当前位置:文档之家› 运筹学作业王程130404026

运筹学作业王程130404026

运筹学作业王程130404026
运筹学作业王程130404026

运筹学作业

王程

信管1302

130404026

目录

运筹学作业 (1)

第一章线性规划及单纯形法 (3)

第二章线性规划的对偶理论与灵敏度分析 (24)

第三章运输问题 (53)

第四章目标规划 (63)

第五章整数规划 (73)

第六章非线性规划 (85)

第七章动态规划 (94)

第八章图与网络分析 (97)

第九章网络计划 (99)

第一章 线性规划及单纯形法

1.1分别用图解法和单纯形法求下列线性规划问题,⑴指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解;⑵当具有限最优解时,指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。

12

1212121min 23466 s.t.324,0z x x x x x x x x =++≥??+≥??≥?() 12

12121,22max 3222

s.t.34120z x x x x x x x x =++≤??

+≥??≥?

()

12

1212123max 105349 s.t.528 ,0

z x x x x x x x x =++≤??

+≤??≥?() 12

1212124max 5622 s.t.232,0

z x x x x x x x x =+-≥??-+≤??≥?()

解:⑴图解法:

当212133

x x z =

-经过点61

55(,)时,z 最小,且有无穷多个最优解。 ⑵图解法:

运筹学II习题解答

第七章决策论 1.某厂有一新产品,其面临的市场状况有三种情况,可供其选择的营销策略也是 三种,每一钟策略在每一种状态下的损益值如下表所示,要求分别用非确定型 (1)悲观法:根据“小中取大”原则,应选取的经营策略为s3; (2)乐观法:根据“大中取大”原则,应选取的经营策略为s1; (3)折中法(α=0.6):计算折中收益值如下: S1折中收益值=0.6?50+0.4?(-5)=28 S2折中收益值=0.6?30+0.4?0=18 S3折中收益值=0.6?10+0.4?10=10 显然,应选取经营策略s1为决策方案。 (4)平均法:计算平均收益如下: S1:x_1=(50+10-5)/3=55/3 S2:x_2=(30+25)/3=55/3 S3:x_3=(10+10)/3=10 故选择策略s1,s2为决策方案。 (5)最小遗憾法:分三步 第一,定各种自然状态下的最大收益值,如方括号中所示; 第二,确定每一方案在不同状态下的最小遗憾值,并找出每一方案的最大遗憾值如圆括号中所示; 第三,大中取小,进行决策。故选取S1作为决策方案。

2.如上题中三种状态的概率分别为: 0.3, 0.4, 0.3, 试用期望值方法和决策树方法决策。 (1)用期望值方法决策:计算各经营策略下的期望收益值如下: 故选取决策S2时目标收益最大。 (2)用决策树方法,画决策树如下: 3. 某石油公司拟在某地钻井,可能的结果有三:无油(θ1),贫油(θ2)和富油(θ3), 估计可能的概率为:P (θ1) =0.5, P (θ2)=0.3,P (θ3)=0.2。已知钻井费为7万元,若贫油可收入12万元,若富油可收入27万元。为了科学决策拟先进行勘探,勘探的可能结果是:地质构造差(I1)、构造一般(I2)和构造好(I3)。根据过去的经验,地质构造与出油量间的关系如下表所示: P (I j|θi) 构造差(I1) 构造一般(I2) 构造好(I3) 无油(θ1) 0.6 0.3 0.1 贫油(θ2) 0.3 0.4 0.3 富油(θ3) 0.1 0.4 0.5 假定勘探费用为1万元, 试确定:

运筹学大作业

大连科技学院运筹学(Z)大作业LINGO软件在函数最大值中的运用 学院名称 专业班级 学生组号 学生姓名 指导教师 二〇一八年五月

实验LINGO软件在函数最大值中的运用 大作业目的 掌握LINGO软件求解函数最大值的基本步骤,了解LINGO软件解决函数最大值的基本原理,熟悉常用的函数最大值计算代码,理解函数最大值的迭代关系。 仪器、设备或软件 电脑,LINGO软件 大作业内容 1.LINGO软件求解函数最大值的基本原理; 2.编写并调试LINGO软件求解函数最大值的计算代码; 实施步骤 1.使用LINGO计算并求解函数最大值问题; 2.写出实验报告,并浅谈学习心得体会(选址问题的基本求解思路与方法及求解过程中出现的问题及解决方法)。 实施过程 有一艘货轮,分为前、中、后三个舱位,它们的容积与允许载重量如下表所示。现有三种商品待运,已知有关数据列于下表中。又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。具体要求前、后舱分别与中舱之间的载重量比例偏差不超过15%,前、后舱之间不超过10%。问货轮应装载A、B、C各多少件,运费收入为最大?试建立这个问题的线性规 首先分析问题,建立数学模型: 确定决策变量 假设i=1,2,3分别代表商品A、B、C,8用j=1,2,3分别代表前、中、后舱,设决策变量x ij为装于j舱位的第i种商品的数量(件)。 确定目标函数

商品A 的件数为: 商品B 的件数为: 商品A 的件数为: 为使运费最高,目标函数为: 确定约束条件 前、中、后舱位载重限制为: 前、中、后舱位体积限制为: A 、 B 、 C 三种商品数量的限制条件: 各舱最大允许载重量的比例关系构成的约束条件: 且决策变量要求非负,即x ij ≥0,i=1,2,3;j=1,2,3。 综上所述,此问题的线性规划数学模型为: 111213x x x ++212223x x x ++313233x x x ++()()()111213212223313233 1000700600Max Z x x x x x x x x x =++++++++112131122232132333865200086530008651500 x x x x x x x x x ++≤++≤++≤112131122232132333105740001057540010571500 x x x x x x x x x ++≤++≤++≤1112132122233132336001000800 x x x x x x x x x ++≤++≤++≤1121311222321323331222321121311323338x 6x 5x 2 2(10.15)(1+0.15)38x 6x 5x 3 8x 6x 5x 11(10.15)(1+0.15)28x 6x 5x 2 8x 6x 5x 4 4(10.10)(1+0.10)38x 6x 5x 3++-≤≤++++-≤≤++++-≤≤++()()() 111213212223313233112131122232132333112131122232132333 1000700600865200086530008651500105740001057540010571500 Max Z x x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++++++≤++≤++≤++≤++≤++≤

《运筹学》课后习题答案

第一章线性规划1、 由图可得:最优解为 2、用图解法求解线性规划: Min z=2x1+x2 ? ? ? ? ? ? ? ≥ ≤ ≤ ≥ + ≤ + - 10 5 8 24 4 2 1 2 1 2 1 x x x x x x 解: 由图可得:最优解x=1.6,y=6.4

Max z=5x 1+6x 2 ? ?? ??≥≤+-≥-0 ,23222212 121x x x x x x 解: 由图可得:最优解Max z=5x 1+6x 2, Max z= + ∞

Maxz = 2x 1 +x 2 ????? ? ?≥≤+≤+≤0,5242261552121211x x x x x x x 由图可得:最大值?????==+35121x x x , 所以?????==2 3 21x x max Z = 8.

12 12125.max 2328416412 0,1,2maxZ .j Z x x x x x x x j =+?+≤? ≤?? ≤??≥=?如图所示,在(4,2)这一点达到最大值为2 6将线性规划模型化成标准形式: Min z=x 1-2x 2+3x 3 ????? ??≥≥-=++-≥+-≤++无约束 321 321321321,0,05232 7x x x x x x x x x x x x 解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥ 0,x 3’’≥0 Max z ’=-x 1+2x 2-3x 3’+3x 3’’ ????? ? ?≥≥≥≥≥≥-=++-=--+-=+-++0 ,0,0'',0',0,05 232 '''7'''543321 3215332143321x x x x x x x x x x x x x x x x x x x

运筹学作业王程

运筹学作业 王程 信管1302 130404026

目录 运筹学作业 (1) 第一章线性规划及单纯形法 (3) 第二章线性规划的对偶理论与灵敏度分析 (24) 第三章运输问题 (53) 第四章目标规划 (63) 第五章整数规划 (73) 第六章非线性规划 (85) 第七章动态规划 (94) 第八章图与网络分析 (97) 第九章网络计划 (99)

第一章 线性规划及单纯形法 1.1分别用图解法和单纯形法求下列线性规划问题,⑴指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解;⑵当具有限最优解时,指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。 12 1212121min 23466 s.t.324,0z x x x x x x x x =++≥??+≥??≥?() 12 12121,22max 3222 s.t.34120z x x x x x x x x =++≤?? +≥??≥? () 12 1212123max 105349 s.t.528 ,0 z x x x x x x x x =++≤?? +≤??≥?() 12 1212124max 5622 s.t.232,0 z x x x x x x x x =+-≥??-+≤??≥?() 解:⑴图解法: 当212133 x x z = -经过点61 55(,)时,z 最小,且有无穷多个最优解。 ⑵图解法:

1 x 该问题无可行解。 ⑶图解法: 当21125 x x z =-+经过点3 12(,)时,z 取得唯一最优解。 单纯形法: 在上述问题的约束条件中分别加入松弛变量34,x x , 化为标准型:

运筹学作业汇总

作业一: (1) Minf(X)=x 12+x 22+8 x 12-x 2≤0 -x 1- x 22+2=0 x 1, x 2≥0 解:该非线性规划转化为标准型为: Minf(X)=x 12+x 22+8 g 1(X)= x 2- x 12≥0 g 2(X)= -x 1- x 22+2≥0 g 3(X)= x 1+x 22-2≥0 g 4(X)= x 1≥0 g 5(X)= x 2≥0 f(X), g 1 2 0 ∣H ∣= = =4>0 0 2 -2 0 ∣g 1∣= = =0≥0 0 0 0 0 ∣g 2∣= = =0 x 2 2 x 1x 2 x 1x 2 x 12 2f(X) 2 f(X) 2f(X) 2f(X) x 22 x 1x 2 x 1x 2 x 12 2g 1(X) 2g 1(X) 2 g 1(X) 2 g 1(X) x 22 x 1x 2 x 1x 2 x 12 2 g 2(X) 2g 2(X) 2g 2(X) 2g 2(X)

0-2 设数(0<<1),令C(x)=x2,指定任意两点a和b,则 C(a+(1-)b)= 2a2+(1-)2b2+2(1-)ab (1) C(a)+(1-)C(b)= a2+(1-)b2 (2) 于是C(a+(1-)b)- (C(a)+(1-)C(b))=a2(2-)-b2(1-)+2(1-)ab =(2-)(a-b)2≤0 所以C(a+(1-)b)≤C(a)+(1-)C(b) 故C(x)=x2为凸函数,从而g3(X)=x1+x22-2为凸函数。 从而可知f(X)为严格凸函数,约束条件g3(X)为凸函数,所以该非线性规划不是凸规划。 (2)Minf(X)=2x12+x22+x32-x1x2 x12+x22≤4 5 x1+ x3=10 x1, x2, x3≥0 解:该非线性规划转化为标准型为: Minf(X)=2x12+x22+x32-x1x2 g1(X)=4- x12-x22≥0 g2(X)= 5 x1+ x3-10=0 g3(X)= x1≥0 g4(X)=X2≥0

运筹学第四次作业排队论问题.doc

一、汽车维修站问题 某汽车维修站只有一名修理工,一天8h 平均修理10辆汽车。已知维修时间服从负指数分布,汽车的到来服从泊松流,平均每小时有1辆汽车到达维修站。假如一位司机愿意在维修站等候,一旦汽车修复就立即开走,问司机平均需要等待多长时间。如果假设每小时有1.2辆汽车去修理,试问该维修工每天的空闲时间有多少?这对维修站里的汽车数及修理后向顾客交货时间又有怎样的影响?结合以上所求得的数据,分析汽车维修站的服务质量水平。 解:该问题是一个标准的M/M/1/2模型,即汽车司机相继到达间隔时间的分布满足负指数分布,维修工服务时间分布满足负指数分布,服务台数为c=1,系统容量限制为N=2。 (1)已知汽车的到来服从泊松流,平均到达率为=1/h λ,维修时间服从负指数分布,平均每辆汽车接受服务的时间为T=0.8h,单位时间服务车辆的数量为 1.25μ=。则根据该模型运行指标的计算公式可得出: ①系统的平均服务强度为/0.8ρλμ==; ②顾客到达后理科就能得到服务的概率,即维修站空闲,没有顾客的概率为 0+1 11N P ρ ρ -= -; ③系统的队长为1 1 (1)11N s N N L ρ ρρρ +++=---; ④系统的排队长0(1)q S L L P =--; ⑤系统的有效到达率为0(1)e P λμ=-; ⑥顾客逗留时间为0(1) s s s e L L W P λμ= = -; ⑦系统满员的概率,即顾客被拒绝的概率为1 1·1N N N P ρ ρρ +-=-; 利用LINGO 软件来求解,记有关参数1c =,系统最大容量为N=2,顾客平均到达率为1L λ==,平均每个顾客的服务时间为1 0.8T μ ==。则相应程序如 下: MODEL: sets:

哈工大运筹学大作业-对偶单纯形法对比

哈工大运筹学大作业-对偶 单纯形法对比 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

运筹学课程 运筹学对偶单纯形法与单纯形法 对比分析大作业 哈尔滨工业大学工业工程系 学生姓名: 学号: 指导教师: 成绩: 评语:

运筹学对偶单纯形法与单纯形法对比分析 摘要:这篇论文主要介绍了对偶单纯形法的实质、原理、流程和适用条件等。将对偶单纯形法与单纯形法的基本思想进行对比分析,从而说明对偶单纯形法的优点和适用范围。 关键词:对偶单纯形法;对偶理论;单纯形法;基本思想 在线性规划早期发展阶段的众多重要发现中,对偶的概念及其分支是其中最重要的内容之一。这个发现指出,对于任何一个线性规划问题都具有对应的称为对偶问题的线性规划问题。对偶问题与原问题的关系在众多领域都非常有用。 (一)教学目标: 通过对偶单纯形法的学习,加深对对偶问题的理解。掌握对偶单纯形法的解题过程,理解对偶理论的其原理,了解对偶单纯形法的作用和应用范围 (二)教学内容: 1)对偶单纯形法的思想来源 2)对偶单纯形法原理 3)对偶理论的实质 4)单纯形法和对偶单纯形法的比较 (三)教学进程: 一、对偶单纯形法的思想来源

所谓对偶单纯形法,就是将单纯形法应用于对偶问题的计算,该方法是由美国数学家C.莱姆基于1954 年提出的,它并不是求解对偶问题解的方法,而是利用对偶理论求解原问题的解的方法。 二、对偶问题的实质 下面是原问题的标准形式以及其对应的对偶问题: 原问题对偶问题 从而可以发现如下规律: 1.原问题目标函数系数是对偶问题约束方程的右端项。 2.原问题约束方程的右端项是对偶问题目标函数的系数。 3.原问题一个变量在所有约束方程中的系数是对偶问题一个约束方程中的所有系数。 三、对偶单纯形法原理 对偶单纯形法是通过寻找原问题的对偶问题的可行解来求解原问题的最优解的方法,它的应用包括影子价格和灵敏度分析等。为了理解对偶单纯形法为什么能够解出原方程的最优解,我们需要对对偶理论的几个基本原理有所了解。 1.弱对偶性 如果是原问题的可行解,是其对偶问题的可行解,则恒有

管理运筹学作业 韩伯棠第3版高等教育出版社课后答案

1 课程:管理运筹学 管理运筹学作业 第二章线性规划的图解法 P23:Q2:(1)-(6);Q3:(2) Q2:用图解法求解下列线性规划问题,并指出哪个问题具有唯一最优解,无穷多最优解,无界解或无可行解。 (1)Min f=6X1+4X2 约束条件:2X1+X2>=1, 3X1+4X2>=3 X1, X2>=0 解题如下:如图1 Min f=3.6 X1=0.2, X2=0.6 本题具有唯一最优解。 图1 (2)Max z=4X1+8X2 约束条件:2X1+2X2<=10 -X1+X2>=8 X1,X2>=0 解题如下:如图2: Max Z 无可行解。 图2 1

2 2 (3) Max z =X1+X2 约束条件 8X1+6X2>=24 4X1+6X2>=-12 2X2>=4 X1,X2>=0 解题如下:如图3: Max Z=有无界解。 图3 (4) Max Z =3X1-2X2 约束条件:X1+X2<=1 2X1+2X2>=4 X1,X2>=0 解题如下:如图4: Max Z 无可行解。 图 4

3 (5)Max Z=3X1+9X2 约束条件:X1+3X2<=22 -X1+X2<=4 X2<=6 2X1-5X2<=0 X1,X2>=0 解题如下:如图5: Max Z =66;X1=4 X2=6 本题有唯一最优解。 图5 (6)Max Z=3X1+4X2 约束条件:-X1+2X2<=8 X1+2X2<=12 2X1+X2<=16 2X1-5X2<=0 X1,X2>=0 解题如下:如图6 Max Z =30.669 X1=6.667 X2=2.667 本题有唯一最优解。 3

运筹学大作业 哈工大

课程名称:对偶单纯形法 一、教学目标 在对偶单纯形法的学习过程中,理解和掌握对偶问题;综合运用线性规划和对偶原理知识对对偶单纯形法与单纯形法进行对比分析,了解单纯形法和对偶单纯形法的相同点和不同点,总结出各自的适用范围;掌握对偶单纯形法的求解过程;并能运用对偶单纯形法独立解决一些运筹学问题。 二、教学内容 1) 对偶单纯形法的思想来源(5min) 2) 对偶单纯形法原理(5min) 3) 总结对偶单纯形法的优点及适用情况(5min) 4) 对偶单纯形法的求解过程(10min) 5) 对偶单纯形法例题(15min) 6) 对比分析单纯形法和对偶单纯形法(10min) 三、教学进程: 1)讲述对偶单纯形法思想的来源: 1954年美国数学家C.莱姆基提出对偶单纯形法(Dual Simplex Method )。单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解。在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。 2)讲述对偶单纯形法的原理 A.对偶问题的基本性质 依照书第58页,我们先介绍一下对偶问题的六个基本性质: 性质一:弱对偶性 性质二:最优性。如果 x j (j=1...n)原问题的可行解,y j 是其对偶问题可 行解,且有 ∑=n j j j x c 1 =∑=m i i i y b 1 ,则x j 是原问题的最优解,y j 是其对偶问题的最

优解。 性质三:无界性。如果原问题(对偶问题)具有无界解,则其对偶问题(原问题)无可行解。 性质四:强对偶性。如果原问题有最优解,则其对偶问题也一定有最优解。 性质五:互补松弛型。在线性规划问题的最优解中,如果对应某一约束条件的对偶变量值为零,则该约束条件取严格等式;反之如果约束条件取严格不等式,则其对应的对偶变量一定为零。 性质六:线性规划的原问题及其对偶问题之间存在一对互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题的变量;这些互相对应的变量如果在一个问题的解中是基变量,则在另一问题的解中是非基变量;将这对互补的基解分别代入原问题和对偶问题的目标函数有z=w. B.对偶单纯形法(参考书p64页) 设某标准形式的线性规划问题,对偶单纯形表中必须有c j -z j ≤0(j=1...n),但b i (i=1...m)的值不一定为正,当对i=1...m ,都有b i ≥0时,表中原问题和对偶问题均为最优解,否则通过变换一个基变量,找出原问题的一个目标函数值较小的相邻的基解。 3)为什么要引入对偶单纯形法 从理论上说原始单纯形法可以解决一切线性规划问题,然而实际问题中,由于考虑问题的角度不同,变量设置的不同,便产生了原问题及其对偶问题,对偶问题是原问题从另外一个角度考虑的结果。用对偶单纯形法求解线性规划问题时,当约束条件为“≥”时,不必引入人工变量,使计算简化。 例如,有一线性规划问题: min ω =12 y 1 +16y 2 +15 y 3 约束条件 ?? ?? ???≥=≥+≥+0)3,2,1(3522 423121 i y y y y y i

运筹学基础课后习题答案

运筹学基础课后习题答案 [2002年版新教材] 第一章导论 P5 1.、区别决策中的定性分析和定量分析,试举例。 定性——经验或单凭个人的判断就可解决时,定性方法 定量——对需要解决的问题没有经验时;或者是如此重要而复杂,以致需要全面分析(如果涉及到大量的金钱或复杂的变量组)时,或者发生的问题可能是重复的和简单的,用计量过程可以节约企业的领导时间时,对这类情况就要使用这种方法。 举例:免了吧。。。 2、. 构成运筹学的科学方法论的六个步骤是哪些? .观察待决策问题所处的环境; .分析和定义待决策的问题; .拟定模型; .选择输入资料; .提出解并验证它的合理性(注意敏感度试验); .实施最优解; 3、.运筹学定义: 利用计划方法和有关许多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据 第二章作业预测P25 1、. 为了对商品的价格作出较正确的预测,为什么必须做到定量与定性预测的结合?即使在定量预测法诸如加权移动平均数法、指数平滑预测法中,关于权数以及平滑系数的确定,是否也带有定性的成分? 答:(1)定量预测常常为决策提供了坚实的基础,使决策者能够做到心中有数。但单靠定量预测有时会导致偏差,因为市场千变万化,影响价格的因素很多,有些因素难以预料。调查研究也会有相对局限性,原始数据不一定充分,所用的模型也往往过于简化,所以还需要定性预测,在缺少数据或社会经济环境发生剧烈变化时,就只能用定性预测了。(2)加权移动平均数法中权数的确定有定性的成分;指数平滑预测中的平滑系数的确定有定性的成分。 2.、某地区积累了5 个年度的大米销售量的实际值(见下表),试用指数平滑法,取平滑系数α= 0.9,预测第6年度的大米销售量(第一个年度的预测值,根据专家估计为4181.9千公斤) 年度 1 2 3 4 5 大米销售量实际值 (千公斤)5202 5079 3937 4453 3979 。 答: F6=a*x5+a(1-a)*x4+a(1-a)~2*x3+a(1-a)~3*x2+a(1-a)~4*F1 F6=0.9*3979+0.9*0.1*4453+0.9*0.01*3937+0.9*0.001*5079+0.9*0.0001*4181.9

运筹学大作业(线性规划问题)

运筹学 结课大作业 姓名:苏同锁 学号:1068132104 学院:数理与生物工程学院 班级:数学2010

实例:有三家物流企业将一批货物分别运送到四个城市。物流公司A,B,C所运送货物量分别为110吨、70吨、100吨四个城市I, Il,III,Ⅳ,需求量分别为60吨、70吨、50吨、70吨。物流公司A往城市I,II,III,Ⅳ每吨的运价分别为l0元、15元、20元、25元;物流公司 B到城市I,II,III,Ⅳ每吨的运价分别为2O元、10元、l5元、15元:物流公司 C 到城市I,II,III,Ⅳ每吨的运价分别为25元、30元、20元、25元。 运输费用数据表 如何确定调运方案,才能使运输总费用最小。 首先,设运输总费用为f,我们要求运输总费用最小,故目标函数为:Minf=10x11+15x12+20x13+25x14+20x21+10x22+15x23+15x24+25x31+ 30x32+20x33+25x34 其中Xij表示从物流公司i调运到城市j物资的数量,minf表示运输费用最少。 考虑约束条件如上表所述的量和销地的需求量要满足运输平衡条件,以及各变量取非负数,于是可得如下约束条件:

x11+x12+x13+x14<=110 x21+x22+x23+x24<=70 x31+x32+x33+x34<=100 x11+x21+x31>=60 x12+x22+x32>=70 x13+x23+x33>=50 x14+x24+x34>=70 Xij≥0(i=1,2,3;j=1,2,3,4) 最后,我们将目标函数和约束条件写在一起,就得到了物资调运问题的数学模型,即线性规划问题: minf=10x11+15x12+20x13+25x14+20x21+10x22+15x23+15x24+25x31+ 30x32+20x33+25x34 x11+x12+x13+x14<=110 x21+x22+x23+x24<=70 x31+x32+x33+x34<=100 x11+x21+x31>=60 x12+x22+x32>=70 x13+x23+x33>=50 x14+x24+x34>=70 Xij≥0(i=1,2,3;j=1,2,3,4)

运筹学习题答案

第一章习题 1.思考题 (1)微分学求极值的方法为什么不适用于线性规划的求解? (2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式? (3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点? (4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用? (5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数? (6)确定换出变量的法则是什么?违背这一法则,会发生什么问题? (7)如何进行换基迭代运算? (8)大M法与两阶段法的要点是什么?两者有什么共同点?有什么区别? (9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。 (10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解?为什么? 2.建立下列问题的线性规划模型: (1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表1-18所示: 润最大的模型。 (2)某公司打算利用具有下列成分(见表1-19)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。 如何安排配方,使成本最低? (3)某医院每天各时间段至少需要配备护理人员数量见表1-20。

表1-20 假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。能否利用初等数学的视察法,求出它的最优解? (4)某工地需要30套三角架,其结构尺寸如图1-6所示。仓库现有长6.5米的钢材。如何下料,使消耗的钢材最少? 图1-6 3. 用图解法求下列线性规划的最优解: ?????? ?≥≤+-≥+≥++=0 ,425.134 1 2 64 min )1(21212 12121x x x x x x x x x x z ?????? ?≥≤+≥+-≤++=0 ,82 5 1032 44 max )2(21212 12121x x x x x x x x x x z ????? ????≥≤≤-≤+-≤++=0 ,6 054 4 22232 96 max )3(2122 1212121x x x x x x x x x x x z ??? ??≥≤+-≥+ +=0,1 12 34 3 max )4(2 12 12121x x x x x x x x z

运筹学作业习题

线性规划建模及单纯形法 思考题 主要概念及内容: 线性规划模型结构(决策变量,约束不等式、等式,目标函数);线性规划标准形式; 可行解、可行集(可行域、约束集),最优解;基、基变量、非基变量、基向量、非基 向量;基本解、基本可行解、可行基、最优基。 复习思考题: 1、线性规划问题的一般形式有何特征? 2、建立一个实际问题的数学模型一般要几步? 3、两个变量的线性规划问题的图解法的一般步骤是什么? 4、求解线性规划问题时可能出现几种结果,哪种结果反映建模时有错误? 5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 6、试述线性规划问题的可行解、基本解、基本可行解、最优解、最优基本解的概念及它 们之间的相互关系。 7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个 最优解、无界解或无可行解。 8、在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 9、大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什 么?最大化问题呢? 10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情 况下,继续第二阶段? 作业习题 1、将下列线性规划问题化为标准型 (1)???????≥=--+-≥-+-≤+-++-+=0,,953413223183622453max 4214321432143214321x x x x x x x x x x x x x x x x x x x z (2)???????≤≥=+-+-≥-+--≤--++++=0 ,0,15 2342722351232243min 4214321432143214 321x x x x x x x x x x x x x x x x x x x f 2、(1)求出下列不等式组所定义的多面体的所有基本解和基本可行解(极点): ?????≥≤++-≤++0,,1243263323 21321321x x x x x x x x x (2)对下述线性规划问题找出所有基本解,指出哪些是基本可行解,并确定最优解. ??? ????≥=-=+-+=+++++=)6,,1(00 31024893631223max 61532143213 21K K j x x x x x x x x x x x x x x z j 3、用图解法求解下列线性规划问题

兰州大学运筹学_运输问题课后习题题解

第七章运输问题 7.1 一个农民承包了6块耕地共300亩,准备播种小麦、玉米、水果和蔬菜四种农产品, 问如何安排种植计划,可得到最大的总收益。 解: 本问题地块总面积:42+56+44+39+60+59=300亩 计划播种总面积:6+88+96+40=300亩 因此这是一个产销平衡的运输问题。可以建立下列的运输模型: 代入产销平衡的运输模板可得如下结果:

种植计划方案 7.2 某客车制造厂根据合同要求从当年开始起连续四年年末交付40辆规格型号相同的 年度 可生产客车数量(辆) 制造成本(万元/辆) 正常上班时间 加班时间 正常上班时间 加班时间 1 20 30 50 55 2 38 24 56 61 3 15 30 60 65 4 42 23 53 58 根据该厂的情况,若制造出来的客车产品当年未能交货,每辆车每积压一年的存储和维护费用为4万元。在签订合同时,该厂已储存了20辆客车,同时又要求四年期未完成合同后还需要储存25辆车备用。问该厂如何安排每年的客车生产量,使得在满足上述各项要求的情况下,总的生产费用加储存维护费用为最少? 解:这是一个生产储存问题,可以化为运输问题来做。根据已知条件,我们可以做以下 地块1 地块2 地块3 地块4 地块5 地块6 计划播种面积(亩) 小麦 6 39 31 76 玉米 29 59 88 水果 2 56 38 96 蔬菜 40 40 地块面积(亩) 42 56 44 39 60 59 300 300

分析,建立运输模型。 1、由于上年末库存20辆车,这些产品在这四年中只计仓储费不计生产费用,所以我们记为0年,第一行; 2、在建立的运输表中,相应单元格填入当年交付产品的所有成本(包括生产和存储成本); 3、年份从1到4表示当年的正常生产,而1’到4’表示当年加班生产的情况; 4、由于期末(4年底)要有25辆车的库存,即4年末的需求量是40+25=65辆; 5、在表中没有具体成本的单元格中,表示没有生产也没有交货,为了保证这个真实情况的描述,在这些格中填M,使安排的生产量为0。 6、在计算成本时,当年生产当年交货不加存储成本,但对未交付的产品,第二年要付一个年的存储费4万元,依此类推。 根据上面的分析,可得运价表如下。 年度1 年度2 年度3 年度4 库存生产能力(辆) 0 4 8 12 16 20 20 1 50 54 58 6 2 66 20 1’55 59 63 67 71 30 2 56 60 64 68 38 2’61 65 69 74 24 3 60 6 4 68 15 3’65 69 74 30 4 53 57 42 4’58 62 23 合同需求量(辆)40 40 40 40 25 这是一个产大于销的运输模型,代入求解模型可得: 即:生产安排的方案:

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案 一、单选题 1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()B A.任意网络 B.无回路有向网络 C.混合网络 D.容量网络 2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()B A.非线性问题的线性化技巧 B.静态问题的动态处理 C.引入虚拟产地或者销地 D.引入人工变量 3.静态问题的动态处理最常用的方法是?B A.非线性问题的线性化技巧 B.人为的引入时段 C.引入虚拟产地或者销地 D.网络建模 4.串联系统可靠性问题动态规划模型的特点是()D A.状态变量的选取 B.决策变量的选取 C.有虚拟产地或者销地 D.目标函数取乘积形式 5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。C A.降低的 B.不增不减的 C.增加的 D.难以估计的 6.最小枝权树算法是从已接接点出发,把( )的接点连接上C A.最远 B.较远 C.最近 D.较近 7.在箭线式网络固中,( )的说法是错误的。D A.结点不占用时间也不消耗资源 B.结点表示前接活动的完成和后续活动的开始 C.箭线代表活动 D.结点的最早出现时间和最迟出现时间是同一个时间 8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。C A.1200 B.1400 C.1300 D.1700 9.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。D A.最短路线—定通过A点 B.最短路线一定通过B点 C.最短路线一定通过C点 D.不能判断最短路线通过哪一点 10.在一棵树中,如果在某两点间加上条边,则图一定( )A A.存在一个圈 B.存在两个圈 C.存在三个圈 D.不含圈 11.网络图关键线路的长度( )工程完工期。C A.大于 B.小于 C.等于 D.不一定等于

运筹学大作业

运筹学课程上机实践要求及内容(2) 一、实验教学的目的和要求 目的:借助运筹学软件的强大功能,通过小组的充分讨论,对管理实践中的实际问题进行建模、求解,并对求解结果进行分析(特别是敏感性分析),进而激发学生的学习兴趣和热情,克服对课程学习的“恐惧感”。 要求:熟练掌握LINGO、WinQSB等软件的基本功能和基本语法结构,能用软件对运筹学问题进行求解和分析。 二、请于第1次-第6次上机时间及平时完成。 三、作业务请写清学号、姓名、专业、班级,上机作业格式请用老 师提供的模版。 四、编写的代码请用记事本单独保存。 五、要求所有题目用LINGO和教材自带的求解软件各做一遍。并分 析解释求解的结果。 六、各题目中的A,B,C,D,E,F为参数,除特别规定外,请自 行设定,各个同学参数值不能相同,若发现完全一致的,作业以零分计。 A=1,B=2,C=2,D=4,E=4,F=1

第1题(线性规划) (1)介绍单纯型算法及其处理人工变量的两阶段法; (2)建立下列问题的数学模型并求解,讨论资源的影子价格; 某造纸厂拟生产漂白松木浆、包装纸(水泥、松木包装纸、松木本色纸)、漂白桦木纸和胶版纸等四种产品,单位产品所需资源情况见表1,市场上胶版纸的需求量不超过6000吨。(a)制订该造纸厂的生产计划;(b)若电的资源可用量下降10%,重新制订该造纸厂的生产计划。 (3)结合本题,谈谈你对线性规划的认识。 Hint: 若参数为5,5,5,5,5,5,则最优目标函数值为(a)167236800; (b)167236800。 解: (1)单纯形法是求解线性规划问题的通用方法。单纯形法的基本思想是:先找出 一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转 换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因 基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最 优解也可用此法判别。 两阶段单纯形法也是一种人工变量法,它的算法可分为两个阶段:第一阶段,引 入人工变量,构造一个具有标准基的新线性规划,求解这个新线性规划,其结果

运筹学第五版课后答案,运筹作业

47页1.1b 用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解47页1.1d 无界解

1.2(b) 约束方程的系数矩阵 A= 1 2 3 4 ( ) 2 1 1 2 P1 P2 P3 P4 最优解A=(0 1/2 2 0)T和(0 0 1 1)T 49页13题 设Xij为第i月租j个月的面积 minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13 +6000x23+7300x14 s.t. x11+x12+x13+x14≥15 x12+x13+x14+x21+x22+x23≥10 x13+x14+x22+x23+x31+x32≥20 x14+x23+x32+x41≥12 Xij≥0 用excel求解为:

用LINDO求解: LP OPTIMUM FOUND AT STEP 3 OBJECTIVE FUNCTION VALUE 1) 118400.0 VARIABLE VALUE REDUCED COST Z 0.000000 1.000000 X11 3.000000 0.000000

X21 0.000000 2800.000000 X31 8.000000 0.000000 X41 0.000000 1100.000000 X12 0.000000 1700.000000 X22 0.000000 1700.000000 X32 0.000000 0.000000 X13 0.000000 400.000000 X23 0.000000 1500.000000 X14 12.000000 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 -2800.000000 3) 2.000000 0.000000 4) 0.000000 -2800.000000 5) 0.000000 -1700.000000 NO. ITERATIONS= 3 答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,

运筹学第一次作业

练习一 1.某厂接到生产A 、B 两种产品的合同,产品A 需200件,产品B 需300件。这两种 产品的生产都经过毛坯制造与机械加工两个工艺阶段。在毛坯制造阶段,产品 A 每件需要2小时,产品B 每件需要4小时。机械加工阶段又分粗加工和精加工两道 工序,每件产品A 需粗加工4小时,精加工10小时;每件产品B 需粗加工7小时,精 加工12小时。若毛坯生产阶段能力为1700小时,粗加工设备拥有能力为1000小时, 精加工设备拥有能力为3000小时。又加工费用在毛坯、粗加工、精加工时分别为 每小时3元、3元、2元。此外在粗加工阶段允许设备可进行 500小时的加班生产, 但加班生产时间内每小时增加额外成本元。 试根据以上资料,为该厂制订一个成 本最低的生产计划。 解:设正常生产A,B 产品数X 1,X 2,加班生产A,B 产品数X 3,X 4 min z 3(2x 1 2X 3 4X 2 4X 4 4X 1 4X 3 7X 2 7&) 7.5(4X 3 7X 4) 2(10X 1 10X 3 12X 2 12X 4) X 3 200 X 4 300 4x 2 1700 7x 2 1000 12x 2 3000 7x 2 500 0且为整数,i=1,2,3,4 2.对某厂I ,n,m 三种产品下一年各季度的合同预订数如下表所示。 该三种产品I 季度初无库存,要求在4季度末各库存150件。已知该厂每季度生产 工时为15000小时,生产I 、n 、m 产品每件分别需时2、4、3小时。因更换工艺装备, 产品I 在2季度无法生产。规定当产品不能按期交货时, 产品I , n 每件每迟交一个季 度赔偿20元,产品m 赔偿10元;又生产出来产品不在本季度交货的,每件每季度的 库存费用为5元。问:该厂应如何安排生产,使总的赔偿加库存的费用为最小 (要求 建立数学模型,不需求解)。 解:设X ij 为第j 季度产品i 的产量,S ij 为第j 季度末产品i 的库存量,d ij 为第j 季度 X 1 X 2 2为 s.t 4x , 10x 1 4X 1 X i 量,

运筹学作业

No .1 线性规划 1、某织带厂生产A 、B 两种纱线和C 、D 两种纱带,纱带由专门纱线加工而成。 工厂有供纺纱的总工时7200h ,织带的总工时1200h 。 (1) 列出线性规划模型,以便确定产品的数量使总利润最大; (2) 如果组织这次生产具有一次性的投入20万元,模型有什么变化?对模型的 解是否有影响?(所谓一次性投入就是与产量无关的初始投资) 2、将下列线性规划化为极大化的标准形式 3、用单纯形法解下面的线性规划 ??? ??? ?≥≤++-≤++-≤-+++= ,0,,4205.021********* ..352)(m ax 3213213213213 21x x x x x x x x x x x x t s x x x x f No .2 两阶段法和大M 法 2、用大M 法解下面问题,并讨论问题的解。 ??? ??? ?≥≥++≤++-≤++++= ,0,,52151565935 ..121510)(max 3213213213213 21x x x x x x x x x x x x t s x x x x f 1、用两阶段法解下面问题: ??? ??≥≥+≥++=0,75 3802 ..64)(min 2 121212 1x x x x x x t s x x x f ?????? ?±≥≤+-=-+--≥-+++=不限 321321321321321 ,0,13|5719|169765 ..532)(m in x x x x x x x x x x x x t s x x x x f

No .3 线性规划的对偶问题 ?????-≤≤-≤≤≤≤-+-=8121446 2 ..834)(min 3213 21x x x t s x x x x f 2、写出下问题的对偶问题,解对偶问题,并证明原问题无可行解 3、用对偶单纯形法求下面问题 ??? ??≥≥+≥++=0,75 3802 ..64)(min 2 121212 1x x x x x x t s x x x f No .4 线性规划的灵敏度分析 原问题为max 型,x 4,x 5为松驰变量,x 6为剩余变量,回答下列问题: (1)资源1、2、3的边际值各是多少?(x 4,x 5是资源1、2的松驰变量,x 6是资 源3的剩余变量) (2)求C 1, C 2 和C 3的灵敏度范围; (3)求?b 1,?b 2的灵敏度范围。 1、写出下列线性规划问题的对偶问题: (1) ???????±≥≤=++≤+≥+-+-+=不限 432143231 4321321 ,0,,06 4 2 5 ..532)(max x x x x x x x x x x x x x t s x x x x f (2) ?????? ?≥≤+--≤-≤+--= ,0, 121 1 ..34)(m ax 212122121x x x x x x x t s x x x f

相关主题
文本预览
相关文档 最新文档