当前位置:文档之家› 微波消解_电感耦合等离子体原子发射光谱法测定铁矿石中8种成分_胡述戈

微波消解_电感耦合等离子体原子发射光谱法测定铁矿石中8种成分_胡述戈

微波消解_电感耦合等离子体原子发射光谱法测定铁矿石中8种成分_胡述戈
微波消解_电感耦合等离子体原子发射光谱法测定铁矿石中8种成分_胡述戈

工作简报

文章编号:1000-7571(2006)06-0040-04

微波消解-电感耦合等离子体原子发射

光谱法测定铁矿石中8种成分

胡述戈

(安阳钢铁股份有限公司技术质量处,河南安阳 455004)

摘 要:采用微波消解技术处理铁矿石样品,电感耦合等离子体原子发射光谱法同时测定铁矿石中8种成分。试验了不同种类铁矿石的密闭容器微波消解条件,对分析元素进行光谱干扰考察,选择了合适的分析谱线。方法加标回收率在97.0%~102.3%之间,相对标准偏差小于

3%。应用于铁矿石标准样品分析,测定结果与认定值吻合较好。

关键词:微波消解;铁矿石;电感耦合等离子体原子发射光谱法(ICP -AES );8种成分

中图分类号:O657.31 文献标识码:A

收稿日期:2006-01-04

作者简介:胡述戈(1969-),男,工程师,Tel :0372-*******,E -mail :hushuge @https://www.doczj.com/doc/874703877.html, 。

电感耦合等离子体原子发射光谱法(ICP -AES )分析铁矿石中微量元素已有报道

[1]

,多采用

HCl -HNO 3-HF -HClO 4溶解。试验发现由于铁矿石样品的复杂性,酸溶样品时,部分矿石很难溶解完全,尤其球团矿及部分烧结矿。采用HCl -H F -HClO 4,HCl -HNO 3-HF -HClO 4体系,球团矿有大部分不溶解;若采用HCl -HF -H 3PO 4-HClO 4-H 2SO 4体系,虽然样品可以溶解完全,但引入了H 3PO 4和H 2SO 4,造成用ICP -AES 分析时雾化率降低,对微量元素分析非常不利;若采用熔融法,则周期冗长而且带入大量盐类,严重影响ICP -AES 分析。目前微波消解与ICP -AES 联用技术为较活跃的研究方向[2],在冶金[3-4]、化工[5]、食品[6-7]等领域已有越来越多的报道。

本实验采用密闭容器微波消解样品,对球团矿、磁铁矿、烧结矿、赤铁矿、澳矿等均可溶解完全,并与ICP -AES 分析相结合,可一次测定铁矿石中K 2O ,Na 2O ,Cu ,Pb ,Zn ,M n ,Ti ,As 8种成

分。方法操作简便,分析速度大大提高,精密度和准确度都达到相应国家标准方法规定的要求。

1 实验部分

1.1 仪器及工作参数

M K -Ⅲ型微波消解装置(上海新科微波溶样测试技术研究所):额定功率1200W ,额定高频

输出功率650W ,工作频率2450M Hz ;60SC -1型高压密闭消解罐。

IRIS1000全谱直读等离子体光谱仪(美国热电公司):高频输出功率1150W ,载气流量1L /min ,试验提升量1.85mL /min ,辅助气流量0.5L /min ,雾化气压力206.7kPa ,蠕动泵泵速130r /min ,积分时间短波10s 、长波5s 。1.2 主要试剂

K ,Na ,Pb ,Zn ,Cu ,As ,Mn ,Ti 单元素标准溶液:1.000mg /mL ;HCl ,HF ,HNO 3(优级纯);H 3BO 3(分析纯)。1.3 实验方法

称取0.1000g 样品于消解罐中,加入10mL HCl ,3m L HNO 3和1mL HF ,将消解罐放入微波消解装置旋转盘中,通过光纤调节设定压力值,采用两步法消解:第一步压力2.0MPa 、时间10min ,第二步压力2.5M Pa 、时间10min 。消解后冷却消解罐,将试液移入盛有5mL 饱和硼酸溶液的烧杯中,加热煮沸、冷却,定容于100m L 容量瓶中。根据选定的ICP -AES 仪器工作条件,利用单元素标准溶液配制5点(含空白一点)混合标准溶液,绘制工作曲线,测定样品。

第26卷第6期2006年12月 冶 金 分 析M etallurgical Analy sis

Vol .26,No .6

Decem ber ,2006DOI :10.13228/j .issn .1000-7571.2006.06.011

2 结果与讨论

2.1 微波消解条件

考察了溶样酸的种类和用量,发现采用HCl -HNO3-HF混酸溶样效果较好。加入量分别为10mL HCl,3m L HNO3,1m L HF。

对微波消解压力和消解时间进行考察,发现不同品种矿石,消解条件差别较大。为了减少操作步骤,使用较低压力和较短时间,故采用两步分段升压。具体条件见表1。

表1 铁矿石微波消解条件

Table1 Conditions of microwave digestion for iron ore samples

样品Sample

压力(M Pa)

Pressure

第一步第二步

时间(min)

T ime

第一步第二步

总时间

(min)

T otal

time

消解效果

Dig estion

effect

铁矿石W883021.01.5101020全溶

赤铁矿G BW07223a1.01.510515全溶菱铁矿W88304a1.01.510515全溶

含砷矿BH0108-2W1.01.5101020全溶

磁铁矿G BW072211.52.010515全溶澳矿BB8801-021.52.0101020全溶

烧结矿G BW07219a1.52.0101020SiO2析出需过滤铁矿石GSBH3001-972.02.5101020SiO2析出需过滤球团矿W883072.02.5101020全溶

试验发现,部分含硅高的铁矿石,溶样时有SiO2析出。析出SiO2主要原因是HF加入量不足,但如果多加HF酸,则少量的硼酸不能完全络合F-,将损坏玻璃雾化器。如完全除去多余的F-,需加HClO4冒烟,将增加分析时间。本法采用过滤除去SiO2。

综合以上条件,为了保证铁矿石样品溶解完全和分析条件一致,统一采用微波消解条件:称样0.1000g,加入10mL HCl,3m L HNO3和1m L HF。分两步消解,第一步压力2.0MPa、时间10 min,第二步压力2.5M Pa、时间10min。

2.2 分析谱线的选择

采用IRIS1000全谱直读光谱仪,分辨率高,兼具多道同时型和单道扫描型的特点。采用CID 检测器,能同时检测每个元素的多条谱线。因此在样品分析时,对每个元素的几条灵敏线进行光谱干扰考察[8],主要避开基体Fe元素的谱线干扰:Mn线(257.61nm)旁边有Fe线(257.57 nm),但通过右背景校正点的设置,两谱峰可以完全分开;As线(193.76nm)受到V线(193.74nm)的干扰,如果V的含量不高于As的两倍,则影响不大,否则需选择As线(179.04nm)作为分析线;Pb线(220.35nm)受到Bi线(220.33nm)和Nb线(220.36nm)线的干扰,如果Bi,Nb的含量不高于Pb的3倍,则影响不大,否则需选择Pb 线(216.99nm)。经谱线干扰考察,选出的分析线波长,具有谱线灵敏度高、干扰少,且便于选择左右背景校正点,见表2。

2.3 方法的精密度和检出限

对铁矿石标样GSBH3001-97和含砷矿BH0108-2W进行8次平行测定,计算分析元素相对标准偏差均小于3%。

利用质量分数为62%的铁打底,按实验方法处理,制成基体空白溶液,平行测定10次,其3倍标准偏差为被测元素的检出限,结果见表3。

2.4 加标回收试验

选择铁矿石标样GSBH3001-97和含砷矿BH0108-2W,加入适量各元素标准溶液,按实验方法测定,各元素的回收率为:K99.1%,Na 99.6%,Cu100.1%,Pb100.3%,Zn99.7%,As 102.3%,M n98.1%,Ti97.0%。

表2 分析谱线选择Table2 Selection of spectral lines

元素Element

波长

(nm)

W av elength

光谱级次

Spectral

order

谱线状态

Spectral

line state

左背景校正点

(pix el)

Left background

co rrection point

右背景校正点

(pixel)

Rig ht background

correction point

积分中心宽度

(pixel)

Center width of

integral area

K766.49044原子线1153

N a589.59257原子线1153

Cu324.754103原子线1153

Pb220.353152一价离子线2132

Z n213.856157原子线1153

As193.759173原子线1133

M n257.610131一价离子线2123

Ti336.121100一价离子线1153

表3 分析方法的精密度(n=8)和检出限(n=10)

Table3 Precision(n=8)and detection limit(n=10)of the method w/%

组分Component

平均值Average

G SBH3001-97BH0108-2W

相对标准偏差(%)RSD

G SBH3001-97BH0108-2W

检出限

Detection limit

K2O0.0531.650.0009(K) Na2O0.0111.410.0006(Na) Pb0.0152.980.0093

M n0.0450.720.0006

Zn0.0180.2480.830.780.0033

Ti0.1502.860.0009

As0.0582.590.0081 Cu0.1130.640.0006

3 样品分析

应用本方法对铁矿石标样(球团矿GBW07220、含砷矿BH0108-2W、铁矿石GS-BH3004-97)进行分析,测定值与标准样品认定值吻合,见表4。

表4 分析结果对照

Table4 Comparison of analytical results w/%

元素Element

测定值Found

G BW07220BH0108-2W G SBH3004-97

认定值Cer tified

G WB07220BH0108-2W G SBH3004-97

K2O0.0510.1500.0530.141

N a2O0.0330.0430.0310.040

Cu0.2480.0750.2490.074

Pb0.0370.00470.0400.0051

Z n0.0550.0150.0550.016

A s0.191-0.197-

M n0.1120.0250.3130.1130.0250.310

T i0.0350.148-0.0400.144-

注:GBW07220、BH0108-2W由武钢钢研所生产,GSBH3004-97由钢铁研究总院生产。

参考文献:

[1]王丽君,胡述戈,杜建民,等.应用ICP-A ES法测定铁

矿石中6元素[J].冶金分析,2003,23(3):67.

[2]周勇义,谷学新,范国强,等.微波消解技术及其在分

析化学中的应用[J].冶金分析,2004,24(2):30-36.

[3]孙焱,王海舟.微波消解-电感耦合等离子体原子发

射光谱法测定钢中总铝[J].冶金分析,2002,22(4):3 -6.

[4]陈建国,应晓浒,曹国洲.微波消解ICP-AES法测定

铝合金中高含量硅[J].冶金分析,2001,21(1):59-

60.

[5]卫碧文,缪俊文,龚驷扬.微波消解ICP-AES法测定

玩具塑料中镉[J].理化检验:化学分册,2004,40

(11):14-16.

[6]谢华林.微波消解电感耦合等离子体原子发射光谱同

时测定水产品中铅镉铬汞砷硒有害元素[J].食品科学,2002,23(2):91-93.

[7]郑永军,赵斌.微波消解-等离子体发射光谱法测定

膨化食品中的多元素[J].食品工业科技,2005,26

(9):167-168.

[8]成勇,肖军,宁燕平,等.ICP-A ES法测定钼铁中M o,

Si,Cu,Sb,Sn[J].冶金分析,2003,23(3):28-30.

Determination of eight components in iron ores by inductively coupled

plasma-atomic emission spectrometry after microwave digestion

HU Shu-ge

(A nyang I ro n and Steel G roup Co.Ltd.,Anyang455004,China)

A bstract:By use of microw ave digestion to dissolve the sample of iron ore,an inductively coupled plasma-atomic emission spectrometry(ICP-AES)for simultaneous determination of eight kinds of elements in iron o res were developed.The conditions of microw ave digestio n w ith closed vessel were tested for the different kinds of iron ore.The spectrum interference of coexisting elements was discussed and the optimal analysis w aveleng ths were selected.I t has been applied to the determination of standard sam ples of iron o re with the recoveries of97.0%-102.0%and the RSD of below3%.The determination results of this method are a-g reement w ith the certified values.

Key words:microw ave digestion;iron o re;inductively coupled plasma-atomic emission spectrometry;eig ht components

电感耦合等离子体发射光谱仪技术参数

电感耦合等离子体发射光谱仪技术参数 设备名称:电感耦合等离子体发射光谱仪 数量:1套 1、工作条件: 1.1 适于在交流电源相电压为230V±10%,频率50/60Hz的中国电网条件下长期正常工作; 2、设备用途 主要应用于对用于对各类样品中主量、微量及痕量元素的定性、半定量和定量分析, 仪器以固体检测器为基础,由进样系统、高频发生器、等离子体炬、光路系统、检测器、分析软件和计算机系统组成,全自动控制,仪器监控仪表全部由计算机控制. 3、技术规格与要求: 3.1技术规格 ★1具备耐HF酸,分析1ppm的锰标准溶液,Mn 257nm谱线的强度大于990万cps。 2蠕动泵为四通道系统。具有智能快速冲洗功能,随时监测特定的谱线 3炬管、雾室和雾化器为一体式设计,雾室、雾化器和等离子体相互分隔。具有雾化器压力提示功能,随时监控雾化器是否堵塞。提供软件截屏作为证明资料。 ★4自激式射频发生器,频率40.00MHz以上。功率稳定性优于0.1%。射频发生器的功率传输效率优于80%。最大功率≥1500W。提供软件截屏作为证明资料 ★5等离子体为垂直式,轴向、轴向衰减和径向、径向衰减四种观测方式,具有实时全彩色摄像系统,在仪器的控制软件中可以实时全彩色看到等离子体的运行图形,并观察炬管、炬管中心管是否变脏需要清洗。至少可设置1/500秒、1/1000秒、1/2000秒摄像速度抓拍等离子体。提供软件截屏作为证明资料。6免维护的平板或线圈等离子体且无需循环冷却水或气体进行冷却。 ★7等离子体气、雾化器、辅助气全部采用质量流量计控制,连续可调。等离子体正常运行的氩气消耗总量小于11升/分钟。 ★8光学系统高性能二维(交叉)色散中阶梯光栅(或棱镜),波长范围包含170-900nm。 能测试Cs894.347、Cl894.806nm;提供光谱图及标准曲线作为证明资料并作为验收指标。 9固态检测器,其形状与中阶梯二维光谱图完全匹配且无紫外线转换荧光涂层。强光和弱光同时测量采用不同的积分时间,避免检测器的损坏。 10 计算机控制系统与数据工作站为主流品牌最新款高配置商务机型,配激光高速打印机。软件为全中文多任务操作。控制软件可以在中文版Windows 7下运行,可以脱离仪器安装在其它计算机上进行模

电感耦合等离子体原子发射光谱法(ICP—AES)测定铝合金中其它金属元素的研究

电感耦合等离子体原子发射光谱法(ICP—AES)测定铝合金中其它 金属元素的研究 摘要:本文采用电感耦合全谱直读等离子体原子发射光谱法(ICP-AES)对未知元素组成和含量的铝合金中钛、铜、镁、锰、锌、铬、硅和铁的测定进行了研究,所测试的结果具有较好的精密度和准确度。 关键词:电感耦合等离子体原子发射光谱法元素组成和含量铝合金钛、铜、镁、锰、锌、铬、硅和铁 一、引言 铝合金具有较高的强度,良好的塑性成形能力和机械加工性能,在航空工业中具有重要的应用前景[1-3]。铝合金中其它金属的含量,如金属元素钛、铜、镁、锰、锌、铬、硅和铁等,对其性质和应用具有很大的影响[3-6]。所以,准确测定铝合金中其它金属的含量显得尤为重要。对金属材料的成分进行表征分析,可以深入了解材料的组成元素及其内部构造,可以为我们更好地去研发设计复杂的金属材料提供依据[7]。为此必需建立一个快速、准确的分析方法,以控制其化学成分,使该材料获得良好的物理性能。 国内外常用和新发展的分析方法包括[7-13]:分光光度法、滴定分析法、原子光谱分析法、X射线荧光光谱法、电化学分析法、电感耦合等离子体质谱法、激光诱导等离子体光谱法、电感耦合等离子原子发射光谱法(ICP-AES)和石墨炉原子吸收法。一般铝合金中元素的测定分析方法采用ICP-AES和石墨炉原子吸收法[9,14-18]。ICP-AES[19]作为一种新型的分析方法,较其它分析方法而言,具有灵敏度高、精密度好、线性范围宽、基体效应小、动态范围宽、快速简便并可同时进行多元素分析的优点,已成为铝合金常用的分析方法之一。 基于以上的背景调研,我们拟采用ICP-AES法对未知元素组成和含量的铝合金样品中其它金属元素的组成和含量进行研究,为铝合金材料的潜在应用和材料制备提供理论基础。通过查阅相关文献[3-5],可以知道铝合金材料中可能含有的金属元素;因此,本文主要研究并测定了铝合金中可能存在的金属元素,如钛、铜、镁、锰、锌、铬、硅和铁的含量。 二、实验部分 1.主要仪器及实验条件 铝合金样品(元素组成和含量未知),水(二次去离子),盐酸(优级纯),硝酸(优级纯)。 ICP 6300型电感耦合等离子体发射光谱仪。工作参数:射频功率1.15 kW,

(完整)固定污染源废气中重金属的测定电感耦合等离子体原子发射光谱法

(完整)固定污染源废气中重金属的测定电感耦合等离子体原子发射光谱法编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)固定污染源废气中重金属的测定电感耦合等离子体原子发射光谱法)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)固定污染源废气中重金属的测定电感耦合等离子体原子发射光谱法的全部内容。

《固定污染源废气中重金属的测定电感耦合等离 子体原子发射光谱法》 (征求意见稿)编制说明 《固定污染源废气中重金属的测定电感耦合等离子体原子发射光谱 法》编制组 二零一三年一月 项目名称:固定污染源废气中重金属的测定电感耦合等离子体原子发射光谱法 项目统一编号: 承担单位: 标准所技术管理负责人: 标准处项目负责人:

目录 1 任务来源 (1) 2 工作过程 (1) 3 标准编制的必要性 (2) 4 编制依据和相关规范、标准 (3) 5 标准编制的原则和技术路线 (4) 6 标准编制的主要内容 (5) 7 参考文献 (8)

1 任务来源 任务来源于国家科技支撑计划项目《重点工业领域资源高效利用共性技术标准研究(2011BAB02B05)》之中的项目子课题《工业固废综合利用检测标准体系及检测标准研究》。 2011年2月18日,《重金属污染综合防治“十二五”规划》被国务院正式批复,重点提出铅、汞、铬、镉和类金属砷的排放控制.与此同时,2011年12月17日,工信部发布《大宗工业固废综合利用“十二五”规划》,指出“十二五”期间,大宗工业固体废物综合利用量达到70亿吨.大宗工业固体废物中含有铅、铬、镉、砷等多种金属元素,在综合利用过程中会释放到环境中,对环境和人体健康造成严重危害.因此为适应新时期的环境保护要求,根据国标委综合【2012】50号下达的“关于下达2012年第一批国家标准制修订计划的通知”的要求,《固定污染源废气中重金属的测定电感耦合等离子体发射光谱法》(计划编号:20120297—T-469)由XXXXXX 牵头,XXXXXX负责标准的编制工作,全国产品回收利用基础与管理标准化技术委员会(SAC/TC415)进行归口管理。 2 工作过程 2011年,承担单位接受任务后,成立了由化学、环境等专业领域研究人员组成的编制组.编制组收集并分析了美国、台湾等多个国家、地区和组织的相关标准,确立了采用美国EPA METHOD 29 —DETERMINATION OF METALS EMISSIONS FROM STATIONARY SOURCES作为本标准核心方法。 2012年初,编制组根据美国EPA METHOD 29所述方法,搭建实验室模拟平台,对煤矸石煅烧过程产生烟气中重金属进行检测.实验发现酸化高锰酸钾吸收液储存过程中不稳定,高锰酸钾易分解.过滤后的酸化高锰酸钾吸收液在用ICP—AES分析时由于过高的盐度及不稳定性会导致仪器熄火。考虑检测汞同时增加标准操作的复杂

电感耦合等离子体质谱仪

电感耦合等离子体质谱仪 1 仪器总体要求 *1.1 电感耦合等离子体质谱仪要求为“三重四极杆串联质谱仪或“双重四级杆+单八级杆”的串联四级杆质谱仪,而非普通的单极四极杆质谱仪; *1.2 第一重四极杆-四级杆离子选择偏转器,可以实现将所需的特定质荷比的离子依次进入第二重四极杆的反应池内; 1.3 第二重四极杆-通用池,通过反应气与待分析离子相同质荷比的干扰离子反应产生新的不同质荷 比的离子,通过四极杆质量扫描过滤,彻底消除干扰物和反应副产物,只允许待分析的离子进入第三重四极杆; 1.4 第三重四极杆-质量分析器,将待分析的单原子离子依次分开进行检测; 1.5 具有彩色等离子体观测窗,无需打开仪器,可对锥、炬管和负载线圈进行观测,使等离子体采 样深度的优化和有机物的分析简单、方便。同时可实时监测锥孔及喷射管孔样品沉积情况,便于维护和清洗; 1.6 电感耦合等离子体质谱仪具有与高效液相色谱技术联机进行元素价态、结合形态的分析能力, 具有专业的形态分析软件; 1.7 仪器要求能进行样品定性、半定量、定量、同位素比、同位素稀释、单颗粒分析、单细胞分析。 1.8 至少能用于硫和磷同位素标记的定量研究; 1.9 能够分析纳米材料的元素组成与浓度、尺寸及其尺寸分布。 2 仪器工作环境 2.1 工作环境温度:15-30℃。 2.2 工作环境湿度:<80% (无冷凝)。 2.3电源:单相200-240V,50 Hz。 3 技术要求 3.1 仪器硬件 3.1.1 雾化器:高效石英或PFA同心雾化器; 3.1.2 雾化室:小体积石英旋流雾化室; *3.1.3 全基体进样系统控制气路:可实现样品气体稀释,稀释倍数大于100倍;可通入氧气,实现有机样品的直接进样分析;可通入甲烷气,实现难电离元素,如砷、硒等元素的超痕量分析; 3.1.4 等离子体可视系统:可以从实际观测窗中实时监控等离子体状态; *3.1.5 接口设计:为实现对离子射束紧凑控制,接口至少采用三级锥设计,应至少包括一个采样锥、一个截取锥和一个超级锥或嵌片。锥接口设计要求具高灵敏度、高复杂基体耐受和低干扰水平的大锥口设计。采样锥口径要求必须≥1.0mm,所有截取锥或超级锥要求必须≥0.75mm,从而保证长期分析高基体、高盐样品的稳定性,并延长了锥体的使用寿命。投标设备如在接口设计上采用简单两锥设计时,必须额外提供样品锥及截取锥各3套备用;

电感耦合等离子体发射光谱仪技术指标

电感耦合等离子体发射光谱仪技术指标 1.应用范围:适用于各种样品中主量、微量及痕量元素的定性、半定量和定量分析。 2. 技术要求 2.1 仪器工作环境 电压:220V AC±10% 室温:15—30℃ 相对湿度:20%―80% 2.2光学系统和检测器 *2.2.1波长范围:全谱直读,波长166- 840nm或更宽,全波长覆盖,有连续像素。 *2.2.2像素分辨率:在200nm处,光学分辨率:≤0.007nm,像素分辨率:≤0.003nm 2.2.3自动实时波长校正,仪器在完全关机的情况下开机,启动时间小于3分 钟。 *2.2.4光室恒温。 2.3射频发生器和等离子体 *2.3.1等离子体观察方式:双向观测(即水平加垂直观测),由软件控制全自动切换,并可以同时给出两种观测方式的测量结果 2.3.2 RF发生器:固态发生器,射频频率:40.68 MHz或27.12MHz,最大功率: ≥1.5KW,连续可调,功率稳定性:<0.1% 2.4进样系统:分别报价,以利于选配 2.4.1 原机配普通标准进样系统。 2.4.2耐高盐进样系统:高盐雾化器、雾化室、整体式高盐样品矩管。 *2.4.3耐氢氟酸进样系统。 2.4.4有机(油)进样系统 2.4.5 蠕动泵:4通道以上蠕动泵,计算机控制进样,连续自动可调. 2.4.6 气路控制:冷却气、辅助气、载气全部使用质量流量计控制,气体总用 量 2.5分析性能 2.5.1分析速度:≥每分钟70个元素或谱线,而且每条测量谱线的积分时间 ≥10秒 2.5.2样品消耗量:< 2ml,测定大于70个元素 *2.5.3检出限Zn 213.856 nm,0.0006mg/L *2.5.4精密度:测定1ppm或10ppm多元素混合标准溶液,重复测定十次的RSD≤0.5% *2.5.5稳定性:测定1ppm或10ppm多元素混合标准溶液,连续测定4小时的长时间稳定性RSD<2.0%

电感耦合等离子体发射光谱仪

电感耦合等离子体发射光谱仪技术要求 1.设备名称 电感耦合等离子体发射光谱仪 2.总体要求 原装进口全谱直读型台式ICP光谱仪一台。主要适用于合金、钢、铁、炉渣等材料中Si、Mn、P、Cr、Ni、Cu、Al、Mo、Ti、Sn、As、Ca等元素主量及微量元素的快速定性、半定量和定量分析,要求制造商有良好的业绩。仪器应具有开机稳定时间短、长期稳定性好、使用成本低等特点。制造商应具有设计、制造本标书所规定设备的资格和能力,对设备的分析精度、质量、使用性能、供货的完整性、安装指导及调试负责。 3. 技术指标 *3.1 检测器:带高效半导体制冷的CID或CCD固体检测器,启动时间小于3 分钟;检测单元大于10万个,硬件上具有防溢出装置,能够实现高低含量元素同时测定。 3.2 光学系统:恒温驱气型中阶梯分光系统 3.3单色器:中阶梯光栅,石英棱镜二维色散系统,高能量。 3.4 光室:精密恒温,驱氩气或氮气。 3.5波长范围:166-770nm,全波长覆盖; *3.6光学分辨率(FHW):≤0.007nm 在200 nm处(分辨率和下面的检出限须在相同条件获得)。 3.7 焦距范围:350mm-510mm,以保证光学系统的稳定性。 3.8 等离子体 3.8.1等离子体观察方式:垂直观测 3.8.2高频发生器:功率27.12或40.68 MHZRF,自激式固态发生器,自动调谐, 功率稳定

性优于0.1%,最大RF功率: 1500W,连续可调。 3.8.3 冷却方式:水冷和风冷。 3.9 进样系统: 3.9.1全计算机自动控制的3或4通道滚轮蠕动泵,MFC质子流量计控制雾化器,范围从0-1.5L/min可调,所有气体都由软件控制,并进行安全连锁。 3.9.2进样系统:包括标准进样系统、高盐进样系统和耐HF酸进样系统。 3.10分析软件: 3.10.1软件操作方便、直观,具有定性、半定量、定量分析功能。 3.10.2具有同时记录所有元素谱线的“摄谱”功能,并能永久保存和自动检索操作软件,并可永久保存和日后再分析。 3.10.3具有多种干扰校正方法和实时背景扣除功能。 3.10.4 仪器诊断软件和网络通讯,数据再处理功能。 3.11 分析性能 3.11.1分析速度:≥每分钟60个元素或谱线,而且每条测量谱线的积分时间≤15秒。 3.11.2样品消耗量:< 2ml,测定60个元素。 3.11.3谱线灵活性:可对分析元素的任何一条谱线进行定性、半定量和定量分析,便于分析研究。 3.11.4 测定谱线的线性动态范围:≥105(以Mn257.6nm 来测定,相关系数≥0.9996)。 3.11.5内标校正:同时的内标校正,即内标元素和测量元素必须同时曝光。 3.11.6精密度:测定1ppm或10ppm多元素混合标准溶液,重复测定十次的RSD≤0.5%。 3.11.7稳定性:测定1ppm或10ppm多元素混合标准溶液,连续测定4小时的长时间稳定性RSD<2.0%。 4. 配置要求:

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法 电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。 样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。 本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。 1、对仪器的一般要求 电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。 样品引入系统 按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。样品引入系统由两个主要部分组成:样品提升部分和雾化部分。样品提升部分一般为蠕动泵,也可使用自提升雾化器。要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。雾化部分包括雾化器和雾化室。样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。实际应用中宜根据样品基质,待测元素,灵敏度等因

素选择合适的雾化器和雾化室。 电感耦合等离子体(ICP)光源 电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。实际应用中宜根据样品基质、待测元素、波长、灵敏度等因素选择合适的观察方式。 色散系统 电感耦合等离子体原子发射光谱的色散系统通常采用棱镜或光栅分光,光源发出的复合光经色散系统分解成按波长顺序排列的谱线,形成光谱。 检测系统 电感耦合等离子体原子发射光谱的检测系统为光电转换器,它是利用光电效应将不同波长光的辐射能转化成电信号。常见的光电转换器有光电倍增管和固态成像系统两类。固态成像系统是一类以半导体硅片为基材的光敏元件制成的多元阵列集成电路式的焦平面检测器,如电荷注入器件(CID)、电荷耦合器件(CCD)等,具有多谱线同时检测能力,检测速度快,动态线性范围宽,灵敏度高等特点。检测系统应保持性能稳定,具有良好的灵敏度、分辨率和光谱响应范围。 冷却和气体控制系统 冷却系统包括排风系统和循环水系统,其功能主要是有效地排出仪器内部的热量。循环水温度和排风口温度应控制在仪器要求范围内。气体控制系统须稳定正常地运行,氩气的纯度应不小于99.99%。 2、干扰和校正 电感耦合等离子体原子发射光谱法测定中通常存在的干扰大致可分为两类:

电感耦合等离子体ICP

第八章电感耦合等离子体(ICP-AES) 原子发射光谱法 Inductively Coupled plasma-atomic emission Spectrometry 金属元素分析 教学内容 1.原子发射光谱法(AES)的发展概况、分析流程及特点 2.原子发射光谱的产生(能级、能级图) 3.激发源ICP的基本原理、特点;谱线强度及影响因素 4.仪器及应用(定性、半定量、定量分析) 5.干扰效应及消除(自学为主) 学习目标 1.基本掌握ICP的基本原理、特点及适应性 2.基本掌握ICP-AES法的原理特点和应用 3.较好掌握光谱定性、半定量、定量分析并了解干扰效应及消除方法 一.发展概况 二.工作原理 1.等离子体 定义:是由数目几乎相等的正,负离子所构成的一种物质形态。气态。离子体气体。如:大量的星际物质,火焰和电弧的高温部分太阳和其它恒星的表面气层。 性质:是气态物质在温度进一步升高到一定程度后发生电离而形成的。物质第四态。 特点:在整体上呈电中性 2.原理: 激发源(ICP)---分光系统(单色器)---检测器 §3-2-1 AES的产生 激发----基态原子在激发光源(外界能量)的作用下,获得足够的能量,外层电子跃迁到较高能级状态的激发态的过程 原子发射(发光)----处在激发态的原子很不稳定,在极短的时间内(10-8s)外层电子跃迁回基态或其它较低的能态而释放出多余的能量。释放能量的方式两种 无辐射跃迁(与其它粒子的碰撞传递能量) 以一定波长的电磁波形式辐射出去 释放的能量及辐射线的频率符合:

o原子中外层电子(价电子或光电子)能量分布是量子化的,所以△E的值不是连续的,因此,原子光谱是线光谱; o同一原子中电子能级很多,有各种不同的能级跃迁,所以有各种不同△E,即可以发射出许多不同频率的辐射线。跃迁遵循“光谱选律”(不是任何能级之间都发生跃迁); o不同元素的原子由不同的能级构成,△E不一样,所以发射频率也不同,各种元素都有其特征的光谱线,由此可识别鉴定样品中元素的存在(光谱定性分析)o元素特征谱线的强度与样品中该元素的含量有确定的关系,通过测定谱线的强度可确定元素在样品中的含量(光谱定量分析) o有关术语 激发电位(激发能);电离电位(电离能); 共振线;原子线;离子线 §3-2-2 原子发射光谱(AES)分析过程 光谱的获得和光谱的分析两大过程。 1. 试样的处理 要根据进样方式的不同进行处理:做成粉末或溶液等,有些时间还要进行必要的分离或富集; 2. 样品的激发 在激发源上进行,激发源把样品蒸发、分解原子化和激发; 3. 光谱的获得和记录 从光谱仪中获得光谱并进行记录; 4. 光谱的检测 用检测仪器进行光谱的定性、半定量、定量分析 3.等离子体如何产生? 氩气Ar 高频电磁场高频线圈石英炬管 点火装置:电子点火碳棒点火 碰撞电离形成ICP 激发源:ICP

电感耦合等离子体光谱仪ICP-OES技术指标

电感耦合等离子体光谱仪(ICP-OES)技术指标 1.应用范围:适用于对各类样品中主量、微量及痕量元素的定性、半定量和定量分析。 2.供货要求: 2.1 仪器类型:全谱直读型电感耦合等离子体发射光谱仪 2.2 数量:一台 2.3 内容: 2.3.1 电感耦合等离子体发射光谱仪 2.3.2 冷却水循环系统 2.3.2 计算机及打印机 2.3.3必备消耗件 2.3.3 10kW带交流滤波功能稳压电源 3.技术指标 3.1 仪器工作环境 3.1.1 电压:220VAC±10% 3.1.2 室温: 15-30℃ 3.1.3 相对湿度:20%-80% 3.2 仪器总体要求 该光谱仪采用最新设计,技术先进超前,能快速一分钟内分析几十种元素含量,样品用量少,消耗成本低。仪器必需包括高频发生器、等离子体及进样系统、分光系统、检测器、分析软件和计算机系统,全自动控制。 3.3 性能指标 3.3.1检测器 *3.3.1.1带高效半导体制冷的固体检测器,在光谱仪波长范围内具有连续像素,能任意选择波长,且具有天然的防溢出功能设计。 *3.3.1.2 检测单元:大于290,000个检测单元。 *3.3.1.3 冷却系统:高效半导体制冷。温度:≤-45℃,启动时间:< 3 分钟。 *3.3.2 光学系统:恒温驱气型中阶梯分光系统。 3.3.2.1单色器:中阶梯光栅,石英棱镜二维色散系统,高能量。 *3.3.2.2 光室:带精密光室恒温38℃±0.1℃,驱氩气或氮气, 驱气量为1L/min。

*3.3.2.3波长范围:166-847nm,全波长覆盖,可测Al167.079nm,P178.2nm,B182.6nm。 可用波长有55000条。 *3.3.2.4光学分辨率(FHW):≤0.007nm 在200 nm处,0.014nm在400nm处,0.021nm 在600nm处(分辨率和检出限指标须在相同条件获得)。 3.3.2.5 焦距≤400mm。 3.3.3 等离子体 *3.3.3.1等离子体观察方式:为保证仪器使用寿命,采用炬管水平放置、双向观测 (即水 平加垂直观测)。 *3.3.3.2 RF发生器:固态发生器,水冷,直接耦合、自动调谐,变频,无匹配箱设计。 输出功率≥1300 W,并且连续可调。 *3.3.3.3 频率:27.12MHZ。 3.3.4 进样系统 *3.3.4.1炬管:可拆卸式,快速插拔式连接,辅助气及保护气管路均采用固定设计,在拆 装炬管时对气体管路无需任何操作。 3.3. 4.2 2.0mm 中心管。 3.3. 4.3雾化器:高效同心雾化器。 3.3. 4.4雾化室:旋流雾化室。 *3.3.4.5废液安全在线自动监控:有废液传感器,能对仪器状态进行实时自动的监控,保 障数据准确及仪器使用安全。 *3.3.4.6蠕动泵:采用与同品牌ICPMS相同的蠕动泵,4通道,泵速0-125rpm连续自动可调. *3.3.4.7气路控制:三路气体全部采用质量流量计控制。 3.3.5分析软件 3.3.5.1基于网络化连接与控制的多任务、多用途操作平台. 符合21CFR Part 11的要求, 具有登录口令保护,多级操作权限设置和网络安全管理,具有历史记录和电子签名功能。 3.3.5.2 软件操作方便、直观,具有定性、半定量、定量分析功能。 *3.3.5.3具有同时记录所有元素谱线的“摄谱”功能,可快速定性和半定量分析, 并能永 久保存和自动检索操作软件,并可永久保存和日后再分析。 3.3.5.4具有多种干扰校正方法和实时背景扣除功能。 3.3.5.5 仪器诊断软件和网络通讯,数据再处理功能。 *3.3.5.6兼容多种仪器控制,与ICP-MS,HR-ICP-MS,NSX, Quad-ICP-MS等8种仪器使用同

水质32种元素的测定电感耦合等离子体发射光谱法

HMEM-QP016-JL01 方法确认报告 编号:____________ 项目水质镉、铅、铜、锌、镣、总铭、铁、镒、钾、 钠、钙、镁、神、硒的测定 方法水质32种元素的测定电感耦合等离子体发射光谱法 在符合确认情况的□打勾 □非标准方法 口超出预定围使用的标准方法 口扩充和修改过的标准方法 □新扩展项目 说明:国家环境保护部发布水质32种元素的测定电感耦合等离子体发射光谱法。 参加确认人员及职称蔡敏助理工程师 报告编写___________________ 蔡敏 _______________________ 报告初审________________________________________________ 报告审核________________________________________________ 报告批准________________________________________________

日期____________________________________________________ 一、适用围 适用于地表水、地下水、生活污水及工业肺水中银、铝、碑、硼、钥、锻、秘'、钙、镉、钻、铭、铜、铁、钾、锂、镁、猛、钳、钠、镣、磷、铅、硫、镣、硒、硅、锡、钛、机、锌及皓等32种元素可 溶性元素及元素总量的测定。 二、使用仪器设备 电感耦合等离子体发射光谱仪型号:Agilent 5100 ICP-OES,编 号:MY16291009。 三、方法步骤及条件 1、标准曲线的建立 分别移取0.00, 0.25, 0.50, 1.00, 1.50, 2.50ml 铭(镉、铅、 铜、锌、镣、铁、猛、钾、钠、镁、碑、硒)标准使用液(100mg/L)于100 ml 容量瓶中,分别移取0.00, 1.00, 2.00, 4.00, 6.00, 10.0ml 钙标准使用液 (100mg/L),于100 ml容量瓶中用1%5肖酸定容至标线,摇匀,铭、镉、铅、 铜、锌、镣、铁、锭、钾、钠、镁、碑、硒的标 准系列质量浓度分别为0.00, 0.25, 0.50, 1.00, 1.50, 2.50ml/L,钙标准系列质量浓度 分别为0.00, 1.00, 2.00, 4.00, 6.00, 10.0ml/L, 由低质量浓度到高质量浓度依次测量 标准浓度溶液的发射强度。 由发射强度值在校准曲线上查得目标元素含量。样品测量过程中,若待测元素浓度超出校准曲线围,样品需要稀释后重新测定。 3、试样测定 按照与标准曲线相同步骤测量试样的发射强度值。 4、空白试验 按照与试样测定相同步骤测量空白试样的发射强度值。

电感耦合等离子体实验讲义

实验三电感耦合等离子发射光谱定量分析 一、实验目的 1.初步掌握电感耦合等离子发射光谱仪的使用方法。 2.学会用电感耦合等离子发射光谱法定性判断试样中所含未知元素的分析方法。 3.学会用电感耦合等离子发射光谱法测定试样中元素含量的方法。 二、实验原理 原子发射光谱法是根据处于激发态的待测元素的原子回到基态时发射的特征谱线对待测元素进行分析的方法。各种元素因其原子结构不同,而具有不同的光谱。因此,每一种元素的原子激发后,只能辐射出特定波长的光谱线,它代表了元素的特征,这是发射光谱定性分析的依据。 电感耦合等离子发射光谱仪是以场致电离的方法形成大体积的ICP 火焰,其温度可达10000 K,试样溶液以气溶胶态进入ICP 火焰中,待测元素原子或离子即与等离子体中的高能电子、离子发生碰撞吸收能量处于激发态,激发态的原子或离子返回基态时发射出相应的原子谱线或离子谱线,通过对某元素原子谱线或离子谱线的测定,可以对元素进行定性或定量分析。ICP 光源具有ng/mL 级的高检测能力;元素间干扰小;分析含量范围宽;高的精度和重现性等特点,在多元素同时分析上表现出极大的优越性,广泛应用于液体试样(包括经化学处理能转变成溶液的固体试样)中金属元素和部分非金属元素(约74种)的定性和定量分析。 三、仪器与试样 仪器:ICP OES-6300 电感耦合等离子发射光谱仪 试样:未知水样品(矿泉水) 四、实验内容 1.每五位同学准备一水样品进行定量分析,熟悉测试软件的基本操作,了解光谱和数据结果的含义。 2.观摩定量分析操作,学会分析标准曲线的好坏,掌握操作要点和测试结果的含义。 五、实验步骤 1.样品处理 (1)自带澄清水溶液20 mL,要求无有机物,不含腐蚀性酸、碱,溶液透明澄清无悬浮物,离子浓度小于100 μg/mL。 (2)将待测液倒入试管。

电感耦合等离子体发射光谱仪原理要点

电感耦合等离子体发射光谱仪原理 1、ICP-AES分析性能特点 等离子体(Plasma)在近代物理学中是一个很普通的概念,是一种在一定程度上被电离(电离度大于0.1%)的气体,其中电子和阳离子的浓度处于平衡状态,宏观上呈电中性的物质。 电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。而且由于这种等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于1L/min)便可穿透ICP,使样品在中心通道停留时间达2~3ms,可完全蒸发、原子化;ICP环状结构的中心通道的高温,高于任何火焰或电弧火花的温度,是原子、离子的最佳激发温度,分析物在中心通道内被间接加热,对ICP放电性质影响小;ICP 光源又是一种光薄的光源,自吸现象小,且系无电极放电,无电极沾污。这些特点使ICP光源具有优异的分析性能,符合于一个理想分析方法的要求。 一个理想的分析方法,应该是:可以多组分同时测定;测定范要围宽(低含量与高含量成分能同测定);具有高的灵敏度和好的精确度;可以适用于不同状态的样品的分析;操作要简便与易于掌握。ICP-AES分析方法便具有这些优异的分析特性: ⑴ ICP-AES法首先是一种发射光谱分析方法,可以多元素同时测定。

发射光谱分析方法只要将待测原子处于激发状态,便可同时发射出各自特征谱线同时进行测定。ICP-AES仪器,不论是多道直读还是单道扫描仪器,均可以在同一试样溶液中同时测定大量元素(30~50个,甚至更多)。已有文献报导的分析元素可达78个[4],即除He、Ne、Ar、Kr、Xe惰性气体外,自然界存在的所有元素,都已有用ICP-AES法测定的报告。当然实际应用上,并非所有元素都能方便地使用ICP-AES法进行测定,仍有些元素用ICP-AES法测定,不如采用其它分析方法更为有效。尽管如此,ICP-AES法仍是元素分析最为有效的方法。 ⑵ ICP光源是一种光薄的光源,自吸现象小,所以ICP-AES法校正曲线的线性范围可达5~6个数量级,有的仪器甚至可以达到7~8个数量级,即可以同时测定0.00n%~n0%的含量。在大多数情况下,元素浓度与测量信号呈简单的线性。既可测低浓度成分(低于mg/L),又可同时测高浓度成分(几百或数千mg/L)。是充分发挥ICP-AES多元素同时测定能力的一个非常有价值的分析特性。 ⑶ ICP-AES法具有较高的蒸发、原子化和激发能力,且系无电极放电,无电极沾污。由于等离子体光源的异常高温(炎炬高达1万度,样品区也在6000℃以上),可以避免一般分析方法的化学干扰、基体干扰,与其它光谱分析方法相比,干扰水平比较低。等离子体焰炬比一般化学火焰具有更高的温度,能使一般化学火焰难以激发的元素原子化、激发,所以有利于难激发元素的测定。并且在Ar气氛中不易生成难熔的金属氧化物,从而使基体效应和共存元素的影响变得不明显。很多可直接测定,使分析操作变得简单,实用。

电感耦合等离子体质谱ICP-MS的原理与操作

电感耦合等离子体质谱ICP-MS 1.ICP-MS仪器介绍 测定超痕量元素和同位素比值的仪器。由样品引入系统、等离子体离子源系统、离子聚焦和传输系统、质量分析器系统和离子检测系统组成。 工作原理: 样品经预处理后,采用电感耦合等离子体质谱进行检测,根据元素的质谱图或特征离子进行定性,内标法定量。样品由载气带入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气体中被充分蒸发、解离、原子化和电离,转化成带电荷的正离子,通过铜或镍取样锥收集的离子,在低真空约133.322帕压力下形成分子束,再通过1~2毫米直径的截取板进入质谱分析器,经滤质器质量分离后,到达离子探测器,根据探测器的计数与浓度的比例关系,可测出元素的含量或同位素比值。 仪器优点: 具有很低的检出限(达ng/ml或更低),基体效应小、谱线简单,能同时测定许多元素,动态线性范围宽及能快速测定同位素比值。地质学中用于测定岩石、矿石、矿物、包裹体,地下水中微量、痕量和超痕量的金属元素,某些卤素元素、非金属元素及元素的同位素比值。

2.ICP产生原理 ICP-MS所用电离源是感应耦合等离子体(ICP),它与原子发射光谱仪所用的ICP是一样的,其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k 的等离子焰炬。样品由载气带入等离子体焰炬会发生蒸发、分解、激发和电离,辅助气用来维持等离子体,需要量大约为1 L/min。冷却气以切线方向引入外管,产生螺旋形气流,使负载线圈处外管的内壁得到冷却,冷却气流量为10-15 L/min。

电感耦合等离子体ICP教材

电感耦合等离子体ICP教材 1. 原子光谱的理论基础 光谱分析是根据物质的特征光谱来研究物质的化学组成、结构和存在状态的一类分析领域,它可分为原子发射光谱分析、原子吸收光谱分析、分子发射光谱分析、分子吸收光谱分析、X射线荧光光谱分析、原子和分子荧光光谱分析、红外和拉曼光谱分析等各类分析方法。 原子发射光谱分析是根据试样物质中气态原子(或离子)被激发以后,其外层电子辐射跃迁所发射的特征辐射能(不同的光谱),来研究物质化学组成的一种方法。常称为光谱化学分析,也简称为光谱分析。 1. 1 原子的结构和辐射跃迁 原子光谱是原子内部运动的一种客观反映,原子光谱的产生与原子的结构密切有关。在原子光谱分析时,最被关心的是光谱线波长的选择,以及所选光谱线的强度,而谱线的波长以及影响谱线强度的因素与原子结构密切相关。因此,一个光谱分析工作者有必要对原子结构及辐射跃迁过程有所了解。 早在19世纪中,人们已积累了一些原子光谱的实践知识。Bunsen 及Kirchhoff最先将分光镜应用于元素的鉴定及分析,并将元素与特

征谱线相联系,认识到线光谱是原子发射的。 1913年Bohr提出了原子结构学说,其要点如下: 9) 电子绕核作圆周运行,可以有若干个分立的圆形轨道,在不同轨道上运行的电子处于不同的能量状态。在这些轨道上运行的电子不辐射能量,即处于定态。在多个可能的定态中,能量最低的态叫基态,其它称为激发态 10) 原子可以由某一定态跃迁至另一定态。在此过程中发射或吸收能量,两态之间的能量差等于发射或吸收一个光子所具有的能量,即=E2-E1νh 上式称为Bohr频率条件。式中,E2 E1。如E2为起始态能量,则发射辐射;如E2为终止态能量,则吸收辐射。h为planck常数(6.6262×10-34J?S)。>17) 的正整数倍。即π必须等于h/2Φ原子可能存在的定态只能取一些不连续的状态,即电子只能沿着特定的轨道绕核旋转。在这些轨道上,电子的轨道运动角动量 P = ΦP )??(n=1,2,3πn?h/2 此式称为Bohr量子化规则,n称为主量子数据。 Bohr的原子结构学说以及以后的量子力学逐步完善了原子的结构理论。人们认识到:电子在能级间的跃迁时就产生谱线。若电子由低能级向高能级跃迁时就产生吸收光谱,电子由高能级向低能级跃迁时,就产生发射光谱。

电感耦合等离子体发射光谱仪检定规程解读

电感耦合等离子体发射光谱仪检定规程 1. 适用范围 本规程适用于新安装、使用中和修理后的电感耦合等离子体发射光谱仪(以下简称仪器)的检定。 2. 原理 电感耦合等离子体发射光谱法(ICP—OES)主要用于液体试样(包括经化学处理能转变成溶液的固体试样)中金属元素和部分非金属元素的定量分析。将样品溶液以气溶胶形式导入等离子体炬焰中,样品被蒸发和激发,发射出所含元素的特征波长的光。经分光系统分光后,其谱线强度由光电元件接受并转变为电信号而被记录。根据元素浓度与谱线强度的关系,测定样品中各相应元素的含量。 3. 类型 仪器有固定通道(多道)型、顺序(扫描)型和全谱直读型等,本单位的仪器(Varian 715-ES 编号:200781C00009)属于全谱直读型。 4. 计量要求 新安装的仪器的检定,应符合仪器说明书中规定的计量要求,其计量特性应优于规程表2中规定的性能指标。使用中和修理后的仪器的检定,应符合本规程表2中规定的性能指标。 5. 技术要求 5.1外观要求 外观及初步检查应符合以下要求: a)仪器应具有下列标志:仪器名称、型号、制造厂名、出厂编号及出厂日期,出厂合格证书和仪器使用说明书齐备; b)仪器及附件的所有紧固件均应紧固良好,仪器的气路、液路管道及连接头应无泄漏现象,运动部件应灵活、平稳; c)仪器各旋钮及功能键应能正常工作,由计算机控制或带微机的仪器,当由键盘输入指令时,各相应功能应正常,仪器各部件完好,开机后能正常运行。

5.2 安装条件 5.2.1 仪器应平稳地安置于室内,附近无强烈振动源,仪器机箱上无震动感觉。5.2.2 等离子体光源上方应有排气装置,足以将废气排除室外,但不能影响炬焰的稳定性。应保证射频发生器的功率管有良好的散热排风。 5.2.3 仪器供电电源的电压、频率及稳定性应符合仪器使用说明书的要求。仪器接地电阻不大于3Ω。 5.3 检定环境 5.3.1 仪器室内无腐蚀性气体;空中的尘埃粒子须保持最低。 5.3.2 室内温度18℃~26℃;室温应达到稳定状态,温度变化率应小于1℃/h(或根据仪器要求而定)。 5.3.3 相对湿度不大于70%。 5.4 检定设备 5.4.1 分析天平分度值0.1mg。 5.4.2 容量瓶 25ml,50ml,100ml。 5.4.3 刻度移液管 1.00ml,5.00ml。 5.4.4 秒表最小分度值0.5s。 5.4.5 氩气符合GB4842要求(即纯度不低于99.99%)。 5.4.6 水去离子水或亚沸蒸馏水,符合GB/T6682中实验室用水二级水规格。 5.4.7 试剂盐酸、硝酸等试剂,纯度为优级纯或工艺纯。 5.4.8 标准物质向有关部门购置标准物质。 5.5 检定项目和检定方法 检定测试过程中,做好检定记录 5.5.1 外观及初步检查 外观及初步检查应符合(5.1)要求。 5.5.2 扫描仪波长示值误差的检定 扫描仪恒温后按仪器使用方法校正波长。点燃等离子体,将含有质量浓度约 15mg/L的硼溶液、钠溶液分别引入等离子体炬焰中,获取B249.773nm、 Na589.592nm的扫描光谱图,以图示谱线峰值对应的波长作为波长测量值,各谱线分别测量3次。波长示值误差(Δλ)按下式计算: 1 3 Δλ=── Σ λi-λs=λ-λs (1) 3 i=1 式中λi——波长测量值 λ——波长测量平均值 λs——波长标准值

PE Optima8000电感耦合等离子体发射光谱仪技术指标

Optima8000电感耦合等离子体发射光谱仪技术规格 1.设备用途及总体要求: 用于对各类样品中主量、微量及痕量元素的定性、半定量和定量分析。仪器以固体检测器为基础,由进样系统、高频发生器、等离子体炬、光路系统、检测器、分析软件和计算机系统组成,全自动控制,仪器监控仪表全部由计算机控制,任何仪器参数都不需要手动调节的全谱直读型台式等离子体发射光谱仪。 2.设备总体性能: 2.1动态范围:≥ 106,具有同时准确分析出中量(1%以上)、常量(0.01%)和微量(1ppm以下)元素的实际样品用户应用实例。具有同时准确分析主量(50%以上)和常量(0.01%)元素的实际样品用户应用实例。 2.2分析速度:≥ 15 个元素/分钟,且实施背景校正。 2.3精密度:1ppm 混合多元素溶液。CV<0.5%。 2.4 稳定性:1小时RSD<1%, 4小时RSD<2%。 2.5分辨率:在200nm处,像素分辨率:≤0.003nm。 2.6 检出限,以1ppm混标测量建立仪器的灵敏度,以6次空白溶液测量的3σ强度所对应的浓度计算检出限,所有下列检出限必须在同一个仪器参数下同时做出。

2.7灵敏度 旋流雾室和同心雾化器(单位:cps/ppm) Mn 257.610nm > 8.5×106,Al 396.153nm > 1×106,Ni 231.604nm > 3×105 As 193.696nm > 1.5×104,Pb 220.353nm > 5×104,P 213.617nm > 3×104 2.8 具有高纯气体中痕量杂质分析的能力和用户应用实例。可以分析高纯氮气、氢气、氦气中0.1微克/升以下含量的杂质。 2.9 具有99.99%高纯材料(例如高纯石英砂)中痕量杂质分析的能力和用户应用实例。 2.10 具有镀铝锌板、锆铁合金、钛合金、铝铁锰青铜、铸造铝合金、耐磨铸铁、变形铝合金、铅黄铜、黄金合金、催化剂、电镀液等冶金材料中痕量杂质分析的能力和用户应用实例。 2.11 具有土壤、沉积物、植物、沉积岩、硅灰石、水、动物组织、纺织品、松香、植物油、化妆品、食品、中药、西药等样品类型中痕量杂质分析的能力和用户应用实例。 3.进样系统 3.1 雾化器:标配耐HF酸耐高盐分的雾化器,耐:50% (v/v) HCl、HNO3、H2SO4、H3PO4,20% (v/v) HF,30% (w/v)NaOH以及30%的高盐样品。 3.2 雾化器喷嘴为红宝石和蓝宝石材料制成。 3.3 雾室:标配耐HF酸耐高盐分样品。 3.4 雾室为不亲水的高强度高纯氟塑料材料制成。 3.5 分析含HF、HCl、HNO3酸等各种样品,雾化器和雾室的使用寿命不少于5年,并有超过5年的用户使用实例。 3.6炬管为可拆卸式结构,炬管中心管标配为刚玉材料,其使用寿命不少于5年,并有超过5年的用户使用实例。

相关主题
文本预览
相关文档 最新文档