当前位置:文档之家› 分子生物学实验指导

分子生物学实验指导

分子生物学实验指导
分子生物学实验指导

分子生物学实验指导

主编:王海鸥魏巍宣劲松钟广蓉

北京科技大学应用科学学院生物科学与技术系

2007.6

前言

分子生物学实验课程是一门年轻的课程。20世纪90年代初期,随着分子生物学日新月异的发展,分子生物学实验技术已成为生命科学各学科重要的研究工具。高等学校生命科学各专业的学生要适应时代的发展,除了需要学习分子生物学理论和分子生物学技术的基本知识以外,还必须系统地培养学生在分子生物学方面的技术素养与动手能力,于是我们在2005年正式将分子生物学实验作为一门独立的课程,并作为生物技术专业学生的必修课。单独开设分子生物学实验这门课后,在原有的基础上又增加了许多新的,分子生物学技术和实验内容。而且对全部新增设内容都进行了充分的摸索和预实验,直到每个实验课堂教学上可行。学生通过此课程既学到了适应时代前沿的技术,又大大增加了他们的实践和动手能力。在此基础上我们编写了学生用的《分子生物学实验指导》。

全书内容包括感受态细胞的制备和转化;质粒的提取和酶切;DNA重组;PCR 基因扩增;哺乳动物和植物基因组DNA的分离和提取;凝胶电泳检测蛋白质和DNA;Southern杂交;蛋白质印迹和免疫检测;总RNA和tRNA 的制备及分析;核酸序列测定;在原核细胞中表达真核基因;基因突变及检测等。书后还摘编了许多对分于生物学实验有用的附录。为适合不同领域对象的需要,对某些实验内容,安排有以动物为材料或以植物为材料的不同实验。为适合不同水平的对象,除最基础的实验外,还编排了较高层次的实验。

实验一 质粒DNA的分离纯化

[实验目的]

通过质粒的一些特性对质粒DNA的提取、测定

学习用碱变性法提取质粒DNA

[实验原理]

DNA 是具有一定结构的物质,一些特殊的环境会导致DNA的变性,如加热、极端pH值、有机溶剂、尿素、酰胺试剂等,而适宜的环境又可以使DNA 复性。

SDS是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性,所以SDS处理细菌细胞后,会导致细菌细胞壁的破裂,从而使质粒DNA以及基因组DNA从细胞中同时释放出来。释放出来的DNA遇到强碱性(NaOH)环境,就会变性。然后,用酸性乙酸钾来中和溶液,使溶液处于中性,质粒DNA将迅速复性,而染色体DNA,由于分子巨大,难以复性。离心后,质粒DNA将在上清中,而染色体DNA则与细胞碎片一起沉淀到离心管的底部。通过这种方法即可将质粒DNA从细菌中提取出来。

[器材与试剂]

l、实验仪器

1.5 mL塑料离心管10个,0.5 mL塑料离心管7个,塑料离心管架(30孔)1个,20、200、1000 μL微量加样器各一支,常用玻璃仪器及滴管等,台式高速离心机,恒温摇床,恒温培养箱,高压灭菌锅。

2、实验材料

大肠杆菌JM109。

3、实验试剂

(1) pH 8.0 G. E. T缓冲液(50 mmol/L葡萄糖,10 mmol/L EDTA-Na2,25mmo1/L Tris-HCI);用前加溶菌酶4mg/mL。

(2) 0.4 mol/L NaOH, 2% SDS, 用前等体积混合(现配)。

(3) pH 4.8乙酸钾溶液(60mL 5mol/L KAc,11.5 mL冰醋酸,28.5mL H2O):该溶液钾离子浓度为3mo1/L,醋酸根离子浓度为5mo1/L。

(4) 酚/氯仿(1:1,V/V):酚需在160℃重蒸,加入抗氧化剂8-羟基喹啉,使体积分数为0.1%,并用Tris-HCI缓冲液平衡两次。

(5) 70%乙醇。

(6) pH8.0 RTE缓冲液: 10mmo1/L Tris-HCl,1mmol/L EDTA,其中含 RNA酶(RNaseA)20μg/mL。

[实验步骤]

1、培养细菌:将含质粒pUC18的的大肠杆菌(JM109)单菌落接入含

Amp(50ug/mL)的3mL LB液体培养基中,37℃振荡培养过夜12~18h。

LB(Luria-Bertni)液体培养基成分如下:每升含有胰蛋白胨(Bacto-tryptone)10g,酵母提取物(Bacto-yeast extract)5g,NaCl 10g、,用Na0H调PH至7.0。

2、培养的菌液2mL,6000rpm,离心2min。去上清收集沉淀。

3.加入100 μL GET缓冲液。充分混匀,在室温下放置10 min。

4.加入200μL新配制的0.2 mol/L NaOH(内含1%S DS)。加盖,颠倒4~5次,使之混匀。冰上放置5 min。S DS能使细胞膜裂解,并使蛋白质变性。

5.加入150μL冰冷的乙酸钾溶液(pH4.8)。加盖后颠倒数次使混匀,

冰上放置15min。乙酸钾能沉淀SDS与蛋白质的复合物,在冰上放置

15 min是为了使沉淀完全。

6.用台式高速离心机,转速为12000r/min,离心15min,上清液倒

入另—干净的离心管中,如果上清液经离心后仍混浊,应混匀后再冷却至0℃并重新离心。

7.向上清液中加入等体积酚/氯仿(1:1,V/V)振荡混匀,用台式

高速离心机离心,转速为12000r/min,离心5 min,将上清液转移至新的离心管中,用酚与氯仿的混合液除去蛋白,效果较单独使用酚或氯仿更好。

8.向上清液加入2倍体积无水乙醇,混匀,-20℃放置30分钟。

12000r/min,离心15 min,倒去上清乙醇溶液,把离心管倒扣在吸水纸上,吸干液体。

9.加1mL70%乙醇,振荡并12000r/min,离心10min,倒去上清液,

室温自然干燥,(待用可以在-20℃保存)。

10.加入20 μL含有RNase A 20 μg/mL的RTE溶解提取物,室温放置

30 min以上,使DNA充分溶解待用。

[思考题]

为什么能在细菌破碎后的细菌抽提液中(复杂成分中)分离到质粒DNA?

实验二琼脂糖凝胶电泳分离、鉴定

[实验目的]

学习和掌握琼脂糖凝胶电泳的操作方法,琼脂糖凝胶电泳是分离鉴定DNA片段的有效方法。

[实验原理]

目前已发现的限制性内切酶有数百种。Eco RI和Hin dIII都属于II型限制性内切酶,这类酶的特点是具有能够识别双链DNA分子上的特异核苷酸顺序的能力,能在这个特异性核苷酸序列内,切断 DNA的双链,形成一定长度和顺序的DNA片段。Eco RI和Hin dIII的识别序列和切口是:

Bam HI:G↓ GATCC

Hin dIII:A↓ AGCTT

G,A等核苷酸表示酶的识别序列,箭头表示酶切口。限制性内切酶对环状质粒DNA有多少切口,就能产生多少个酶解片段,因此鉴定酶切后的片段在电泳凝胶中的区带数,就可以推断酶切口的数目,从片段的迁移率可以大致判断酶切片段大小的差别。用己知相对分子质量的线状DNA为对照,通过电泳迁移率的比较,可以粗略地测出分子形状相同的未知DNA的相对分子质量。我们采用Hin dIII酶切λDNA,其酶切片段作为样品酶切片段大小的相对分子质量标准,参看表2-1。

表2-1 λDNA-Hin dIII酶解片段

片断碱基对数目/Kb 相对分子量

15.0×106

1 23.130

6.12×106

2 9.419

4.26×106

3 6.557

2.84×106

4 4.371

1.51×106

5 2.322

1.32×106

6 2.028

0.37×106

7 0.564

0.08×106

8 0.125

质粒DNA的相对分子质量一般在106~107范围内,如质粒pBR322的相

对分子质量为2.8×106,质粒pUC19的相对分子质量为1.7×106。在细胞内,共价闭环DNA(covalentlylosed circular DNA,简称ccDNA)常以超螺旋形式存在。如果两条链中有一条键发生一处或多处断裂,分子就能旋转而消除键的张力,这种松弛型的分子叫作开环DNA(open circular DNA,简称ocDNA)。在电泳时,同一质粒如以ccDNA形式存在,它比其开环和线状DNA 的泳动速度快,一般情况下质粒的泳动速度为:ccDNA> LineDNA>ocDNA。

[器材和试剂]

1.实验仪器

1.5mL塑料离心管10个,0.5 mL离心管7个,塑料离心管架(30孔)1个,20、200、1000 μL微量加样器各一支,锥形瓶(100mL或50 mL)白搪瓷盘,玻璃纸,一次性塑料手套,常用玻璃仪器及滴管等,电泳仪,电泳槽,样品梳子,有机玻璃内槽,台式高速离心机一台,台式高速冷冻离心机一台,微型瞬间离心机一台,凝胶自动成像仪。

2.实验材料

自提的pUC18质粒和市场购买的pUC18质粒,,λDNA+Hind III酶切的分子量标准,琼脂糖(进口)。

3.试剂

(l)50×TAE储液:称取Tris 24.2 g、乙酸5.71mL和10mL 0.5 moL/L EDTA-Na2,定容至 200mL,称为50 × TAE缓冲液。

(3)Goldenview染料。

[实验步骤]

1.琼脂糖凝胶板的制备

(1)1×TAE稀释液300mL (每组)

(2)琼脂糖凝胶的制备:称取0.1g琼脂糖,置于锥形瓶中,加入10mL

1× TAE稀释液,用微波炉加热直至琼脂糖溶解瓶口倒扣一个小烧坏

(或小漏斗),琼脂糖即可全部融化在缓冲液中,取出摇匀,加入

Goldenview染料则为1.0%琼脂糖凝胶液。

(3)胶板的制备:取有机玻璃内槽,洗净、晾干。

(4)将有机玻璃内槽置于一水平位置,放好样品槽梳子。

(5)将冷却至65°C左右的琼脂糖凝胶液,小心地倒在有机玻璃内槽上,控制灌胶速度,使胶液缓慢地展开,直到在整个有机玻璃板表面形成均匀的胶层。室温下静置lh左右。

(6)待凝固完全后大约30 min,将铺胶的有机玻璃内槽放在电泳槽中备用。将电泳槽内注满1× TAE稀释液,注意,使TAE稀释液刚没过胶即可。

(7)轻轻拔出样品槽梳子,在胶板上即形成相互隔开的样品槽。2.加样

(1)微量加样器将上述样品分别加入胶板的样品小槽内,加样时,微量加样器的枪头垂直于样品槽上方,插入 TAE稀释液,但不能碰到

样品槽的凝胶面,将样品加入样品槽内。

5μl 质粒DNA +1 μlSYBR工作液

(2)每次加完一个样品,要用蒸馏水反复洗净微量加样器,以防止相互污染。加样时,应防止碰坏样品槽周围的凝胶面,每个样品槽的加样量不宜过多,本实验室样品槽容量约15~20uL左右。

3. 电泳

加完样品后的凝胶板立即通电,进行电泳。电流为30 mA, 溴酚兰染料移动到距离胶板下沿约1~2cm处,停止电泳。

4.拍照观察

用凝胶自动成像仪处理所得的凝胶,拍摄照片,分析结果。

[思考题]

1.为什么DNA电泳速度共价闭环DNA>直线DNA>开环的双链环状DNA,酶切后只剩下单一的直线DNA条带?

2.在琼脂糖凝胶电泳(制备胶板,加样,电泳)过程中的注意事项是什么?

实验三质粒DNA的限制性内切酶酶切及电泳分离、鉴定

[实验目的]

学习和掌握限制性内切酶的特性、酶解的操作方法,理解限制性内切酶是DNA重组技术的关键工具,琼脂糖凝胶电泳是分离鉴定DNA片段的有效方法。

[实验原理]

限制性内切核酸酶(也可称限制性内切酶)是在细菌对噬菌体的限制和修饰现象中发现的。细菌细胞内同时存在一对酶,分别为限制性内切酶(限制作用)和DNA甲基化酶(修饰作用)。它们对DNA底物有相同的识别顺序,但生物功能却相反。由于细胞内存在DNA甲基化酶,它能在限制性内切酶所识别的若干碱基上甲基化,就避免了限制性内切酶对细胞自身DNA 的切割破坏,而对感染的外来噬菌体DNA,因无甲基化而被切割破坏。

目前已发现的限制性内切酶有数百种。Eco RI和Hin dIII都属于II型限制性内切酶,这类酶的特点是具有能够识别双链DNA分子上的特异核苷酸顺序的能力,能在这个特异性核苷酸序列内,切断 DNA的双链,形成一定长度和顺序的DNA片段。Eco RI和Hin dIII的识别序列和切口是:Bam HI:G↓ GATCC

Hin dIII:A↓ AGCTT

质粒的加工需要工具酶,限制性内切酶是重要的工具酶之一。将质粒和外源基因用限制性内切酶酶切,再经过退火和DNA连接酶封闭切口,便可获得携带外源基因的重组质粒。

重组质粒可以转移到另一个生物细胞中去(细胞转化或转染),进而复制、转录和表达外源基因产物。这样通过基因工程可获得所需各种蛋白质产物。

质粒DNA的相对分子质量一般在106~107范围内,如质粒pBR322的相对分子质量为2.8×106,质粒pUC19的相对分子质量为1.7×106。在细胞内,共价闭环DNA(covalentlylosed circular DNA,简称ccDNA)常以超螺旋形式存在。如果两条链中有一条键发生一处或多处断裂,分子就能旋转而消除键的张力,这种松弛型的分子叫作开环DNA(open circular DNA,简称ocDNA)。在电泳时,同一质粒如以ccDNA形式存在,它比其开环和线状DNA

的泳动速度快,一般情况下质粒的泳动速度为:ccDNA> LineDNA>ocDNA。

[器材和试剂]

1.实验仪器

1.5mL塑料离心管10个,0.5 mL离心管7个,塑料离心管架(30孔)1个,20、200、1000 μL微量加样器各一支,锥形瓶(100mL或50 mL)白搪瓷盘(小号),玻璃纸,一次性塑料手套,常用玻璃仪器及滴管等,电泳仪,电泳槽,样品梳子,有机玻璃内槽,台式高速离心机一台,台式高速冷冻离心机一台,微型瞬间离心机一台,凝胶自动成像仪。

2.实验材料

自提的 pUC18质粒和市场购买的pUC18质粒,BamH I内切酶,Hind III, λDNA+Hind III酶切的分子量标准,琼脂糖(进口)。

3.试剂

(l)10× 酶解反应液。

(2)无菌水

(3)50×TAE储液:称取Tris 24.2 g、乙酸5.71mL和10mL 0.5 moL/L EDTA-Na2,定容至 200mL,称为50 × TAE缓冲液。

(4)Goldenview染料。

[实验步骤]

1.质粒DNA的酶解

(l)将上一实验纯化的并经自然干燥的自制的pUC18质粒DNA, 使用紫外检测仪检测质粒DNA的浓度,使终浓度为0.1 μg/μL。

(2)将清洁、干燥、灭菌的具塞离心小管编号,用微量加样器按表2-2表所示将各种试剂分别加入每个小管内。

(3)加样时,要精神集中,严格操作,反复核对,做到准确无误。加样时不仅要防止错加或漏加的现象,而且还要保持公用试剂的纯净。应该指出,该项操作环节是整个实验成败的关键之一。

表2-1:质粒DNA酶解的反应成分及加样量

3μlλDNA+Hind III 0.1μg/μL

15μl pUC1815μl PUC18+外源

DNA

Bam HI 2 2

Hind III 1 1

10×Buffer 2 2 2

无菌H2O 0 0 5 总体积 20 20 10

(4)加样后,小心混匀,置于37°C水浴中,酶解2~ 3h(有时可以过夜)。

2.琼脂糖凝胶板的制备

(1) 1×TAE稀释液300mL (每组)

(2) 琼脂糖凝胶的制备:称取0.1g琼脂糖,置于锥形瓶中,加入

10mL 1× TAE稀释液,用微波炉加热直至琼脂糖溶解瓶口倒

扣一个小烧坏(或小漏斗),琼脂糖即可全部融化在缓冲液中,

取出摇匀,加入Goldenview染料则为1.0%琼脂糖凝胶液。

(3)胶板的制备:取有机玻璃内槽,洗净、晾干。

(4)将有机玻璃内槽置于一水平位置,放好样品槽梳子。

(5)将冷却至65°C左右的琼脂糖凝胶液,小心地倒在有机玻璃内槽上,控制灌胶速度,使胶液缓慢地展开,直到在整个有机玻璃板表面形成均

匀的胶层。室温下静置lh左右。

(5)待凝固完全后大约30 min,将铺胶的有机玻璃内槽放在电泳槽中备用。将电泳槽内注满1× TAE稀释液,注意,使TAE稀释液刚没过胶即可。

(6)轻轻拔出样品槽梳子,在胶板上即形成相互隔开的样品槽。

3.加样

(1) 用微量加样器将上述样品分别加入胶板的样品小槽内,加

样时,微量加样器的枪头垂直于样品槽上方,插入 TAE

稀释液,但不能碰到样品槽的凝胶面,将样品加入样品槽

内。

5μl 质粒DNA +1 μl上样工作液

(2)每次加完一个样品,要用蒸馏水反复洗净微量加样器,以防止相互污染。加样时,应防止碰坏样品槽周围的凝胶面,每个样品槽的加样量不宜过多,本实验室样品槽容量约15~20uL左右。

4. 电泳

加完样品后的凝胶板立即通电,进行电泳。电流为30 mA, 溴酚兰染料移动到距离胶板下沿约1~2cm处,停止电泳。

5.拍照观察

用凝胶自动成像仪处理所得的凝胶,拍摄照片,分析结果。

实验四、大肠杆菌感受态细胞的制备、重组DNA的转化及克隆筛选 [实验目的]

学习氯化钙法制备大肠杆菌感受态细胞和外源质粒DNA转入受体菌细胞的技术以及筛选转化体的技术。了解细胞转化的概念及其在分子生物学研究中的意义。

[实验原理]

感受态细胞(Competent cells):受体细胞经过一些特殊方法(如:CaCl,RuCl等化学试剂法)的处理后,细胞膜的通透性发生变化,成为能容许多有外源DNA的载体分子通过的感受态细胞(competent cell)。

转化(transformation):是将异源DNA分子引入一细胞株系,使受体细胞获得新的遗传性状的一种手段,是基因工程等研究领域的基本实验技术。转化的方法:化学的方法(热击法):使用化学试剂(如CaCl)制备的感受态细胞,通过热击处理将载体DNA分子导入受体细胞;电转化法:使用低盐缓冲液或水洗制备的感受态细胞,通过高压脉冲的作用将载体DNA分子导入受体细胞。

克隆的筛选:主要用不同抗生素基因筛选。常用的抗生素有:氨苄青霉素、卡那霉素、氯霉素、四环素、链霉素等。

重组质粒克隆的鉴定 :鉴定带有重组质粒克隆的方法常用的有α-互补、小规模制备质粒DNA进行酶切分析、插入失活、PCR以及杂交筛选的方法。最常用的方法是小规模制备质粒DNA进行酶切分析,对于带有LacZ基因的载体还可以结合α-互补现象来筛选。

pGM-T 是一种高效克隆 PCR 产物的专用载体,它是由一种克隆载体在 EcoRV 酶切位点处切开,在两侧的 3' 端添加 T 而成。由于大部分耐热聚合酶反应时都会在 PCR 产物的 3 ' 端添加一个 A ,可与 pGM-T 3 ' 端的 T 互补连接,因此可大大提高 PCR 产物的连接和克隆效率。带有插入片段的重组子可根据 α 互补原理,进行蓝白斑筛选,以判断载体中有无外源基因的插入。

[器材和试剂]

无菌超净台,电热恒温水浴,分光光度计,离心机,移液器,微型离心管等。

菌株:E.coli DH5α;

pGM-T载体(约50ng/μL) 20μL

T4 DNA Ligase(3u/μL) 20μL

10×T4 DNA Ligation Buffer 50μL

2×T4 DNA Rapid Ligation Buffer 100μL;

LB培养基;含抗菌素的LB平板培养基(氨苄青霉素,浓度50-100μg/mL,一般将抗生素配制成1000 ×储备液,用时按培养基的量再加入);

预冷CaCl2溶液(0.1mol/L)

IPTG(50mg/mL

X-gal(20 mg/mL),

图2.1 pGM-T载体图谱

[实验步骤]

1.大肠杆菌感受态细胞的制备(CaCl2法):

从新活化的E.coli DH5α菌平板上挑取一单菌落,接种于3~5ml LB 液体培养中,37℃振荡培养12h左右,直至对数生长期。将该菌悬液以

1:100~1:50转接于100ml LB液体培养基中,37℃、250rpm振荡培养2-3小时,当培养液开始出现混浊后,每隔20~30min测一次OD600nm,至OD600 0.4-0.5停止培养;

(1) 每组取培养液2个1ml转入1.5ml离心管中,在冰上冷却20-30min,于4℃,4000r/min离心10min(从这一步开始,所有操作均在冰

上进行,速度尽量快而稳);

(2) 倒净上清培养液,用1ml冰冷的0.1mo1/L CaCl2溶液轻轻悬浮细胞,冰浴;

(3) 0~4℃,4000r/min离心10min;

(4) 弃去上清液,加入500μl冰冷的0.1mo1/L CaCl2溶液,小心悬浮细胞。0~4℃,4000r/min离心10min;

(5) 弃去上清液,加入100μl冰冷的0.1mo1/L CaCl2溶液,小心悬浮细胞,冰上放置片刻后,即制成了感受态细胞悬液;

(6) 制备好的感受态细胞悬液可直接用于转化实验,也可加入占总体积15% 左右高压灭菌过的甘油,混匀后分装于1.5ml离心管中,置于

-70℃条件下,可保存半年至一年。

2.载体连接

(1)将载体在冰上融化,短暂离心装有载体的离心管,以免液体挂在管壁上。

(2)按以下内容在无菌离心管中加入各种成分,载体与片段的摩尔比控制

在1:3-1:8。

目的PCR片段7.8μL

pGM-T载体0.2μL

10×T4 DNA Ligation Buffer 1μL

T4 DNA Ligase 1μL

(3)轻轻弹动离心管以混合内容物,短暂离心。将混合反应液置于16℃连

接过夜。

3.转化

(1)转化平板的制备

向铺好含有氨苄青霉素的固体琼脂平板表面加入16μL的IPTG (50mg/mL)、40μL的X-gal(20 mg/mL),使用无菌的弯头玻璃棒将其均匀的涂开,避光置于37℃放置1-3h。

(2)转化

Ⅰ 取部分连接产物加到100μL DH5α感受态细胞中,轻弹混匀,冰浴20-30min。

Ⅱ 将离心管置于42℃水浴90S,取出管后立即置于冰浴中放置2-3min,其间不要摇动离心管。

Ⅲ 向离心管中加入900μL 37℃预热的LB(不含抗生素)培养基,150rpm、37℃振荡培养45min。目的是使质粒上相关基因表达,使菌体复苏。 Ⅳ 将离心管中的菌液混匀,吸取100μL加到含氨苄青霉素的LB固体琼脂培养基上,用无菌的弯头玻棒轻轻的将细胞均匀涂开。待平板表面干燥后,倒置平板,37℃培养12-16h。

4. 检出转化体和计算转化率

统计每个培养皿中的菌落数,各实验组培养皿内菌落生长状况及结果分析。转化体总数=菌落数×(转化反应原液总体积/涂板菌液体积)

转化频率=转化体总数/加入质粒DNA的量(计算出每微克的转化菌落数)

[思考题]

1 如阴性对照中长出菌,原因?

2 菌的密度过高或培养时间过长时会在阳性菌的周围长出一些小的卫星菌落,它们是Amp-的,分析原因?

实验五、聚合酶链式反应(PCR)扩增DNA片段

[实验目的]

学习和掌握PCR基因扩增的原理和操作方法,深刻理解PCR基因扩增技术在DNA操作中的重要性。

[实验原理]

多聚酶链式反应(Polymerase Chain Reaction, PCR ):原理类似于DNA 的变性和复制过程,即在高温(93-95℃)下,待扩增的靶DNA双链受热变性成为两条单链DNA模板;而后在低温(37~65℃)情况下,两条人工合成的寡核苷酸引物与互补的单链DNA模板结合,形成部分双链;在Taq酶的最适温度(72℃)下,以引物3’端为合成的起点,以单核苷酸为原料,沿模板以5’→3’方向延伸,合成DNA新链。这样,每一双链的DNA模板,经过一次解链、退火、延伸三个步骤的热循环后就成了两条双链DNA分子。如此反复进行,每一次循环所产生的DNA均能成为下一次循环的模板,每一次循环都使两条人工合成的引物间的DNA特异区拷贝数扩增一倍,PCR产物得以2n的批数形式迅速扩增,经过25~30个循环后,理论上可使基因扩增109倍以上,实际上一般可达106~107倍。 PCR 反应系统的组成:引物、寡核苷酸、Taq DNA聚合酶、模板DNA、缓冲液。

[器材和试剂]

PCR仪、台式离心机、灭菌的微量离心管、凝胶电泳系统等 TaKaRa Taq (5U/ ul)

10XPCR Buffer (Mg2+ Plus)

dNTP Mixture (each 10mM)

模板 (10ng,实验1自提质粒)

引物(10uM)

Primer 1 上游序列:5’- AAAGACATGGYGCTCATT-3’

Primer 2 下游序列:5’- AGGCAATATCGGATCATC-3’ [实验步骤]

1.PCR反应体系如下:

10×PCR buffer 5μL

Mg2+(25mmol/L)1μL

dNTP(10mmol/L) 2μL

上游引物(20μmol/L) 1μL

下游引物(20μmol/L) 1μL

DNA模板(500mg/L) 5μL

Taq酶(2u/μL) 0.7μL

无菌双蒸水 补足至50μL

2、PCR反应条件

94℃ 预变性5min

94℃ 40s

46℃ 40s

72℃ 2min

72℃ 延伸10min

4℃ ∞

3.PCR产物分析

取3-5ul PCR产物,采用1.0%琼脂糖凝胶电泳分析PCR产物的量、引物扩增的特异性。并可根据标准DNA的量粗略计算PCR产物的总量。4.拍照观察:用凝胶自动成像仪处理所得的凝胶,拍摄照片,分析结果。

实验六、DNA回收纯化及重组体的构建

[实验目的]

学习和掌握从PCR产物中回收DNA片段的方法,并了解从琼脂糖凝胶中纯化DNA片段的有关技术。掌握DNA重组方法,通过本实验了解DNA重组技术在分子生物学研究中的重要意义。

[实验原理]

DNA片段的纯化: DNA纯化的主要目的是回收得到纯的目的DNA片段,去除影响DNA连接酶活性的物质以及其它的DNA片段。纯化DNA片段的方法有多种,如:电洗脱法、从低熔点或普通琼脂糖凝胶中回收、玻璃珠纯化、柱层析以及硅胶吸附等方法 。

DNA重组:

[器材和试剂]

PCR产物(0.8kb,带有BamHI、 HindIII酶切位点)

PUC18质粒

分子生物学实验指导(精)

分子生物学实验指导 生物技术教学室编 宁夏大学生命科学学院 2008年8月

实验一分子生物学实验技术多媒体演示 [目的要求] 通过多媒体试验录像进一步掌握分子生物学基本操作技术。 [教学方式] 多媒体光盘演示。 [实验内容] 基本的分子生物学实验操作技术包括核酸凝胶电泳技术;质粒提取;转化;重组体的筛选;PCR技术等。

实验二琼脂糖凝胶电泳检测DNA [目的要求] 通过本实验学习琼脂糖凝胶电泳检测DNA的方法和技术 [实验原理] 琼脂糖凝胶电泳是分离鉴定和纯化DNA片段的常用方法。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应,DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。不同浓度琼脂糖凝胶可以分离从200bp至50 kb的DNA片段。在琼脂糖溶液中加入低浓度的溴化乙锭(Ethidum bromide ,EB),在紫外光下可以检出 10ng的DNA条带,在电场中,pH8.0条件下,凝胶中带负电荷的DNA向阳极迁移。 琼脂糖凝胶有如下特点: (1) DNA的分子大小在凝胶基质中其迁移速率与碱基对数目的常用对数值成反比,分子越大迁移得越慢。 (2) 琼脂糖浓度一个特定大小的线形DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率(u)的对数与凝胶浓度(t)成线性关系。 (3) 电压低电压时,线状DNA片段迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量DNA片段的迁移率将以不同的幅度增长,随着电压的增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。 (4) 电泳温度DNA在琼脂糖凝胶电泳中的电泳行为受电泳时的温度影响不明显,不同大小的DNA片段其相对迁移速率在4℃与30℃之间不发生明显改变,但浓度低于0.5%的凝胶或低熔点凝胶较为脆弱,最好在4℃条件下电泳。 (5) 嵌入染料荧光染料溴化乙锭用于检测琼脂糖凝胶中的DNA,染料嵌入到堆积的碱基对间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状迁移率降低15%。 (6) 离子强度电泳缓冲液的组成及其离子强度影响DNA电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶,电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化。

分子生物学实验

分子生物学实验 MolecularBiology Experiments 【课程编号】021*******【课程类别】学科基础课 【学分数】3学分【适用专业】生物科学、生物技术 【学时数】 96学时【编写日期】 2009年6月 一、教学目标 本课程是在分子生物学及基因工程等理论课的基础上,开设的一门综合性兼设计性实验课程。该的教学内容主要突出实验技术的基础性和实用性,把目前最基本的分子生物学实验技术融入具体的系列实验中形成综合与设计性大实验。一方面让每个同学通过实际操作来达到更好地训练学生们的实验技术技能的目的;另一方面让学生全面地掌握基因工程的实验技术与方法、实验的设计原理、结果分析方法和分子生物学的基本原理,进一步培养学生的独立分析问题、解决问题的能力并学会如何利用实验手段实现科学研究的基本思维和目的,提高学生从事科学研究的综合素质。 二、教学内容和学时分配 实验一、实验总论5 学时基础性 主要内容:分子生物学基本实验技术简介和实验准备(清理仪器、试剂配置、培养基的配置与灭菌) 教学要求: 了解分子生物学实验课的目的与要求、设计思路、评分标准及仪器操作规范; 掌握试剂与培养基的配置、灭菌方法与操作技能。 重点、难点:学习试剂的配置、仪器操作规范。 实验二、碱性磷酸酶基因的克隆与筛选42学时综合性 主要内容:质粒DNA的提取与定性分析;PCR基因扩增及扩增产物的回收;DNA重组(酶切、连接、转化与筛选) 教学要求: 了解原核基因克隆与筛选的全过程与实验设计策略、载体的基本结构、基因工程酶(限制性内切酶、连接酶、Taq酶)的各种特性、DNA重组以及重组子筛选与鉴定的相关技术; 理解基因克隆与筛选的策略及其相关实验原理、碱裂解法质粒提取过程中各种纯化步骤的设计思想, PCR引物设计以及PCR体系设计的原则与注意事项、DNA重组时设计酶切与连接方案的一般规律、重组DNA导入受体细胞方法以及目的重组子的筛选与鉴定方法、影响DNA重组效率的因素;

建立一个分子生物学实验室所需的仪器

分子生物学技术信息 关于筹建一个分子生物学实验室所需的仪器 一、上游分子克隆 分子克隆技术是分子生物学的核心技术,这项技术的主要目的是获得某一基因或DNA片段的大量拷贝,从而可以深入分析基因结构与功能,并可达到人为改造细胞及物种个体的遗传性状的目的。 1. 分子克隆的基本技术路线: 1) 分离制备目的基因或DNA片段; 2) 目的DNA与载体在体外进行连接; 3) 重组DNA分子转入宿主细胞; 4) 筛选及鉴定阳性重组体; 5) 重组体的扩增。 2. 分子克隆常用仪器:

二、核酸分子杂交 核酸分子杂交技术是分子生物学领域中最常用的技术之一。其基本原理是具有一定同源性的两条核酸单链在一定的条件下可按碱基互补原则形成双链。由于核酸分子杂交的高度特异性及检测方法的高度灵敏性,使其在分子生物学领域中被广泛应用于分子克隆的筛选,基因组中特定基因序列的定量定性检测,基因表达和基因突变分析及疾病的基因诊断等。根据核酸种类分为Southern印迹法和Northern印迹法。 核酸分子杂交中常用的仪器: 三、下游蛋白的表达及分离纯化 目的基因能否发挥其效应,只能通过其表达有功能的蛋白质来实现,因此蛋白质的表达及分析方法成为分子生物学中必不可少的组成部分。 1. 蛋白的表达 大肠杆菌是自然界中最为人知的生物体之一。由于其具有操作简易,产量高和成本低廉等优点,使其成为蛋白质表达的首选宿主。缺点是:表达缺乏翻译后加工,得到的蛋白可能缺乏某些天然蛋白所具有的活性。 酵母作为单细胞低等真核生物,具有易培养,繁殖快,便于基因操作等优点,渐渐被开发作为目的基因的表达系统。其中甲基酵母作为外源基因的表达

分子生物学实验报告

分子生物学实验 院系:生命科学与技术学院 专业:生物科学(基地) 班级: 201101班 学号: 姓名: 分子生物学基础实验 分子生物学实验技术已成为生物化学及分子生物学以及相关学科院系教学科研不可缺少的一部分。为提高学生在分子生物学技术方面的动手能力,生物技术综合实验室主要开设常用而基本的分子生物学实验技术。它的内容包括质粒DNA的制备;DNA的重组;PCR基因扩增等等。 实验一质粒DNA的小量制备 一、实验原理 要把一个有用的外源基因通过基因工程手段,送进细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体(vector)。载体的设计和应用是DNA体外重组的重要条件。作为基因工程的载体必须具备下列条件:(1)是一个复制子,载体有复制点才能使与它结合的外源基因复制繁殖;(2)载体在受体细胞中能大量增殖,只有高复制率才能使外源基因在受体细胞中大量扩增;(3)载体DNA链上有1到几个限制性内切酶的单一识别与切割位点,便于外源基因的插入;(4)载体具有选择性的遗传标记,如有抗四环素基因(Tc r),抗新霉素基因(Ne r)等,以此知道它是否已进入受体细胞,也可根据这个标记将受体细胞从其他细胞中分离筛选出来。细菌质粒具备上述条件,它是基因工程中常用的载体之一。 质粒(plasmid)是一种染色体外的稳定遗传因子,大小在1~120kb之间,具

有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。它可独立游离在细胞质内,也可以整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能也是对宿主细胞的补偿。 质粒在细胞内的复制,一般分为两种类型:严密控制型(stringent control)和松弛控制型(relaxed control)。前者只在细胞周期的一定阶段进行复制,染色体不复制时,它也不复制。每个细胞内只含有1个或几个质粒分子。后者的质粒在整个细胞周期中随时复制,在细胞里,它有许多拷贝,一般在20个以上。通常大的质粒如F因子等,拷贝数较少,复制受到严格控制。小的质粒,如ColE Ⅰ质粒(含有产生大肠杆菌素E1基因),拷贝数较多,复制不受严格控制。在使用蛋白质合成抑制剂-氯霉素时,染色体DNA复制受阻,而松弛型ColEⅠ质粒继续复制12-16h,由原来20多个拷贝可扩增至1000-3000个拷贝,此时质粒DNA占总DNA的含量由原来的2%增加到40%-50%。本实验分离提纯化的质粒pBR322、pUC19就是由ColE Ⅰ衍生的质粒。 所有分离质粒DNA的方法都包括三个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。采用溶菌酶可破坏菌体细胞壁,十二烷基硫酸钠(SDS)可使细胞壁解,经溶菌酶和阴离子去污剂(SDS)处理后,细菌染色体DNA 缠绕附着在细胞壁碎片上,离心时易被沉淀出来,而质粒DNA则留在清液中。用乙醇沉淀、洗涤,可得到质粒DNA。 质粒DNA的相对分子量一般在106-107范围内,如质粒pBR322的相对分子质量为2.8×106,质粒pUC19的相对分子质量为1.7×106。在细胞内,共价闭环DNA(covalently closed circular DNA,简称cccDNA)常以超螺旋形式存在。如果两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,这种松弛型的分子叫做开环DNA(open circular DNA,简称ocDNA)。在电泳时,同一质粒如以cccDNA形式存在,它比其开环和线状DNA的泳动速度快,因此在本实验中,自制质粒DNA在电泳凝胶中呈现3条区带。 二、实验目的 1.掌握最常用的提取质粒DNA的方法和检测方法。 2.了解制备原理及各种试剂的作用。 三、实验材料和试剂

分子生物学实验

实验一.质粒提取与琼脂糖电泳 一、目的 掌握质粒的提取方法及原理;琼脂糖凝胶电泳及观察评判方法。 二、原理 1.质粒是携带外源基因进入细菌中扩增或表达的主要载体,它在基因操作中具 有重要作用。质粒的分离与提取是最常用、最基本的实验技术。在pH 12.0- 12.6碱性环境中,细菌的线性大分子量染色体DNA变性分开,而共价闭环的 质粒DNA 虽然变性但仍处于拓扑缠绕状态。将pH 调至中性并有高盐存在及低温的条件下,大部分染色体DNA、大分子量的RNA和蛋白质在去污剂SDS的作用下形成沉淀,而质粒DNA仍然为可溶状态。硅基质树脂在高盐状态下,特异性吸附DNA,而在低盐状态下,DNA被洗脱下来。 2.带电荷的物质在电场中的趋向运动称为电泳。电泳的种类多,应用非常广泛, 它已成为分子生物学技术中分离生物大分子的重要手段。琼脂糖凝胶电泳由于其操作简单、快速、灵敏等优点,已成为分离和鉴定核酸的常用方法。在pH值为8.0~8.3时,核酸分子碱基几乎不解离,磷酸全部解离,核酸分子带负电,在电泳时向正极移动。采用适当浓度的凝胶介质作为电泳支持物,在分子筛的作用下,使分子大小和构象不同的核酸分子泳动率出现较大的差异,从而达到分离核酸片段检测其大小的目的。核酸分子中嵌入荧光染料(如EB)后,在紫外灯下可观察到核酸片段所在的位置。 三、实验材料、仪器、试剂 (1)菌种:大肠杆菌DH5α (2)分子生物学试剂 10mg/ml溴化乙锭(EB):按10mg/ml浓度将EB溶于去离子水中,剧烈搅拌,完全溶解后,室温下避光保存。 50×TAE电泳缓冲液: 24.2g Tris 5.71g 冰乙酸 10ml 0.5mol/L EDTA(pH8.0) 加去离子水至100ml,室温保存备用,工作液为1×TAE。

分子生物学实验复习题附答案(最新整理)

分子生物学复习题 实验一DNA的制备 (1)为什么分子生物学实施时要担心EB? 溴化乙锭(Ethidium bromide)是DNA诱变剂,溴化乙锭可以嵌入碱基分子中,导致错配。具有高致癌性(接触致癌) (2)DNA加样缓冲液的用途是什么? 由于植物细胞匀浆含有多种酶类(尤其是氧化酶类)对DNA的抽提产生不利的影响,在抽提缓冲液中需加入抗氧化剂或强还原剂(如巯基乙醇)以降低这些酶类的活性。 线状DNA大小/kb60-520-110-0.87-0.56-0.44-0.23-0.1 (4)琼脂糖凝胶电泳分离DNA的原理是什么 DNA分子在pH值高于其等电点的溶液中带负电荷,在电场中向阳极移动。DNA分子在电场中通过琼脂糖凝胶而泳动,除了电荷效应以外,还有分子筛效应。由于DNA分子可片段的相对分子质量不同,移动速度也不同,所以可将相对分子质量不同或构象不同的DNA分离。DNA片段迁移距离(迁移率)与碱基对的对数成反比,因此通过已知大小的标准物移动的距离与未知片段的移动距离时行比较,便可测出未知片段的大小。但是当DNA分子大小超过20kb时,普通琼脂糖凝胶就很难将它们分开。此时电泳的迁移率不再依赖于分子大小,因此,就用琼脂糖凝胶电泳分离DNA时,分子大小不宜超过此值。 (5)琼脂糖凝胶电泳时胶中DNA是靠什么发出荧光的?为什么? 溴化乙锭是一种高度灵敏的荧光染色剂,可插入DNA双螺旋结构的两个碱基之间,形成一种荧光络合物。在254nm波长紫外光照射下,呈现橙黄色的荧光。用溴化乙啶检测DNA,可检出10-9g以上的DNA 含量。 (6)制备基因组DNA时用到的以下试剂分别起什么作用? CTAB等离子型表面活性剂,能溶解细胞膜和核膜蛋白,使核蛋白解聚,从而使DNA得以游离出来 氯仿有机溶剂,能使蛋白质变性,并使抽提液分相,因核酸(DNA、RNA)水溶性很强,经离心后即可从抽提液中除去细胞碎片和大部分蛋白质。 无水乙醇上清液中加入无水乙醇使DNA沉淀,沉淀DNA溶于TE溶液中,即得植物总DNA溶液。75%乙醇,乙醇轻轻洗涤管壁 实验二RNA的制备 1.制备RNA时通常要注意些什么?为什么? 应该要注意(1)不要徒手操作,必须带手套;(2)加样时不能够大声说话,防止唾液等进入; 由于RNA分子的结构特点,容易受RNA酶的攻击反应而降解,加上RNA酶极为稳定且广泛存在,因而在提取过程中要严格防止RNA酶的污染,并设法抑制其活性,这是本实验成败的关键。 2.制备的RNA通常有哪些用途?制备的DNA通常又有哪些用途? 研究基因的表达和调控时常常要从组织和细胞中分离和纯化RNA。 质粒DNA构建克隆载体,分离目的基因 3.RNA制备好后是通过什么方法检测其有没有降解的?从胶上检测什么指标来判断RNA质量好坏?为什么?

分子生物学实验-心得体会

关于分子生物学实验的体会 梁慧媛(生技01级) 不知不觉间,一年的时间就这样流逝了,与分子生物实验相伴,对我而言,的确不同寻常。并不仅仅是学习生物学实验技术和方法的宝贵经历,它意味着更多。 首先是实验条件、实验过程、实验设计的完备性,从这里可以初步感受到生物学研究的科学性与严肃性,自己可以得到宝贵的机会,亲身体会生物学研究的苦辣酸甜。一直一直喜欢,得到正确实验结果时刻的畅快感,那是无法言明的欣慰感,一次身心彻底地放松,可以将所有一整天来积累的疲劳抛之身后,即使仅仅是小小的成功,也会让我们兴奋不已。在整理资料,将一年来保存的记录一遍一遍的翻看,重温其中的特别滋味,我,轻轻地笑了。我,喜欢这里,喜欢生物学。 失误是常有的,经历过吃惊、后悔、无奈,检讨分析,最后重新开始。一波三折的记忆清晰的印在脑海中,这种深深的挫折感,再试一次的勇气,我会一生记取的。 一年间,随着对生物学实验知识和技能的进一步学习,我更坚定了自己学习生物学的志向,感分子生物学实验的"试炼"。 分子生物学实验心得体会 东强(生科01级) 分子生物学实验室本科生第一次接触到了真正培养实验能力的实验课,它不同于我们在大二开的植物、动物、微生物等实验课。在这些课上,主要以制备样品并观察样品的形态、结构特征为主,这是由于我们当时正值大二,专业知识还远不够。 随着以后理论课学习的深入,我们开始了分子生物学实验的学习,这无疑对于深刻巩固我们理论课上学到的知识是有帮助的,也进一步加深了对原有知识的理解,如启动子的概念、类型、PCR的原理等。另外,在实验课中,我们掌握并学会如何运用分子生物学研究中的一些基本实验技术,如质粒的提取、总RNA的制备、PCR技术等。 我们的实验动手能力通过亲身接触实验过程并亲自设计一些实验得到了提高,使我们不再象刚开始做分子生物学实验的时候照搬实验指导上的实验步骤,而是通过我们自己的思考,根据现有的实验条件,对原有的步骤作必要的改进。 此外,通过这门实验课的学习,我们形成了严谨的态度,如有时得出的实验结果与理论不符,我们渐渐养成了仔细分析实验结果的习惯,查找在实验设计或操作过程中出现的问题,同时对理论知识认识得更清楚。 总之,我认为,分子生物学实验课,是称得上实用、精彩、有意思的好实验,对于今后我的研究或工作很有价值。

分子生物学实验技术考试题库

一、名词解释 1.分配常数:又称分配系数,是指一种分析物在两种不相混合溶剂中的平衡常数。 2.多肽链的末端分析:确定多肽链的两末端可作为整条多肽链一级结构测定的标志,分为氨基端分析和羧基端分析。 3.连接酶:指能将双链DNA中一条单链上相邻两核苷酸连接成一条完整的分子的酶。 4.预杂交:在分子杂交实验之前对杂交膜上非样品区域进行封闭,用以降低探针在膜上的非特异性结合。 5.反转录PCR:是将反转录RNA与PCR结合起来建立的一种PCR技术。首先进行反转录产生cDNA,然后进行常规的PCR反应。 6.稳定表达:外源基因转染真核细胞并整合入基因组后的表达。 7.基因敲除:是指对一个结构已知但功能未知或未完全知道的基因,从分子水平上设计实验,将该基因从动物的原基因组中去除,或用其它无功能的DNA片断取代,然后从整体观察实验动物表型,推测相应基因的功能。 8.物理图谱:人类基因组的物理图是指以已知核苷酸序列的DNA片段为“路标”,以碱基对(bp,kb,Mb)作为基本测量单位(图距)的基因组图。 9.质谱图:不同质荷比的离子经质量分析器分开后,到检测器被检测并记录下来,经计算机处理后所表示出的图形。 10.侧向散射光:激光束照射细胞时,光以90度角散射的讯号,用于检测细胞内部结构属性。

11.离子交换层析:是以离子交换剂为固定相,液体为流动相的系统中进行的层析。 12.Edman降解:从多肽链游离的N末端测定氨基酸残基的序列的过程。 13.又称为限制性核酸内切酶(restriction endonuclease):是能够特异识别双链DNA序列并进行切割的一类酶。 14.电转移:用电泳技术将凝胶中的蛋白质,DNA或RNA条带按原位转移到固体支持物,形成印迹。 15.多重PCR:是在一次反应中加入多对引物,同时扩增一份模板样品中不同序列的PCR 过程。 16.融合表达: 在表达载体的多克隆位点上连有一段融合表达标签(Tag),表达产物为融合蛋白(有分N端或者C端融合表达),方便后继的纯化步骤或者检测。 17.同源重组:发生在DNA同源序列之间,有相同或近似碱基序列的DNA分子之间的遗传交换。 18.遗传图谱又称连锁图谱(linkage map),它是以具有遗传多态性的遗传标记为“路标”,以遗传学距离为图距的基因组图。 19.碎片离子:广义的碎片离子为由分子离子裂解产生的所有离子。 20.前向散射光:激光束照射细胞时,光以相对轴较小角度向前方散射的讯号用于检测细胞等离子的表面属性,信号强弱与细胞体积大小成正比。 21.亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其他分子的一种层析法。(利用分子与其配体间特殊的、可逆性的亲和结合

分子生物学实验课件..

实验一、菌株复壮与单菌落菌株的获取 一、实验目的 学习细菌培养的LB培养基及抗生素抗性筛选培养基的配制,掌握高压灭菌和获取细菌单菌落菌株两种基本实验操作技能。 二、实验材料、设备及试剂 1、实验材料 大肠杆菌(E. coli)DH5α菌株:R-,M-,Amp- 2、实验设备 恒温摇床,电热恒温培养箱,无菌工作台,高压灭菌锅 3、试剂 酵母浸膏,蛋白胨,氯化钠,琼脂,卡那霉素 三、实验步骤 液体LB(Luria-Bertain)培养基配方: 蛋白胨(typtone) 1.0% (1 g/100 ml) 酵母提取物(Yeast extraction)0.5% (0.5g/100 ml) 氯化钠 1.0% (1 g/100 ml) PH 7.0 固体LB培养基:每100 ml液体培养基中加入1.5g琼脂粉 请按试剂瓶上的编号使用相应编号的药勺取药,防止药品相互污染! (1)每组按上述液体LB培养基配方,以配制100ml的量称取药品放入烧杯。 (2)用量筒量取约80 ml 蒸馏水注入烧杯中,玻棒搅拌使药品完全溶解后用100ml量筒定容 至100ml。 (3)pH试纸检测pH值,并用1 N NaOH或1 N HCl调节pH值至7.0。 (4)将100ml溶液分装入两个三角瓶,每瓶为50ml。 (5)按固体培养基配方称取适量琼脂粉分别放入两个三角瓶中,以配制成两瓶50ml固体LB培 养基。 (6)两个三角瓶分别用锡纸包扎瓶口。并用记号笔在三角瓶上标注各组标记。 (7)把装有培养基三角瓶放入灭菌锅中,盖上锅盖,以对称方式拧紧锅盖,打开排气阀通电加

热,至有连续的白色水蒸气从排气阀排出时,关闭排气阀。当高压锅温度(气压)指示器指示锅内温度升高至121℃(0.1Mpa)时,调节电压(或利用手动开关电源的方式)使高压锅稳定在该温度(压力)下20 min,然后断开电源。待指示器指示压力降为0时,方可打开排气阀,然后再打开锅盖小心取出锅内物品。 (8)取出三角瓶后,在酒精灯火焰旁进行下述操作。 (9)取其中的一瓶直接倒培养皿,每皿倒入的量以刚好能在培养皿底铺展成薄薄的一层即可。 每组倒1块培养皿,在皿盖上用记号笔写上“LB”及各组的标记。 (10)另外一瓶培养基待温度降低至60℃左右时(刚能感觉不烫手),向培养基中加入0.1ml 50mg/ml的氨苄青霉素(Amp)溶液,使培养基中Amp的终浓度为50mg/L。快速充分混匀后每组倒1块培养皿,在皿盖上标注“LB+”及各组的标记。 (11)接种环蘸取菌液,密密划线。 (12)倒置于37℃恒温培养箱中进行培养。 (13)一天后观察菌落。 四、思考题 (1)在说明本实验所用的菌种时用到这样的符号:“R-,M-,Amp-”,这告诉我们关于该菌 种的什么信息? (2)在步骤7中,为何须待连续的白色水蒸气从排气阀排出时才能关闭排气阀?当灭菌完 毕,为何又须待高压锅指示器指示压力降为0时才能打开高压锅,而且操作次序必须是先打开排气阀然后才能打开高压锅盖? (3)在步骤12中,为何需将涂有菌的培养皿倒置于37℃恒温培养箱中进行菌的培养?为什 么不是正放呢? (4)你预计该实验结果是什么,即两种培养基上菌的生长情况如何? 实验二碱裂解法小量提取质粒DNA 一实验目的 了解少量质粒制备方法与原理,掌握碱法小量提取质粒DNA的操作步骤。 二实验原理 本实验利用NaOH破坏菌体细胞使核酸物质从细胞中释放出来,因此称为碱裂解法抽提。十二烷基磺酸钠(SDS)能裂解细菌细胞膜,但更重要的作用在于其与钾离子反应后所引起的溶液中绝大部分蛋白质以及基因组DNA共沉淀。由于还有很多蛋白质不能被共沉淀掉,因此要进一步用酚、氯仿对溶液进行抽提。最后加入2倍体积的无水乙醇或0.7倍体积的异丙醇沉淀就能得到质量稳定的质粒DNA。从细菌中分离质粒DNA

分子生物学常用实验指南

生命科学系 2011-2012学年度分子生物学实验 (0801班)

2011-2012学年度分子生物学实验指导 实验一大肠杆菌感受态细胞的制备 (3) 实验二质粒DNA的转化 (4) 实验三质粒DNA的提取 (5) 实验四琼脂糖凝胶电泳检测DNA (7) 实验五PCR基因扩增 (9) 实验六DNA重组 (10) 实验七蓝白斑筛选实验 (11) 实验八DNA酶切技术 (13)

实验一大肠杆菌感受态细胞的制备 一、实验目的:掌握大肠杆菌感受态细胞的制备技术 二、实验原理:感受态——细菌处在容易吸收外源DNA的状态。 我们选用经过基因改造的生物工程菌株——大肠杆菌top10菌株为材料,在0℃、CaCl2低渗溶液处理,细胞壁破坏,细胞成为球型原生质体。因而具备了吸收外源DNA的能力。 三、仪器:1.超净工作台 2.低温离心机 3.恒温摇床 4.紫外分光光度仪 四、材料与试剂: 1.大肠杆菌top10菌株 2. 0.1mol/L CaCl2溶液500mL、 0.2mol/L CaCl2溶液50mL 3..LB液体及固体培养基 4.50%甘油500mL(灭菌) 五、实验操作步骤: 1.从大肠杆菌top10菌株平板上挑取一个单菌落,接种于3mL LB液体培养基中, 37℃振荡(200r/min)培养过夜。 2.次日早上取0.4mL菌液转接到40mL LB液体培养基中,37℃震荡培养2~3h.(A600 应在0.4~0.5之间) 3.将菌液置冰浴中10min。(同时将0.1mol/L CaCl2溶液、50%甘油预冷) 4.取菌液1.5mL,4℃离心2min(3500r/min).弃上清,再加菌液1.5mL,4℃再离 心一次,弃上清,倒置以便使培养液流尽。 5.用冰冷的0.1mol/L CaCl2溶液1mL悬浮细胞(轻轻涡旋使悬浮),立即置冰浴保 温30min。 6.4℃离心2min(3500r/min),弃上清,加入100μL冰冷的0.2mol/L CaCl2溶液、 100μL50%甘油轻轻手摇悬浮,置冰浴上,接着进行质粒DNA转化,或-70℃保存。

分子生物学实验技术全攻略

分子生物学实验技术 目录 实验一细菌的培养 2 实验二质粒DNA的提取 3 实验三紫外吸收法测定核酸浓度与纯度 4 实验四水平式琼脂糖凝胶电泳法检测DNA 5 实验五质粒DNA酶切及琼脂糖电泳分析鉴定 7 实验六植物基因组DNA提取、酶切及电泳分析 8 实验七聚合酶链反应(PCR)技术体外扩增DNA 9 实验八 RNA提取与纯化 11 实验九 RT-PCR扩增目的基因cDNA 13 实验十质粒载体和外源DNA的连接反应 15 实验十一感受态细胞的制备及转化 16 实验十二克隆的筛选和快速鉴定 18 实验十三 DNA分析——Southern杂交 19 一基本操作 实验一、细菌培养 实验二、质粒DNA提取 实验三、紫外吸收法测定核酸浓度与纯度 实验四、水平式琼脂糖凝胶电泳法检测DNA 实验五、质粒DNA酶切及琼脂糖电泳分析鉴定 实验六、植物基因组DNA提取、定量、酶切及电泳分析实验八、植物RNA提取及纯化 二、目的基因获取

实验七、聚合酶链式反应(PCR)技术体外扩增DNA 实验九、RT-PCR扩增目的基因cDNA 三、目的基因的克隆和表达 实验十、质粒载体和外源DNA的连接反应 实验十一、感受态细胞的制备及转化 实验十二、克隆的筛选和快速鉴定 实验十三、DNA分析——Southern杂交 实验一细菌的培养 一、目的 学习细菌的培养方法及培养基的配置。 二、原理 在基因工程实验和分子生物学实验中,细菌是不可缺少的实验材料。质粒的保存、增殖和转化;基因文库的建立等都离不开细菌。特别是常用的大肠杆菌。 大肠杆菌是含有长约3000kb的环状染色体的棒状细胞。它能在仅含碳水化合物和提供氮、磷和微量元素的无机盐的培养基上快速生长。当大肠杆菌在培养基中培养时,其开始裂殖前,先进入一个滞后期。然后进入对数生长期,以20~30min复制一代的速度增殖。最后,当培养基中的营养成分和氧耗尽或当培养基中废物的含量达到抑制细菌的快速生长的浓度时,菌体密度就达到一个比较恒定的值,这一时期叫做细菌生长的饱和期。此时菌体密度可达到 1×109~2×109/mL。 培养基可以是固体的培养基,也可以是液体培养基。实验室中最常用的是LB培养 基。 三、实验材料、试剂与主要仪器 (一)实验材料 大肠杆菌 (二)试剂 1、胰蛋白胨 2、酵母提取物

分子生物学实验方法与步骤

表达蛋白的SDS-聚丙烯酰胺凝胶电泳分析 一、原理 细菌体中含有大量蛋白质,具有不同的电荷和分子量。强阴离子去污剂SDS与某一还原剂并用,通过加热使蛋白质解离,大量的SDS结合蛋白质,使其带相同密度的负电荷,在聚丙烯酰胺凝胶电泳(PAGE)上,不同蛋白质的迁移率仅取决于分子量。采用考马斯亮兰快速染色,可及时观察电泳分离效果。因而根据预计表达蛋白的分子量,可筛选阳性表达的重组体。 二、试剂准备 1、30%储备胶溶液:丙烯酰胺(Acr)29.0g,亚甲双丙烯酰胺(Bis)1.0g,混匀后加ddH2O,37O C溶解,定容至100ml, 棕色瓶存于室温。 2、1.5M Tris-HCl(pH 8.0:Tris 18.17g加ddH2O溶解, 浓盐酸调pH至8.0,定容至100ml。 3、1M Tris-HCl(pH 6.8:Tris 12.11 g加ddH2O溶解, 浓盐酸调pH至6.8,定容至100ml。 4、10% SDS:电泳级SDS 10.0 g加ddH2O 68℃助溶,浓盐酸调至pH 7.2,定容至100ml。 5、10电泳缓冲液(pH 8.3:Tris 3.02 g,甘氨酸 18.8 g,10% SDS 10ml加ddH2O溶解, 定容至100ml。 6、10%过硫酸铵(AP): 1gAP加ddH2O至10ml。 7、2SDS电泳上样缓冲液:1M Tris-HCl (pH 6.82.5ml,-巯基乙醇1.0ml,SDS 0.6 g,甘油 2.0ml,0.1%溴酚兰 1.0ml,ddH2O 3.5ml。 8、考马斯亮兰染色液:考马斯亮兰 0.25 g,甲醇225ml,冰醋酸 46ml,ddH2O 225ml。 9、脱色液:甲醇、冰醋酸、ddH2O以3∶1∶6配制而成。 二、操作步骤 采用垂直式电泳槽装置 (一)聚丙烯酰胺凝胶的配制

最新分子生物学实验文档

分子生物学实验文档

分子生物学基础实验 分子生物学实验技术已成为生物化学及分子生物学以及相关学科院系教学科研不可缺少的一部分。为提高学生在分子生物学技术方面的动手能力,生物技术综合实验室主要开设常用而基本的分子生物学实验技术。它的内容包括质粒DNA的制备;DNA的重组;PCR基因扩增等等。 实验一质粒DNA的小量制备 一、实验原理 要把一个有用的外源基因通过基因工程手段,送进细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体(vector)。载体的设计和应用是DNA体外重组的重要条件。作为基因工程的载体必须具备下列条件:(1)是一个复制子,载体有复制点才能使与它结合的外源基因复制繁殖;(2)载体在受体细胞中能大量增殖,只有高复制率才能使外源基因在受体细胞中大量扩增;(3)载体DNA链上有1到几个限制性内切酶的单一识别与切割位点,便于外源基因的插入;(4)载体具有选择性的遗传标记,如有抗四环素基因(Tc r),抗新霉素基因(Ne r)等,以此知道它是否已进入受体细胞,也可根据这个标记将受体细胞从其他细胞中分离筛选出来。细菌质粒具备上述条件,它是基因工程中常用的载体之一。 质粒(plasmid)是一种染色体外的稳定遗传因子,大小在1~120kb之间,具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制和转录能力,能使子代细胞保持它们恒定的拷贝数,可表达它携带的遗传信息。它可独立游离在细胞质内,也可以整合到细菌染色体中,它离开宿主的细胞就不能存活,而它控制的许多生物学功能也是对宿主细胞的补偿。 质粒在细胞内的复制,一般分为两种类型:严密控制型(stringent control)和松弛控制型(relaxed control)。前者只在细胞周期的一定阶段进行复制,染色体不复制时,它也不复制。每个细胞内只含有1个或几个质粒分子。后者的质粒在整个细胞周期中随时复制,在细胞里,它有许多拷贝,一般在20个以上。通常大的质粒如F因子等,拷贝数较少,复制受到严格控制。小的质粒,如ColE Ⅰ质粒(含有产生大肠杆菌素E1基因),拷贝数较多,复制不受严格控制。在使用蛋白质合成抑制剂-氯霉素时,染色体DNA复制受阻,而松弛型ColEⅠ质粒继续复制12-16h,由原来20多个拷贝可扩增

分子生物学试验基础知识

分子生物学实验基础知识 分子生物学是在生物化学基础上发展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、治疗和预后的机制。其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术可以改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方法,也是分子水平研究疾病发生机制、基因诊断和基因治疗的方法。转化(trans formation)、转染、转导、转位等是自然界基因重组存在的方式,也是人工基因重组常采用的手段。基因重组的目的之一是基因克隆(gene clone),基因克隆可理解为以一分子基因为模板扩增得到的与模板分子结构完全相同的基因。使需要分析研究的微量、混杂的目的基因易于纯化,得以增量,便于分析。 外来基因引起细胞生物性状改变的过程叫转化(transformation),以噬菌体把外源基因导入细菌的过程叫转染(transfection)。利用载体(噬菌体或病毒)把遗传物质从一种宿主传给另一种宿主的过程叫转导(transduction)。一个或一组基因从一处转移到基因组另一处的过程叫转位(transposition),这些游动的基因叫转位子。 一、基因工程的常用工具 (一)载体 载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具。载体有质粒(plasmid)、噬菌体、单链丝状噬菌体和粘性末端质粒(粘粒)、病毒等。载体具有能自我复制;有可选择的,便于筛选、鉴定的遗传标记;有供外源DNA插入的位点;本身体积小等特征。 质粒存在于多种细菌,是染色体(核)以外的独立遗传因子,由双链环状DNA组成,几乎完全裸露,很少有蛋白质结合。质粒有严紧型和松弛型之分。严紧型由DNA多聚酶Ⅲ复制,一个细胞可复制1-5个质粒。而松弛型由DNA多聚酶Ⅰ复制,一个细胞可复制30-50个质粒,如果用氯霉素可阻止蛋白质合成,使质粒有效利用原料,复制更多的质粒。质粒经过改造品种繁多,常用的有pBR322、pUC系列等。这些质粒都含有多个基本基因,如复制起动区(复制原点Ori),便于复制扩增;抗抗生素标记(抗氨芐青霉素Ap r、抗四环素Tc r等)或大肠埃希菌部分乳糖操纵子(E.coli LacZ)等,便于基因重组体的筛选;基因发动子(乳糖操纵子Lac、色氨酸操纵子Trp等)和转录终止序列,便于插入的外源基因转录、翻译表达。质粒上还有许多限制性内切酶的切点,即基因插入位点,又叫基因重组位点,基因克隆位点。 常用噬菌体载体有单链噬菌体M13系统;双链噬菌体系统。噬菌体应和相应的宿主细胞配合使用。以上载体各有特点,便于选择,灵活应用。 (二)工具酶

分子生物学实验指导-3

北京化工大学分子生物学实验指导

实验一 少量质粒DNA的制备 一、实验目的 (1)了解质粒的特性及其在分子生物学研究中的作用。 (2)掌握质粒DNA分离、纯化的原理。 (3)学习碱裂解法分离质粒DNA的方法。 二、实验原理 质粒(plasmid)是一种双链的共价闭环状的DNA分子,它是染色体外能够稳定遗传得因子。质粒具有复制和控制机构,能够在细胞质中独立自主地进行自身复制,并使子代细胞保持它们恒定的拷贝数。从细胞生存来看,没有质粒存在,基本上不妨碍细胞的存活,因此质粒是寄生性的复制子。根据质粒的这种特性,通常采用DNA体外重组技术和微生物转化等基因工程的技术和方法,使重组到质粒的某种基因(如干扰素基因)带进受体细胞(如具有一定特性的大肠杆菌细胞等)表达它的遗传性质,改变或修饰寄主细胞原有的代谢产物,或产生新的物质(如干扰素)。目前,质粒已广泛地用作基因工程中的DNA分子无性繁殖的运载体,同时它也是研究DNA结构与功能的较好模型。 在细菌细胞中,质粒DNA通常为染色体DNA的2%左右,但是细菌质粒DNA的含量与其复制类型有关。质粒在细胞内的复制,一般分为两种类型:严密控制(stringent control)复制型和松弛控制型(relaxed control)复制型。严密控制复制型的质粒只在细胞周期的一定阶段进行复制,染色体不复制时,质粒也不复制。每个细胞内只含1个或几个质粒分子(即有1个或几个拷贝)。松弛控制复制型的质粒在整个细胞周期中随时可以复制,当染色体复制已经停止时,该质粒仍然能够继续复制。该质粒在一个细胞内有许多拷贝,一般在20个以上,例如col E1 质粒(含有产生大肠杆菌素E1 基因)及其衍生质粒,在每个细胞内约有20多个拷贝。 所有分离质粒DNA的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。目前应用于质体DNA的纯化或抽取的方法众多,例如碱溶裂法(alkaline lysis)、热裂解法(boiling method)、氯化铯(CsCl)纯化法,及市售柱层析套管法等。最常用的碱裂解法具效率高、价廉、简单易学等优点。其原理是利用碱处理质粒DNA及染色体DNA,使两者双股打开呈单股状态,再加酸中和,使单股回复为双股DNA,同时在急速中和反应中,染色体DNA因分子过于庞大以致于碱基匆忙配对,形成杂乱无序的巨大分子,对水的相对溶解度低而易被沉淀下来。相反,质粒DNA因分子小,两单股DNA恢复原碱基配对快而易溶于水中,所以只要经过离心,即可将染色体DNA与质体DNA分离。本实验所使用的pUC19含有β-lactamase基因,会产生peripasmic酶,进行蓝白斑筛选,抗氨苄青霉基因ampicillin (Amp)两种抗性筛选标记。 碱裂解法:本实验是以alkaline lysis的方法进行,其原理是将大肠杆菌以NaOH及SDS分解,并使蛋白质及DNA变性,然后以酸中和。小分子质粒DNA在中和后可恢复原状,但大部

分子生物学实验手册

微量加样器的使用及注意事项 1 微量加样器的使用原理及分类 根据其加样的物理学原理可分为两种①空气垫加样器(又称活塞冲程);②无空气垫的活塞正移动加样器,这两种加样器具有不同的特定应用范围。 活塞冲程(空气垫) 加样器可很方便地用于固定或可调体积液体的加样,加样体积的范围在小于1μl~10ml 之间。加样器中的空气垫的作用是将吸于塑料吸头内的液体样本与加样器内的活塞分隔开来,空气垫通过加样器活塞的弹簧样运动而移动,进而带动吸头中的液体,死体积和移液吸头中高度的增加决定了加样中这种空气垫的膨胀程度。因此,活塞移动的体积必须比所希望吸取的体积要大约2%~4%,温度、气压和空气湿度的影响必须通过对空气垫加样器进行结构上的改良而降低,使得在正常情况下不至于影响加样的准确度。一次性吸头是本加样系统的一个重要组成部分,其形状、材料特性及加样器的吻合程度均对加样的准确度有很大的影响。 以活塞正移动为原理的加样器和分配器与空气垫加样器所受物理因素的影响不同,因此,在空气垫加样器难以应用的情况下,活塞正移动加样器可以应用,如具有高蒸汽压的、高黏稠度以及密度大于2.0g/cm3的液体;又如在临床聚合酶链反应(PCR)测定中,为防止气溶胶的产生,最好使用活塞正移动加样器。活塞正移动加样器的吸头与空气垫加样器吸头有所不同。 2 微量加样器的一般使用原则 加样器根据其加样的物理学原理和结构的不同,其应用特点也有所不同。 (1)活塞正移动加样器无需任何校正,即可用于具不同化学组成和特性(密度和黏度)的液体的吸取加样;相反,空气垫加样器的使用则较受局限。 (2)具有高蒸汽压的液体如氯仿使用空气垫加样器吸取加样通常不能得到跟吸取加样蒸馏水相同的准确度和精密度。由于在液体吸取过程中有部分蒸发,因而加样的体积就会有所减少。可通过预先用液体湿润吸头数次,使得蒸汽相被液体饱和,可以改善加样的准确度。 (3)为防止由高蒸汽压引起液体从吸头中漏出,可使用在底部有瓣的吸头,此瓣只在其与管壁接触的时候打开。 (4)使用空气垫加样器加样,位于液体之上的空气体积膨胀依所加液体密度的不同而不同。当吸取密度高于水的液体时,吸入吸头的体积太低。例如,对于一个密度为1.1的较高浓缩的液体,误差的量将达到0.2%。而吸取较稀的水溶液的这种误差则可以忽略不计。因此,在吸取密度高的液体时,须对加样器吸取体积的设定作相应的校正,才能保证取到正确的体积。然而,在实验室实际工作中,加样器使用者很少碰到要准确吸取密度很高的液体的情况,故由于液体的密度所致加样器使用受限的情况通常难以遇到。 一般来说,为防止所吸取体积上出现误差,有一些基本的操作原则必须遵守。对吸取体积误差影响的因素主要有三个方面:①流体静压;②吸头润湿;③流体动力学。当样本体积从毫升范围降低至微升范围时,物理作用力的关系即发生变化,对于加样来说,其意味着液体表面的作用力效应与其体积或质量(例如重力)的作用力效应相比有所增加,因此,加样器生产厂家在设计和构建加样器和吸头中必须仔细考虑这种情况,而且在使用时也

分子生物学实验方法

实验1 植物总DNA的提取 生物总DNA的提取是分子生物学实验的一个重要内容。由于不同的生物材料细胞壁的结构和组成不同,而细胞壁结构的破坏是提取总DNA的关键步骤。同时细胞内的物质也根据生物种类的不同而有差异,因此不同生物采用的提取方法也不同,一般要根据具体的情况来设计实验方法。本实验介绍采用CTAB法提取植物总DNA的技术。 [实验目的] 学习和掌握学习CTAB法提取植物总DNA的基本原理和实验技术。学习和掌握紫外光吸收法鉴定DNA的纯度和浓度。 [实验原理] 植物叶片经液氮研磨,可使细胞壁破裂,加入去污剂(如CTAB),可使核蛋白体解析,然后使蛋白和多糖杂质沉淀,DNA进入水相,再用酚、氯仿抽提纯化。本实验采用CTAB 法,其主要作用是破膜。CTAB 是一种非离子去污剂,能溶解膜蛋白与脂肪,也可解聚核蛋白。植物材料在CTAB的处理下,结合65℃水浴使细胞裂解、蛋白质变性、DNA 被释放出来。CTAB与核酸形成复合物,此复合物在高盐(>0.7mM)浓度下可溶,并稳定存在,但在低盐浓度(0.1-0.5mM NaCl)下CTAB-核酸复合物就因溶解度降低而沉淀,而大部分的蛋白质及多糖等仍溶解于溶液中。经过氯仿/ 异戊醇(24:1) 抽提去除蛋白质、多糖、色素等来纯化DNA,最后经异丙醇或乙醇等沉淀剂将DNA沉淀分离出来。 由于核酸、蛋白质、多糖在特定的紫外波长都有特征吸收。核酸及其衍生物的紫外吸收高峰在260nm。纯的DNA样品A260/280≈1.8,纯的RNA样品A260/280≈2.0,并且1μg/ml DNA 溶液A260=0.020。 [实验器材] 1、高压灭菌锅 2、冰箱 3、恒温水浴锅 4、高速冷冻离心机 5、紫外分光光度计 6、剪刀 7、陶瓷研钵和杵子 8、磨口锥形瓶(50ml) 9、滴管 10、细玻棒 11、小烧杯(50ml) 12、离心管(50ml) 13、植物材料 [实验试剂] 1、3×CTAB buffer(pH8.0) 100mM Tris 25mM EDTA 1.5M NaCl 3% CTAB 2% β-巯基乙醇

相关主题
文本预览
相关文档 最新文档