1+,0);③如图3,作BC的中垂线,交x轴于M4,连接CM4,则CM4=BM4,设OM4=x,则CM4=BM4=x+1,由勾股定理得:22+x2=(1+x)2,解得:x=,∵M4在x轴的负半轴上,∴M4(﹣,0),综上所述,当B、C、M为顶点的三角形是等腰三角形时,M的坐标为(﹣1,0)或(1±,0)或(﹣,0);(4)存在两种情况:①如图4,过C作x轴的平行线交抛物线于P1,过P1作P1Q⊥BC,此时,△CP1Q∽△BCO,∴点P1与点C关于抛物线的对称轴对称,∴P1(﹣1,2),②如图5,由(3)知:当M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,过P2作P2Q⊥BC,此时,△CP2Q∽△BCO,易得直线CM的解析式为:y=x+2,则,解得:P2(﹣,﹣),综上所述,点P的坐标为:(﹣1,2)或(﹣,﹣).【解析】(1)利用交点式求二次函数的解析式;(2)求直线AC的解析式,作辅助线ND,根据抛物线的解析式表示N的坐标,根据直线AC的解析式表示D的坐标,表示ND的长,利用铅直高度与水平宽度的积求三角形ANC的面积,根据二次函数的最值可得面积的最大值,并计算此时N的坐标;(3)分三种情况:当B、C、M为顶点的三角形是等腰三角形时,分别以三边为腰,画图形,求M的坐标即可;(4)存在两种情况:①如图4,点P1与点C关于抛物线的对称轴对称时符合条件;②如图5,图3中的M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,则△CP2Q∽△BCO,P2为直线CM的抛物线的交点.。
2022-2023学年全国初中中考专题数学新人教版中考真卷考试总分:144 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 一个数的相反数是3,则这个数是( )A.−13B.−3C.13D.3 2. 下列运算正确的是( )A.x 8÷x 4=x 2B.x +x 2=x 3C.x 3⋅x 5=x 15D.(−x 3y)2=x 6y 23. 已知一个正棱柱的俯视图和左视图如图,则其主视图为( )A.B.C.D.4. 某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( )3−13−3133÷x 8x 4=x 2x +x 2=x 3⋅x 3x 5=x 15(−y x 3)2=x 6y 25劳动时间(小时)33.544.5人数1121A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.85. 方程x 2−4x =3的根的情况是( )A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根6. 如图,点A ,B ,C ,D 在⊙O 上,∠AOC =120∘ ,点B 是弧AC 的中点,则∠D 的度数是( )A.60∘B.35∘C.30.5∘D.30∘7. 已知扇形AOB 的半径为6cm ,圆心角的度数为120∘,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A.4πcm 2B.6πcm 2C.9πcm 2D.12πcm 28. 匀速地向一个容器内注水,最后把容器注满.在注水的过程中,水面高度h 随时间t 的变化规律如3 3.54 4.511214 3.754 3.754 3.82 3.8−4x =3x 2()A B C D ⊙O ∠AOC =120∘B AC ∠D 60∘35∘30.5∘30∘AOB6cm 120∘4πcm 26πcm 29πcm 212πcm 2h t图所示(图中OEFG 为一折线),那么这个容器的形状可能是下列图中的() A. B. C.D.9. 某校八年级学生乘车前往某景点旅游,现有两条路线可供选择:线路一全程30km ,线路二全程25km ;若走线路一平均车速是走线路二的1.5倍,所花时间比走线路二少用10min ,求走线路二的平均车速?设走线路二的平均车速为xkm/h ,则依题意所列方程正确的是( )A.25x −301.5x =10B.25x −301.5x =16C.30x −251.5x =10D.30x −251.5x =16 10. 抛物线y =−x 2+x +7与坐标轴的交点个数为( )A.3B.2C.1D.0二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )h tOEFG30km 25km 1.510min x km/h−=1025x 301.5x −=25x 301.5x 16−=1030x 251.5x −=30x 251.5x 16y =−+x +7x 232111. 使代数式√3−4xx −2有意义的x 的取值范围是________.12. 一粒纽扣式电池能够污染60升水,某市每年报废的纽扣式电池有近1200 000粒,如果废旧电池不回收,一年报废的电池所污染的水约有________升(用科学记数法表示).13. 如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE =2,CE =3,则矩形的对角线AC 的长为________.14. 古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2…,第n 个三角形数记为x n ,则x 10=________;x n +x n+1=________.15. 如图,点A(2,m)在第一象限,OA 与x 轴所夹的锐角为α,如果tanα=32.那么m =________.16. 如图,PA ,PB 分别与⊙O 相切于点A ,点B ,∠P =58∘ ,C 是⊙O 上异于A ,B 的点,则∠ACB 的度数为________.三、 解答题 (本题共计 10 小题 ,每题 9 分 ,共计90分 )17. 计算:√18−|1−√2|−(−12)0 3−4x −−−−−√x −2x 601200000()ABCD A C AC 12M N MN CD E DE =2CE =3AC 136101521x 1x 2n x n x 10+x n x n+1A(2,m)OAx αtan α=32m PA PB ⊙O A B ∠P =58∘C ⊙O A B ∠ACB−|1−|−(−18−−√2–√12)018. 先化简,再求值:(1−1x −2)÷x 2−6x +92x −4,其中x 的值从2,3,4中选取. 19. 在△ABC 中,沿着中位线DE 剪切后,用得到的△ADE 和四边形DBCE 可以拼成平行四边形DBCF ,剪切线与拼图如图1所示.仿照上述的方法,按要求完成下列操作设计,并在规定位置画出图示.(画图工具不限,剪切线用实线表示,拼接线用虚线表示,要求写出简要的说明)(1)将平行四边形ABCD 剪切成两个图形,再将它们拼成一个矩形,剪切线与拼图画在图2的位置;(2)将梯形ABCD 剪切成两个图形,再将它们拼成一个平行四边形,剪切线与拼图画在图3的位置. 20. 鸡西市体育考试已经纳入中考,学校为了解本届男学生的体育考试准备情况,随机抽取了部分男同学进行了1000米跑步测试.按照成绩分为“优秀”“良好”“合格”“不合格”四个等级,学校绘制了如下两幅尚不完整的统计图.请结合图中的信息,解答下列问题:(1)请补全两幅统计图;(2)学校初四有600名男生,请估计成绩未达到良好的有多少名?(3)某班甲、乙两名成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛,预赛分别在A ,B ,C 三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少? 21. 某中学九年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在点C 处测得建筑物AB 的顶点A 的仰角为30∘,然后向建筑物AB 前进20m 到达点D 处,又测得点A 的仰角为60∘,则建筑物AB 的高度是多少m ?(结果用根式表示) 22. 某健身馆普通票价为40元/张,6∼9月为了促销,新推出两种优惠卡:①金卡售价1200元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通票正常出售,两种优惠卡仅限6∼9月使用,不限次数.设健身x 次时,所需总费用为y 元.(1−)÷1x −2−6x +9x 22x −4x 234△ABC DE △ADE DBCE DBCF 1ABCD 2ABCD 31000(1)(2)600(3)1000A B CAB C AB A 30∘AB 20m D A 60∘AB m406∼91200300106∼9x y(1)分别写出选择银卡、普通票消费时,y 与x 之间的函数关系式;(2)在同一平面直角坐标系中,若三种消费方式对应的函数图象如图所示,请求出A ,B ,C 的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算. 23. 若函数y =3x 与y =x +2图象的一个交点坐标为(a,b),则1a −1b 的值是________. 24. 如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过点B 的切线交OP 于点C .(1)求证:∠CBP =∠ADB ;(2)若OA =6,AB =4,求线段BP 的长. 25. 已知,△ABC 中,AB =AC ,∠BAC =2α∘,点D 为BC 边中点,连接AD ,点E 为AD 的中点,线段CE 绕点E 顺时针旋转2α∘得到线段EF ,连接FG ,FD .(1)如图1,当∠BAC =60∘时,请直接写出DFDC 的值;(2)如图2,当∠BAC =90∘时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;(3)如图3,当∠BAC =2α∘时,请直接写出DFDC 的值.(用含α的三角函数表示) 26. 在平面直角坐标系中,抛物线y =ax 2−4ax +4a −1与x 轴交于点A 、B ,与y 轴变于点C,AB =2.(1)y x(2)A B C(3)y =3x y =x +2(a,b)−1a 1b AD ⊙O AB ⊙O OP ⊥AD OP AB P B OP C(1)∠CBP =∠ADB(2)OA =6AB =4BP△ABC AB AC ∠BAC 2α∘D BC AD E AD CE E 2α∘EF FG FD1∠BAC 60∘DF DC 2∠BAC 90∘3∠BAC 2α∘DF DC αy =a −4ax +4a −1x 2x A B y C ,AB =2(1)如图1,求抛物线的解析式;(2)如图2,点P 为第一象限的抛物线上一点,连接PA 并延长交y 轴于点D ,设点P 的横坐标为t(t >3),CD 的长为d ,求d 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,连接CB ,过点P 作x 轴的垂线,交x 轴于点H ,交CB 的延长线于点G ,连接DC ,点F 为抛物线上一点,点E 为DG 的中点,分别连接DF 、EF 、CF ,若∠EFD +∠CDF=90∘,CF:DF =√5:2,求点F 的坐标.(1)1(2)2P PA y D P t (t >3)CD d d t t(3)32CB P x x H CB G DC F E DG DF EF CF ∠EFD +∠CDF =,CF :DF =:290∘5–√F参考答案与试题解析2022-2023学年全国初中中考专题数学新人教版中考真卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】相反数【解析】依据绝对值、相反数的定义求解即可.【解答】解:−3的相反数是3.故选B.2.【答案】D【考点】整式的混合运算【解析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:∵x 8÷x4=x4,故选项A错误;∵x+x 2不能合并,故选项B错误;∵x 3⋅x5=x8,故选项C错误;∵(−x 3y)2=x6y2,故选项D正确.故选D.3.【答案】D【考点】简单组合体的三视图由三视图判断几何体【解析】首先根据俯视图和左视图判断该几何体,然后确定其主视图即可;【解答】根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有看到两条棱,背面的棱用虚线表示,4.【答案】C【考点】中位数众数算术平均数【解析】根据众数、平均数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,∴众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,∴中位数为4,平均数为:3+3.5+2×4+4.55=3.8.故选C.5.【答案】A【考点】根的判别式【解析】判断上述方程的根的情况,只要看根的判别式△=b 2−4ac的值的符号就可以了.【解答】解:由题意,方程变形为x 2−4x −3=0,∵a =1,b =−4,c =−3,∴Δ=b 2−4ac =(−4)2−4×1×(−3)=28>0,∴方程有两个不相等的实数根.故选A .6.【答案】D【考点】圆周角定理圆心角、弧、弦的关系【解析】由点B 是弧AC 的中点,根据等弧所对的圆心角相等,可得∠AOB =∠BOC =60∘,根据在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,即可求得答案.【解答】解:如图,连结OB ,∵点B 是弧AC 的中点,∴^AB =^BC ,∴∠AOB =∠BOC.∵∠AOC =120∘,∴∠AOB =∠BOC =12×120∘=60∘.∵^AB 所对的圆周角是^AB 所对圆心角的一半,∴∠D =12∠AOB =30∘.故选D .7.【答案】D【考点】扇形面积的计算【解析】根据扇形的面积公式,再把相应数值代入求解即可.【解答】解:扇形的面积计算公式为:nπr 2360,故圆锥的侧面积=nπr 2360=12πcm2.故选D.8.【答案】B【考点】函数的图象【解析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:由折线图判断每一段函数图象的倾斜程度,可判断水面上升的速度,水面上升越快,容器越细,反之,水面上升越慢,容器就越粗.由图象可知,OE段水面上升最快,EF段水面上升最慢,FG段水面上升较快,所以容器的底端最细,中间最粗,只有B符合题意.故选B.9.【答案】B【考点】由实际问题抽象出分式方程【解析】走线路二的平均车速为x千米/小时,则走线路二的平均车速为1.5x千米/时;路程都是30千米;由时间=路程速度,时间差为10分钟,再建立等量关系,列方程.【解答】解:设走线路二的平均车速为xkm/h,则走线路一的平均车速为是1.5xkm/h,根据题意得出:301.5x=25x−1060,即:25x−301.5x=16.故选B.10.【答案】A【考点】抛物线与x 轴的交点【解析】此题暂无解析【解答】解:当x =0时,y =7,则与y 轴的交点坐标为(0,7),当y =0时,−x 2+x +7=0,Δ=12−4×(−1)×7=29>0,所以,该方程有两个不相等的实数根,即抛物线y =−x 2+x +7与x 轴有两个交点.综上所述,抛物线y =−x 2+x +7与坐标轴的交点个数是3个.故选A .二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )11.【答案】x ≤34【考点】分式有意义、无意义的条件二次根式有意义的条件【解析】要让代数式有意义,则分母不为零且根号下的式子大于等于零,两者结合求解即可.【解答】解:依题意可知{3−4x ≥0,x −2≠0,解得x ≤34.故答案为:x ≤34.12.【答案】7.2×107【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将60×1200000用科学记数法表示为7.2×107.故答案为:7.2×107.13.【答案】√30【考点】作图—基本作图矩形的性质勾股定理线段垂直平分线的性质【解析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图所示,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD=√32−22=√5,在Rt△ADC中,AC=√(√5)2+52=√30.故答案为:√30.14.【答案】55,(n+1)2【考点】数学常识规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】根据三角形数得到x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,据此求解可得.【解答】∵x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,…∴x10=1+2+3+4+5+6+7+8+9+10=55,x n=1+2+3+...+n=n(n+1)2,x n+1=(n+1)(n+2)2,则x n+x n+1=n(n+1)2+(n+1)(n+2)2=(n+1)2,15.【答案】3【考点】坐标与图形性质解直角三角形【解析】如图,作AE⊥x轴于E.根据正切函数的定义构建关系式即可解决问题.【解答】如图,作AE⊥x轴于E.∵A(2,m),∴OE=2,AE=m,∵tanα=AEOE=32,∴m2=32,∴m=3,61∘或119∘【考点】圆的综合题切线的性质圆周角定理【解析】根据切线的性质、圆周角定理及四边形的内角和来解答即可.【解答】解:如图(1),连接OA,OB.在四边形PAOB中,由于PA,PB分别切⊙O于点A,B,则∠OAP=∠OBP=90∘.由四边形的内角和定理,得∠APB+∠AOB=180∘.∵∠P=58∘,∴∠AOB=122∘.又∵∠ACB=12∠AOB,∴∠ACB=61∘;如图(2),连接OA,OB,作圆周角∠ADB,在四边形PAOB中,由于PA,PB分别切⊙O于点A,B,则∠OAP=∠OBP=90∘.由四边形的内角和定理,得∠P+∠AOB=180∘.∵∠P=58∘,∴∠AOB=122∘,∴∠ADB=12∠AOB=61∘,∴∠ACB=180∘−∠ADB=119∘,综上所述,∠ACB=61∘或119∘.故答案为:61∘或119∘.三、解答题(本题共计 10 小题,每题 9 分,共计90分)原式=3√2−(√2−1)−1=3√2−√2+1−1=2√2.【考点】实数的运算零指数幂【解析】直接利用二次根式的性质以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】原式=3√2−(√2−1)−1=3√2−√2+1−1=2√2.18.【答案】解:原式=x−3x−2⋅2(x−2)(x−3)2=2x−3.∵分式的分母不能为0,∴x取4,原式=2.【考点】分式的化简求值【解析】【解答】解:原式=x−3x−2⋅2(x−2)(x−3)2=2x−3.∵分式的分母不能为0,∴x取4,原式=2.19.【答案】解:(1)如图:过点A作AE⊥BC,再把△ABC剪切,然后移到△DCF的位置即可;(2)如图:过AB的中点作GF//DC,再把△BGF剪切,然后旋转到△AEG的位置即可;【考点】图形的剪拼【解析】(1)过点A作AE⊥BC,再把△ABC剪切,然后移到△DCF的位置即可;(2)过AB的中点作GF//DC,再把△BGF剪切,然后旋转到△AEG的位置即可;【解答】解:(1)如图:过点A作AE⊥BC,再把△ABC剪切,然后移到△DCF的位置即可;(2)如图:过AB的中点作GF//DC,再把△BGF剪切,然后旋转到△AEG的位置即可;20.【答案】解:(1)抽取的学生数为16÷40%=40(人).抽取的学生中合格的人数为40−12−16−2=10(人)合格人数所占百分比为10÷40×100%=25%,优秀人数所占百分比为12÷40×100%=30%条形统计图补图如图所示.扇形统计图补图如图所示.(3)成绩未达到良好的男生所占比例为25%+5%=30%所以600名初四男生中成绩未达到良好的有600×30%=180(名)(3)如图由树状图可知,一共有9种等可能的结果,甲、乙两人恰好分在同一组的可能有3种,所以甲、乙两人恰好分在同一组的概率为P=13.【考点】列表法与树状图法频数(率)分布直方图扇形统计图用样本估计总体【解析】此题暂无解析【解答】解:(1)抽取的学生数为16÷40%=40(人).抽取的学生中合格的人数为40−12−16−2=10(人)合格人数所占百分比为10÷40×100%=25%,优秀人数所占百分比为12÷40×100%=30%条形统计图补图如图所示.扇形统计图补图如图所示.(3)成绩未达到良好的男生所占比例为25%+5%=30%所以600名初四男生中成绩未达到良好的有600×30%=180(名)(3)如图由树状图可知,一共有9种等可能的结果,甲、乙两人恰好分在同一组的可能有3种,所以甲、乙两人恰好分在同一组的概率为P=13.21.【答案】解:设DB=xm,在Rt△ABD中,AB=xtan60∘=√3xm,√3xx+20=tan30∘,即√3xx+20=√33,在Rt△ABC中,整理得3x=x+20,解得x=10,则AB=10√3m.故建筑物AB的高度是10√3m.【考点】解直角三角形的应用-仰角俯角问题【解析】设DB=xm,在Rt△ADB中,得到AB=xtan60∘=√3xm,再在Rt△ACB中,得到√3xx+20=tan30∘,据此即可解答.【解答】解:设DB=xm,在Rt△ABD中,AB=xtan60∘=√3xm,√3xx+20=tan30∘,即√3xx+20=√33,在Rt△ABC中,整理得3x=x+20,解得x=10,则AB=10√3m.故建筑物AB的高度是10√3m.22.【答案】解:(1)根据题意可得:银卡消费:y=10x+300,普通消费:y=40x.(2)令y=10x+300中的x=0,则y=300,故点A的坐标为(0,300),联立{y=40x,y=10x+300,解得:{x=10,y=400,故点B的坐标为(10,400).令y=1200代入y=10x+300,则x=90,故点C的坐标为(90,1200).综上所述:点A的坐标为(0,300),点B的坐标为(10,400),点C的坐标为(90,1200).(3)根据函数图象,可知:当0<x<10时,选择购买普通票更合算;当x=10时,选择购买银卡、普通票更合算;当10<x<90时,选择购买银卡更合算;当x=90时,选择购买银卡、金卡更合算;当x>90时,选择购买金卡更合算.【考点】一次函数的应用一元一次不等式的实际应用【解析】(1)理解题目意思:健身馆普通票价为40元/张,没有其他费用了,健身的次数是x次,那么普通的消费就可以列出来;而银卡售价300元/张,每次凭卡另收10元,健身的次数是x次,那么银卡票消费也可以用一元一次方程列出来;(2)能够根据图象,用二次一方程组的知识求交点坐标,理解一次函数的特征,看图求坐标;(3)根据一次函数的特征来比较数的大小;当x的值为交点时,它们的费用是相同的;当小于交点的x值时,位于下面的函数图象,其y值最小;当大于交点的x值时,位于下面的函数图象,其y值最小.【解答】解:(1)根据题意可得:银卡消费:y=10x+300,普通消费:y=40x.(2)令y=10x+300中的x=0,则y=300,故点A的坐标为(0,300),联立{y=40x,y=10x+300,解得:{x=10,y=400,故点B的坐标为(10,400).令y=1200代入y=10x+300,则x=90,故点C的坐标为(90,1200).综上所述:点A的坐标为(0,300),点B的坐标为(10,400),点C的坐标为(90,1200).(3)根据函数图象,可知:当0<x<10时,选择购买普通票更合算;当x=10时,选择购买银卡、普通票更合算;当10<x<90时,选择购买银卡更合算;当x=90时,选择购买银卡、金卡更合算;当x>90时,选择购买金卡更合算.23.【答案】23【考点】反比例函数与一次函数的综合【解析】此题暂无解析【解答】解:∵函数y=3x与y=x+2的交点坐标为(a,b),∴b=3a,b=a+2,即ab=3,b−a=2,∴1a−1b=b−aab=23.故答案为:23.24.【答案】(1)证明:连接OB,∵AD是⊙O的直径,∴∠ABD=90∘,∴∠A+∠ADB=90∘.∵CB是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90∘,∵OA=OB,∴∠OBA=∠OAB,∴∠CBP=∠ADB.(2)解:∵∠ABD=90∘,OP⊥AD,∴∠ABD=∠AOP=90∘,∴∠D=90∘−∠A,∠P=90∘−∠A,∴∠D=∠P,∴△ABD∽△AOP,∴ADAP=ABAO,即124+BP=46,解得:BP=14.【考点】切线的性质相似三角形的性质与判定【解析】无无【解答】(1)证明:连接OB,∵AD是⊙O的直径,∴∠ABD=90∘,∴∠A+∠ADB=90∘.∵CB是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90∘,∵OA=OB,∴∠OBA=∠OAB,∴∠CBP=∠ADB.(2)解:∵∠ABD=90∘,OP⊥AD,∴∠ABD=∠AOP=90∘,∴∠D=90∘−∠A,∠P=90∘−∠A,∴∠D=∠P,∴△ABD∽△AOP,∴ADAP=ABAO,即124+BP=46,解得:BP=14.25.【答案】取AC的中点M,连接EM,BF,∵AB =AC ,∠BAC =60∘,∴△ABC 为等边三角形,∵线段CE 绕点E 顺时针旋转60∘得到线段EF ,∴EC =EF ,∠CEF =60∘,∴△EFC 都是等边三角形,∴AC =BC ,EC =CF ,∠ACB =∠ECF =60∘,∴∠ACE =∠BCF ,∴△ACE ≅△BCF(SAS),∵D 是BC 的中点,M 是AC 的中点,∴DF =EM ,∵E 是AD 的中点,M 是AC 的中点,∴EM =12CD ,∴DFDC =12;不成立,DFDC =√22.证明:连接BF ,取AC 的中点M ,连接EM ,∵E 是AD 的中点,∴EM//BC ,∴∠AEM =∠ADC ,∵AB =AC ,D 是BC 中点,∴AD ⊥BC ,∴∠ADC =90∘,∴∠AEM =90∘,当∠BAM =∠CEF =90∘时,△ABC 和△CEF 为等腰直角三角形,∴∠ACB =∠ECF =45∘,∴∠ACE =∠BCF ,∴ACBC =CECF =√22,∴△ACE ∽△BCF ,∴∠CBF =∠CAE =α,∴AEBF =ACBC =√22,∵AMBD =12AC 12BC =√22,∴AEBF =AMBD∴△BDF ∽△AME ,∴∠BFD =∠AEM =90∘,在Rt △BFD 中∴BFBD =sinα=sin45=√22,∴DFBD =DFDC =√22;DFDC =sinα.连接BF ,取AC 的中点M ,连接EM ,同(2)可知EC =EF ,∠BAC =∠FEC =2α,∵ABAC =EFEC ,∴△BAC ∽△FEC ,∴∠ACB =∠BCF ,ACBC =ECCF ,∴∠ACE =∠BCF ,∴△ACE ∽△BCF ,∵D 为BC 的中点,M 为AC 的中点,∴DFEM =BCAC =2DC2AM =DCAM ,∴DFDC =EMAM ,∵E 为AD 中点,M 为AC 的中点,∴EM//DC ,∵AB =AC ,D 为BC 的中点,∴AD ⊥BC ,∴AE ⊥EM ,∴sinα=EMAM ,∴DFDC =sinα.【考点】几何变换综合题【解析】(1)取AC 的中点M ,连接EM ,BF ,可知△ABC 和△EFC 都是等边三角形,证明△ACE ≅△BCF(SAS),可得DF =EM ,由中位线定理得出EM =12CD ,则DFDC =12;(2)连接BF ,取AC 的中点M ,连接EM ,证明△ACE ∽△BCF ,可得∠CBF =∠CAE =α,证明△BDF ∽△AME ,可得出∠BFD =∠AEM =90∘,得出DFDC =√22.(3)连接BF ,取AC 的中点M ,连接EM ,证明△BAC ∽△FEC ,得出∠ACB =∠BCF ,ACBC =ECCF ,证明△ACE ∽△BCF ,得出sinα=EMAM ,则得出DFDC =sinα.【解答】取AC 的中点M ,连接EM ,BF ,∵AB =AC ,∠BAC =60∘,∴△ABC 为等边三角形,∵线段CE 绕点E 顺时针旋转60∘得到线段EF ,∴EC =EF ,∠CEF =60∘,∴△EFC 都是等边三角形,∴AC =BC ,EC =CF ,∠ACB =∠ECF =60∘,∴∠ACE =∠BCF ,∴△ACE ≅△BCF(SAS),∵D 是BC 的中点,M 是AC 的中点,∴DF =EM ,∵E 是AD 的中点,M 是AC 的中点,∴EM =12CD ,∴DFDC =12;不成立,DFDC =√22.证明:连接BF ,取AC 的中点M ,连接EM ,∵E 是AD 的中点,∴EM//BC ,∴∠AEM =∠ADC ,∵AB =AC ,D 是BC 中点,∴AD ⊥BC ,∴∠ADC =90∘,∴∠AEM =90∘,当∠BAM =∠CEF =90∘时,△ABC 和△CEF 为等腰直角三角形,∴∠ACB =∠ECF =45∘,∴∠ACE =∠BCF ,∴ACBC =CECF =√22,∴△ACE ∽△BCF ,∴∠CBF =∠CAE =α,∴AEBF =ACBC =√22,∵AMBD =12AC 12BC =√22,∴AEBF =AMBD∴△BDF ∽△AME ,∴∠BFD =∠AEM =90∘,在Rt △BFD 中∴BFBD =sinα=sin45=√22,∴DFBD =DFDC =√22;DFDC =sinα.连接BF ,取AC 的中点M ,连接EM ,同(2)可知EC =EF ,∠BAC =∠FEC =2α,∵ABAC =EFEC ,∴△BAC ∽△FEC ,∴∠ACB =∠BCF ,ACBC =ECCF ,∴∠ACE =∠BCF ,∴△ACE ∽△BCF ,∵D 为BC 的中点,M 为AC 的中点,∴DFEM =BCAC =2DC2AM =DCAM ,∴DFDC =EMAM ,∵E 为AD 中点,M 为AC 的中点,∴EM//DC ,∵AB =AC ,D 为BC 的中点,∴AD ⊥BC ,∴AE ⊥EM ,∴sinα=EMAM ,∴DFDC =sinα.26.【答案】(1)解:y =ax 2−4ax +4a −1配方得y =a(x −2)2−1∴抛物线的对称轴为直线x =2∵AB =2,点A 、B 关于直线x =2对称,∴A(1,0),B(3,0).将点A(1,0)代人抛物线解析式得a =1,∴抛物线的解析式为y =x 2−4x +3.(2)过点P 作PH ⊥x 轴于点H .∵点P 在抛物线y =x 2−4x +3上,∴点P 的坐标为(t,t 2−4t +3)∴PH =t 2−4t +3,OH =t∴AH =t −1.∵∠PAH =∠OAD ,∴tan ∠PAH =tan ∠OAD .∴PHAH =ODOA .∴t 2−4t +3t −1=OD1.∴OD =t −3.当x =0时,y =3.∴OC =3.∴CD =3+t −3=t .∴d =t.(3)设直线BC 解析式为y =kx +b(k ≠0)∵B(3,0),C(0,3)∴{0=3k +b,b =3.∴y =−x +3.∵PH ⊥x 轴,∴点G 横坐标为t .∵点G 在直线BC 上,∴点G 纵坐标为3−t .∴GH =t −3=OD .∵∠DOH +∠GHO =180∘,∴OD//GH .∴四边形ODGH 为平行四边形,∵ ∠DOH =90∘∴.四边形ODCH 为矩形.∴∠CDG =90∘,DG =OH =t.∵CD =t ,∴CD =DG.连接FG ,过点C 作CM ⊥DF 于点M .∵∠FDC +∠EFD =90∘,∠FDC +∠FDE =90∘,∴∠EDF =∠EFD. ∴DE =EF.∵DE =EG ,∴EF =EG.∴∠EFG =∠EGF.∵∠EDF +∠EFD +∠EFG +∠EGF =180∘,∴∠EFD +∠EFG =90∘即∠DFG =90∘.∴∠FDG +∠FGD =90∘∵∠FDG +∠MDC =90∘,∴.∠FGD =∠MDC.∵∠DFG =∠DMC =90∘,∴△CMD ≅△DFG(AAS)∴CM =DF,DM =FG.设CM =DF =2m,CF =√5m 勾股定理得FM =m.∴DM =FG =m.∴DC =DG =√5m.过点F 作FQ ⊥DG 于点Q .∵tan ∠FDQ =FQDQ =FGFD =12,DF =2m,FQ 2+DQ 2=FD 2,∴FQ =2√55m,FN =DQ =4√55m.∴DN =FQ =2√55m.∴CN =3√55m.∴点F 的坐标为(4√55m,3−3√55m )将点F 坐标代入抛物线y =x 2−4x +3中,解得m 1=0(舍去),m 2=13√516.∴点F (134,916)【考点】二次函数综合题【解析】此题暂无解析【解答】(1)解:y =ax 2−4ax +4a −1配方得y =a(x −2)2−1∴抛物线的对称轴为直线x =2∵AB =2,点A 、B 关于直线x =2对称,∴A(1,0),B(3,0).将点A(1,0)代人抛物线解析式得a =1,∴抛物线的解析式为y =x 2−4x +3.(2)过点P 作PH ⊥x 轴于点H .∵点P 在抛物线y =x 2−4x +3上,∴点P 的坐标为(t,t 2−4t +3)∴PH =t 2−4t +3,OH =t∴AH =t −1.∵∠PAH =∠OAD ,∴tan ∠PAH =tan ∠OAD .∴PHAH =ODOA .∴t 2−4t +3t −1=OD1.∴OD =t −3.当x =0时,y =3.∴OC =3.∴CD =3+t −3=t .∴d =t .(3)设直线BC 解析式为y =kx +b(k ≠0)∵B(3,0),C(0,3)∴{0=3k +b,b =3.∴y =−x +3.∵PH ⊥x 轴,∴点G 横坐标为t .∵点G 在直线BC 上,∴点G 纵坐标为3−t .∴GH =t −3=OD .∵∠DOH +∠GHO =180∘,∴OD//GH .∴四边形ODGH 为平行四边形,∵ ∠DOH =90∘∴.四边形ODCH 为矩形.∴∠CDG =90∘,DG =OH =t.∵CD =t ,∴CD =DG.连接FG ,过点C 作CM ⊥DF 于点M .∵∠FDC +∠EFD =90∘,∠FDC +∠FDE =90∘,∴∠EDF =∠EFD. ∴DE =EF.∵DE =EG ,∴EF =EG.∴∠EFG =∠EGF.∵∠EDF +∠EFD +∠EFG +∠EGF =180∘,∴∠EFD +∠EFG =90∘即∠DFG =90∘.∴∠FDG +∠FGD =90∘∵∠FDG +∠MDC =90∘,∴.∠FGD =∠MDC.∵∠DFG =∠DMC =90∘,∴△CMD ≅△DFG(AAS)∴CM =DF,DM =FG.设CM =DF =2m,CF =√5m 勾股定理得FM =m.∴DM =FG =m.∴DC =DG =√5m.过点F 作FQ ⊥DG 于点Q .∵tan ∠FDQ =FQDQ =FGFD =12,DF =2m,FQ 2+DQ 2=FD 2,∴FQ =2√55m,FN =DQ =4√55m.∴DN =FQ =2√55m.∴CN =3√55m.∴点F 的坐标为(4√55m,3−3√55m )将点F 坐标代入抛物线y =x 2−4x +3中,解得m 1=0(舍去),m 2=13√516.∴点F (134,916)。
全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.(﹣1)2020等于( )A. ﹣2020B. 2020C. ﹣1D. 12.下列计算正确的是( )A. (﹣2a2)4=8a8B. a3+a=a4C. a5÷a2=a3D. (a+b)2=a2+b23.已知反比例函数y=kx(k≠0)图象位于二、四象限,则一次函数y=x+k图象大致是( )A. B.C. D.4.(2016甘肃省兰州市)已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为( )A. 34B.43C.916D.1695.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A. 40°B. 50°C. 80°D. 100°6.若分式211xx-+的值为0,则x的取值为( )A. x≠1B. x≠﹣1C. x=1D. x=﹣17.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A. 2400元、2400元B 2400元、2300元C. 2200元、2200元D. 2200元、2300元8.已知等边三角形的周长为6,则它的内切圆和外接圆组成的圆环面积为( )A. 6πB. 3πC. πD. 2π9.货车行驶25 千米与小车行驶35 千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A. 253520x x=-B.253520x x=-C.253520x x=+D.253520x x=+10.如图已知点A(1,4),B(2,2)是反比例函数y=4x图象上的两点,动点P(x,0)在x轴上运动,当线段AP=BP时,点P的坐标是( )A. (﹣92,0) B. (﹣94,0) C. (92,0) D. (94,0)二.填空题(共8小题)11.世界文化遗产长城总长约6 700 00 m,用科学记数法可表示为_____m.12.因式分解:a4﹣2a3+a2=_____.13.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为______.14.四边形ABCD是某个圆内接四边形,若∠A=100°,则∠C= .15.现定义运算”☆”,对于任意实数a、b,都有a☆b=a2﹣3a+b,若x☆2=6,则实数x值是_____.16.一个不透明的袋子中装有形状、大小均相同的3个红球,2个白球,1个黑球,从袋中随机摸出一个球是红球的概率为_____.17.如图,点D在ΔABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=47,AD=65,CD=13,则线段AC的长为.18.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_____.三.解答题(共6小题)19.(1)计算:(π﹣2016)0+6cos45°﹣|﹣18|+(12)﹣2(2)先化简,再求值:(1111x x-+-)÷21x-,其中x=2.20.铜仁市教育局为了了解七年级学生寒假参加社会实践活动的天数,随机抽查本市部分七年级学生寒假参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)a=%,并写出该扇形所对圆心角的度数为;补全条形图;(2)在这次抽样调查中,一共调查了多少名学生?(3)如果该市有七年级学生20000人,请你估计”活动时间不少于5天”的大约有多少人?21.已知:如图,AB=CD,BC=DA,求证:∠A=∠C.22.如图,一艘渔船以60海里每小时的速度向正东方向航行.在A处测得灯塔C在北偏东60°方向上;继续航行1小时到达B处,此时测得灯塔C在北偏东30°方向上.已知在灯塔C周围50海里范围内有暗礁,问这艘渔船继续向东航行有无触礁的危险?23.某超市销售一种进价为40元/千克的产品,若按60元/千克出售时,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克.(1)若该超市销售这种产品计划平均每天获利2240元,则这种产品应将售价定为多少元?(2)将售价定为多少元时,可使超市销售这种产品一天获利最大,最大利润是多少?24.如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.答案与解析一.选择题(共10小题)1.(﹣1)2020等于( )A. ﹣2020B. 2020C. ﹣1D. 1【答案】D【解析】【分析】根据负数的偶次方是正数可以解答.【详解】(﹣1)2020=1,故选:D.【点睛】本题考查了有理数的乘方运算,知道-1的奇次方是-1,-1的偶次方是1,是常考题型.2.下列计算正确的是( )A. (﹣2a2)4=8a8B. a3+a=a4C. a5÷a2=a3D. (a+b)2=a2+b2【答案】C【解析】【分析】分别根据积的乘方运算法则,合并同类项法则,同底数幂的除法法则以及完全平方公式逐一判断即可.【详解】A.(﹣2a2)4=16a8,故本选项不合题意;B.a3与a不是同类项,所以不能合并,故本选项不合题意;C.a5÷a2=a3,正确;D.(a+b)2=a2+2ab+b2,故本选项不合题意.故选:C.【点睛】本题考查幂运算、合并同类项以及完全平方公式,掌握相关的公式以及运算法则是解题关键.3.已知反比例函数y=kx(k≠0)的图象位于二、四象限,则一次函数y=x+k图象大致是( )A. B.C. D.【答案】B【解析】【分析】根据反比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.【详解】解:∵反比例函数kyx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.【点睛】本题考查反比例函数与一次函数的图象特点,根据图象象限分布判断参数正负性以及根据参数正负性判断象限分布是解题关键.4.(2016甘肃省兰州市)已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为( )A. 34B.43C.916D.169【答案】A 【解析】试题分析:∵△ABC∽△DEF,△ABC与△DEF的相似比为34,∴△ABC与△DEF对应中线的比为34,故选A.考点:相似三角形的性质.5.如图,点A、B、C是⊙0上的三点,若∠OBC=50°,则∠A的度数是()A. 40°B. 50°C. 80°D. 100°【答案】A【解析】【分析】在等腰三角形OBC中求出∠BOC,继而根据圆周角定理可求出∠A的度数.【详解】解:∵OC=OB,∴∠OCB=∠OBC=50°,∴∠BOC=180°﹣50°﹣50°=80°,∴∠A=12∠BOC=40°;故选A.【点睛】本题考查在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6.若分式211xx-+的值为0,则x的取值为( )A. x≠1B. x≠﹣1C. x=1D. x=﹣1【答案】C【解析】【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【详解】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故选:C.【点睛】本题考查分式值为零的条件,掌握分式值为零的条件是分子为零,分母不为零是解题关键.7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A. 2400元、2400元B. 2400元、2300元C. 2200元、2200元D. 2200元、2300元【答案】A【解析】【分析】众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)【详解】这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.故选A.8.已知等边三角形的周长为6,则它的内切圆和外接圆组成的圆环面积为( )A. 6πB. 3πC. πD. 2π【答案】C【解析】【分析】根据题意画出图形,由等边三角形的周长为6,可得BC=2,设点D为BC边与内切圆的切点,连接AD,则AD⊥BC,可得BD=DC=12BC=1,再根据勾股定理可得OB2﹣OD2=BD2=1,再根据S圆环=S外接圆﹣S内切圆即可得结论.【详解】解:如图,∵等边三角形ABC的周长为6,∴BC=2,设点D为BC边与内切圆的切点,连接AD ,则AD ⊥BC , ∴BD =DC =12BC =1, 在Rt △BOD 中,根据勾股定理,得 OB 2﹣OD 2=BD 2=1, ∴S 圆环=S 外接圆﹣S 内切圆 =OB 2π﹣OD 2π =BD 2π =π. 故选:C .【点睛】本题考查三角形的外接圆与内切圆,掌握正三角形的外接圆与内切圆半径求算是解题关键. 9.货车行驶 25 千米与小车行驶 35 千米所用时间相同,已知小车每小时比货车多行驶 20千米,求两车的速度各为多少?设货车的速度为 x 千米/小时,依题意列方程正确的是( ) A.253520x x =- B.253520x x=-C.253520x x =+ D.253520x x=+【答案】C 【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式. 解:根据题意,得253520x x =+. 故选C .10.如图已知点A(1,4),B(2,2)是反比例函数y =4x的图象上的两点,动点P(x ,0)在x 轴上运动,当线段AP =BP 时,点P 的坐标是( )A. (﹣92,0) B. (﹣94,0) C. (92,0) D. (94,0) 【答案】A 【解析】 【分析】根据平面直角坐标系中距离公式得到:(x﹣1)2+42=(x﹣2)2+22,求解即可.【详解】解:∵点A(1,4),B(2,2),动点P(x,0)在x轴上运动,∴2AP=(x﹣1)2+42,2BP=(x﹣2)2+22,∵AP=BP,∴(x﹣1)2+42=(x﹣2)2+22,解得x=﹣92,∴点P的坐标是(﹣92,0),故选:A.【点睛】本题考查距离公式,掌握平面直角坐标系中距离公式是解题关键.二.填空题(共8小题)11.世界文化遗产长城总长约6 700 00 m,用科学记数法可表示为_____m.【答案】6.7×105.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:将670 000用科学记数法表示为6.7×105m.故答案为:6.7×105【点睛】本题考查科学记数法,确定,a n的值是解题关键.12.因式分解:a4﹣2a3+a2=_____.【答案】a2(a﹣1)2.【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=a2(a2﹣2a+1)=a2(a﹣1)2.故答案为:a2(a﹣1)2.【点睛】本题考查因式分解,掌握提公因式法和公式法因式分解解题关键.13.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为______.【答案】24【解析】【详解】解:x2﹣14x+48=0,则有(x-6)(x-8)=0解得:x=6或x=8.所以菱形的面积为:(6×8)÷2=24.菱形的面积为:24.故答案为24.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.14.四边形ABCD是某个圆的内接四边形,若∠A=100°,则∠C= .【答案】80°.【解析】试题分析:已知四边ABCD是圆的内接四边形,∠A=100°,根据圆内接四边形的对角互补可得∠C=180°﹣100°=80°.考点:圆内接四边形的性质.15.现定义运算”☆”,对于任意实数a、b,都有a☆b=a2﹣3a+b,若x☆2=6,则实数x的值是_____.【答案】4或﹣1.【解析】【分析】先根据新定义得出一元二次方程,求出方程的解即可.【详解】解:∵x☆2=6,∴x2﹣3x+2=6,x2﹣3x﹣4=0,即(x﹣4)(x+1)=0,x﹣4=0,x+1=0,x1=4,x2=﹣1,故答案为:4或﹣1.【点睛】本题考查定义新运算与一元二次方程,正确理解定义新运算是解题关键.16.一个不透明的袋子中装有形状、大小均相同的3个红球,2个白球,1个黑球,从袋中随机摸出一个球是红球的概率为_____.【答案】12.【解析】【分析】用红球的个数除以球的总个数即可得.【详解】解:从袋中随机摸出一个球是红球的概率为31= 3+2+12故答案为:12.【点睛】本题考查概率求算,掌握利用概率公式求算是解题关键.17.如图,点D在ΔABC的边BC上,∠C+∠BAD=∠DAC,tan∠BAD=47,AD=65,CD=13,则线段AC的长为.【答案】13【解析】试题分析:过点A作AE⊥BC,然后根据∠BAD的正切值以及角度之间的关系和AD、CD的长度大小求出AC的长度.考点:三角函数的应用.18.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是_____.【答案】6.【解析】【分析】观察发现,每四个一组,个位数字循环,然后用2016除以4,正好能够整除,所以与第四个数的个位数字相同.【详解】解:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,所以,每四个一组,个位数字循环,∵2016÷4=504,∴22016的个位数字与24的个位数字相同是:6.故答案为:6.【点睛】本题考查了尾数特征,利用有理数的乘法考查了数字变化规律的问题,观察得到”每四个数一组,个位数字循环”是解题的关键.三.解答题(共6小题)19.(1)计算:(π﹣2016)0+6cos45°﹣|(12)﹣2(2)先化简,再求值:(1111x x -+-)÷21x -,其中x .【答案】(1)5;(2)11x +,﹣1. 【解析】【分析】(1)根据零指数幂、特殊角的三角函数值、绝对值和负整数指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.详解】解:(1)(π﹣2016)0+6cos45°﹣|(12)﹣2=1+6×2﹣+4=﹣+4=5;(2)(1111x x -+-)÷21x - =1(1)(1(1)1)2x x x x x -•--+-+ =1)12(1x x x --+-- =2()21x --+ =11x +,当x 时,﹣1.【点睛】本题考查分式的化简求值、零指数幂、特殊角的三角函数值、绝对值和负整数指数幂,解答本题的关键是明确它们各自的计算方法.20.铜仁市教育局为了了解七年级学生寒假参加社会实践活动的天数,随机抽查本市部分七年级学生寒假参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)a=%,并写出该扇形所对圆心角的度数为;补全条形图;(2)在这次抽样调查中,一共调查了多少名学生?(3)如果该市有七年级学生20000人,请你估计”活动时间不少于5天”的大约有多少人?【答案】(1)25,90°,图详见解析;(2)200;(3)15000【解析】【分析】(1)用100%减去3天、4天、5天、7天所占百分比可得a,利用360°乘以所占百分比可得该扇形所对圆心角的度数,求出总数,再乘以所占百分比可得6天的人数,再补图即可;(2)由(1)的计算可得答案;(3)利用样本估计总体的方法计算即可.【详解】解:(1)a=100%﹣30%﹣15%﹣10%﹣20%=25%,360°×25%=90°,调查人数:20÷10%=200(人),200×25%=50(人),如图所示:故答案为:25;90°;(2)由(1)可得一共调查了200名学生;(3)20000×(30%+20%+25%)=15000(人),答:”活动时间不少于5天”的大约有15000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.21.已知:如图,AB=CD,BC=DA,求证:∠A=∠C.【答案】详见解析【解析】分析】根据SSS可证明△ABD≌△CDB,则可得出结论.【详解】证明:∵AB=CD,BC=DA,BD=DB,∴△ABD≌△CDB(SSS),∴∠A=∠C.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解本题的关键.22.如图,一艘渔船以60海里每小时的速度向正东方向航行.在A处测得灯塔C在北偏东60°方向上;继续航行1小时到达B处,此时测得灯塔C在北偏东30°方向上.已知在灯塔C周围50海里范围内有暗礁,问这艘渔船继续向东航行有无触礁的危险?【答案】渔船继续向正东方向航行是安全的,理由详见解析.【解析】【分析】作CH⊥AB于H.利用解直角三角形,求出PH的值即可判定; 【详解】解:作CH⊥AB于H.∵∠CAB=30°,∠ABC=120°,∴∠ACB=180°﹣∠CAB﹣∠ABC=30°,∵∠BAC=∠BCA=30°,∴BA=BC=60海里,在Rt△CBH中,CH=CB•sin60°=60×33海里),∵350,∴渔船继续向正东方向航行是安全的.【点睛】本题考查的是解直角三角形的应用——方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.某超市销售一种进价为40元/千克的产品,若按60元/千克出售时,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克.(1)若该超市销售这种产品计划平均每天获利2240元,则这种产品应将售价定为多少元?(2)将售价定为多少元时,可使超市销售这种产品一天获利最大,最大利润是多少?【答案】(1)这种产品应将售价定为54元或56元;(2)销售价格定为55时,才能使平均每天获得的利润最大,最大利润是2250元.【解析】【分析】(1)设每千克水果应降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)设每天获得的利润为W,销售价格为x,列出W与x的函数关系式即可解答.【详解】解:(1)设每千克水果应降价x元,根据题意,得:(60﹣x﹣40)(100+10x)=2240,解得:x1=4,x2=6,答:这种产品应将售价定为54元或56元;(2)设每天获得利润为W,销售价格为x,则W=(x﹣40)[100+10(60﹣x)]=(x﹣40)(﹣10x+700)=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250.∴销售价格定为55时,才能使平均每天获得的利润最大,最大利润是2250元.【点睛】本题考查了一元二次方程的应用以及二次函数的应用,解题的关键是根据题目中的等量关系列出方程和函数关系式.24.如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.【答案】见解析【解析】【分析】(1)根据△PAB与△PCA的对应边成比例,夹角相等证得结论.(2)欲证明AP是⊙O切线,只需证得∠PAC=90°.【详解】证明:(1)∵PC=50,PA=30,PB=18,∴PC505PA305,PA303PB183 ====.∴PC PA PA PB=.又∵∠APC=∠BPA,∴△PAB∽△PCA.(2)∵AC是⊙O的直径,∴∠ABC=90°.∴∠ABP=90°.又∵△PAB∽△PCA,∴∠PAC=∠ABP.∴∠PAC=90°.∴PA是⊙O的切线.。
一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠.(1)求证:CE 是半圆的切线;(2)若CD=10,2tan 3B =,求半圆的半径.【答案】(1)见解析;(2)413【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径,∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°.∴∠DCE+∠BCE=90°.∵OC =OB ,∴∠OCB =∠B.∵=DCE B ∠∠,∴∠OCB =∠DCE .∴∠OCE =∠DCB =90°.∴OC ⊥CE .∵OC 是半径,∴CE 是半圆的切线.(2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x.∴()()222313AB x x x =+=.∵OD ⊥AB ,∴∠AOD =∠A CB=90°.∵∠A =∠A ,∴△AOD ∽△ACB .∴AC AO AB AD=. ∵1132OA AB x ==,AD =2x +10, ∴113221013x x x =+. 解得 x =8. ∴138413OA =⨯=. 则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.2.图 1 和图 2 中,优弧AB 纸片所在⊙O 的半径为 2,AB =23 ,点 P 为优弧AB 上一点(点 P 不与 A ,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A ′.发现:(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,∠ABA ′= ;(2)当BA′与⊙O 相切时,如图 2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN 剪裁,得到半圆形纸片,点P(不与点M, N 重合)为半圆上一点,将圆形沿NP 折叠,分别得到点M,O 的对称点A′, O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图 3,判断A′C 与半圆O 的位置关系,并说明理由;(2)如图 4,当α= °时,NA′与半圆O 相切,当α= °时,点O′落在NP上.(3)当线段NO′与半圆O 只有一个公共点N 时,直接写出β的取值范围.【答案】发现:(1)1,60°;(2)23;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】【分析】发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=12A'N=12MN=2可判定A′C与半圆相切;(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在PB时,连接MO′,则可知NO′=12MN,可求得∠MNO′=60°,可求得α=30°;(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.【详解】发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,∵⊙O的半径为2,3∴22OB HB-222(3)1-=在△BOH中,OH=1,BO=2∴∠ABO=30°∵图形沿BP折叠,得到点A的对称点A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=12OB=1.∴BG=3.∵OG⊥BP,∴BG=PG=3.∴BP=23.∴折痕的长为23拓展:(1)相切.分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,∵A'C∥MN∴四边形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=12A'N=12MN=2∴A'C与半圆(2)当NA′与半圆O相切时,则ON⊥NA′,∴∠ONA′=2α=90°,∴α=45当O′在PB上时,连接MO′,则可知NO′=12 MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案为:45°;30°.(3)∵点P,M不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.【点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.3.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=52AD,∶DE=4∶1,求DE的长.【答案】(1)见解析5【解析】分析:(1)直接利用直角三角形的性质得出DF=CF=EF,再求出∠FDO=∠FCO=90°,得出答案即可;(2)首先得出AB=BC即可得出它们的长,再利用△ADC~△ACE,得出AC2=AD•AE,进而得出答案.详解:(1)连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.∵DB平分∠ADC,∴∠ADB=∠CDB,∴AB=BC,∴BC=AB2.在Rt△ABC中,AC2=AB2+BC2=100.又∵AC⊥CE,∴∠ACE=90°,∴△ADC~△ACE,∴ACAD =AEAC,∴AC2=AD•AE.设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,∴100=4x•5x,∴x=5,∴DE=5.点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.4.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(3,﹣1),点A的坐标为(﹣2,3),点B的坐标为(﹣3,0),点C在x轴上,且点D在点A的左侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,同时菱形ABCD沿x轴向右以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与BC相切,且切点为BC的中点时,连接BD,求:①t的值;②∠MBD的度数;(3)在(2)的条件下,当点M与BD所在的直线的距离为1时,求t的值.【答案】(1)8;(2)①7;②105°;(3)t=633【解析】分析:(1)根据勾股定理求菱形的边长为2,所以可得周长为8;(2)①如图2,先根据坐标求EF的长,由EE'﹣FE'=EF=7,列式得:3t﹣2t=7,可得t 的值;②先求∠EBA=60°,则∠FBA=120°,再得∠MBF=45°,相加可得:∠MBD=∠MBF+∠FBD=45°+60°=105°;(3)分两种情况讨论:作出距离MN和ME,第一种情况:如图5由距离为1可知:BD 为⊙M的切线,由BC是⊙M的切线,得∠MBE=30°,列式为3t3=2t+6,解出即可;第二种情况:如图6,同理可得t 的值.详解:(1)如图1,过A 作AE ⊥BC 于E .∵点A 的坐标为(﹣2),点B 的坐标为(﹣3,0),∴AE ,BE =3﹣2=1,∴AB=2. ∵四边形ABCD 是菱形,∴AB =BC =CD =AD =2,∴菱形ABCD 的周长=2×4=8;(2)①如图2,⊙M 与x 轴的切点为F ,BC 的中点为E .∵M (3,﹣1),∴F (3,0).∵BC =2,且E 为BC 的中点,∴E (﹣4,0),∴EF =7,即EE '﹣FE '=EF ,∴3t ﹣2t =7,t =7;②由(1)可知:BE =1,AE∴tan ∠EBA =AEBE =,∴∠EBA =60°,如图4,∴∠FBA =120°. ∵四边形ABCD 是菱形,∴∠FBD =12∠FBA =11202⨯︒=60°. ∵BC 是⊙M 的切线,∴MF ⊥BC . ∵F 是BC 的中点,∴BF =MF =1,∴△BFM 是等腰直角三角形,∴∠MBF =45°,∴∠MBD =∠MBF +∠FBD =45°+60°=105°;(3)连接BM ,过M 作MN ⊥BD ,垂足为N ,作ME ⊥BC 于E ,分两种情况: 第一种情况:如图5.∵四边形ABCD 是菱形,∠ABC =120°,∴∠CBD =60°,∴∠NBE =60°.∵点M 与BD 所在的直线的距离为1,∴MN =1,∴BD 为⊙M 的切线.∵BC 是⊙M 的切线,∴∠MBE =30°.∵ME =1,∴EB ∴3t =2t +6,t =6第二种情况:如图6.∵四边形ABCD 是菱形,∠ABC =120°,∴∠DBC =60°,∴∠NBE =120°.∵点M 与BD 所在的直线的距离为1,∴MN =1,∴BD 为⊙M 的切线.∵BC 是⊙M 的切线,∴∠MBE =60°.∵ME =MN =1,∴Rt △BEM 中,tan60°=ME BE ,EB =160tan ︒∴3t =2t t综上所述:当点M 与BD 所在的直线的距离为1时,t =6或6+3.点睛:本题是四边形和圆的综合题,考查了菱形的性质、圆的切线的性质和判定、特殊的三角函数值、等腰直角三角形的性质、动点运动问题,此类问题比较复杂,弄清动点运动方向、速度、时间和路程的关系,并与方程相结合,找等量关系,求出时间t的值.5.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D 在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.【答案】见解析【解析】试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.试题解析:图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.证明如下:∵AE是小⊙O的直径,∴OA=OE.连接OF,∵BD与小⊙O相切于点F,∴OF⊥BD.∵BD是大圆O的弦,∴DF=BF.∵CE⊥BD,∴CE∥OF,∴AF=CF.∴四边形ABCD是平行四边形.∴AD=BC,AB=CD.∵CE:AE=OF:AO,OF=AO,∴AE=EC.连接OD、OC,∵OD=OC,∴∠ODC=∠OCD.∵∠AOD=∠ODC,∠EOC=∠OEC,∴∠AOC=∠EOC,∴△AOD≌△EOC,∴AD=CE.∴BC=AD=CE=AE.【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.6.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=3D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)93﹣2π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,OB=BD=23,根据勾股定理求出PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,3,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt △DBP 中,PD=12,, 在Rt △DEP 中,∵∴=2,∵OP ⊥BC ,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE ,∠BED=∠AEC ,∴△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=1,∴∵BE ∥DF , ∴△ABE ∽△AFD , ∴BE AE DF AD=,即5DF = , 解得DF=12,在Rt △BDH 中,BH=12, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣△BOD 的面积)=221601223604π⨯⨯-﹣2π. 【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.7.如图1,是用量角器一个角的操作示意图,量角器的读数从M 点开始(即M 点的读数为0),如图2,把这个量角器与一块30°(∠CAB =30°)角的三角板拼在一起,三角板的斜边AB 与量角器所在圆的直径MN 重合,现有射线C 绕点C 从CA 开始沿顺时针方向以每秒2°的速度旋转到与CB ,在旋转过程中,射线CP 与量角器的半圆弧交于E .连接BE . (1)当射线CP 经过AB 的中点时,点E 处的读数是 ,此时△BCE 的形状是 ; (2)设旋转x 秒后,点E 处的读数为y ,求y 与x 的函数关系式;(3)当CP 旋转多少秒时,△BCE 是等腰三角形?【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:(1)如图2﹣1中,∵∠ACB=90°,OA=OB,∴OA=OB=OC,∴∠OCA=∠OAC=30°,∴∠AOE=60°,∴点E处的读数是60°,∵∠E=∠BAC=30°,OE=OB,∴∠OBE=∠E=30°,∴∠EBC=∠OBE+∠ABC=90°,∴△EBC是直角三角形;故答案为60°,直角三角形;(2)如图2﹣2中,∵∠ACE=2x,∠AOE=y,∵∠AOE=2∠ACE,∴y=4x(0≤x≤45).(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,∵AC⊥BC,∵EO∥AC,∴∠AOE=∠BAC=30°,∠AOE=15°,∴∠ECA=12∴x=7.5.②若2﹣4中,当BE=BC时,易知∠BEC=∠BAC=∠BCE=30°,∴∠OBE=∠OBC=60°,∵OE=OB,∴△OBE是等边三角形,∴∠BOE=60°,∴∠AOB=120°,∠ACB=60°,∴∠ACE=12∴x=30,综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.8.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并说明理由;(2)若AB=2,BC=2,求⊙O的半径.6【答案】(1)直线CE与⊙O相切,理由见解析;(2)⊙O【解析】【分析】(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切;(2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程222-=,解此方程即可求得⊙O的半径.3)6)x x【详解】解:(1)直线CE与⊙O相切.…理由:连接OE,∵四边形ABCD是矩形,∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,∴∠DCE +∠DEC =90°,∠ACB =∠DAC ,又∠DCE =∠ACB ,∴∠DEC +∠DAC =90°,∵OE =OA ,∴∠OEA =∠DAC ,∴∠DEC +∠OEA =90°,∴∠OEC =90°,∴OE ⊥EC ,∵OE 为圆O 半径,∴直线CE 与⊙O 相切;…(2)∵∠B =∠D ,∠DCE =∠ACB ,∴△CDE ∽△CBA ,∴ BC AB DC DE =, 又CD =AB =2,BC =2, ∴DE =1根据勾股定理得EC =3, 又226AC AB BC =+=,…设OA 为x ,则222(3)(6)x x +=-,解得6x =, ∴⊙O 的半径为64.【点睛】此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.9.如图,在中,,以为直径作,交边于点,交边于点,过点作的切线,交的延长线于点,交于点.(1)求证:;(2)若,,求的半径.【答案】(1)证明见解析;(2)4.【解析】试题分析:(1)连接AD,根据等腰三角形三线合一即可证明.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD,由△FOD∽△FAE,得列出方程即可解决问题.试题解析:(1)连接AD,∵AB是直径,∴∠ADB=90°,∵AB=AC,AD⊥BC,∴BD=DC.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD、∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,整理得R2﹣R﹣12=0,∴R=4或(﹣3舍弃).∴⊙O的半径为4.考点:切线的性质、等腰三角形的性质等知识.10.如图,AB 为⊙O 的直径,BC 为⊙O 的弦,过O 点作OD ⊥BC ,交⊙O 的切线CD 于点D ,交⊙O 于点E ,连接AC 、AE ,且AE 与BC 交于点F .(1)连接BD ,求证:BD 是⊙O 的切线;(2)若AF :EF=2:1,求tan ∠CAF 的值.【答案】(1)证明见解析;(23. 【解析】【分析】 (1)根据全等三角形的性质得到∠OBD=∠OCD=90°,根据切线的判定定理即可得到结论; (2)根据已知条件得到AC ∥DE ,设OD 与BC 交于G ,根据平行线分线段成比例定理得到AC :EG=2:1,EG=12AC ,根据三角形的中位线的性质得到OG=12AC 于是得到AC=OE ,求得∠ABC=30°,即可得到结论.【详解】证明:(1)∵OC=OB ,OD ⊥BC ,∴∠COD=∠BOD ,在△COD 与△BOD 中, OC OB COD BOD OD OD ===⎧⎪∠∠⎨⎪⎩,∴△COD ≌△BOD ,∴∠OBD=∠OCD=90°,∴BD是⊙O的切线;(2)解:∵AB为⊙O的直径,AC⊥BC,∵OD⊥CB,∴AC∥DE,设OD与BC交于G,∵OE∥AC,AF:EF=2:1,∴AC:EG=2:1,即EG=12AC,∵OG∥AC,OA=OB,∴OG=12AC,∵OG+GE=12AC+12AC=AC,∴AC=OE,∴AC=12AB,∴∠ABC=30°,∴∠CAB=60°,∵CE BE,∴∠CAF=∠EAB=12∠CAB=30°,∴tan∠CAF=tan30°3【点睛】本题考查了切线的判定和性质,垂径定理,全等三角形的判定与性质,三角形的中位线的性质,三角函数的定义,正确的识别图形是解题的关键.。
专题复习(六) 几何综合题1.(2016·某某)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形. (1)如图1,四边形ABCD 中,点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2,点P 是四边形ABCD 内一点,且满足PA =PB ,PC =PD ,∠APB =∠CPD.点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)图1 图2解:(1)证明:连接BD. ∵E 、H 分别是AB 、AD 的中点, ∴EH =12BD ,EH ∥BD.∵F 、G 分别是BC 、CD 的中点, ∴FG =12BD ,FG ∥BD.∴EH =FG ,EH ∥FG.∴中点四边形EFGH 是平行四边形. (2)中点四边形EFGH 是菱形. 证明:连接AC 、BD.∵∠APB =∠CPD,∴∠APB +∠APD=∠CPD+∠APD,即∠BPD=∠APC. 又∵PA=PB ,PC =PD ,∴△APC ≌△BPD(SAS ).∴AC=BD.∵点E 、F 、G 分别为边AB 、BC 、CD 的中点, ∴EF =12AC ,FG =12BD.∴EF=FG.又∵四边形EFGH 是平行四边形, ∴中点四边形EFGH 是菱形.图3(3)当∠APB=∠CPD=90°时,如图3,AC与BD交于点O,BD与EF,AP分别交于点M,Q,中点四边形EFGH是正方形.理由如下:由(2)知:△APC≌△BPD,∴∠PAC=∠PBD.又∵∠AQO=∠BQP,∴∠AOQ=∠APB=90°.又∵EF∥AC,∴∠OMF=∠AOQ=90°.又∵EH∥BD,∴∠HEF=∠OMF=90°.又∵四边形EFGH是菱形,∴中点四边形EFGH是正方形.2.(2016·某某)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数;(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=23CM+233BN.图1 图2解:(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED,∴AC=BC,CD=CE. ∵∠CAB=∠CBA=∠C DE=∠CED,∴∠ACB=∠DCE.∴∠ACD=∠BCE.∴△ACD≌△BCE(SAS).∴AD=BE.②由①得△ACD≌△BCE,∴∠ADC=∠BEC=180°-∠CDE=130°.∴∠AEB =∠BEC-∠CED=130°-50°=80°.(2)证明:在等腰△DCE 中,∵CD =CE ,∠DCE =120°,CM ⊥DE , ∴∠DCM =12∠DCE=60°,DM =EM.在Rt △CDM 中,DM =CM·tan ∠DCM =CM·tan 60°=3CM ,∴DE =23CM. 由(1),得∠ADC =∠BEC=150°,AD =BE , ∴∠AEB =∠BEC-∠CED=120°. ∴∠BEN =60°. 在Rt △BEN 中,BE =BN sin 60°=233BN.∴AD =BE =233BN.又∵AE=DE +AD ,∴AE =23CM +233BN.3.(2016·东营)如图1,△ABC 是等腰直角三角形,∠BAC =90°,AB =AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD =CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC 绕点A 逆时针旋转45°时,如图3,延长DB 交CF 于点H ,交AF 于点N. ①求证:BD⊥CF;②当AB =2,AD =32时,求线段DH 的长.图1 图2 图3解:(1)BD =CF 成立.证明:∵AB=AC ,∠BAD =∠CAF=θ,AD =AF , ∴△ABD ≌△ACF(SAS ).∴BD =CF. (2)①证明:由(1)得,△ABD ≌△ACF , ∴∠HFN =∠ADN. 又∵∠HNF=∠AND, ∴∠NHF =∠NAD=90°. ∴HD ⊥HF ,即BD⊥CF.②连接DF ,延长AB 交DF 于点M. 在△MAD 中,∵∠MAD =∠MDA=45°, ∴∠BMD =90°.∵AD =32,四边形ADEF 是正方形, ∴MA =MD =322=3,FD =6.∴MB =3-2=1,DB =12+32=10. 在Rt △BMD 和Rt △FHD 中, ∵∠MDB =∠HDF, ∴△BMD ∽△FHD. ∴MD HD =BD FD ,即3HD =106.∴DH=9105.4.(2016·某某)在矩形ABCD 中,AB =3,AD =4,动点Q 从点A 出发,以每秒1个单位的速度,沿AB 向点B 移动;同时点P 从点B 出发,仍以每秒1个单位的速度,沿BC 向点C 移动,连接QP ,QD ,PD.若两个点同时运动的时间为x 秒(0<x≤3),解答下列问题:(1)设△QPD 的面积为S ,用含x 的函数关系式表示S ;当x 为何值时,S 有最大值?并求出最小值; (2)是否存在x 的值,使得QP⊥DP?试说明理由.解:(1)∵四边形ABCD 为矩形,∴BC =AD =4,CD =AB =3. 当运动x 秒时,则AQ =x ,BP =x , ∴BQ =AB -AQ =3-x ,CP =BC -BP =4-x. ∴S △ADQ =12AD ·AQ=12×4x=2x ,S △BPQ =12BQ·BP=12(3-x)x =32x -12x 2,S △PCD =12PC·CD=12·(4-x)×3=6-32x.又S 矩形ABCD =AB·BC=3×4=12,∴S =S 矩形ABCD -S △ADQ -S △BPQ -S △PCD =12-2x -(32x -12x 2)-(6-32x)=12x 2-2x +6=12(x -2)2+4,即S =12(x -2)2+4.∴S 为开口向上的二次函数,且对称轴为直线x =2.∴当0<x≤2时,S 随x 的增大而减小; 当2<x≤3时,S 随x 的增大而增大, 又当x =0时,S =6,当S =3时,S =92.但x 的X 围内取不到x =0,∴S 不存在最大值. 当x =2时,S 有最小值,最小值为4.(2)存在,理由:由(1)可知BQ =3-x ,BP =x ,CP =4-x. 当QP⊥DP 时,则∠BPQ+∠DPC=∠DPC+∠PDC, ∴∠BPQ =∠PDC.又∵∠B=∠C, ∴△BPQ ∽△CDP. ∴BQ PC =BP CD ,即3-x 4-x =x 3,解得x =7+132(舍去)或x =7-132. ∴当x =7-132时,QP ⊥DP.5.(2016·某某)(1)已知:△ABC 是等腰三角形,其底边是BC ,点D 在线段AB 上,E 是直线BC 上一点,且∠DEC =∠DCE,若∠A=60°(如图1),求证:EB =AD ;(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”,其他条件不变(如图2),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“∠A=90°”,其他条件不变,则EB AD 的值是多少?(直接写出结论,不要求写解答过程)图1 图2解:(1)证明:过D 点作BC 的平行线交AC 于点F. ∵△ABC 是等腰三角形,∠A =60°, ∴△ABC 是等边三角形.∴∠ABC=60°. ∵DF ∥BC ,∴∠ADF =∠ABC=60°. ∴△ADF 是等边三角形. ∴AD =DF ,∠AFD =60°.∴∠DFC =180°-60°=120°.∵∠DBE =180°-60°=120°,∴∠DFC =∠DBE. 又∵∠FDC=∠DCE,∠DCE =∠DEC, ∴∠FDC =∠DEC,ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD. (2)EB =AD 成立.理由如下:过D 点作BC 的平行线交AC 的延长线于点F. 同(1)可证△ADF 是等边三角形, ∴AD =DF ,∠AFD =60°.∵∠DBE =∠ABC=60°,∴∠DBE =∠AFD. ∵∠FDC =∠DCE,∠DCE =∠DEC, ∴∠FDC =∠DEC,ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD. (3)EBAD= 2.理由如下: 如图3,过D 点作BC 的平行线交AC 于点G.图3∵△ABC 是等腰三角形,∠A =90°, ∴∠ABC =∠ACB=45°, ∴∠DBE =180°-45°=135°. ∵DG ∥BC ,∴∠GDC =∠DCE,∠DGC =180°-45°=135°. ∴∠DBE =∠DGC. ∵∠DCE =∠DEC, ∴ED =CD ,∠DEC =∠GDC.∴△DBE ≌△CGD(AAS ).∴BE=GD. ∵∠ADG =∠ABC=45°,∠A =90°, ∴△ADG 是等腰直角三角形. ∴DG =2AD.∴BE=2AD.∴EBAD = 2.6.(2016·某某)【探究证明】(1)在矩形ABCD 中,EF ⊥GH ,EF 分别交AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H.求证:EF GH =ADAB ;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M ,N 分别在边BC ,CD 上.若EF GH =1115,则BNAM 的值为________;【联系拓展】(3)如图3,四边形ABCD 中,∠ABC =90°,AB =AD =10,BC =CD =5,AM ⊥DN ,点M ,N 分别在边BC ,AB 上,求DNAM 的值.图1 图2 图3解:(1)证明:过点A 作AP∥EF,交CD 于点P ,过点B 作BQ∥GH,交AD 于点Q. ∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC.∴四边形AEFP 、四边形BHGQ 都是平行四边形.∴AP=EF ,GH =BQ. 又∵GH⊥EF,∴AP ⊥BQ.∴∠QAP +∠AQB=90°.∵四边形ABCD 是矩形,∴∠DAB =∠D=90°. ∴∠DAP +∠DPA=90°.∴∠AQB =∠DPA. ∴△PDA ∽△QAB.∴AP BQ =AD AB .∴EF GH =ADAB .(2)∵EF⊥GH,AM ⊥BN ,∴由(1)中的结论可得EF GH =AD AB ,BN AM =ADAB ,∴BN AM =EF GH =1115.故答案为1115. (3)连接AC ,过点D 作AB 的平行线交BC 的延长线于点E ,作AF⊥AB 交直线DE 于点F. ∵∠BAF =∠B=∠E=90°,∴四边形ABEF 是矩形.易证△ADC≌△ABC,∴∠ADC =∠ABC=90°. ∴∠FDA +∠EDC=90°.又∵∠EDC+∠EC D =90°,∴∠FDA =∠ECD. 又∵∠E=∠F, ∴△ADF ∽△DCE. ∴DE AF =DC AD =510=12. 设DE =x ,则AF =2x ,DF =10-x.在Rt △ADF 中,AF 2+DF 2=AD 2,即(2x)2+(10-x)2=100,解得x 1=4,x 2=0(舍去). ∴AF =2x =8.∴DN AM =AF AB =810=45.7.(2016·某某)在△ABC 中,P 为边AB 上一点. (1)如图1,若∠ACP=∠B,求证:AC 2=AP·AB; (2)若M 为CP 的中点,AC =2.①如图2,若∠PBM=∠ACP,AB =3,求BP 的长;②如图3,若∠ABC=45°,∠A =∠BMP=60°,直接写出BP 的长.图1 图2 图3解:(1)证明:∵∠ACP=∠B,∠CAP =∠BAC, ∴△ACP ∽△ABC. ∴AC AB =AP AC,即AC 2=AP·AB. (2)①作CQ∥BM 交AB 的延长线于点Q ,则∠PBM=∠Q. ∵∠PBM =∠ACP,∴∠ACP =∠Q. 又∠PAC=∠CAQ,∴△APC ∽△ACQ. ∴AC AQ =AP AC,即AC 2=AP·AQ. 又∵M 为PC 的中点,BM ∥CQ ,∴设BP =x ,则BQ =x.∴AP=3-x ,AQ =3+x. ∴22=(3-x)(3+x),解得x 1=5,x 2=-5(不合题意,舍去).∴BP = 5. ②BP =7-1.作CQ⊥AB 于点Q ,作CP 0=CP 交AB 于点P 0. ∵AC =2,∴AQ =1,CQ =BQ = 3.设AP 0=x ,则P 0Q =PQ =1-x ,BP =3-1+x , ∵∠BPM =∠CP 0A ,∠BMP =∠CAP 0, ∴△AP 0C ∽△MPB ,∴AP 0MP =P 0CBP.∴MP ·P 0C =12P 0C 2=(3)2+(1-x )22=AP 0·BP =x(3-1+x).解得x =7-3或x =-7-3(舍去). ∴BP =3-1+7-3=7-1.8.(2016·某某)数学活动——旋转变换(1)如图1,在△ABC 中,∠ABC =130°,将△ABC 绕点C 逆时针旋转50°得到△A′B′C,连接B B′.求∠A′B′B 的大小;(2)如图2,在△ABC 中,∠ABC =150°,AB =3,BC =5,将△ABC 绕点C 逆时针旋转60°得到△A ′B ′C ,连接BB′.以A′为圆心,A ′B ′长为半径作圆.①猜想:直线BB′与⊙A′的位置关系,并证明你的结论; ②连接A′B,求线段A′B 的长度;(3)如图3,在△ABC 中,∠ABC =α(90°<α<180°),AB =m ,BC =n ,将△ABC 绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B 和BB′.以A′为圆心,A ′B ′长为半径作圆.问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由.并求此条件下线段A′B 的长度.(结果用角α或角β的三角函数及字母m 、n 所组成的式子表示)图1 图2 图3解:(1)由旋转得:∠A′B′C=∠ABC=130°,CB =CB′,∠BCB ′=50°, ∴∠BB ′C =12(180°-∠BCB′)=65°.∴∠A ′B ′B =∠A′B′C-∠BB′C=130°-65°=65°. (2)①猜想:直线BB′与⊙A′相切.证明:由旋转得:∠A′B′C=∠ABC=150°,CB =CB′,∠BCB ′=60°, ∴∠BB ′C =12(180°-∠BCB′)=60°.∴∠A ′B ′B =∠A′B′C-∠BB′C=150°-60°=90°,即B′B⊥A′B′. 又A′B′为半径, ∴直线BB′与⊙A′相切.②由旋转得:A′B′=AB =3,B ′C =BC =5,∠BCB ′=60°, ∴△BCB ′为等边三角形.∴BB′=BC =5.在Rt △A ′B ′B 中,A ′B =(A′B′)2+(BB′)2=32+52=34. (3)满足的条件:α+β=180°.理由:在△BB′C 中,∠BB ′C =180°-2β2=90°-β,∴∠A ′B ′B =α-∠BB′C=α-(90°-β)=α+β-90°.∵α+β=180°,∴∠A ′B ′B =α+β-90°=180°-90°=90°,即B′B⊥A′B′. ∴直线BB′与⊙A′相切. 过点C 作CD⊥BB′于点D. ∴∠B ′CD =12∠BCB′=β.在Rt △B ′CD 中,B ′D =B′C·s in β=B C·sin β=n sin β,∴BB ′=2B′D=2n sin β. 由α+β=180°得到△A′B′B 为直角三角形,∴A ′B =(A′B′)2+(BB′)2=m 2+(2n sin β)2=m 2+4n 2sin 2β.9.(2016·某某)在△ABC 中,AB =6,AC =8,BC =10.D 是△ABC 内部或BC 边上的一个动点(与B ,C 不重合).以D 为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF ∥BC. (1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①连接GH ,AD ,当GH⊥AD 时,请判断四边形AGDH 的形状,并证明; ②当四边形AGDH 的面积最大时,过A 作AP⊥EF 于P ,且AP =AD ,求k 的值.解:(1)∵AB 2+AC 2=62+82=102=BC 2,∴∠BAC =90°.又∵△DEF∽△ABC,∴∠D =∠BAC =90°.(2)①四边形AGDH 是正方形.证明:延长ED 、FD 分别交BC 于点M 、N.∵△DEF ∽△ABC ,∴∠E =∠B.又∵EF∥BC,∴∠E =∠EMC.∴∠B=∠EMC.∴ED∥BA.同理FD∥AC.∴四边形AGDH 是平行四边形.又∵∠FDE=90°,∴四边形AGDH 是矩形.又∵AD⊥GH,∴四边形AGDH 是正方形.②当D 点在△ABC 内部时,四边形AGDH 的面积不可能最大.其理由是:如图1,点D 在内部时,延长GD 到D′,过D′作MD′⊥AC 于点M ,则四边形GD′MA 的面积大于矩形AGDH 的面积,∴当点D 在△ABC 内部时,四边形AGDH 的面积不可能最大.按上述理由,只有当D 点在BC 边上时,面积才有可能最大.图1 图2如图2,D 在BC 上时,易证明DG∥AC,∴△GDB ∽△ACB.∴BG BA =GD AC ,即BA -AG BA =AH AC . ∴6-AG 6=AH 8,即AH =8-43AG. ∴S 矩形AGDH =AG·AH=AG×(8-43AG)=-43AG 2+8AG =-43(AG -3)2+12. 当AG =3时,S 矩形AGDH 最大,此时DG =AH =4.即当AG =3,AH =4,S 矩形AG DH 最大.在Rt △BGD 中,BD =BG 2+DG 2=5,则DC =BC -BD =5.即D 为B C 上的中点时,S 矩形AGDH 最大.∴在Rt △ABC 中,AD =BC 2=5,∴PA =AD =5. 延长PA 交BC 于点Q ,∵EF ∥BC ,QP ⊥EF ,∴QP ⊥BC.∴QP 是EF 、BC 之间的距离.∴D 到EF 的距离为PQ 的长.在Rt △ABC 中,12AB·AC=12BC·AQ, ∴AQ =4.8.又∵△DEF∽△ABC,∴k =PQ AQ =PA +AQ AQ =5+4.84.8=4924.10.(2016·某某)(1)发现如图1,点A 为线段BC 外一动点,且BC =a ,AB =b.填空:当点A 位于CB 延长线上时,线段AC 的长取得最大值,且最大值为a +b .(用含a ,b 的式子表示)图1(2)应用点A 为线段BC 外一动点,且BC =3,AB ,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE. ①请找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值.(3)拓展如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA =2,PM =PB ,∠BPM =90°.请直接写出线段AM 长的最大值及此时点P 的坐标.图2 图3 备用图解:(2)①DC=BE.理由如下:∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CA E=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB.∴△CAD≌△EAB.∴DC=BE.②BE长的最大值是4.(3)AM的最大值为3+22,点P的坐标为(2-2,2).提示:如图3,构造△BNP≌△MAP,则NB=AM,易得△APN是等腰直角三角形,AP=2,∴AN=2 2.由(1)知,当点N在BA的延长线上时,NB有最大值(如备用图).∴AM=NB=AB+AN=3+2 2.过点P作PE⊥x轴于点E,PE=AE= 2.又∵A(2,0),∴P(2-2,2).。
2022-2023学年初中中考专题数学中考真卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:114 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1. 已知,则实数的值为( )A.B.C.或D.无解2. 下列各数中,负数是( )A.B.C.D. 3.如图是由个小正方体组合而成的几何体,它的俯视图是( )A.3∈{2,a,a −1}a 3434−|−6|(−6)0(−6)2−(−6)7C. D.4. 如图,于点,,,则( )A.B.C.D.5. 当代数式的值为时,代数式的值是( )A.B.C.D.6. 下列运算错误的是( )A.B.C.D.7. 解不等式组: 并将解集在数轴上表示.AB ⊥AE A AB//CD ∠CAE =42∘∠ACD =112∘122∘132∘142∘+3x +5x 29−3−9x +8x 2−89−14−4⋅=x 3x 5x 8=()x 23x 6÷=xx 10x 9+=x 4x 3x 73x −5>−9−x ①,x ≤3−②,5−x 38. 已知圆锥的底面半径是,母线长是,则该圆锥的侧面展开图的面积是( )A.B.C.D.9. 为了调查某校九年级学生右眼的视力情况,从中随机抽取了名学生进行视力检查,检查结果如下表所示,则这名学生右眼视力的众数和中位数分别为 ( )视力人数A.,B.C.,D.,10. 在平面直角坐标系中,把直线沿轴向上平移两个单位长度后,得到的直线的函数关系式为( )A.B.C.D.11. 如图,是▱的边上的点,且,连接并延长,交的延长线于点,若,则▱的周长为( )A.B.2612π8π2–√82–√36π50500.10.20.30.40.50.60.70.81.01.21.51134344581061.00.81.2,0.91.2 1.01.00.9y =−2x +3y y =−2x +1y =−2x −5y =−2x +5y =−2x +7E ABCD AD =DE AE 12BE CDF DE =DF =3ABCD 1524D.12. 已知二次函数是常数,下列结论正确的是 A.当时,函数图象经过点B.当时,函数图象与轴没有交点C.当时,函数图象的顶点始终在轴下方D.当时,则时,随的增大而增大卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )13. 在一个不透明的袋中,装有个黄球和个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是________.14. 若,,则代数式的值是________.15. 设,是方程的两个实数根,那么的值是________.16. 如图,矩形中,,点在上,,点是上的一个动点,若将四边形沿折叠,点落在点处,当点恰好落在矩形的一边上,则的长为________.17. 以下是通过折叠正方形纸片得到等边三角形的步骤取一张正方形的纸片进行折叠,具体操作过程如下:第一步:如图,先把正方形对折,折痕为;第二步:点在线段上,将沿翻折,点恰好落在上,记为点,连接可得是等边三角形问题:在折叠过程中,可以得到=;依据是________.36y=a −2ax −1(a x 2)()a=−1(−1,1)a=−1x a <2x a >0x ≥1y x 23a −b =−2−=6a 2b 2a +b a b +x −2009=0x 2+2a +b a 2ABCD AB =4AD =9E BC CE =4F AD ABEF EF B B ′B ′ABCD AF ABCD MN E MD △ECD EC D MN P BP △BCP PB PC18. 计算:先化简,再求值:,其中, 19. 某校对九年级学生进行一次中考体育模拟测试,成绩(分:为整数,满分分)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用,,,表示),等级: ,等级:,等级:,等级: .该校随机抽取了一部分学生的成绩进行调查,根据调查结果,绘制了统计图表部分信息如下:中考体育模拟测试学生成绩频数分布表等级频数(人数)频率中考体育模拟测试学生成绩条形统计图请你根据统计图表提供的信息解答下列问题:本次调查共抽取了________名学生;上表中的________;________;________;请补全频数分布条形统计图;若等级的学生中有名女生,其余都是男生,从中任意抽取两名学生进行问卷调查,求抽取的两名学生恰好是一男一女的概率. 20. 如图所示,在平面直角坐标系中,,,,以、为邻边作平行四边形,其中:,满足.如图,求点的坐标及线段的长;如图,线段的垂直平分线交轴于点,为的中点,连接,,及,求证:;(1)|1−|−+−(−12–√8–√2−1)2019(2)⋅(1−)−+2x +1x 2y 1x +1x 2y x =2y =2–√x x 60A B C D A 50≤x ≤60B 40≤x <50C 30≤x <40D 0≤x <30Aa 10%B1640%Cb m D 820%(1)a =b =m =(2)(3)A 2A(a ,0)B(b ,0)D(0,d)AB AD ABCD =b 4−−√6–√2a ,d (a +2+=0)2d −8−−−−√(1)1C BC (2)2BC y E F AD CE BE EF BF BF ⊥EF21. 学校准备购进一批节能灯,已知只型节能灯和只型节能灯共需元;只型节能灯和只型节能灯共需元.求一只型节能灯和一只型节能灯的售价各是多少元?学校准备购进这两种型号的节能灯共只,并且型节能灯的数量不多于型节能灯数量的倍,请设计出最省钱的购买方案,并说明理由. 22. 如图,在直线上将正方形和正方形的边和边靠在一起,连接,过点作,交于点,连接,,其中交于点.求证:为等腰直角三角形.若,,求的长.23.如图,直径于点,于点,交的延长线于点,连接.求证:;若,求的半经.24. 如图,在平面直角坐标系中,点为坐标原点,抛物线交轴正半轴于、两点,交轴于点,点为中点,.求抛物线的解析式;过点作轴的平行线交抛物线于另一点,横坐标为 的点在抛物线上,过点作直线的垂线,点为垂足,若线段的长为,求与之间的函数关系式,并直接写出相应的自变量的取值范围;在的条件下,过点作的垂线,点为垂足,的平分线交于点,交元轴正半轴1A 3B 263A 2B 29(1)A B (2)50A B 3l ABCD ECFG CD CE DG A AH//DG BG H HF AF FH DG M (1)△AHF (2)AB =3FG =4FM ⊙O CD ⊥AB E AF ⊥BF F CD H AC (1)AC =AH (2)AB =4,OH =52–√⊙O O y =a +bx +3x 2x A B y C A OB 3OB =2OC (1)(2)C x D t (t >2)P y =a +bx +3x 2P CD E PE d (d ≠0)d t t (3)(2)D PC F ∠CFD CD C参考答案与试题解析2022-2023学年初中中考专题数学中考真卷一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1.【答案】B【考点】实数【解析】此题暂无解析【解答】此题暂无解答2.【答案】A【考点】正数和负数的识别绝对值零指数幂有理数的乘方【解析】根据去括号法则、绝对值的意义,零次幂,乘方,把各数化简即可得出答案.【解答】解:,为负数;,为正数;,为正数;,为正数.A −|−6|=−6B =1(−6)0C =36(−6)2D −(−6)=6【答案】D【考点】简单组合体的三视图【解析】根据从上边看得到的图形是俯视图,可得答案.【解答】从上边看,4.【答案】C【考点】平行线的性质垂线【解析】由求得,再根据平行线的性质即可解得的度数.【解答】解:∵,,.∵,,.故选.5.【答案】D【考点】列代数式求值AB ⊥AE ∠BAC ZACD AB ⊥AE ∠CAE =42∘∴∠BAC =−∠CAE =−=90∘90∘42∘48∘AB//CD ∴∠BAC +∠ACD =180∘∴∠ACD =−∠BAC =−=180∘180∘48∘132∘C由的值为,得,然后利用整体代入的方法计算.【解答】解:∵的值为,∴,∴∴.故选.6.【答案】D【考点】同底数幂的乘法幂的乘方与积的乘方同底数幂的除法合并同类项【解析】根据同底数幂的除法法则:底数不变,指数相减,及幂的乘方与积的乘方的法则,结合选项即可作出判断.【解答】解:, ,故本选项正确,故不符合题意;,,故本选项正确,故不符合题意;,,故本选项正确,故不符合题意;,,不是同类项,不能合并,故本选项错误,故符合题意.故选.7.【答案】解:解①,得,解②,得,故不等式组的解集是.【考点】+3x +5x 29+3x =4x 2+3x +5x 29+3x +5=9x 2+3x =4x 2−3−9x +8=−3(+3x)+8x 2x 2=−3×4+8=−4D A ⋅=x 3x 5x 8B =()x 23x 6C ÷=x x 10x 9D +≠x 4x 3x 7D 3x −5>−9−x ①,x ≤3−②,5−x 3x >−1x ≤2{x|−1<x ≤2}【解析】此题暂无解析【解答】解:解①,得,解②,得,故不等式组的解集是.8.【答案】A【考点】扇形面积的计算【解析】此题暂无解析【解答】解:圆锥的侧面展开图的面积是扇形,其面积为.故选.9.【答案】B【考点】众数中位数【解析】根据众数和中位数的定义求解【解答】解:在这个数据中,出现了次,出现的次数最多,即这组数据的众数是;将这个数据按从小到大的顺序排列,其中第个数是,第个数是, 3x −5>−9−x ①,x ≤3−②,5−x 3x >−1x ≤2{x|−1<x ≤2}rlπ=2×6π=12πA 50 1.210 1.250250.826 1.010.【答案】C【考点】一次函数图象与几何变换【解析】根据平移法则上加下减可得出平移后的解析式.【解答】解:由题意得:平移后的解析式为:.故选.11.【答案】C【考点】平行四边形的性质相似三角形的性质与判定【解析】根据题意四边形是平行四边形,故有,根据和,可证,根据相似三角形性质有,根据,即可计算和的长度,根据平行四边形周长公式即可计算平行四边形的周长.【解答】解:∵四边形为平行四边形,∴ , ,,∴,∵,∴,∴,∵,∴, ∴,,∵,∴,,∴,y =−2x +3+2=−2x +5C ABCD AB//CD ∠ABE =∠EFD ∠AEB =∠DEF △ABE ∼△DFE =AB DF AE DE =DE AE 12DE =DF =3AB AD ABCD ABCD AB =CD AD =BC AB//DC ∠ABE =∠DFE ∠AEB =∠DEF △ABE ∼△DFE =AB DF AE DE =DE AE 12==2AB DF AE DE AB =2DF AE =2DE DE =DF =3AB =2×3=6AE =2×3=6AD =AE +DE =6+3=9ABCD 2(AB +AD)=2×(6+9)∴▱的周长为.故选.12.【答案】D【考点】抛物线与x 轴的交点二次函数图象与系数的关系【解析】、将=代入原函数解析式,令=求出值,由此得出选项不符合题意;、将=代入原函数解析式,令=,根据根的判别式=,可得出当=时,函数图象与轴有两个不同的交点,即选项不符合题意;、利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出的取值范围,由此可得出选项不符合题意;、利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出选项符合题意.此题得解.【解答】解:、当时,函数解析式为,当时,,∴当时,函数图象经过点,∴选项不符合题意;、当时,函数解析式为,,∴当时,函数图象与轴有个交点,∴选项不符合题意;、∵,∴二次函数图象的顶点坐标为,当时,有,∴选项不符合题意;、∵,∴二次函数图象的对称轴为.若,则当时,随的增大而增大,∴选项符合题意.故选.二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )13.【答案】【考点】概率公式ABCD 2(AB +AD)=2×(6+9)=2×15=30C A a 1x −1y A B a 2y 0△8>0a −2x B C a C D D A a=−1y=−+2x −1x 2x=−1y=−1−2−1=−4a=−1(−1,−4)A B a=−1y=−+2x −1x 2Δ=−4×(−1)×(−1)22=0a=−1x 1B C y=a −2ax −1x 2=a(x −1−1−a )2(1,−1−a)−1−a <0a >−1C D y=a −2ax −1x 2=a(x −1−1−a )2x =1a >0x ≥1y x D D 35【解析】此题暂无解析【解答】解:∵一个不透明的袋中,装有个黄球和个红球,任意摸出两个球有种等可能结果,其中摸出的球颜色不同的结果有种,∴从袋中任意摸出两个球,颜色不同的概率.故答案为: .14.【答案】【考点】平方差公式【解析】利用平方差公式进行因式分解,再整体代入求出答案.【解答】解:∵,∴,解得.故答案为:.15.【答案】【考点】根与系数的关系一元二次方程的解【解析】根据根与系数的关系,可先求出的值,然后代入所求代数式,又因为是方程的根,把代入方程可求出的值,再代入所求代数式可求值.【解答】解:根据题意得,,∴.23106=6103535−3−=(a +b)(a −b)=6a 2b 2−2(a +b)=6a +b =−3−32008a +b a +x −2009=0x 2a +a a 2a +b =−1ab =−2009+2a +b =+a +a +b =+a −1a 2a 2a 2+x −2009=02又∵是的根,∴,∴,∴.故答案为:.16.【答案】或【考点】矩形的判定与性质【解析】此题暂无解析【解答】解:如图①,当点落在边上时,连接,易证为等腰三角形,且,所以.由勾股定理易求.如图②,当点落在上时,连接..由勾股定理易求,所以.设,则.a +x −2009=0x 2+a −2009=0a 2+a =2009a 2+2a +b =2009−1=2008a 220083113B ′AD BF △BEF BF =BE BF =BE =9−4=5AF =3B ′CD BF ,F B ′BE =E =9−4=5B ′C =3B ′D =4−3=1B ′AF =x FD =9−x BF =FB ′根据折叠的性质得,所以,解得.综上,或.故答案为:或.17.【答案】线段垂直平分线上的点到线段两端的距离相等【考点】翻折变换(折叠问题)正方形的性质等边三角形的性质与判定【解析】根据折叠性质、线段垂直平分线的性质解答.【解答】∵四边形是正方形,∴=,由折叠的性质可知,=,∴=,把正方形对折,折痕为,∴直线是线段的垂直平分线,∴=(线段垂直平分线上的点到线段两端的距离相等),∴是等边三角形,三、 解答题 (本题共计 7 小题 ,每题 9 分 ,共计63分 )18.【答案】解:.BF =F B ′+=(9−x +x 242)212x =113AF =3AF =1133113ABCD BC CD CP CD CP BC ABCD MN MN BC PB PC △PBC (1)|1−|−+−(−12–√8–√2−1)2019=−1−+−(−1)2–√8–√12=−2+2–√2–√12=−+2–√12(1−)−+2x +122,当,时,则原式.【考点】负整数指数幂分式的化简求值实数的运算【解析】(1)本题涉及零指数幂、特殊角的三角函数值、负整数指数幂、绝对值个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)运用乘法分配律计算,再将互为相反数的式子抵消,即可化简式子,再代入求值.【解答】解:. ,当,时,则原式.19.(2)⋅(1−)−+2x +1x 2y 1x +1x 2y=⋅(−)−(x +1)2y x +1x +11x +1x 2y=⋅−(x +1)2y x x +1x 2y =−+x x 2y x 2y =x y x =2y =2–√==22–√2–√4(1)|1−|−+−(−12–√8–√2−1)2019=−1−+−(−1)2–√8–√12=−2+2–√2–√12=−+2–√12(2)⋅(1−)−+2x +1x 2y 1x +1x 2y=⋅(−)−(x +1)2y x +1x +11x +1x 2y=⋅−(x +1)2y x x +1x 2y =−+x x 2y x 2y =x y x =2y =2–√==22–√2–√【答案】,,,补全频数分布直方图如图所示.因为等级的有人,其中有名女生,名男生,将男生分别标记为,,女生标记为,,列表分析为:∵共有种等可能的结果,恰为一男一女的有种,∴抽取的恰好为“一男一女”的概率为. 【考点】频数(率)分布表频数(率)分布直方图列表法与树状图法【解析】此题暂无解析【解答】解:由频数分布表知等级频数为人,频率为,所以本次调查共抽取了名学生;;;.故答案为:;;;.补全频数分布直方图如图所示.4041230%(2)(3)A 422A B a b AB a bA (A,B)(A,a)(A,b)B (B,A)(B,a)(B,b)a (a,A)(a,B)(a,b)b (b,A)(b,B)(b,a)128=81223(1)B 1640%16÷40%=40a =40×10%=4m =1−20%−40%−10%=30%b =40×30%=124041230%(2)因为等级的有人,其中有名女生,名男生,将男生分别标记为,,女生标记为,,列表分析为:∵共有种等可能的结果,恰为一男一女的有种,∴抽取的恰好为“一男一女”的概率为. 20.【答案】解:∵,,∴,,,∴,,,∴,,∴,.证明:如图,延长至,使,连结,.由为的中点,可得,又∵,∴,∴,,∴.又∵,∴,∴,又∵,∴,∴.(3)A 422A B a b AB a bA (A,B)(A,a)(A,b)B (B,A)(B,a)(B,b)a (a,A)(a,B)(a,b)b (b,A)(b,B)(b,a)128=81223(1)=b 4−−√6–√2+=0(a +2)2d −8−−−−√b =6a =−2d =8A (−2,0)B (6,0)D (0,8)CD =AB =8OD =8C (8,8)BC =AD ==2+2282−−−−−−√17−−√(2)2EF Q FQ =EF AQ BQ F AD AF =DF ∠AFQ =∠DFE △DEF ≅△AQF DE =AQ ∠EDF =∠QAF DE//AQ AB ⊥DE AB ⊥AQ ∠BAQ =∠CDE =90∘AB =DC △BAQ ≅△CDE BQ =CE CE =BE∵,∴,而为的中点,∴.解:在中,∵,又∵,,∴,∴,∴,而,∴是等腰三角形.如图,分别过点,作于,于,则,∴,∴,.如图,连结,,∵,∴,∴,∴为等腰直角三角形.∵,∴,∴,∴.【考点】非负数的性质:偶次方非负数的性质:算术平方根坐标与图形性质四边形综合题全等三角形的性质与判定等腰三角形的判定与性质【解析】依据,,即可得出,,,进而得到CE =BE BQ =BE F EQ BF ⊥EF (3)△BOD ∠OBD +∠ODB =90∘BG =BH DG =DM 2∠DGM +2∠BGH =−=360∘90∘270∘∠DGM +∠BGH =135∘∠NGH =45∘NH ⊥HG △GHN 3N G NR ⊥AB R GS ⊥AB S ∠NRH =∠HSG =90∘△HRN ≅△GSH NR =HS HR =GS 3ON GO N (t,−t)NR =OR GS =OS △GSO =+S △DOB S △DOG S △BOG ⋅OB ⋅OD =⋅OB ⋅GS +⋅OD ⋅OS 121212GS =OS =247G (,)247247(1)=b 4−−√6–√2+=0(a +2)2d −8−−−−√b =6b =6a =−2d =8C (8,8)BC =AD =217−−√,;延长至,使,连结,.判定,可得,,判定,可得,依据,为的中点,即可得到;先判定是等腰三角形.再分别过点,作于,于,则,判定,可得,.连结,,判定为等腰直角三角形,依据,即可得到,进而得出.【解答】解:∵,,∴,,,∴,,,∴,,∴,.证明:如图,延长至,使,连结,.由为的中点,可得,又∵,∴,∴,,∴.又∵,∴,∴,又∵,∴,∴.∵,∴,而为的中点,∴.解:在中,∵,又∵,,∴,∴,∴,而,∴是等腰三角形.如图,分别过点,作于,于,C (8,8)BC =AD =217−−√(2)EF Q FQ =EF AQ BQ △DEF ≅△AQF DE =AQ ∠EDF =∠QAF △BAQ ≅△CDE BQ =CE BQ =CE F EQ BF ⊥EF (3)△GHN N G NR ⊥AB R GS ⊥AB S ∠NRH =∠HSG =90∘△HRN ≅△GSH NR =HS HR =GS ON GO △GSO =+S △DOB S △DOG S △BOG ⋅OB ⋅OD =⋅OB ⋅GS +⋅OD ⋅OS 121212G (,)247247(1)=b 4−−√6–√2+=0(a +2)2d −8−−−−√b =6a =−2d =8A (−2,0)B (6,0)D (0,8)CD =AB =8OD =8C (8,8)BC =AD ==2+2282−−−−−−√17−−√(2)2EF Q FQ =EF AQ BQ F AD AF =DF ∠AFQ =∠DFE △DEF ≅△AQF DE =AQ ∠EDF =∠QAF DE//AQ AB ⊥DE AB ⊥AQ ∠BAQ =∠CDE =90∘AB =DC △BAQ ≅△CDE BQ =CE CE =BE BQ =BE F EQ BF ⊥EF (3)△BOD ∠OBD +∠ODB =90∘BG =BH DG =DM 2∠DGM +2∠BGH =−=360∘90∘270∘∠DGM +∠BGH =135∘∠NGH =45∘NH ⊥HG △GHN 3N G NR ⊥AB R GS ⊥AB S则,∴,∴,.如图,连结,,∵,∴,∴,∴为等腰直角三角形.∵,∴,∴,∴.21.【答案】解:设一只型节能灯的售价是元,一只型节能灯的售价是元,根据题意,得 解得 答:一只型节能灯的售价是元,一只型节能灯的售价是元. 设购进型节能灯只,总费用为元,根据题意,得:,,随的增大而减小,又,解得:,而为正整数,当时,,此时,故当购买型灯只,型灯只时,最省钱.【考点】二元一次方程组的应用——销售问题一次函数的应用【解析】设一只型节能灯的售价是元,一只型节能灯的售价是元,根据:“只型节能灯和只型节能灯共需元;只型节能灯和只型节能灯共需元”列方程组求解即可;首先根据“型节能灯的数量不多于型节能灯数量的倍”确定自变量的取值范围,然后得到有关∠NRH =∠HSG =90∘△HRN ≅△GSH NR =HS HR =GS 3ON GO N (t,−t)NR =OR GS =OS △GSO =+S △DOB S △DOG S △BOG ⋅OB ⋅OD =⋅OB ⋅GS +⋅OD ⋅OS 121212GS =OS =247G (,)247247(1)A x B y {x +3y =26,3x +2y =29,{x =5,y =7,A 5B 7(2)A m W W =5m +7(50−m)=−2m +350∵−2<0∴W m ∵m ≤3(50−m)m ≤37.5m ∴m =37=−2×37+350=276W 最小50−37=13A 37B 13(1)A x B y 1A 3B 263A 2B 29(2)A B 3A总费用和型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:设一只型节能灯的售价是元,一只型节能灯的售价是元,根据题意,得 解得 答:一只型节能灯的售价是元,一只型节能灯的售价是元. 设购进型节能灯只,总费用为元,根据题意,得:,,随的增大而减小,又,解得:,而为正整数,当时,,此时,故当购买型灯只,型灯只时,最省钱.22.【答案】证明:四边形和四边形都是正方形,,,,,,,四边形是平行四边形,,,在和中,,,,,,,,,,,为等腰直角三角形.解:四边形和四边形都是正方形,,,,在中,,,,的长为.【考点】正方形的性质A (1)A xB y {x +3y =26,3x +2y =29,{x =5,y =7,A 5B 7(2)A m W W =5m +7(50−m)=−2m +350∵−2<0∴W m ∵m ≤3(50−m)m ≤37.5m ∴m =37=−2×37+350=276W 最小50−37=13A 37B 13(1)∵ABCD ECGF ∴AD//BC AD =CD FG =CG ∠ABC =∠CGF =90∘∵AD//BC AH//DG ∴AHGD ∴AH =DG AD =HG =CD △DCG △HGF CD =HG,∠DCG =∠HGF =,90∘CG =FG,∴△DCG ≅△HGF (SAS)∴DG =HF ∠HFG =∠CGD ∵AH =DG ∴AH =HF ∵∠CGD +∠DGF =∠CGF =90∘∴∠HFG +∠DGF =90∘∴∠FMG =90∘∵AH//DG ∴∠AHF =∠DMF =∠FMG =90∘∴△AHF (2)∵ABCD ECGF ∴AB =CD =AD =GH =3CE =CG =FG =4∠ECG =90∘∴Rt △DCG DG ==5+3242−−−−−−√=FG ⋅CG =DG ⋅FM S △DFG 1212∴FM ==FG ×CG DG 165∴FM 165全等三角形的性质与判定等腰直角三角形勾股定理三角形的面积【解析】先由四边形和四边形都是正方形,得出条件判定四边形是平行四边形,进而再判定,由全等三角形的性质及平行四边形的性质可得,通过角的互余关系得出,然后由,得出,从而可得结论.先由正方形的性质及勾股定理得出的长,再由,由面积法可得的长.【解答】证明:四边形和四边形都是正方形,,,,,,,四边形是平行四边形,,,在和中,,,,,,,,,,,为等腰直角三角形.解:四边形和四边形都是正方形,,,,在中,,,,的长为.23.【答案】()证明:∵,∴,∵,(1)ABCD ECGF AHGD △DCG ≅△HGF (SAS)AH =HF ∠FMG =90∘AH//DG ∠AHF =∠DMF =∠FMG =90∘(2)DG =FG ⋅CG =DG ⋅FMS △DFG 1212FM (1)∵ABCD ECGF ∴AD//BC AD =CD FG =CG ∠ABC =∠CGF =90∘∵AD//BC AH//DG ∴AHGD ∴AH =DG AD =HG =CD △DCG △HGF CD =HG,∠DCG =∠HGF =,90∘CG =FG,∴△DCG ≅△HGF (SAS)∴DG =HF ∠HFG =∠CGD ∵AH =DG ∴AH =HF ∵∠CGD +∠DGF =∠CGF =90∘∴∠HFG +∠DGF =90∘∴∠FMG =90∘∵AH//DG ∴∠AHF =∠DMF =∠FMG =90∘∴△AHF (2)∵ABCD ECGF ∴AB =CD =AD =GH =3CE =CG =FG =4∠ECG =90∘∴Rt △DCG DG ==5+3242−−−−−−√=FG ⋅CG =DG⋅FM S △DFG 1212∴FM ==FG ×CG DG 165∴FM 1651AF ⊥BD,CD ⊥AB ∠BED =∠HFD =90∘∠EDB =∠FDH ∠H =∠B∴,∵,∴,∴,∴.解:连接,∵,∴设,则在中,∴,解得(舍),∴,∴圆的半径为【考点】圆的综合题【解析】此题暂无解析【解答】()证明:∵,∴,∵,∴,∵,∴,∴,∴.解:连接,∵,∴设,则在中,∴,解得(舍),∴,∴圆的半径为24.【答案】解:抛物线交轴于点,∴,∴,∵,∴,∴,∵点为中点,∴,∴,∵抛物线经过点点.∠H =∠B =AD AD ∠C =∠B ∠C =∠H AC =AH (2)AO AC =AH,CD ⊥AB AE =AB =2,CE =EH 122–√EH =CE =x OE =5−x,CO =2x −5=AORt △AOE A =O +A O 2E 2E 2=+(2x −5)2(5−x)2(2)2–√2=−x 123=4x 2CO =2x −5=8−5=3O 3.1AF ⊥BD,CD ⊥AB ∠BED =∠HFD =90∘∠EDB =∠FDH ∠H =∠B =AD AD ∠C =∠B ∠C =∠H AC =AH (2)AO AC =AH,CD ⊥AB AE =AB =2,CE =EH 122–√EH =CE =x OE =5−x,CO =2x −5=AORt △AOE A =O +A O 2E 2E 2=+(2x −5)2(5−x)2(2)2–√2=−x 123=4x 2CO =2x −5=8−5=3O 3.(1)y =a +bx +3x 2y C C (0,3)OC =330B =20C OB =2B (2,0)A OB OA =OB =112A (1,0)y =a +bx +3x 2A (1,0)B (2,0) =,3∴解得.∴抛物线的解析式为;在中,令,即,解得,∴,如图,延长交轴于点,∵点的横坐标为,∴,∴.∵∴四边形为矩形,∴.∴当时,,同理,如图,当时,如图,过点作的垂线交直线于点,交直线于点,过点作交于点,延长交轴于点,∵.∴.∵.∴,∴,∵平分,∴,∴,∴,∴,即,∴.∵轴,∴.∵,∴,∵,∴,∴,∴ ,∵.∴,∴,∴.∴,∴,∴.∵的平分线交轴正半轴于点,∴,∴,∵,∴ ,解得舍去),∴的值为.{0=a +b +3,0=4a +2b +3, a =,32b =−92y =−x +332x 292(2)y =−x +332x 292y =3−x +3=332x 292=0,=3x 1x 2D (3,3)1EP x M P t P (t,−t +3)32t 292PM =−t +332t 292∠COM =∠OCE =∠CEM =90∘OCEM ME =OC =32<t <3d =ME −PM =3−(−t +3)=32t 292−+t 32t 2922t >3d =PM −ME =−t +3−3=−t.32t 29232t 292(3)3O PC PC Q FH N G GT//DF CP T PE x M ∠QOC +∠QCO =,∠QCO +∠FCD =90∘90∘∠QOC =∠FCD OC =CD,∠Q =∠CFD △CQO ≅△DFC CF =OQ,CQ =FD FH ∠CFD ∠CFH =45∘∠FNQ =45∘QF =QN QF −CF =QN −OQ CQ =ON FD =ON CD//x ∠FGD =∠FHB ∠FHB =∠OHA ∠FGD =∠OHN ∠DFG =∠ONH =45∘△FGD ≅△NHO HO =GD==3CG OH CG GDGT//DF ==3,∠CFD =∠CTG =CT TF CG GD 90∘∠TGF =∠TFG =45∘TG =TF =3CT TG tan ∠FCG ==TG CT 13tan ∠PCE ==PE CE 13∠CFD x H t >3PE =−t 32t 292EC =OM =t =−t 32t 292t 13t =(t =0299t 299【考点】二次函数综合题【解析】此题暂无解析【解答】解:抛物线交轴于点,∴,∴,∵,∴,∴,∵点为中点,∴,∴,∵抛物线经过点点.∴解得.∴抛物线的解析式为;在中,令,即,解得,∴,如图,延长交轴于点,∵点的横坐标为,∴,∴.∵∴四边形为矩形,∴.∴当时,,同理,如图,当时,如图,过点作的垂线交直线于点,交直线于点,过点作交于点,延长交轴于点,∵.(1)y =a +bx +3x 2y C C (0,3)OC =330B =20C OB =2B (2,0)A OB OA =OB =112A (1,0)y =a +bx +3x 2A (1,0)B (2,0){0=a +b +3,0=4a +2b +3, a =,32b =−92y =−x +332x 292(2)y =−x +332x 292y =3−x +3=332x 292=0,=3x 1x 2D (3,3)1EP x M P t P (t,−t +3)32t 292PM =−t +332t 292∠COM =∠OCE =∠CEM =90∘OCEM ME =OC =32<t <3d =ME −PM =3−(−t +3)=32t 292−+t 32t 2922t >3d =PM −ME =−t +3−3=−t.32t 29232t 292(3)3O PC PC Q FH N G GT//DF CP T PE x M ∠QOC +∠QCO =,∠QCO +∠FCD =90∘90∘∠QOC =∠FCD∴.∵.∴,∴,∵平分,∴,∴,∴,∴,即,∴.∵轴,∴.∵,∴,∵,∴,∴,∴ ,∵.∴,∴,∴.∴,∴,∴.∵的平分线交轴正半轴于点,∴,∴,∵,∴ ,解得舍去),∴的值为.∠QOC =∠FCD OC =CD,∠Q =∠CFD △CQO ≅△DFC CF =OQ,CQ =FD FH ∠CFD ∠CFH =45∘∠FNQ =45∘QF =QN QF −CF =QN −OQ CQ =ON FD =ON CD//x ∠FGD =∠FHB ∠FHB =∠OHA ∠FGD =∠OHN ∠DFG =∠ONH =45∘△FGD ≅△NHO HO =GD ==3CG OH CG GD GT//DF ==3,∠CFD =∠CTG =CT TF CG GD 90∘∠TGF =∠TFG =45∘TG =TF =3CT TG tan ∠FCG ==TG CT 13tan ∠PCE ==PE CE 13∠CFD x H t >3PE =−t 32t 292EC =OM =t =−t 32t 292t 13t =(t =0299t 299。
人教版中考数学模拟测试卷一.选择题1. 2020的绝对值等于( )A. 2020B. -2020C. 12020D. 12020- 2. 如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=( )A. 90°-12αB. 90°+ 12αC.2α D. 360°-α 3. 在下列几何体中,从正面看到的平面图形为三角形的是( )A. B. C.D. 4. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.5. 下列式子中计算结果与2()m -相同的是( ) A. 12()m - B. 24m m -⨯ C. 24m m ÷ D. 24m m --÷6. 地球的表面积约为510000000km 2,将510000000用科学记数法表示为( ) A. 0.51×109 B. 5.1×108 C. 5.1×109D. 51×107 7. 某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A. 将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B. 全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C. 这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D. 这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩8. 将抛物线y=x 2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为( )A. y=(x+1)2+3B. y=(x ﹣1)2+3C. y=(x ﹣1)2﹣3D. y=(x+1)2﹣3 9. 九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )A. B. C. D.10. 下列命题中真命题是( )A. 若a 2=b 2,则a=bB. 4的平方根是±2C. 两个锐角之和一定是钝角D. 相等的两个角是对顶角11. 如图,给出线段a ,h ,作等腰ABC ∆,使AB AC a ==,BC 边上的高AD h =.嘉嘉的作法是:①作线段AD h =;②作线段AD 的垂线MN ;③以点A 为圆心,a 为半径作弧,与MN 分别交于点B ,C ;④连接AB ,AC ,ABC ∆为所求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是( )A . ①B. ②C. ③D. ④12. 阅读理解:解方程x 2﹣|x|﹣2=0解:(1)当x≥0时,原方程可以化为x 2﹣x ﹣2=0,解得x 1=2,x 2=﹣1<0(不合题意,舍去);(2)当x <0时,原方程可以化为x 2+x ﹣2=0,解得x 1=﹣2,x 2=1>0(舍去).∴原方程的解为x 1=2,x 2=﹣2.那么方程x 2﹣|x ﹣1|﹣1=0的解为( )A. 1x =0,2x =1B. 1x =﹣2,2x =1C. 1x =1,2x =﹣2D. 1x =1,2x =2二.填空题13. 若分式232x x -+无意义,则x 的值为__________. 14. 因式分解:-2x 2+12x -18=______.15. 在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 16. 100个数之和为2001,把第一个数减1,第二个数加2,第三个数减3,…,第一百个数加100,则所得新数之和为_______.17. 如图,在平面直角坐标系中,已知C (1,2),△ABC 与△DEF 位似,原点O 是位似中心,要使△DEF 的面积是△ABC 面积的5倍,则点F 的坐标为_____.18. 如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的项点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为3时,阴影部分的面积为____.三.解答题19. 计算:0(13)+|12|﹣2cos45°+114-⎛⎫ ⎪⎝⎭. 20. 先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =. 21. 如图,在平面直角坐标系xOy 中,函数y =﹣x+5的图象与函数y =k x(k <0)的图象相交于点A ,并与x 轴交于点C ,S △AOC =15.点D 是线段AC 上一点,CD :AC =2:3.(1)求k 的值;(2)根据图象,直接写出当x <0时不等式k x >﹣x+5的解集; (3)求△AOD 的面积.22. 如图,已知90A E ∠=∠=︒,A C F E 、、、在一条直线上,,AF EC BC DF ==.求证:(1)Rt Rt ABC EDF △≌△;(2)四边形BCDF 是平行四边形.23. 为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.(2)在图2扇形统计图中,m 的值为_____,表示“D 等级”的扇形的圆心角为_____度;(3)组委会决定从本次比赛获得A 等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.24. 为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.25. 如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC=12,求FC的长.26. 如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.答案与解析一.选择题1. 2020的绝对值等于()A. 2020B. -2020C.12020D.12020-【答案】A【解析】【分析】根据绝对值的定义直接进行计算即可.【详解】根据绝对值的概念可知:|2020|=2020.故选:A.【点睛】本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2. 如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A. 90°-12α B. 90°+12α C.2αD. 360°-α【答案】C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=12(360°﹣α)=180°﹣12α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣12α)=12α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.3. 在下列几何体中,从正面看到的平面图形为三角形的是()A. B. C. D.【答案】B【解析】【分析】主视图是从物体前面看所得到的图形,由此进行判断即可.【详解】A选项:圆柱的主视图是长方形,故本选项不合题意;B选项:圆锥的主视图是三角形,故本选项符合题意;C选项:正方体的主视图是正方形,故本选项不合题意;D选项:三棱柱的主视图是长方形,故本选项不合题意;故选:D.【点睛】考查了简单几何体的主视图,解题关键是掌握主视图的定义,即从正面看得到的图形.4. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,也是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5. 下列式子中计算结果与2()m -相同的是( )A. 12()m -B. 24m m -⨯C. 24m m ÷D. 24m m --÷【答案】D【解析】【分析】先计算原数,再根据幂的运算性质逐项判断即可.【详解】解:22()m m -=,A 、122()m m --=,与原数不相等,本选项不符合题意;B 、242m m m --⨯=,与原数不相等,本选项不符合题意;C 、242m m m -÷=,与原数不相等,本选项不符合题意;D 、()24242m m m m -----÷==,与原数相等,本选项符合题意.故选D.【点睛】本题考查了幂的运算性质,属于常考题型,熟练掌握幂的运算性质是关键.6. 地球的表面积约为510000000km 2,将510000000用科学记数法表示为( )A. 0.51×109B. 5.1×108C. 5.1×109D. 51×107 【答案】B【解析】【详解】试题分析:510 000 000=5.1×108.故选B . 考点:科学记数法—表示较大的数.7. 某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A. 将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B. 全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C. 这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D. 这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩【答案】B【解析】【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.8. 将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A. y=(x+1)2+3B. y=(x﹣1)2+3C. y=(x﹣1)2﹣3D. y=(x+1)2﹣3【答案】D【解析】【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】抛物线y=x2的顶点坐标为(0,0),向下平移3个单位,再向左平移1个单位后的图象的顶点坐标为(-1,-3),所以,所得图象的解析式为y=(x+1)2﹣3,故选D.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.9. 九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是()A. B. C. D. 【答案】C【解析】【分析】根据第一小组人数占总人数的百分比即可计算其角度.【详解】由题意可得,总人数为12+20+13+5+10=60,第一小组对应的圆心角度数是:12360=72 60⨯︒︒,故选C.考点:1.扇形统计图;2.条形统计图.10. 下列命题中真命题是()A. 若a2=b2,则a=b B. 4的平方根是±2 C. 两个锐角之和一定是钝角 D. 相等的两个角是对顶角【答案】B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.11. 如图,给出线段a ,h ,作等腰ABC ∆,使AB AC a ==,BC 边上的高AD h =.嘉嘉的作法是:①作线段AD h =;②作线段AD 的垂线MN ;③以点A 为圆心,a 为半径作弧,与MN 分别交于点B ,C ;④连接AB ,AC ,ABC ∆为所求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是( )A. ①B. ②C. ③D. ④【答案】B【解析】【分析】 利用基本作图(过已知直线上一点作直线的垂线)可判断②错误.【详解】有错误的一步是②,应该为过D 点作MN ⊥AD .故选B .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12. 阅读理解:解方程x 2﹣|x|﹣2=0解:(1)当x≥0时,原方程可以化为x 2﹣x ﹣2=0,解得x 1=2,x 2=﹣1<0(不合题意,舍去);(2)当x <0时,原方程可以化为x 2+x ﹣2=0,解得x 1=﹣2,x 2=1>0(舍去).∴原方程的解为x 1=2,x 2=﹣2.那么方程x 2﹣|x ﹣1|﹣1=0的解为( )A. 1x =0,2x =1B. 1x =﹣2,2x =1 C .1x =1,2x =﹣2D. 1x =1,2x =2【答案】B【解析】【分析】 分两种情况把含绝对值的方程化为一元二次方程,进而即可求解.【详解】当x≥1时,方程为x 2﹣x+1﹣1=0,∴x 1=0(舍去),x 2=1;当x <1时,方程为x 2+x ﹣1﹣1=0,∴x 1=﹣2,x 2=1(舍去),∴方程的解是:x1=﹣2,x2=1.故选:B.【点睛】本题主要考查含绝对值的方程,掌握求绝对值法则以及解一元二次方程的步骤,是解题的关键.二.填空题13. 若分式232xx-+无意义,则x的值为__________.【答案】-2【解析】【分析】根据分式无意义的条件为:分母为0即可求出x的值.【详解】∵分式232xx-+无意义∴20x+=解得2x=-故答案为:-2.【点睛】本题主要考查分式无意义的条件,掌握分式无意义的条件是分母为0是解题的关键.14. 因式分解:-2x2+12x-18=______.【答案】-2(x-3)2.【解析】【分析】先提取公因式,再根据完全平方公式分解即可.【详解】解:-2x2+12x-18=-2(x2-6x+9)=-2(x-3)2,故答案为-2(x-3)2.【点睛】本题考查了分解因式,能灵活运用因式分解的方法分解因式是解此题的关键.15. 在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n=_____.【答案】8 【解析】【分析】根据白球的概率公式44 n+=13列出方程求解即可.【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)=44n+=13.解得:n=8,故答案为8.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16. 100个数之和为2001,把第一个数减1,第二个数加2,第三个数减3,…,第一百个数加100,则所得新数之和为_______.【答案】2051【解析】【分析】根据题意,列出有理数的加减法算式,进而即可求解.【详解】∵﹣1+2﹣3+4﹣5+6﹣…﹣99+100=50,∴2001+(﹣1+2﹣3+4﹣5+6﹣…﹣99+100)=2051,故答案为:2051.【点睛】本题主要考查有理数的加减法,掌握有理数的加减混合运算法则,是解题的关键.17. 如图,在平面直角坐标系中,已知C(1,2),△ABC与△DEF位似,原点O是位似中心,要使△DEF 的面积是△ABC面积的5倍,则点F的坐标为_____.【答案】510)【解析】【分析】根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则△DEF的边长是△ABC边长的5倍,∴点F的坐标为(1×5,2×5),即(5,10),故答案为(5,10).【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18. 如图,在扇形AOB中,∠AOB=90°,正方形CDEF的项点C是弧AB的中点,点D在OB上,点E 在OB的延长线上,当正方形CDEF的边长为3时,阴影部分的面积为____.【答案】99 42π-【解析】【分析】连接OC,可得∠COD=45°,利用阴影部分的面积=扇形BOC的面积﹣∆ODC的面积,即可求解.【详解】连接OC,∵在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=2CD=32,∴阴影部分的面积=扇形BOC的面积﹣∆ODC的面积,即:245(32)360π⨯﹣1332⨯⨯=94π﹣92.故答案为:9942π-.【点睛】本题主要考查求阴影部分的面积,掌握扇形的面积公式,是解题的关键.三.解答题19.计算:0(1+|1|﹣2cos45°+114-⎛⎫⎪⎝⎭.【答案】4.【解析】【分析】先求零指数幂,负整数指数幂,绝对值以及特殊角的三角函数,再算加减法,即可求解.【详解】原式=﹣1﹣=4.【点睛】本题主要考查实数的混合运算,掌握零指数幂,负整数指数幂,绝对值以及特殊角的三角函数的运算法则,是解题的关键.20. 先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中1x=.. 【解析】【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭. 将1x==【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.21. 如图,在平面直角坐标系xOy中,函数y=﹣x+5的图象与函数y=kx(k<0)的图象相交于点A,并与x轴交于点C,S△AOC=15.点D是线段AC上一点,CD:AC=2:3.(1)求k的值;(2)根据图象,直接写出当x<0时不等式kx>﹣x+5的解集;(3)求△AOD的面积.【答案】(1)k=﹣6;(2)﹣1<x<0;(3)5.【解析】【分析】(1)过A作AM⊥x轴于M,先求出点C的坐标,再根据S△AOC=15,求出点A的坐标,进而即可得到k 的值;(2)由函数的图象,可知:反比例函数图象在一次函数图象上方部分所对应的x的范围,即为不等式kx>﹣x+5的解集;(3)由△AOD与△AOC的高相等,CD:AC=2:3,进而求解.【详解】(1)对于y=﹣x+5,当y=0时,x=5,即OC=5,C点的坐标是(5,0),过A作AM⊥x轴于M,∵S△AOC=15,∴15AM2⨯⨯=15,解得:AM=6,∴A点的纵坐标是6,把y=6代入y=﹣x+5得:x=﹣1,即A点的坐标是(﹣1,6),把A点的坐标代入y=kx得:k=﹣6;(2)由函数图象可知:当﹣1<x<0时,kx>﹣x+5,∴当x<0时不等式kx>﹣x+5的解集是:﹣1<x<0;(3)∵CD:AC=2:3,S△AOC=15,∴△AOD的面积=13S△AOC=1153⨯=5.【点睛】本题主要考查反比例函数与一次函数的综合,掌握一次函数与反比例函数的图象和性质,是解题的关键.22. 如图,已知90A E ∠=∠=︒,A C F E 、、、在一条直线上,,AF EC BC DF ==.求证:(1)Rt Rt ABC EDF △≌△;(2)四边形BCDF 是平行四边形.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)由题意由“HL”可判定Rt △ABC ≌Rt △EDF(2)根据一组对边平行且相等的四边形是平行四边形,可证四边形BCDF 是平行四边形.【详解】证明:(1)∵AF=EC∴AC=EF又∵BC=DF ,∴Rt △ABC ≌Rt △EDF(2)∵Rt △ABC ≌Rt △EDF∴BC=DF ,∠ACB=∠DFE∴∠BCF=∠DFC∴BC ∥DF ,BC=DF∴四边形BCDF 是平行四边形【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是灵活运用性质和判定解决问题.23. 为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.(2)在图2扇形统计图中,m的值为_____,表示“D等级”的扇形的圆心角为_____度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.【答案】(1)参赛学生共20人;补图见解析;(2)40;72;(3)23.【解析】【分析】(1)由“A等级的人数÷A等级的百分比=参赛学生人数”,即可求得参赛人数,再求出B等级人数,补全条形统计图,即可;(2)由C等级人数÷参赛学生人数,即可得到m的值,由360°×D等级的百分比,即可得到“D等级”的扇形的圆心角;(3)根据题意,列出表格,得到所有等可能的结果,再根据概率公式,即可求解.【详解】(1)根据题意得:3÷15%=20(人),∴参赛学生共20人,B等级人数有:20﹣(3+8+4)=5(人),补全条形图如下:(2)C等级的百分比为:820×100%=40%,即:m=40,表示“D等级”的扇形的圆心角为:360°×420=72°,故答案为:40,72;(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,∴P(恰好是一名男生和一名女生)=46=23.【点睛】本题主要考查条形统计图、扇形统计图以及等可能事件的概率,掌握条形统计图、扇形统计图的特征以及列举法求概率,是解题的关键.24. 为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.【答案】平路有443千米,坡路有53千米【解析】【分析】设去时平路为xkm,上山的坡路为ykm,根据去的时候共用3h,返回时共用4h,列方程组即可.【详解】解:设平路有x千米,坡路有y千米.由题意可知3 634 45x yx y⎧+=⎪⎪⎨⎪+=⎪⎩解得44353 xy⎧=⎪⎪⎨⎪=⎪⎩答:平路有443千米,坡路有53千米【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程组.25. 如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC=12,求FC的长.【答案】(1)证明见解析;(2)FC=203.【解析】【分析】(1)连接EB,可得BE⊥AC,∠ABE=∠CBE,再证∆ABE≅∆CBE,即可得到结论;(2)易得∠FAC=∠ABE,从而得AEBE=12,设AE=x,则BE=2x,可得AC=5BE=5CH⊥AF于点H,易证Rt△ACH∽Rt△BAE,可得HC=4,AH=8,由HC∥AB,得FCFB=HCAB,进而即可求解.【详解】(1)连接EB,∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵点E为AD弧的中点,∴∠ABE=∠CBE,在∆ABE与∆CBE中,∵=90{AEB CEBBE BEABE CBE∠∠=︒=∠∠=,∴∆ABE≅∆CBE(ASA),∴BA=BC;(2)∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=tan∠FAC=12,∵Rt△ABE中,tan∠ABE=AEBE=12,∴设AE=x,则BE=2x,∴AB=10,解得:x=∴∆ABE≅∆CBE,∴AC=2AE=BE=作CH⊥AF于点H,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAE,∴HCAE=AHBE=ACAB10,∴HC=4,AH=8,∵HC∥AB,∴FCFB=HCAB,即FCFC10+=25,解得:FC=203.【点睛】本题主要考查圆的基本性质,锐角三角函数以及相似三角形的综合,掌握圆周角定理的推论,锐角三角函数的定义以及相似三角形的判定和性质定理,是解题的关键.26. 如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.【答案】(1)y=﹣x2﹣x+2;(2)(0,2)或(﹣1,2)或117-+,﹣2)或117--,﹣2);(3)1.【解析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设M点坐标为(m,n),根据S△AOM=2S△BOC列出关于m的方程,解方程求出m的值,进而得到点P 的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+2,再设N点坐标为(x,x+2),则D点坐标为(x,-x2-x+2),然后用含x的代数式表示ND,根据二次函数的性质即可求出线段ND长度的最大值.解:(1)A(﹣2,0),C(0,2)代入抛物线的解析式y=﹣x2+mx+n,得4202m nn--+=⎧⎨=⎩,解得12mn=-⎧⎨=⎩,∴抛物线的解析式为y =﹣x 2﹣x +2.(2)由(1)知,该抛物线的解析式为y =﹣x 2﹣x +2,则易得B (1,0),设M (m ,n )然后依据S △AOM =2S △BOC 列方程可得:12•AO ×|n |=2×12×OB ×OC , ∴12×2×|﹣m 2﹣m +2|=2, ∴m 2+m =0或m 2+m ﹣4=0,解得m =0或﹣1或12-±,∴符合条件的点M 的坐标为:(0,2)或(﹣1,2)或(12-+,﹣2)或(12-,﹣2). (3)设直线AC 的解析式为y =kx +b ,将A (﹣2,0),C (0,2)代入得到202k b b -+=⎧⎨=⎩,解得12k b =⎧⎨=⎩, ∴直线AC 的解析式为y =x +2,设N (x ,x +2)(﹣2≤x ≤0),则D (x ,﹣x 2﹣x +2),ND =(﹣x 2﹣x +2)﹣(x +2)=﹣x 2﹣2x =﹣(x +1)2+1,∵﹣1<0,∴x =﹣1时,ND 有最大值1.∴ND 的最大值为1.点睛:本题考查二次函数的图象和性质.根据二次函数的性质并结合已知条件及图象进行分析是解题的关键.。
初中总复习综合测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷30分,第Ⅱ卷70分,共100分,考试时间100分钟.第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分),sin30°,-√3,√4.其中是无理数的有( )1.下列各数:π3A.1个B.2个C.3个D.4个2.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350000000用科学记数法表示为( )A.3.5×107B.3.5×108C.3.5×109D.3.5×10103.下列各式计算结果正确的是( )A.x+x=x2B.(2x)2=4xC.(x+1)2=x2+1D.x·x=x24.7名同学每周在校体育锻炼时间(单位:小时)分别为7,5,8,6,9,7,8,这组数据的中位数是( )A.6B.7C.7.5D.85.已知一次函数y=(a+1)x+b的图象如图XC-1所示,那么a的取值范围是( )A.a>1B.a<-1C.a>-1D.a<06.将一个直角三角板和一把直尺按如图XC-2所示放置,若α=43°,则β的度数是( )A.43°B.47°C.30°D.60°图XC-2图XC-37.如图XC-3,☉O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为( )A.2B.3C.4D.58.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=12x的图象上的概率是( )A.12B.13C.14D.16图XC-49.如图XC-4所示,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )A.1个B.2个C.3个D.4个10.已知二次函数y=ax2+bx+c(a≠0)的图象如图XC-5所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac-b2<0.其中正确的有( )A.1个B.2个C.3个D.4个请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分答案第Ⅱ卷(非选择题共70分)二、填空题(每题3分,共18分)11.在函数y=√x-1中,自变量x的取值范围是.12.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红图XC-6,则a等于.球的概率为1313.如图XC-6,B是AD延长线上的一点,DE∥AC,AE平分∠CAB,∠C=50°,∠E=30°,则∠CDA的度数等于.14.把抛物线y=x2-ax+b的图象向右平移3个单位,再向上平移2个单位,所得到的图象的函数解析式为y=x2-2x+3,则(b-2)a的值为.⏜上15.如图XC-7,O为坐标原点,点A的坐标为(3,0),点B的坐标为(0,4),☉D过A,B,O三点,C为ABO一点(不与O,A两点重合),则cos C的值为.图XC -7图XC -816.如图XC -8所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 . 三、解答题(共52分)17.(5分)解不等式组{2x -1>x +1,x +8>4x -1,并把它的解集表示在数轴上.18.(5分)某风景区的门票价格如下表所示:购票人数 1~50人 51~100人 100人以上 票价100元/人80元/人50元/人某校九年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付9200元;如果两个班联合起来作为一团体购票,一共只需付5150元.甲、乙两班分别有多少人?19.(6分)D,E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB,AC的中点.O是△ABC所在平面上的动点,连接OB,OC,G,F分别是OB,OC的中点,顺次连接点D,G,F,E.(1)如图XC-9,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)连接OA,若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系(直接写出答案,不需要说明理由)?图XC-920.(6分)某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A,B,C,D表示,根据调查结果统计数据绘制成了如图XC-10所示的两幅不完整的统计图,由图中给出的信息解答下列问题:图XC-10(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上.现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.21.(6分)如图XC-11,直线AB与反比例函数的图象交于A(-4,m),B(2,n)两点,点C在x轴上,AO=AC,△OAC的面积为8.(1)求反比例函数的解析式;(2)求cos∠OBA的值.图XC-1122.(6分)如图XC-12,☉O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.求证:(1)∠1=∠BAD;(2)BE是☉O的切线.图XC-1223.(8分)问题情境:如图XC-13①,四边形ABCD是正方形,M是BC边上的一点,E是CD边上的中点,AE平分∠DAM.探究展示:(1)求证:AM=AD+MC.(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.拓展延伸:(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图②,探究(1)(2)中的结论是否成立.请分别作出判断,不需要证明.图XC-1324.(10分)如图XC-14,在平面直角坐标系xOy中,A,B,C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A,B,C三点的抛物线的解析式.(2)在平面直角坐标系xOy中是否存在一点P,使得以A,B,C,P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由.(3)若M为该抛物线上一动点,在(2)的条件下,请求出当|PM-AM|最大时点M的坐标,并直接写出|PM-AM|的最大值.图XC-14初中总复习综合测试1.B2.B3.D4.B5.C6.B7.A8.D9.C 10.C11.x≥012.113.70°14.11615.4516.n(n+2)或n2+2n或(n+1)2-117.解:{2x-1>x+1,①x+8>4x-1,①解不等式①,得x>2.解不等式②,得x<3.∴原不等式组的解集为2<x<3.把原不等式组的解集表示在数轴上如图所示:18.解:设甲班有x人,乙班有y人.由题意,得{80x+100y=9200,50(x+y)=5150,解得{x=55,y=48.答:甲班有55人,乙班有48人.19.解:(1)证明:∵D,E分别是边AB,AC的中点,∴DE∥BC,且DE=12BC.同理,GF∥BC,且GF=12BC,∴DE∥GF,且DE=GF,∴四边形DGFE是平行四边形.(2)当OA=BC时,四边形DGFE是菱形.20.解:(1)∵x%+15%+10%+45%=1,∴x=30.∵调查的总人数=90÷45%=200(人),∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人).补充条形统计图如图所示.(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人.(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图:共有20种等可能的结果,其中选出的2人来自不同小组的情况有12种,所以选出的2人来自不同小组的概率=1220=35. 21.解:(1)设反比例函数的解析式为y=k x.∵△OAC 的面积为8,AO=AC ,点A (-4,m ),∴点C (-8,0),S △OAC=12·8·m=8, ∴m=2,∴点A (-4,2).∵反比例函数的图象经过A (-4,2),B (2,n )两点,∴k=-8,n=-4,∴点B 的坐标为(2,-4),反比例函数的解析式为y=-8x.(2)如图,过点O 作OE ⊥AB 于点E.由(1)可知,OA=OB=2√5,AB=6√2.∵OA=OB ,OE ⊥AB ,∴AE=EB=3√2,∴cos ∠OBA=EB OB =√22√5=3√1010.22.证明:(1)∵BD=BA ,∴∠BDA=∠BAD.∵∠1=∠BDA ,∴∠1=∠BAD.(2)如图,连接BO.∵∠ABC=90°,∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BCO+∠BCD=180°.∵OB=OC,∴∠BCO=∠CBO,∴∠CBO+∠BCD=180°,∴OB∥DE.∵BE⊥DE,∴EB⊥OB.∵OB是☉O的半径,∴BE是☉O的切线.23.解:(1)证明:延长AE,BC交于点N,如图所示.∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠CNE.∵AE平分∠DAM,∴∠DAE=∠MAE,∴∠CNE=∠MAE,∴AM=MN.在△ADE和△NCE中,{①DAE=①CNE,①AED=①NEC,DE=CE,∴△ADE≌△NCE(AAS),∴AD=NC,∴AM=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD ,AB ∥DC.∵AF ⊥AE ,∴∠FAE=90°,∴∠FAB=90°-∠BAE=∠DAE.在△ABF 和△ADE 中,{①FAB =①EAD,AB =AD,①ABF =①D =90°,∴△ABF ≌△ADE (ASA ),∴BF=DE ,∠F=∠AED.∵AB ∥DC ,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM ,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM ,∴∠F=∠FAM ,∴AM=FM ,∴AM=FB+BM=DE+BM.(3)(1)中的结论成立;(2)中的结论不成立.24.解:(1)设抛物线的解析式为y=ax 2+bx+c.∵抛物线经过点A (1,0),B (0,3),C (-4,0),∴{a +b +c =0,c =3,16a -4b +c =0,解得{a =−34,b =−94,c =3,∴经过A ,B ,C 三点的抛物线的解析式为y=-34x 2-94x+3.(2)在平面直角坐标系xOy 中存在一点P ,使得以A ,B ,C ,P 为顶点的四边形为菱形.理由:如图,∵OB=3,OC=4,OA=1,∴BC=AC=5.当BP 平行且等于AC 时,四边形ACBP 为菱形,∴BP=AC=5,且点P 到x 轴的距离等于OB ,∴点P 的坐标为(5,3).当点P 在第二、三象限时,以A ,B ,C ,P 为顶点的四边形只能是平行四边形,不是菱形,则当点P 的坐标为(5,3)时,以A ,B ,C ,P 为顶点的四边形为菱形.(3)设直线PA 的解析式为y=kx+b (k ≠0).∵A (1,0),P (5,3),∴{5k +b =3,k +b =0,解得{k =34,b =−34,∴直线PA 的解析式为y=34x-34.当点M 与点P ,A 不在同一直线上时,根据三角形的三边关系|PM-AM|<PA ;当点M 与点P ,A 在同一直线上时,|PM-AM|=PA ,∴当点M 与点P ,A 在同一直线上时,|PM-AM|的值最大,即M 为直线PA 与抛物线的交点,解方程组{y =34x -34,y =−34x 2-94x +3,得{x 1=1,y 1=0或{x 2=−5,y 2=−92,∴点M 的坐标为(1,0)或-5,-92时,|PM-AM|的值最大,此时|PM-AM|的最大值为5.。
2024届中考数学回来课本复习---人教版七年级数学综合卷一(时间:110分钟 满分:100分)留意事项:1.本试题分第I 卷和第Ⅱ卷两部分,共10页。
第I 卷第1页至第2页为选择题,24分;第Ⅱ卷第3页至第10页为非选择题,76分;共100分。
2.答卷前务必将自己的姓名、考号等填写在装订线内规定位置。
第Ⅰ卷 (选择题 共24分)一.细心选一选(本大题共12小题,每题2分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的, 把所选项前的字母代号填在卷Ⅱ的答题栏内。
信任你肯定能选对!)1. 下列各数:3--,)3(--,23-,()23-中,负数有 ( )A. 1个B. 2个C. 3个D. 4个2. 我国研制的“曙光3000超级服务器”排在全世界运算速度最快的500台高性能计算机的第80位,它的峰值速度达到每秒403 200 000 000次,用科学记数法表示它的峰值计算速度为每秒 ( )A.12104032.0⨯次B.9102.403⨯次C.1110032.4⨯次D.810032.4⨯次 3. 有理数a 、b 、c 、d 在数轴上的位置如图1所示,下列结论中错误的是 ( )图1A. a+b<0B. c+d>0C. |a+c|=a+cD. |b+d|=b+d4.下列式子正确的是( )A.z y x z y x --=--)(B. z y x z y x ---=+--)(C.)(222y z x z y x +-=-+D. )()(d c b a d c b a -----=+++- 5. 某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A.不赔不赚B.赚了10元C.赔了10元D.赚了50元6. 下列各题中合并同类项,结果正确的是( )A. 2a 2+3a 2=5a 2B. 2a 2+3a 2=6a 2C. 4xy -3xy =1D. 2x 3+3x 3=5x 67. 下列说法:①两条直线相交,有公共顶点而没有公共边的两个角是对顶角; ②假如两条线段没有交点,那么这两条线段所在直线也没有交点; ③邻补角的两条角平分线构成一个直角;④直线外一点与直线上各点连接的全部线段中,垂线段最短. 其中正确的是( )A.1个B.2个C.3个D.4个 8. 如图1,从A 到B 最短的路途是( ).A. A —G —E —BB. A —C —E —BC. A —D —G —E —BD. A —F —E —B 9. 若a <0,b >0,则b 、b+a 、b -a 中最大的一个数是( )A. aB. b+aC. b -aD. 不能确定 10.利用一副三角板上已知度数的角,不能画出的角是 ( )A. 15°B. 135°C. 165°D. 100° 11. 如图2,是由四个1×1的小正方形组成的大正方形,则∠1+∠2+∠3+∠4=( ) A .180° B .150°C .135°D .120°12. 如图3是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是 ( )A B C D第Ⅱ卷 (非选择题,共76分)一、选择题(答题栏)(每小题2分,共24分)题号 123 4 5 6 7 8 9 10 11 12 得 分 评卷人 答案二、细心填一填(本大题共有6小题,每题2分,共12分。
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.【答案】(1)4;(2)35;(3)点E的坐标为(1,2)、(53,103)、(4,2).【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH=BHHA=1,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).由(1)得:OH =2,BH =4.∵OC 与⊙M 相切于N ,∴MN ⊥OC .设圆的半径为r ,则MN =MB =MD =r .∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB ,∴BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5.在Rt △ORB 中,sin ∠BOR =BR OB35. 故答案为35. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.解得:t =1.则OP =CD =DB =1.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).②当∠BED =90°时,如图3.∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,∴BE =5t . ∵PE ∥OC ,∴∠OEP =∠BOC .∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,∴OEOB =25OPBC∴,=2t,∴OE=5t.∵OE+BE=OB=255,∴t+5t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=2,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.2.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC(1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.3.如图,已知AB 为⊙O 直径,D 是BC 的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线交AD 的延长线于F .(1)求证:直线DE 与⊙O 相切;(2)已知DG ⊥AB 且DE =4,⊙O 的半径为5,求tan ∠F 的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC 、OD ,由D 是弧BC 的中点,可知:OD ⊥BC ;由OB 为⊙O 的直径,可得:BC ⊥AC ,根据DE ⊥AC ,可证OD ⊥DE ,从而可证DE 是⊙O 的切线;(2)直接利用勾股定理得出GO 的长,再利用锐角三角函数关系得出tan ∠F 的值. 试题解析:解:(1)证明:连接OD ,BC ,∵D 是弧BC 的中点,∴OD 垂直平分BC ,∵AB 为⊙O 的直径,∴AC ⊥BC ,∴OD ∥AE .∵DE ⊥AC ,∴OD ⊥DE ,∵OD 为⊙O 的半径,∴DE 是⊙O 的切线;(2)解:∵D 是弧BC 的中点,∴DC DB =,∴∠EAD =∠BAD ,∵DE ⊥AC ,DG ⊥AB 且DE =4,∴DE =DG =4,∵DO =5,∴GO =3,∴AG =8,∴tan ∠ADG =84=2,∵BF 是⊙O 的切线,∴∠ABF =90°,∴DG ∥BF ,∴tan ∠F =tan ∠ADG =2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG ,DG 的长是解题关键.4.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.5.如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D ,连接BD .(1)观察猜想张老师在课堂上提出问题:线段DC ,AD ,BD 之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B 作BE ⊥BD ,交MN 于点E ,进而得出:DC+AD= BD .(2)探究证明将直线MN 绕点A 顺时针旋转到图2的位置写出此时线段DC ,AD ,BD 之间的数量关系,并证明(3)拓展延伸在直线MN 绕点A 旋转的过程中,当△ABD 面积取得最大值时,若CD 长为1,请直接写BD 的长.【答案】(12;(2)AD ﹣2BD ;(3)2+1.【解析】【分析】(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系(2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O ,证明CDB AEB ∆∆≌,得到CD AE =,EB BD =,根据BED ∆为等腰直角三角形,得到2DE BD =,再根据DE AD AE AD CD =-=-,即可解出答案.(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==由BD AD =即可得出答案.【详解】解:(1)如图1中,由题意:BAE BCD ∆∆≌,∴AE=CD ,BE=BD ,∴CD+AD=AD+AE=DE ,∵BDE ∆是等腰直角三角形, ∴DE=2BD ,∴DC+AD=2BD ,故答案为2.(2)2AD DC BD -=.证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .∵90ABC DBE ∠=∠=︒,∴ABE EBC CBD EBC ∠+∠=∠+∠,∴ABE CBD ∠=∠.∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠,∴BAE BCD ∠=∠,∴ABE DBC ∠=∠.又∵AB CB =,∴CDB AEB ∆∆≌,∴CD AE =,EB BD =,∴BD ∆为等腰直角三角形,2DE BD =. ∵DE AD AE AD CD =-=-,∴2AD DC BD -=.(3)如图3中,易知A 、B 、C 、D 四点共圆,当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证2==,CH AH∴21==+.BD AD【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.6.如图,已知在△ABC中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【答案】(1)作图见解析;(2)3π【解析】【分析】(1)与AB、BC两边都相切.根据角平分线的性质可知要作∠ABC的角平分线,角平分线与AC的交点就是点P的位置.(2)根据角平分线的性质和30°角的直角三角形的性质可求半径,然后求圆的面积.【详解】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠ABC=60°,BP平分∠ABC,∴∠ABP=30°,∵∠A=90°,∴BP=2APRt △ABP 中,AB=3,由勾股定理可得:AP=3,∴S ⊙P =3π7.如图,AB 为⊙O 的直径,BC 为⊙O 的弦,过O 点作OD ⊥BC ,交⊙O 的切线CD 于点D ,交⊙O 于点E ,连接AC 、AE ,且AE 与BC 交于点F .(1)连接BD ,求证:BD 是⊙O 的切线;(2)若AF :EF=2:1,求tan ∠CAF 的值.【答案】(1)证明见解析;(23. 【解析】【分析】 (1)根据全等三角形的性质得到∠OBD=∠OCD=90°,根据切线的判定定理即可得到结论; (2)根据已知条件得到AC ∥DE ,设OD 与BC 交于G ,根据平行线分线段成比例定理得到AC :EG=2:1,EG=12AC ,根据三角形的中位线的性质得到OG=12AC 于是得到AC=OE ,求得∠ABC=30°,即可得到结论.【详解】证明:(1)∵OC=OB ,OD ⊥BC ,∴∠COD=∠BOD ,在△COD 与△BOD 中, OC OB COD BOD OD OD ===⎧⎪∠∠⎨⎪⎩,∴△COD ≌△BOD ,∴∠OBD=∠OCD=90°,∴BD 是⊙O 的切线;(2)解:∵AB 为⊙O 的直径,AC ⊥BC ,∵OD ⊥CB ,∴AC ∥DE ,设OD 与BC 交于G ,∵OE ∥AC ,AF :EF=2:1,∴AC :EG=2:1,即EG=12AC , ∵OG ∥AC ,OA=OB ,∴OG=12AC , ∵OG+GE=12AC+12AC=AC , ∴AC=OE , ∴AC=12AB , ∴∠ABC=30°,∴∠CAB=60°,∵CE BE =,∴∠CAF=∠EAB=12∠CAB=30°, ∴tan ∠CAF=tan30°=33. 【点睛】本题考查了切线的判定和性质,垂径定理,全等三角形的判定与性质,三角形的中位线的性质,三角函数的定义,正确的识别图形是解题的关键.8.如图,AB 是O 的直径,DF 切O 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交BD 的延长线于点C .(1)求证:ABC C ∠∠=;(2)设CA 的延长线交O 于E BF ,交O 于G ,若DG 的度数等于60,试简要说明点D和点E关于直线AB对称的理由.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;(2)连接OG,OD,AD,由BF∥OD,GD=60°,可求证BG=GD AD==60°,由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.【详解】(1)连接OD,∵DF为⊙O的切线,∴OD⊥DF.∵BF⊥DF,AC∥BF,∴OD∥AC∥BF.∴∠ODB=∠C.∵OB=OD,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,DE,DE交AB于H,∵BF∥OD,∴∠OBG=∠AOD,∠OGB=∠DOG,∴GD AD==BG.∵GD=60°,∴BG=GD AD==60°,∴∠ABC=∠C=∠E=30°,∵OD//CE∴∠ODE=∠E=30°.在△ODH中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB⊥DE.∴点D和点E关于直线AB对称.【点睛】本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.9.如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=12∠P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C 为顶点的三角形与△BFM相似,求DH的长度.【答案】(1)证明见解析;(2)PM=32;(3)满足条件的DH的值为632-或1223+【解析】【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,DH CD FM BF=.②当△CDH∽△MFB时,DH CDFB MF=,分别构建方程即可解决问题;【详解】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=12∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CMD=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD33,∴OD=OC﹣CD=43,∴AD=OA+OD=8+43=123,在Rt△ADP中,DP=AD•tan30°=(123)×33=3﹣1,∴PM=PD﹣DM=3﹣2.(3)如图2中,由(2)可知:BF =12BC =4,FM 3BF =3,CM =2DM =2,CD 3 , ∴FM =FC ﹣CM =3﹣2,①当△CDH ∽△BFM 时,DH CD FM BF = , ∴34432=- ,∴DH =632 ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =-,∴DH 1223+ , ∵DN ()22443833--=-,∴DH <DN ,符合题意,综上所述,满足条件的DH 63-1223+. 【点睛】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.10.如图,AB 是⊙O 的直径,∠ACB 的平分线交AB 于点D ,交⊙O 于点E ,过点C 作⊙O 的切线CP 交BA 的延长线于点P ,连接AE .(1)求证:PC=PD ;(2)若AC=5cm ,BC=12cm ,求线段AE ,CE 的长.【答案】(1)见解析 (2) EC=172AE=132【解析】试题分析:(1)如图1中,连接OC、OE.利用等角的余角相等,证明∠PCD=∠PDC即可;(2)如图2中.作EH⊥BC于H,EF⊥CA于F.首先证明Rt△AEF≌Rt△BEH,推出AF=BH,设AF=BH=x,再证明四边形CFEH是正方形,推出CF=CH,可得5+x=12﹣x,推出x=72,延长即可解决问题;试题解析:(1)证明:如图1中,连接OC、OE.∵AB直径,∴∠ACB=90°,∴CE平分∠ACB,∴∠ECA=∠ECB=45°,∴AE=BE,∴OE⊥AB,∴∠DOE=90°.∵PC是切线,∴OC⊥PC,∴∠PCO=90°.∵OC=OE,∴∠OCE=∠OEC.∵∠PCD+∠OCE=90°,∠ODE+∠OEC=90°,∠PDC=∠ODE,∴∠PCD=∠PDC,∴PC=PD.(2)如图2中.作EH⊥BC于H,EF⊥CA于F.∵CE平分∠ACB,EH⊥BC于H,EF⊥CA于F,∴EH=EF,∠EFA=∠EHB=90°.∵AE=BE,∴AE=BE,∴Rt△AEF≌Rt△BEH,∴AF=BH,设AF=BH=x.∵∠F=∠FCH=∠CHE=90°,∴四边形CFEH是矩形.∵EH=EF,∴四边形CFEH是正方形,∴CF=CH,∴5+x=12﹣x,∴x =72,∴CF =FE =172,∴EC CF =2,AE 点睛:本题考查了切线的性质、圆周角定理、勾股定理、垂径定理、正方形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。
2022-2023学年全国中考专题数学中考真卷考试总分:114 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1. 下列各数是负数的是( )A.B. C.D.2. 计算的结果是( )A.B.C.D.3. 如图所示的是一个由个棱长为的小正方体搭成的几何体,现将最上方的正方体移走,则关于新几何体的三视图描述正确的是( )A.左视图的面积是B.主视图的面积是C.俯视图的面积是−11π(−3+−(−12−−√)027−−√3–√3)−11+833–√1+23–√3–√1+43–√51345D.左视图的面积最小4.如图,在中,,过点作 ,若则等于( )A.B.°C.D.°5. 若,则的值是( )A.B.C.D.6. 下列运算正确的是 ( )A.B.C.D.7. 不等式组的解集是A.B.C.RtΔABC ∠ACB =90∘C CD|ABA ∠B =50∘∠1504035∘25m +2n −5=03m +6n −51020−10−20=()a 27a 9÷=a 6a 2a 3⋅=(−a)2a 3a 5=−4(−2a)2a 2{2x ≥2,2(x −1)<x +1( )x ≥1x <31≤x <3D.8. 如图,将边长为的正方形铁丝框(面积即为),变形为以点为圆心,为半径的扇形(面积记为),则与的关系为( )A.B.C.D.无法确定9. 某班学生积极参加献爱心活动,该班名学生的捐款情况统计如下表:金额/元人数则他们捐款金额的中位数和众数分别是( )A.元 元B.元 元C.元 元D.元 元10. 将直线向下平移个单位,可得到直线( )A.B.C.D.11. 如图,是▱的边上的点,且,连接并延长,交的延长线于点,若,则▱的周长为( )1<x <33ABCD S 1B BC S 2S 1S 2>S 1S 2=S 1S 2<S 1S 250510205010041615961010102020102020y =−3x +14y =−3x −3y =−3x +5y =−3x +3y =3x +5E ABCD AD =DE AE 12BE CDF DE =DF =3ABCDA.B.C.D.12. 如图,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列选项错误的是( )A.B.C.当时,的取值范围是D.若在抛物线上,则卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )13. 某服装店元旦促销,如图是该商店抽奖所用的一个转盘,这个转盘被分成的每等份所对的圆心角为.转动转盘,若指针落在空白区域,顾客所购商品打折;若指针落在阴影区域,顾客所购商品在打折的基础上,还可获得消费满减的代金券,则小李在该店消费并能获得代金券的概率为________.15243036y =a +bx +c(a ≠0)x 2x =1x (−1,0)c <02a +b =0y >0x −1<x <3A(−,),B(2,),C(5,)12y 1y 2y 3>>y 1y 2y 322.5∘885005014. 计算:________.15. 已知是一元二次方程的根,若,,则的值为________.16. 下列命题中正确的是________.①对角线互相平分的四边形是平行四边形;②对角线相等的平行四边形是矩形;③一条对角线平分一组对角的四边形是菱形;④对角线互相垂直的矩形是正方形.17.[阅读与证明]如图,在正的外角内引射线,作点关于的对称点(点在内),连接,、分别交于点、.①完成证明:∵点是点关于的对称点,∴,,.∵正中,,,∴,得.在中,,∴________.在中,,∴________.②求证:.[类比与探究]把中的“正”改为“正方形”,其余条件不变,如图.类比探究,可得:①________;②线段、、之间存在数量关系________.[归纳与拓展]如图,点在射线上,,,在内引射线,作点关于的对称点(点在内),连接,、分别交于点、.则线段、、之间的数量关系为________.三、 解答题 (本题共计 7 小题 ,每题 9 分 ,共计63分 )(2+)(−2)=3–√3–√m a +bx +c =0(a ≠0)x 2b +c =04a +2b +c =0m (1)1△ABC ∠CAH AM C AM E E ∠CAH BE BE CE AM F G E C AM ∠AGE =90∘AE =AC ∠1=∠2△ABC ∠BAC =60∘AB =AC AE =AB ∠3=∠4△ABE ∠1+∠2++∠3+∠4=60∘180∘∠1+∠3=∘△AEG ∠FEG +∠3+∠1=90∘∠FEG =∘BF =AF +2FG (2)(1)△ABC ABDC 2∠FEG =∘BF AF FG (3)3A BH AB =AC ∠BAC =α(<α<)0∘180∘∠CAH AM C AM E E ∠CAH BE BE CE AM F G BF AF GF |1−|−+−(−1–√–√−1)201918. 计算:先化简,再求值:,其中, 19. 为了提高学生书写汉字的能力,我市举办了首届“汉字听写大赛”,经选拔后有名学生参加比赛,比赛后这名学生的成绩都不低于分且不足分,从中随机抽取名学生的听写成绩,根据抽取测试成绩绘制出部分频数分布表和部分频数分布直方图如图所示:级别成绩元分频数(人数)第组第组第组第组第组请结合图表完成下列各题:直接写出的值及被抽取的名学生成绩的中位数落在第几组?请把频数分布直方图补充完整;若测试成绩不低于分为优秀,估计本次比赛的名学生成绩为优秀的有多少人. 20. 已知:如图,在▱中,点是对角线的中点.经过点分别与,交于点、.求证: .21. 某营业厅销售部型号手机和部型号手机的营业额为元,销售部型号手机和部型号手机的营业额为元.求每部型号手机和型号手机的售价;该营业厅计划一次性购进两种型号手机共部,其中型号手机的进货数量不超过型号手机数量的倍.已知型手机和型手机的进货价格分别为元/部和元/部,设购进型号手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该营业厅购进型号和型号手机各多少部时,才能使销售总利润最大,最大利润为多少元? 22. 已知正方形, 绕点顺时针旋转,它的两边分别交,于点,,于点.(1)|1−|−+−(−12–√8–√2−1)2019(2)⋅(1−)−+2x +1x 2y 1x +1x 2y x =2y =2–√15001500255050125≤x <304230≤x <358335≤x <4016440≤x <45a545≤x <5010(1)a 50(2)(3)401500ABCD O AC EF O AB CD F E OE =OF 3A 2B 108004A 1B 10400(1)A B (2)50B A 3A B 15001800A a 50W W a A B ABCD ∠MAN =45∘∠MAN A CB DC M N AH ⊥MN H如图①,当时,可以通过证明 ,得到与的数量关系,这个数量关系是________.如图②,当时,中发现的与的数量关系还成立吗?说明理由;如图③,已知中,,于点,,求的长. 23. 已知:如图,内接于,为直径,点是弧上的一点,连接、,交于点,于点,交于点,.求证:;判断与是否相等,并说明理由;当点为半圆弧的中点,小李通过操作发现,请问小李的发现是否正确.若正确,请说明理由;若不正确,请写出与正确的关系式.24. 已知:在平面直角坐标系中,抛物线交轴于点,,与轴交于点,.如图,求抛物线的解析式;如图,点为第一象限的抛物线上一点,分别连接,,设的面积为,点的横坐标为,求与的函数关系式;在的条件下,如图,点在轴的负半轴上,点在轴的正半轴上,点为上一点,点为第一象限内一点,连接,,交于点,,,连接,,连接,,过点作于点,交于点,若点在的垂直平分线上,,求点的坐标.(1)BM =DN △ADN ≅△ABM AH AB (2)BM ≠DN (1)AH AB (3)△AMN ∠MAN =45∘AH ⊥MN H MH =3,NH =7AH △ABC ⊙O AB D AC AD BD AC BD F DE ⊥AB E AC P ∠ABD =∠CBD =∠CAD (1)PA =PD (2)AP PF (3)C BF =2AD BF AD y =a −2ax +4(a <0)x 2x A B y C AB =6(1)1(2)2R RB RC △RBC s R t s t (3)(2)3D x F y E OB P PD EF PD OC G DG =EF PD ⊥EF PE ∠PEF =2∠PDE PB PC R RT ⊥OB T PC S P BT OB −TS =23R参考答案与试题解析2022-2023学年全国中考专题数学中考真卷一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )1.【答案】A【考点】实数【解析】此题暂无解析【解答】此题暂无解答2.【答案】D【考点】实数的运算零指数幂零指数幂、负整数指数幂【解析】分别根据零次幂、二次根式的性质以及负指数幂化简即可求解.【解答】原式=.3.【答案】D【考点】1+3+=1+43–√3–√3–√简单组合体的三视图【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.【解答】解:项,题中几何体左视图由个正方形组成,面积为,故项错误;项,主视图由个正方形组成,面积为,故项错误;项,俯视图由个正方形组成,面积为,故项错误;项,左视图的面积最小,故项正确.故选.4.【答案】B【考点】平行线的性质垂线【解析】本题考查平行线的性质,垂直的定义.根据两直线平行,内错角相等求出度数,再由垂直定义求出度数,最后由求解即可.【解答】解:,,,,.故选.5.【答案】A【考点】列代数式求值【解析】此题暂无解析A 22AB 33BC 44CD D D ∠BCD ∠BCE ∠1=∠BCE −∠BCD ∵CD//AB ∴∠BCD =∠B =50∘∵BC ⊥AE ∴∠BCE =90∘∴∠1=∠BCE −∠BCD =−=90∘50∘40∘B【解答】解:∵,∴,∴.故选.6.【答案】C【考点】同底数幂的除法合并同类项同底数幂的乘法幂的乘方与积的乘方【解析】利用合并同类项,同底数幂的乘除法法则,幂的乘方与积的乘方的运算法则逐项分析即可.【解答】解:, ,故错误;,,故错误;,,故正确;,,故错误.故选.7.【答案】C【考点】解一元一次不等式组【解析】此题暂无解析【解答】解:解不等式①,得,解不等式②,得,所以不等式组的解集为.m +2n −5=0m +2n =53m +6n −5=3(m +2n)−5=15−5=10A A =()a 27a 14A B ÷==a 6a 2a 6−2a 4B C ⋅=(−a)2a 3a 5C D =4(−2a)2a 2D C {2x ≥2,①2(x −1)<x +1,②x ≥1x <31≤x <3C故选.8.【答案】B【考点】扇形面积的计算【解析】此题暂无解析【解答】解:,.则成立.故选.9.【答案】C【考点】中位数众数【解析】根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,找出最中间两个数的平均数;根据一组数据中出现次数最多的数据叫做众数,进行判断即可.【解答】解:共有个数,∴中位数是第,个数的平均数,∴中位数是,∵金额元出现的次数最多,∴众数为.故选.10.【答案】A【考点】C ==9S 132=×3×3×2=9S 212=S 1S 2B 502526(20+20)÷2=201010C一次函数图象与几何变换【解析】此题暂无解析【解答】解:将直线向下平移个单位得到直线,则直线的解析式为.故选.11.【答案】C【考点】平行四边形的性质相似三角形的性质与判定【解析】根据题意四边形是平行四边形,故有,根据和,可证,根据相似三角形性质有,根据,即可计算和的长度,根据平行四边形周长公式即可计算平行四边形的周长.【解答】解:∵四边形为平行四边形,∴ , ,,∴,∵,∴,∴,∵,∴, ∴,,∵,∴,,∴,∴▱的周长为.故选.12.【答案】By =−3x +14y =−3x +1−4y =−3x −3A ABCD AB//CD ∠ABE =∠EFD ∠AEB =∠DEF △ABE ∼△DFE =AB DF AE DE =DE AE 12DE =DF =3AB AD ABCD ABCD AB =CD AD =BC AB//DC ∠ABE =∠DFE ∠AEB =∠DEF △ABE ∼△DFE =AB DF AE DE =DE AE 12==2AB DF AE DE AB =2DF AE =2DE DE =DF =3AB =2×3=6AE =2×3=6AD =AE +DE =6+3=9ABCD 2(AB +AD)=2×(6+9)=2×15=30C【考点】抛物线与x 轴的交点二次函数图象与系数的关系【解析】此题暂无解析【解答】解:∵当时,抛物线交在轴正半轴上,,正确;由图可知,,∵抛物线的对称轴为直线,而点关于直线的对称点的坐标为,∴方程的两个根是,,代入抛物线解析式有:,,解得,,错误;抛物线两根为和,时,,正确;∵抛物线的对称轴为直线,点关于直线的对称点为,,.正确.故选.二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )13.【答案】【考点】概率公式【解析】由题可得,该转盘被等分成了份,其中阴影部分有份,故顾客在该店消费并能获得代金券的概率为.x =0y ∴c >0∴A c =3x =1(−1,0)x =1(3,0)a +bx +c =0x 2=−1x 1=3x 2a −b +3=09a +3b +3=0a =−1,b =2∴2a +b =0∴B ∵−13∴−1<x <3y >0∴C x =1(−,)12y 1x =1(,)52y 1∵2<<552∴>>y 2y 1y 3∴D B 316163316【解答】解:由题意,得转盘一共有个格子,且阴影部分一共有个格子,又获得代金券的概率,则顾客在该店消费并能获得代金券的概率为.故答案为:.14.【答案】【考点】平方差公式【解析】此题暂无解析【解答】解:.故答案为:.15.【答案】【考点】根与系数的关系一元二次方程的解【解析】方程的根就是方程的解,就是能够使方程左右两边相等的未知数的值,根据定义即可判断.【解答】解:在中,令,则,即是方程的解.不妨设一元二次方程的两个根分别为:,,÷=16360∘22.5∘3=阴影个数总数316316−1(2+)(−2)=(−3–√3–√3–√)222=−1−12a +bx +c x 2x =2a +bx +c =4a +2b +c =0x 2x =2=2x 1x 2b +c =04a +2b +c =0由,,可得.由韦达定理,即.故答案为:.16.【答案】①②④【考点】平行四边形的性质与判定命题与定理正方形的判定与性质矩形的判定与性质菱形的判定与性质【解析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:①对角线互相平分的四边形是平行四边形是正确的;②对角线相等的平行四边形是矩形是正确的;③一条对角线平分一组对角的四边形不一定是菱形,可能是平行四边形,故原来的说法错误;④对角线互相垂直的矩形是正方形是正确的.故答案为:①②④.17.【答案】①解:如图中,∵点是点关于的对称点,∴=,,.∵正中,,,∴,得.在中,,∴.在中,,∴.故答案为:;.②证明:如图中,连接,在上取一点,使得,连接.b +c =04a +2b +c =04a =c ===4x 1x 2c a 4a a=2x 22(1)1E C AM ∠AGE =90∘AE =AC ∠1=∠2△ABC ∠BAC =60∘AB =AC AE =AB ∠3=∠4△ABE ∠1+∠2++∠3+∠4=60∘180∘∠1+∠3=60∘△AEG ∠FEG +∠3+∠1=90∘∠FEG =30∘60301CF FB T FT =CF CT∵,关于对称,∴垂直平分线段,∴,∴,,∴,∵,∴是等边三角形,∴,,∴,∵,∴,∴,∴.,【考点】四边形综合题等边三角形的性质与判定全等三角形的性质与判定含30度角的直角三角形相似三角形的性质与判定等腰直角三角形锐角三角函数的定义【解析】(1)①利用等腰三角形的性质,三角形内角和定理解决问题即可.②如图中,连接,在上取一点,使得=,连接.证明可得结论.(2)①如图中,利用圆周角定理解决问题即可.②结论:.如图中,连接,在上取一点,使得=,连接.证明,推出,推出可得结论.(3)如图中,连接,,在上取一点,使得=.构造相似三角形,利用相似三角形的性质解决问题即可.【解答】①解:如图中,∵点是点关于的对称点,C E AM AM EC FE =FC ∠FEC =∠FCE =30∘EF =2FG ∠CFT =∠FEC +∠FCE =60∘FC =FT △CFT ∠ACB =∠FCT =60∘CF =CT =FT ∠BCT =∠ACF CB =CA △BCT ≅△ACF(SAS)BT =AF BF =BT +FT =AF +EF =AF +2FG 45BF =AF +FG 2–√2–√BF =2AF ⋅sin α+12FG sin α121CF FB T FT CF CT △BCT ≅△ACF(SAS)2BF =AF +FG 2–√2–√2CF FB T FT CF CT △BCT ∽△ACF ==BT AF BC AC 2–√BT =AF 2–√3CF BC BF T FT CF (1)1E C AM ∠AGE =90∘AE =AC ∠1=∠2∴=,,.∵正中,,,∴,得.在中,,∴.在中,,∴.故答案为:;.②证明:如图中,连接,在上取一点,使得,连接.∵,关于对称,∴垂直平分线段,∴,∴,,∴,∵,∴是等边三角形,∴,,∴,∵,∴,∴,∴.解:①如图中,∵,∴点是的外接圆的圆心,∴,∵,∴.故答案为:.②结论:.理由:如图中,连接,在上取一点,使得,连接.∵,,∴,∴,,∴,∵,∠AGE =90∘AE =AC ∠1=∠2△ABC ∠BAC =60∘AB =AC AE =AB ∠3=∠4△ABE ∠1+∠2++∠3+∠4=60∘180∘∠1+∠3=60∘△AEG ∠FEG +∠3+∠1=90∘∠FEG =30∘60301CF FB T FT =CF CT C E AM AM EC FE =FC ∠FEC =∠FCE =30∘EF =2FG ∠CFT =∠FEC +∠FCE =60∘FC =FT △CFT ∠ACB =∠FCT =60∘CF =CT =FT ∠BCT =∠ACF CB =CA △BCT ≅△ACF(SAS)BT =AF BF =BT +FT =AF +EF =AF +2FG (2)2AB =AC =AE A △ECB ∠BEC =∠BAC 12∠BAC =90∘∠FEG =45∘45BF =AF +FG 2–√2–√2CF FB T FT =CF CT AM ⊥EC CG =GE FC =EF ∠FEC =∠FCE =45∘EF =FG 2–√∠CFT =∠FEC +∠FCE =90∘CF =CT △CFT∴是等腰直角三角形,∴,∵是等腰直角三角形,∴,∴,∵,∴,∴,∴,∴,∴.故答案为:.解:如图中,连接,,在上取一点,使得.∵,,∴,∴,∵,∴,,∵,∴,∴,同法可证,,∴,∴,∴,即.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 9 分 ,共计63分 )18.【答案】△CFT CT =CF 2–√△ABC BC =AC 2–√=CT CF CB CA ∠BCA =∠TCF =45∘∠BCT =∠ACF △BCT ∽△ACF ==BT AF BC AC 2–√BT =AF 2–√BF =BT +TF =AF +FG 2–√2–√BF =AF +FG 2–√2–√(3)3CF BC BF T FT =CF AB =AC ∠BAC =α=sin αBC 12AC 12=2⋅sin αBC AC 12AB =AC =AE ∠BEC =∠BAC =α1212EF =FG sin α12FC =FE ∠FEC =∠FCE =α12∠CFT =∠FEC +∠FCE =α△BCT ∽△ACF ==2⋅sin αBT AF BC AC 12BT =2AF ⋅sin α12BF =BT +FT =2AF ⋅sin α+EF 12BF =2AF ⋅sin α+12FG sin α12BF =2AF ⋅sin α+12FG sin α12|1−|−+−(−1–√–√−1)2019解:. ,当,时,则原式.【考点】负整数指数幂分式的化简求值实数的运算【解析】(1)本题涉及零指数幂、特殊角的三角函数值、负整数指数幂、绝对值个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)运用乘法分配律计算,再将互为相反数的式子抵消,即可化简式子,再代入求值.【解答】解:.(1)|1−|−+−(−12–√8–√2−1)2019=−1−+−(−1)2–√8–√12=−2+2–√2–√12=−+2–√12(2)⋅(1−)−+2x +1x 2y 1x +1x 2y=⋅(−)−(x +1)2y x +1x +11x +1x 2y=⋅−(x +1)2y x x +1x 2y =−+x x 2y x 2y =x y x =2y =2–√==22–√2–√4(1)|1−|−+−(−12–√8–√2−1)2019=−1−+−(−1)2–√8–√12=−2+2–√2–√12=−+2–√12(2)⋅(1−)−+2x +1x 2y 1x +1x 2y=⋅(−)−(x +1)2y x +1x +11x +1x 2y =⋅−(x +1)2y x x +1x 2y =−+x x 2y x 2yx,当,时,则原式.19.【答案】解:(1)∵,∴,由图表可知,中位数落在第组.(2)补全分布直方图如下:(3)(人),答:估计本次比赛的名学生成绩为优秀的有人.【考点】列表法与树状图法频数(率)分布直方图频数(率)分布表【解析】此题暂无解析【解答】解:(1)∵,∴,由图表可知,中位数落在第组.(2)补全分布直方图如下:(3)(人),答:估计本次比赛的名学生成绩为优秀的有人.=x y x =2y =2–√==22–√2–√4+8+16+a +10=50a =1231500×=66012+105015006604+8+16+a +10=50a =1231500×=66012+1050150066020.【答案】证明:∵四边形是平行四边形,∴,∴.∵是对角线的中点,∴.在和中,∴,∴【考点】平行四边形的性质全等三角形的性质与判定【解析】【解答】证明:∵四边形是平行四边形,∴,∴.∵是对角线的中点,∴.在和中,∴,∴21.【答案】解:设每部型号手机的售价为元,每部型号手机的售价为元.由题意,得解得答:每部型号手机的售价为元,每部型号手机的售价为元.①由题意,得,即.又∵,∴,ABCD AB//CD ∠CAB =∠ACD O AC AO =CO △AOF △COE ∠CAB =∠ACD,CO =AO,∠EOC =∠FOA,△COE ≅△AOF (ASA)OE =OF.ABCD AB//CD ∠CAB =∠ACD O AC AO =CO △AOF △COE ∠CAB =∠ACD,CO =AO,∠EOC =∠FOA,△COE ≅△AOF (ASA)OE =OF.(1)A x B y {3x +2y =10800,4x +y =10400,{x =2000,y =2400.A 2000B 2400(2)W =(2000−1500)a +(2400−1800)(50−a)W =30000−100a 50−a ≤3a a ≥252∴关于的函数关系式为;②关于的函数关系式为,∵,∴随的增大而减小.又∵只能取正整数,∴当时,,总利润最大,最大利润.答:该营业厅购进型号手机部,型号手机部时,销售总利润最大,最大利润为元【考点】二元一次方程组的应用——销售问题一次函数的应用【解析】(1)根据部型号手机和部型号手机营业额元,部型号手机和部型号手机营业额元,构造二元一次方程组求解即可;(2)①根据:每类手机利润单部手机利润部数,总利润型手机利润型手机利润,得函数关系式.注意的取值范围.②根据①的关系式,利用一元函数的性质得出结论.【解答】解:设每部型号手机的售价为元,每部型号手机的售价为元.由题意,得解得答:每部型号手机的售价为元,每部型号手机的售价为元.①由题意,得,即.又∵,∴,∴关于的函数关系式为;②关于的函数关系式为,∵,∴随的增大而减小.又∵只能取正整数,∴当时,,总利润最大,最大利润.答:该营业厅购进型号手机部,型号手机部时,销售总利润最大,最大利润为元22.【答案】中的数量关系仍成立.理由如下:如图②,延长至,使.W a W =30000−100a(≤a ≤50)252W a W =30000−100a k =−100<0W a a a =1350−a =37W W =30000−100×13=28700A 13B 37287003A 2B 108004A 1B 10400=×=A +B a (1)A x B y {3x +2y =10800,4x +y =10400,{x =2000,y =2400.A 2000B 2400(2)W =(2000−1500)a +(2400−1800)(50−a)W =30000−100a 50−a ≤3a a ≥252W a W =30000−100a(≤a ≤50)252W a W =30000−100a k =−100<0W a a a =1350−a =37W W =30000−100×13=28700A 13B 3728700AH =AB (2)(1)CB E BE =DN∵四边形是正方形,∴,,在和中,∴,∴,,∴.在和中,∴,∴,.∵,是和对应边上的高,∴.如图③分别沿,翻折和,得到和,∴,,.分别延长和交于点,得正方形,由可知,,设,则,,在中,由勾股定理,得,∴,解得,,(不符合题意,舍去).∴.【考点】正方形的性质ABCD AB =AD ∠D =∠ABE =90∘Rt △AEB Rt △ANDAB =AD ,∠ABE =∠ADN ,BE =DN ,Rt △AEB ≅Rt △AND AE =AN ∠EAB =∠NAD ∠EAM =∠NAM =45∘△AEM △ANMAE =AN ,∠EAM =∠NAM ,AM =AM ,△AEM ≅△ANM =S △AEM S △ANM EM =MN AB AH △AEM △ANM AB =AH (3)AM AN △AMH △ANH △ABM △AND BM =3DN =7∠B =∠D =∠BAD =90∘BM DN C ABCD (2)AH =AB =BC =CD =AD AH =x MC =x −3NC =x −7Rt △MCN M =M +N N 2C 2C 2=(x −3+(x −7102)2)2=5+x 146−−√=5−x 246−−√AH =5+46−−√全等三角形的性质与判定旋转的性质勾股定理翻折变换(折叠问题)【解析】根据正方形的性质、全等三角形的判定和性质来解答即可.根据正方形、全等三角形的判定和性质来解答即可.根据正方形的性质,勾股定理及翻折的性质来解答即可.【解答】解:.理由如下:∵四边形是正方形,∴,,在与中,∴,∴,.∵,∴.∵,∴.在与中,∴,∴.故答案为:.中的数量关系仍成立.理由如下:如图②,延长至,使.∵四边形是正方形,∴,,在和中,(1)AH =AB ABCD AB =AD ∠B =∠D =90∘△ABM △ADN AB =AD ,∠B =∠D ,BM =DN ,△ABM ≅△ADN ∠BAM =∠DAN AM =AN AH ⊥MN ∠MAH =∠MAN =1222.5∘∠BAM +∠DAN =45∘∠BAM =22.5∘△ABM △AHM ∠BAM =∠HAM ,∠B =∠AHM =,90∘AM =AM ,△ABM ≅△AHM AB =AD =AH AH =AB (2)(1)CB E BE =DNABCD AB =AD ∠D =∠ABE =90∘Rt △AEB Rt △AND AB =AD ,∠ABE =∠ADN ,BE =DN ,∴,∴,,∴.在和中,∴,∴,.∵,是和对应边上的高,∴.如图③分别沿,翻折和,得到和,∴,,.分别延长和交于点,得正方形,由可知,,设,则,,在中,由勾股定理,得,∴,解得,,(不符合题意,舍去).∴.23.【答案】证明:如图,连接,∵是的直径,∴,∵于,∴,∴,∴,∵点是弧的中点,Rt △AEB ≅Rt △AND AE =AN ∠EAB =∠NAD ∠EAM =∠NAM =45∘△AEM △ANMAE =AN ,∠EAM =∠NAM ,AM =AM ,△AEM ≅△ANM =S △AEM S △ANM EM =MN AB AH △AEM △ANM AB =AH (3)AM AN △AMH △ANH △ABM △AND BM =3DN =7∠B =∠D =∠BAD =90∘BM DN C ABCD (2)AH =AB =BC =CD =AD AH =x MC =x −3NC =x −7Rt △MCN M =M +N N 2C 2C 2=(x −3+(x −7102)2)2=5+x 146−−√=5−x 246−−√AH =5+46−−√(1)1CD AB ⊙O ∠ADB =90∘DE ⊥AB E ∠DEA =90∘∠DBA +∠DAB =∠ADE +∠DAE =90∘∠DBA =∠ADE D AC∴,∴,∴;解:;理由是:∵是直径,,∴,∴,∵为弧中点,∴,∴,∴,,∴,∴;解:小李的发现是正确的,理由是:如图,延长、,两线交于,∵为半圆弧的中点,是弧的中点,∴,,,在和中,,∴,∴,∵为直径∴,∵为弧中点,∴在和中,,∴,∴,∴. 【考点】全等三角形的性质与判定圆的综合题【解析】(1)如图,连接,由是半的直径,于,得到∠DCA =∠DBA =∠DAC ∠DAP =∠ADP AP =DP (2)AP =PF AB DE ⊥AB ∠ADB =∠DEB =90∘∠ADE =∠ABD D AC ∠DAC =∠DBA ∠ADE =∠DAC AP =DP ∠FDE =∠AFD DP =PF AP =PF (3)AD BC G C D AC ∠CBD =∠GAC ∠BCA =∠ACG =90∘AC =BC △CBF △CAG ∠CBF =∠CAGCB =CA ∠BCA =∠ACG△CBF ≅△CAG(ASA)BF =AG AB ∠ADB =90∘D AC ∠GBD =∠ABD△ADB △GDB ∠BDA =∠BDGDB =DB ∠ABD =∠GBD△ADB ≅△GDB(ASA)DG =DA =AG 12BF =2AD 1CD AB ⊙O DE ⊥AB E,于是得到,根据圆周角定理得到,即可求出结论;(2)根据圆周角定理求出,求出,求出,求出,即可得出答案;(3)根据全等三角形的性质和判定求出,,即可得出答案.【解答】证明:如图,连接,∵是的直径,∴,∵于,∴,∴,∴,∵点是弧的中点,∴,∴,∴;解:;理由是:∵是直径,,∴,∴,∵为弧中点,∴,∴,∴,,∴,∴;解:小李的发现是正确的,理由是:如图,延长、,两线交于,∵为半圆弧的中点,是弧的中点,∴,,,在和中,,∴,∠DBA +∠DAB =∠ADE +∠DAE =90∘∠DBA =∠ADE ∠DCA =∠DBA =∠DAC ∠DAP =∠ADP AP =DP ∠BDE =∠DAE DP =FP AD =BF DA =DG (1)1CD AB ⊙O ∠ADB =90∘DE ⊥AB E ∠DEA =90∘∠DBA +∠DAB =∠ADE +∠DAE =90∘∠DBA =∠ADE D AC ∠DCA =∠DBA =∠DAC ∠DAP =∠ADP AP =DP (2)AP =PF AB DE ⊥AB ∠ADB =∠DEB =90∘∠ADE =∠ABD D AC ∠DAC =∠DBA ∠ADE =∠DAC AP =DP ∠FDE =∠AFD DP =PF AP =PF (3)AD BC G C D AC ∠CBD =∠GAC ∠BCA =∠ACG =90∘AC =BC △CBF △CAG ∠CBF =∠CAGCB =CA ∠BCA =∠ACG△CBF ≅△CAG(ASA)∴,∵为直径∴,∵为弧中点,∴在和中,,∴,∴,∴.24.【答案】解:∵抛物线的对称轴为,,∴,,将点代入,则有,∴,∴.设,过点作、轴的垂线,垂足分别为,,则===,∴四边形是矩形,∴,,∴,,∴.设,交于点,连,∵,∴,∴,∵,,BF =AG AB ∠ADB =90∘D AC ∠GBD =∠ABD△ADB △GDB ∠BDA =∠BDGDB =DB ∠ABD =∠GBD△ADB ≅△GDB(ASA)DG =DA =AG 12BF =2AD (1)x =1AB =6A(−2,0)B(4,0)A y =a −2ax +4x 20=4a +4a +4a =−12y =−+x +412x 2(2)R(t,−+t +4)12t 2R x y R ′R ′′∠RR O ′∠RR O ′′∠R OR ′′′90∘RR OR ′′′RR =′′OR =′t OR =′′RR =−+t +4′12t 2=OC ⋅RR =×4t =S △OCR 12′′122t =OB ⋅RR =×4(−+t +4)S △ORB 12′1212t 2=−+2t +8t 2=S △RBC +−S △ORB S △OCR S △OBC=−+2t +8+2t −×4×4t 212=−+4t t 2(3)EF PD G ′EG PD ⊥EF ∠FG G =′∠DG E =′=90∘∠DOG ∠OFE =∠GDO ∠DGO =∠FOE =90∘EF =DG∴是的垂直平分线,∴平分,过作轴于,轴于,交于点,则,,∴四边形是正方形,∴,∵,∴,∵在垂直平分线上,∴,∴,设,则,,∵,∴,∵,∴,∴或,当时,,当时,.【考点】二次函数综合题【解析】(1)由题意可求,,将点代入=,即可求的值;(2)设,过点作、轴的垂线,垂足分别为,,可得四边形是矩形,求出=,=,则有===;(3)设、交于点,连,可以证明是的垂直平分线,过作轴于,轴于,交于点,则四边形是正方形,设=,则===,===,可求=,又由OP EG OP ∠COB P KP ⊥x K PW ⊥y W RT H PW =PK ∠PWO =∠PKO =∠WOK =90∘PWOK WO =OK OC =OB =4CW =KB P BT PT =PB TK =KB =CW OT =2a TK =KB =CW =2−a HT =OK =PW =2+a OB −TS =23HS =TS −HT =−(2+a)=−a 10343tan ∠HPS ==SH HP WS WP =−a 432−a 2−a 2+a a =1a =23a =1R(2,4)a =23R(,)43409A(−2,0)B(4,0)A y a −2ax +4x 2a R(t,−+t +4)12t 2R x y R ′R ′′RR OR ′′′=OC ⋅RR =×4t S △OCR 12′′122t =OB ⋅RR =×4(−+t +4)S △ORB 12′1212t 2−+2t +8t 2S △RBC +−S △ORB S △OCR S △OBC −+2t +8+2t −×4×4t 212−+4t t 2EF PD G ′EG OP EG P KP ⊥x K PW ⊥y W RT H PWOK OT 2a TK KB CW 2−a HT OK PW 2+a HS TS −HT =−(2+a)=−a 10343,可得,则=或,即可求的坐标.【解答】解:∵抛物线的对称轴为,,∴,,将点代入,则有,∴,∴.设,过点作、轴的垂线,垂足分别为,,则===,∴四边形是矩形,∴,,∴,,∴.设,交于点,连,∵,∴,∴,∵,,∴是的垂直平分线,∴平分,过作轴于,轴于,交于点,tan ∠HPS ==SH HP WS WP =−a 432−a 2−a 2+aa 1a =23R (1)x =1AB =6A(−2,0)B(4,0)A y =a −2ax +4x 20=4a +4a +4a =−12y =−+x +412x 2(2)R(t,−+t +4)12t 2R x y R ′R ′′∠RR O ′∠RR O ′′∠R OR ′′′90∘RR OR ′′′RR =′′OR =′t OR =′′RR =−+t +4′12t 2=OC ⋅RR =×4t =S △OCR 12′′122t =OB ⋅RR =×4(−+t +4)S △ORB 12′1212t 2=−+2t +8t 2=S △RBC +−S △ORB S △OCR S △OBC=−+2t +8+2t −×4×4t 212=−+4t t 2(3)EF PD G ′EG PD ⊥EF ∠FG G =′∠DG E =′=90∘∠DOG ∠OFE =∠GDO ∠DGO =∠FOE =90∘EF =DG OP EG OP ∠COB P KP ⊥x K PW ⊥y W RT H则,,∴四边形是正方形,∴,∵,∴,∵在垂直平分线上,∴,∴,设,则,,∵,∴,∵,∴,∴或,当时,,当时,.PW =PK ∠PWO =∠PKO =∠WOK =90∘PWOK WO =OK OC =OB =4CW =KB P BT PT =PB TK =KB =CW OT =2a TK =KB =CW =2−a HT =OK =PW=2+a OB −TS =23HS =TS −HT =−(2+a)=−a10343tan ∠HPS ==SH HP WS WP =−a 432−a 2−a2+a a =1a =23a =1R(2,4)a =23R(,)43409。
综合复习6一、选择题(共12小题;共60分)1. 实数 √273,0,−π,√16,13,0.1010010001⋯(相邻两个 1 之间依次多一个 0),其中无理数是 ( )个. A. 1 B. 2 C. 3D. 42. 下列运算不正确的是 ( )A. a 2⋅a =a 3B. (a 3)2=a 6C. (2a 2)2=4a 4D. a 2÷a 2=a3. 2012 年 5 月 12 日在新疆进行了一场“新疆队与天津队”的乙级足球联赛,现场球迷多达 35000 名,将 35000 用科学记数法表示正确的是 ( ) A. 3.5×103 B. 3.5×104 C. 35×103 D. 0.35×1054. 下列图形中,是轴对称图形但不是中心对称图形的是 ( )A. 等边三角形B. 平行四边形C. 矩形D. 圆5. 如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为 2340∘ 的新多边形,则原多边形的边数为 ( )A. 13B. 14C. 15D. 166. 不等式组 {x −1>0,8−4x ≤0的解集在数轴上表示为 ( )A. B. C.D.7. 张大娘为了提高家庭收入,买来 10 头小猪.经过精心饲养,不到 7 个月就可以出售了,下表为这些猪出售时的体重:A. 126.8 , 126B. 128.6 , 126C. 128.6 , 135D. 126.8 , 1358. 下列说法中正确的是 ( )A. “打开电视,正在播放新闻节目”是必然事件B. “抛一枚硬币,正面进上的概率为 12 ”表示每抛两次就有一次正面朝上C. “抛一枚均匀的正方体骰子,朝上的点数是 6 的概率为 16 ”表示随着抛掷次数的增加,“抛出朝上的点数是 6 ”这一事件发生的频率稳定在 16 附近D. 为了解某种节能灯的使用寿命,选择全面调查9. 已知一次函数y=kx−k,若y随x的增大而减小,则该函数的图象经过 ( )A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限10. 如图所示,在△ABF中,∠B的对边是 ( )A. ADB. AEC. AFD. AC11. 如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为 ( )A. hsinαB. htanαC. hcosαD. h cdotsinα12. 将下表从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2014个格子中的数位( )A. 3B. 2C. 0D. −1二、填空题(共6小题;共30分)13. 一个袋子中装有3个红球和2个绿球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到红球的概率为.14. 用一个圆心角为240∘半径为6的扇形做一个圆锥的侧面,则这个圆锥底面半径为.15. 使√x−1有意义的x的取值范围是.16. 分式方程3x+2=1x的解为.17. 在△ABC中,点D,E分别在边AB,AC上,DE∥BC,AD=1,BD=2,则S△ADE:S△ABC=.18. 如图,⊙O的直径CD⊥AB,∠AOC=50∘,则∠CDB大小为.三、解答题(共6小题;共78分)19. 计算:2−1+2cos60∘+√9.20. 化简求值:(2a−b)(b+2a)−(2b+a)(2b−a),其中a=1,b=2.21. 我市民营经济持续发展,2013 年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2013 年月平均收入随机抽样调查,将抽样的数据按“ 2000元以内”、“ 2000元∼4000元”、“ 4000元∼6000元”和“ 6000元以上” 分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有人,在扇形统计图中x的值为,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是;(2)将不完整的条形图补充完整,并估计我市 2013 年城镇民营企业20万员工中,每月的收入在“ 2000元∼4000元”的约多少人?(3)统计局根据抽样数据计算得到,2013 年我市城镇民营企业员工月平均收入为4872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?22. 如图,四边形ABCD是菱形,∠ABC=60∘,点M,N分别是BC、CD上的一点,连接MN.(1)如图1,当∠MAN=60∘时,求证:△AMN是等边三角形;(2)如图2,如果∠AMN=60∘,试判断△AMN的形状,并证明你的结论.23. 如图所示是某私营企业2010年某种产品的经营利润y(万元)与时间x(月)关系的图象,其中前几个月两个变量之间满足反比例函数关系,后几个月两个变量满足一次函数关系.(1)求两个函数的表达式.(2)该年什么时候利润最低?最低利润是多少?24. 问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E,F,G,H都在同个圆上).(二)问题解决:已知 ⊙O 的半径为 2,AB ,CD 是 ⊙O 的直径.P 是 BC ⏜ 上任意一点,过点 P 分别作 AB ,CD 的垂线,垂足分别为 N ,M .(1) 若直径 AB ⊥CD ,对于 BC⏜ 上任意一点 P (不与 B ,C 重合)(如图一),证明四边形 PMON 内接于圆,并求此圆直径的长;(2) 若直径 AB ⊥CD ,在点 P (不与 B ,C 重合)从 B 运动到 C 的过程汇总,证明 MN 的长为定值,并求其定值;(3) 若直径 AB 与 CD 相交成 120∘ 角.①当点 P 运动到 BC⏜ 的中点 P 1 时(如图二),求 MN 的长; ②当点 P (不与 B ,C 重合)从 B 运动到 C 的过程中(如图三),证明 MN 的长为定值. (4) 试问当直径 AB 与 CD 相交成多少度角时,MN 的长取最大值,并写出其最大值.答案第一部分1. B2. D3. B4. A5. B6. A7. A8. C9. B 10. C11. A 12. A 第二部分 13. 3514. 4 15. x ≥1 16. x =2 17. 1:9 18. 25º 第三部分19. 原式=12+2×12+3=92.20. (2a −b )(b +2a )−(2b +a )(2b −a )=4a 2−b 2−(4b 2−a 2)=4a 2−b 2−4b 2+a 2=5a 2−5b 2.∵a =1,b =2,∴原式=5×12−5×22=−15. 21. (1) 500;14;21.6∘(2) 补充完整的条形图(如图).20×60%=12(万人).答:估计该市 2013 年城镇民营企业 20 万员工每月的收入在“ 2000元∼4000元 ”的有 12 万人. (3) 用平均数反映月收入情况不合理.由数据可以看出 500 名被调查者中有 330 人的月收入不超过 4000 元,月收入的平均数受高收入者和低收入者收入变化的影响较大,月收入的中位数几乎不受高低两端收入变化的影响,因此,用月收入的中位数反映月收入水平更合理. 22. (1) ∵ 四边形 ABCD 是菱形,∠ABC =60∘, ∴AD ∥BC ,AB =AD .∴∠B +∠BAD =180∘,∠BAD =120∘. 连接 AC ,如图.则∠BAC=∠ACB=60∘.∴AB=AC.∵∠BAM+∠MAC=∠MAC+∠CAN=60∘,∴∠BAM=∠CAN.又∠ABC=∠ACD=60∘,∴△ABM≌△ACN.∴AM=AN.∵∠MAN=60∘,∴△AMN是等边三角形.(2)△AMN是等边三角形.证明:在AB上取点P,使BP=BM,连接PM,如图.∵∠ABC=60∘,∴△BMP是等边三角形.∴∠BPM=∠BMP=60∘.∴∠APM=120∘,∠PMC=120∘.∵AB=AC,∠AMN=60∘,∴AP=CM,∠PMA+∠NMC=60∘.∵∠MCN=∠BAD=120∘,∴∠CMN+∠CNM=60∘.∴∠CNM=∠PMA.又∠APM=∠MCN=120∘,∴△APM≌△MCN.∴AM=MN.∵∠AMN=60∘,∴△AMN是等边三角形.23. (1)设反比例函数的表达式为y=kx,由图象可得反比例函数经过点(1,30),所以30=k 1 ,即k=30.所以反比例函数的表达式为 y =30x.设一次函数的表达式为 y =ax +b ,由图象可得一次函数经过点 (9,30) 及点 (12,48),所以{30=9a +b,48=12a +b,所以{a =6,b =−24.所以一次函数的表达式为 y =6x −24. (2) 解 {y =30x ,y =6x −24,得{x =5,y =6,或 {x =−1,y =−30.(舍去)所以该年 5 月份利润最低,最低利润是 6 万元. 24. (1) 如图一, ∵PM ⊥OC ,PN ⊥OB , ∴∠PMO =∠PNO =90∘, ∴∠PMO +∠PNO =180∘,∴ 四边形 PMON 内接于圆,直径 OP =2. (2) 如图一,∵AB ⊥OC ,即 ∠BOC =90∘, ∴∠BOC =∠PMO =∠PNO =90∘, ∴ 四边形 PMON 是矩形, ∴MN =OP =2,∴MN 的长为定值,该定值为 2. (3) ①如图二,∵P 1 是 BC⏜ 的中点,∠BOC =120∘, ∴∠COP 1=∠BOP 1=60∘,∠MP 1N =60∘. ∵P 1M ⊥OC ,P 1N ⊥OB , ∴P 1M =P 1N ,∴△P 1MN 是等边三角形, ∴MN =P 1M .∵P 1M =OP 1⋅sin∠MOP 1=2×sin60∘=√3, ∴MN =√3;②设四边形 PMON 的外接圆为 ⊙Oʹ,连接 NOʹ 并延长, 交 ⊙Oʹ 于点 Q ,连接 QM ,如图,则有 ∠QMN =90∘,∠MQN =∠MPN =60∘,在Rt△QMN中,sin∠MQN=MN,QN∴MN=QN⋅sin∠MQN,=√3,∴MN=OP⋅sin∠MQN=2×sin60∘=2×√32∴MN是定值.(4)由(3)②得MN=OP⋅sin∠MQN=2sin∠MQN.当直径AB与CD相交成90∘角时,∠MQN=180∘−90∘=90∘,MN取得最大值2.。