当前位置:文档之家› 3DSMAX实验步骤_图文(精)

3DSMAX实验步骤_图文(精)

3DSMAX实验步骤_图文(精)
3DSMAX实验步骤_图文(精)

实验五、2D转3D建模(2学时

一、实验目的

二维对象编辑修改模型方法

二、实验内容

1.熟练掌握二维对象创建模型方法

2.掌握编辑修改二维对象创建模型实例制作方法

3、掌握倒角(Bevel旋转建模方法

三、实验仪器、设备

多媒体计算机、3DS MAX 7.0或者以上版本。

四、实验原理

在熟练掌握图形创建操作的基础上,创建一些基本的三维物体模型。

五、实验目标

(一实例1——三维文字

1、打开3DS MAX,单击“创建”面板下的“图形”按钮,再点击“文本”按钮,展

开“参数”卷展栏并设置文本参数,字体选“隶书”,大小为60,文本内容为你的名字。设置好参数后,在“前视图”中单击鼠标左键,即可在视图中看到你的名字。如图5-1。

图5-1

2、选中文字,单击“修改”标签进入“修改”面板,展开修改器列表并选择“倒角”

修改器,然后展开“参数”和“倒角值”卷展栏并设置参数,将文字挤出为实体。设置如图5-2。

图5-2

3、为文字添加材质,最后单击常用工具栏中“快速渲染”按钮渲染透视图。实验十一、Reactor动力学系统(二(2学时

一、实验目的

1、了解Reactor动力学系统的环境;

2、掌握刚体碰撞、柔体碰撞、布料模拟的设置方法

二、实验内容

1、掌握刚体碰撞、柔体碰撞、布料碰撞的设置流程;

2、掌握刚体的物理属性、凹凸属性对动画的影响;

3、掌握固定布料的设置方法

4、掌握风力对动画效果的影响

三、实验仪器、设备

多媒体计算机、3DS MAX 7.0或者以上版本。

四、实验原理

Reactor动力学系统功能强大,能够模拟自然界中刚体、布料、柔体、绳索、水的碰撞,还能够设置多种约束,如弹簧、玩具车、点到点约束、点到路径约束,也能够为动画设置几种作用力,如风力、马达、破碎力等。Reactor中的动画模拟可以和

3ds max中其他动画功能协调工作。

五、实验步骤

(一实例1——铁链碰撞

操作步骤

(1在前视图中创建一个多边形,半径值设置为70,勾选Circular选项。如图11-1所示。

图11-1

(2在修改器列表中选择Edit Spline修改器,进一步修改多边形的形状。

(3进入到Edit Spline的点次物体级,选择如图所示的两个点。选择变换轴心为两点的公共轴心,选择工具栏的工具,对点进行缩小修改。如图11-2所示。

图11-2

(4在修改器进入到多边形层级,勾选Rendering卷展栏下的Enable in renderer和Enable in viewport,并将Thickness的值设置为25。如图11-3所示。

图11-3

(5在Front视图中向下复制一个铁环,并将复制品沿Y轴旋转90度。然后再将这两个铁环向下复制两个,这样就得到了6个圆环组成的铁链。如图11-4所示。

图11-4

(6单击创建面板的辅助物体按钮,然后在下拉列表中选择Reactor,在视图的任意位置创建刚体收集器。

(7单击面板下方的Add按钮,在弹出的选择表中选择左侧列表中的所有物体。单击Select按钮,刚才选中的物体出现在刚体收集器中。如图11-5所示。

图11-5

(8选择除了上面圆环以外的其他圆环,在Property卷展栏下的Mass面板中设置质量为1kg,其他数值默认。

(9在Property卷展栏下的Concave区域中,勾选Use Concave项,将圆环物体看做一个凹面体。如图11-6所示。

图11-6

(10单击Preview in Window,打开预览窗口。按下键盘上的P键模拟,铁链产生了向下运动。

(11将鼠标移动到最下面的圆环处,按住鼠标右键不放,然后拖动鼠标,鼠标开始运动,并且其他的铁链也因为彼此之间的关系开始运动。将铁链拖动到一定位置松开鼠标,铁链会因为重力的作用开始运动。

(12当铁链位于如图状态时,按下P键暂停。单击Max菜单下的Update Max命

令,然后关闭预览窗口,视图中物体也发生了变化。如图11-7所示。

图11-7

(13单击鼠标控制区的按钮,将动画的时间设置为200帧。

(14打开Animation&Export卷展栏,设置End Framo的值为300,单击Create Animation按钮,稍等片刻,动画关键帧生成。

(15给铁链物体指定一个金属材质,为环境指定砖块纹理。

(16将此动画渲染输出为AVI格式。如图11-8所示。

图11-8

实验十三、粒子系统(2学时

一、实验目的

1、了解粒子的类型;

2、掌握粒子系统的创建和参数的设置方法

二、实验内容

1、粒子系统的类型和基本操作;

2、通过粒子系统创建动画效果;

3、将粒子运动进行约束

三、实验仪器、设备

多媒体计算机、3DS MAX8.0或者以上版本。

四、实验原理

首先建立Blizzard暴风雪粒子系统,然后通过建立路径跟随物体和拾取路径,使粒子沿着特定的路线运动。通过建立关联物体使粒子以球体为显示状态,并通过拾取材质操作为粒子球体赋予制作好的药分子材质。药分子的材质是通过混合材质实现的。

五、实验步骤

(一实例——分子运动

操作步骤:

半径2:61,高度:-600,高度段数:15。如图13-1所示。

图13-1 建立管道

(2单击文件菜单下的保存,选择合适的路径,为文件命名为“金V肽”。

(3单击按钮,进入修改面板。在修改器列表中选择bend命令,为管道添加弯曲修改。在下侧的参数面板中,调节弯曲角度为-75。如图13-2所示。

图13-2为管道添加弯曲修改

(4单击> > 按钮,在顶视图中创建一台目标摄像机。如图13-3 所示。

图13-3 创建目标摄像机

(5在透视视图左上角单击鼠标右键,在快捷菜单中选择视图为摄像机视图。如图13-4所

示。

图13-4 把透视视图切换成摄像机视图

(6单击工具栏上的工具,在顶视图、左视图中调节摄像机的角度。如图13-5所示。

图13-5 调节摄像机的角度

(7单击> > 按钮,在顶视图中连续单击鼠标,创建三盏泛光灯。如图13-6所示。

图13-6创建三盏泛光灯

(8单击工具栏上的工具,选择如图所示的泛光灯。单击按钮,进入修改面板,在强度/颜色/衰减选项面板中,设置灯光倍增值为0.5。用同样的方法调节管道中部泛光灯的灯光强度倍增值为0.5。如图13-7所示。

图13-7 调节泛光灯亮度

(9选择管道,单击工具栏上的工具,弹出材质编辑器。选择一个空白的示例球,命名为“管道”。

(10单击贴图,展开贴图卷展栏。单击漫反射颜色右侧的贴图通道,弹出材质/贴图浏览

器,选择大理石类型并双击确定。如图13-8所示。

图13-8为管道漫反射贴图指定大理石类型

(11单击大理石选项面板下颜色#1右侧的颜色块,弹出颜色选择器。设置红、绿、蓝的

颜色数值分别为50,141,22。单击关闭。如图13-9所示。

图13-9设置颜色#1的颜色

(12单击大理石选项面板下颜色#2右侧的颜色块,弹出颜色选择器。设置红、绿、蓝的颜色数值分别为2,30,3。单击关闭。如图13-10所示。

过程控制系统实验报告材料(最新版)

实验一、单容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只 三、实验原理 图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。根据物料平衡关系,在平衡状态时 Q1-Q2=0 (1)

动态时,则有 Q1-Q2=dv/dt (2) 式中 V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与 H 的关系为 dV=Adh ,即dV/dt=Adh/dt (3) A 为水箱的底面积。把式(3)代入式(2)得 Q1-Q2=Adh/dt (4) 基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为 Q1-h/RS=Adh/dt 即 ARsdh/dt+h=KQ1 或写作 H(s)K/Q1(s)=K/(TS+1) (5) 式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。 式(5)就是单容水箱的传递函数。 对上式取拉氏反变换得 (6) 当t—>∞时,h(∞)=KR0 ,因而有K=h(∞)/R0=输出稳态值/阶跃输入当 t=T 时,则有 h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)

式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图 2-2 所示。当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。该时间常数 T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得 的传递函数为: 四、实验内容与步骤 1.按图2-1接好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。 2.接通总电源和相关的仪表电源,并启动磁力驱动泵。

过程控制实验报告

过程控制实验 实验报告 班级:自动化1202 姓名:杨益伟 学号:120900321 2015年10月 信息科学与技术学院 实验一过程控制系统建模 作业题目一: 常见得工业过程动态特性得类型有哪几种?通常得模型都有哪些?在Simulink中建立相应模型,并求单位阶跃响应曲线、 答:常见得工业过程动态特性得类型有:无自平衡能力得单容对象特性、有自平衡能力得单容对象特性、有相互影响得多容对象得动态特性、无相互影响得多容对象得动态特性等。通常得模型有一阶惯性模型,二阶模型等、 单容过程模型 1、无自衡单容过程得阶跃响应实例 已知两个无自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

2、自衡单容过程得阶跃响应实例 已知两个自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响得多容过程得阶跃响应实例 已知有相互影响得多容过程得模型为,当参数, 时,试在Simulink中建立模型,并求单位阶跃响应曲线在Simulink中建立模型如图所示:得到得单位阶跃响应曲线如图所示:

4、无相互影响得多容过程得阶跃响应实例 已知两个无相互影响得多容过程得模型为(多容有自衡能力得对象)与(多容无自衡能力得对象),试在Simulink中建立模型,并求单位阶跃响应曲线。 在Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

过程控制实验三

实验三管道流量定值控制实验 一、实验目的 1)、了解涡轮流量计的结构及其使用方法。 2)、熟悉单回路流量控制系统的组成。 3)、了解PID整定方法。 二、实验配置清单 表2-1、管道流量定值控制实验配置清单 序号名称电气代号型号数备份 1 1号水泵P101 MS60/220V/0.37KW 1台 2 电动调节阀QS QS-16KDN32-dg25 1台 2 涡轮流量计WL LWGY-15 1个 3 智能转速流量积算仪1 X 4 AI-708HAI2X3SV241块 4 智能调节仪1 X1 AI-818A2X3LS-24V 1块 5 精密电阻250欧1个 6 连接导线若 7 通信电缆1跟 8 232/485转换模块1个 9 计算机1台 10 组态软件1套 11 监控软件1套 三、实验面板位图和实验电气连接图 1、实验信号实物连接图 图2-5、实验信号实物连接图 2、实验仪表参数表 表2-2、智能转速流量积算仪1、智能调节仪1参数表

智能转速流量积算仪1 智能调节仪1 参数表 序号参数名称参数值序号参数名称参数值 1 Act 0 1 Ctrl 1 2 Sn 0 2 Sn 33 3 Frd 600 3 dip 1 4 FdIP 1 4 diL 0.0 5 FdIH 6.0 5 diH 6.0 6 CF 0 6 Sc 0 7 FoH 6.0 7 OP1 4 8 loL 40 8 OPL 0 9 loH 200 9 OPH 100 10 Addr 1 bAud 9600 CF 0 3、实验原理 用临界比例度法整定调节器的参数,在实际应用中,PID调节器的参数常用下述实验的方法来确定,具体的做法是: 1)、待系统稳定后,逐步减小调节器的比例度δ,并且每当减小一次比例度,待被调量回复到平衡状态后,再手动给系统施加一个5%~15%的阶跃扰动,然后观察被调量变化的动态过程。若被调量为衰减的振荡曲线,则应继续减小比例度δ,直到输出响应曲线呈等幅振荡为止,如果响应曲线出现发散,则表示比例度调得过小,应适当增大,使被调量变为等幅振荡。如图2-8所示。 图2-8、具有周期TK的等幅振荡

过程控制系统仿真实验指导

过程控制系统Matlab/Simulink 仿真实验 实验一 过程控制系统建模 ............................................................................................................. 1 实验二 PID 控制 ............................................................................................................................. 2 实验三 串级控制 ............................................................................................................................. 6 实验四 比值控制 ........................................................................................................................... 13 实验五 解耦控制系统 . (19) 实验一 过程控制系统建模 指导内容:(略) 作业题目一: 常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。 作业题目二: 某二阶系统的模型为2 () 22 2n G s s s n n ?ζ??= ++,二阶系统的性能主要取决于ζ,n ?两个参数。试利用Simulink 仿真两个参数的变化对二阶系统输出响应的影响,加深对二阶 系统的理解,分别进行下列仿真: (1)2n ?=不变时,ζ分别为0.1, 0.8, 1.0, 2.0时的单位阶跃响应曲线; (2)0.8ζ=不变时,n ?分别为2, 5, 8, 10时的单位阶跃响应曲线。

杭电《过程控制系统》实验报告

实验时间:5月25号 序号: 杭州电子科技大学 自动化学院实验报告 课程名称:自动化仪表与过程控制 实验名称:一阶单容上水箱对象特性测试实验 实验名称:上水箱液位PID整定实验 实验名称:上水箱下水箱液位串级控制实验 指导教师:尚群立 学生姓名:俞超栋 学生学号:09061821

实验一、一阶单容上水箱对象特性测试实验一.实验目的 (1)熟悉单容水箱的数学模型及其阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。二.实验设备 AE2000型过程控制实验装置,PC机,DCS控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: Q2 图1-1、单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 图解法是确定模型参数的一种实用方法。不同的模型结构,有不同的图解方法。单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀

h1( t ) h1(∞ ) 0.63h1(∞) 0 T V 2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得: 式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为: 当t=T 时,则有: h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e -t/T ) 当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入 式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。当由实验求得图1-2所示的 阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是水箱的时间常数T ,该时间常数T 也可以通过坐标原点对响应曲线 图 1-2、 阶跃响应曲线

计算机过程控制实验报告

计算机过程控制实验报告

实验1 单容水箱液位数学模型的测定实验 1、试验方案: 水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。被调量为水位H 。分析水位在调节阀开度扰动下的动态特性。 直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。) 调整水箱出口到一定的开度。 突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。 通过物料平衡推导出的公式: μμk Q H k Q i O ==, 那么 )(1 H k k F dt dH -=μμ, 其中,F 是水槽横截面积。在一定液位下,考虑稳态起算点,公式可以转换成 μμR k H dt dH RC =+。 公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 0 2= 就是水阻。 如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: ) 1()(0 += TS S KR S G 。 相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。 2、实验步骤: 1) 在现场系统A3000-FS 上,将手动调节阀JV201、JV206完全打开,使下水箱闸板具有 一定开度,其余阀门关闭。 2) 在控制系统A3000-CS 上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪 输出端连到电动调节阀(FV101)控制信号端。 3) 打开A3000-CS 电源,调节阀通电。打开A3000-FS 电源。 4) 在A3000-FS 上,启动右边水泵(即P102),给下水箱(V104)注水。 给定值 图1 单容水箱液位数学模型的测定实验

单回路控制系统实验过程控制实验指导书模板

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静( 动) 态水温定值控制实验 实验三 实验项目名称: 单容液位定值控制系统 实验项目性质: 综合型实验 所属课程名称: 过程控制系统 实验计划学时: 2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和( 原理) 要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱( 也可采用上水箱或下水箱) 的液位高度, 实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反

馈信号, 在与给定量比较后的差值经过调节器控制电动调节阀的开度, 以达到控制中水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制, 系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量, 然后将阀门F1-1、F1-2、F1-7、F1-11全开, 将中水箱出水阀门F1-10开至适当开度, 其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 ( 一) 、智能仪表控制 1.按照图3-5连接实验系统。将”LT2中水箱液位”钮子开关拨到”ON”的位置。

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

过程控制实验报告

东南大学自动化学院 实验报告 课程名称:过程控制实验 实验名称:水箱液位控制系统 院(系):自动化专业:自动化姓名:学号: 实验室:实验组别: 同组人员: 实验时间: 评定成绩:审阅教师:

目录 一、系统概论 (3) 二、对象的认识 (4) 三、执行机构 (14) 四、单回路调节系统 (15) 五、串级调节系统Ⅰ (18) 六、串级调节系统Ⅱ (19) 七、前馈控制 (21) 八、软件平台的开发 (21)

一、系统概论 1.1实验设备 图1.1 实验设备正面图图1.2 实验设备背面图 本实验设备包含水箱、加热器、变频器、泵、电动阀、电磁阀、进水阀、出水阀、增压器、流量计、压力传感器、温度传感器、操作面板等。 1.1.2 铭牌 ·加热控制器: 功率1500w,电源220V(单相输入) ·泵: Q40-150L/min,H2.5-7m,Hmax2.5m,380V,VL450V, IP44,50Hz,2550rpm,1.1kw,HP1.5,In2.8A,ICL B ·全自动微型家用增压器: 型号15WZ-10,单相电容运转马达 最高扬程10m,最大流量20L/min,级数2,转速2800rmp,电压220V, 电流0.36A,频率50Hz,电容3.5μF,功率80w,绝缘等级 E ·LWY-C型涡轮流量计: 口径4-200mm,介质温度-20—+100℃,环境温度-20—+45℃,供电电源+24V, 标准信号输出4-20mA,负载0-750Ω,精确度±0.5%Fs ±1.0%Fs,外壳防护等级 IP65 ·压力传感器 YMC303P-1-A-3 RANGE 0-6kPa,OUT 4-20mADC,SUPPLY 24VDC,IP67,RED SUP+,BLUE OUT+/V- ·SBWZ温度传感器 PT100 量程0-100℃,精度0.5%Fs,输出4-20mADC,电源24VDC

过程控制系统实验指导书解析

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

过程控制系统实验报告

《过程控制系统实验报告》 院-系: 专业: 年级: 学生姓名: 学号: 指导教师: 2015 年6 月

过程控制系统实验报告 部门:工学院电气工程实验教学中心实验日期:年月日 姓名学号班级成绩 实验名称实验一单容水箱液位定值控制实验学时 课程名称过程控制系统实验及课程设计教材过程控制系统 一、实验仪器与设备 A3000现场系统,任何一个控制系统,万用表 二、实验要求 1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。 2、使用比例积分控制进行流量控制,能够得到稳定曲线。设定不同的积分参数,进行 比较。 3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。设定不同的积分参数,进行比较。 三、实验原理 (1)控制系统结构 单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。 水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为水位H。使用P,PI , PID控制,看控制效果,进行比较。 控制策略使用PI、PD、PID调节。 (2)控制系统接线表 使用ADAM端口测量或控制量测量或控制量标号使用PLC端 口 锅炉液位LT101 AI0 AI0 调节阀FV101 AO0 AO0 四、实验内容与步骤 1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。 3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。 注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。 4、打开设备电源。包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。 5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。 6、启动计算机,启动组态软件,进入测试项目界面。启动调节器,设置各项参数,将调节器的手动控制切换到自动控制。 7、设置PID控制器参数,可以使用各种经验法来整定参数。这里不限制使用的方法。 五、实验结果记录及处理 六、实验心得体会: 比例控制特性:能较快克服扰动的影响,使系统稳定下来,但有余差。 比例积分特性:能消除余差,它能适用于控制通道时滞较小、负荷变化不大、被控量不允许由余差的场合。 比例微分特性:对于改善系统的动态性能指标,有显著的效果。

《过程控制系统》实验报告

《过程控制系统》实验报告 学院:电气学院 专业:自动化 班级:1505 姓名及学号:任杰311508070822 日期:2018.6.3

实验一、单容水箱特性测试 一、 实验目的 1. 掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。 二、 实验设备 1. THJ-FCS 型高级过程控制系统实验装置。 2. 计算机及相关软件。 3. 万用电表一只。 三、 实验原理 图1 单容水箱特性测试结构图 由图 2-1 可知,对象的被控制量为水箱的液位 h ,控制量(输入量)是流入水箱中的流量 Q 1,手动阀 V 1 和 V 2 的开度都为定值,Q 2 为水箱中流出的流量。根据物料平衡关系,在平衡状态时02010=-Q Q (式2-1),动态时,则有dt dV Q Q = -21,(式2-2)式中 V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与 h 的关

系为Adh dV =,即dt dh A dt dV =(式2-3),A 为水箱的底面积。把式(2-3)代入式(2-2)得dt dh A Q Q =-21(式2-4)基于S R h Q =2,S R 为阀2V 的液阻,(式2-4)可改写为dt dh A R h Q S =-1,1KQ h dt dh AR S =+或()()1s 1+=Ts K s Q H (式2-5)式中s AR T =它与水箱的底面积A 和2V 的S R 有关,(式2-5)为单容水箱的传递函数。若令()S R S Q 01=,常数=0R ,则式2-5可表示为()T S KR S R K S R T S T K S H 11/000+-=?+= 对上式取拉氏反变换得()()T t e KR t h /01--=(式2-6),当∞→t 时()0KR h =∞,因而有()0/R h K ∞==输出稳态值/阶跃输入,当T t =时,()() ()∞==-=-h KR e KR T h 632.0632.01010,式2-6表示一阶惯性响应曲线是一单调上升的指数函数如下图2-2所示 当由实验求得图 2-2 所示的阶跃响应曲线后,该曲线上升到稳态值的 63%所对应的时间,就是水箱的时间常数 T 。该时间常数 T 也可以通过 坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是 时间常数 T ,由响应曲线求得 K 和 T 后,就能求得单容水箱的传递函 数如式(2-5)所示。 如果对象的阶跃响应曲线为图 2-3,则在此曲线的拐点 D 处作一切线,它与时间轴交于 B 点,与响应稳态值的渐近线交于 A 点。图中OB 即为对象的滞后时间

浙工大过程控制实验报告

浙工大过程控制实验报告 202103120423徐天宇过程控制系统实验报告 实验一:系统认识及对象特性测试 一实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。二实验内容 1 熟悉用MCGS组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。三实验设备 1 AE2000B型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。四实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得:

式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数, R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h。电动调节阀的开度op通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op,近似看成与流量Q1成正比,当电动调节阀的开度op为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op的变化,则输出表达式是对应原来输出值得基础上的增

自动化过程控制实验指导书

一、过程控制仪表认识实验 一、实验目的 1、熟悉装置的具体结构、明确各部件的作用。 2、掌握常用传感器的工作原理及使用方法。 二、实验内容 1、水箱 本装置包括上水箱、中水箱、下水箱和储水箱,上、中、下三个水箱都有三个槽,分别是缓冲槽、工作槽和溢流槽。实验时,水流首先进入缓冲槽(可减小水流对工作槽的冲击),当缓冲槽中注满水时,水流便溢出到工作槽。 整个装置的管道都采用铝塑管,以防止阀门生锈。 打开储水箱后的小球阀可排出水箱中的水,另外还可排出空气,以防抽不上水。 2、微型锅炉、纯滞后系统、热电阻 本装置采用锅炉进行温度实验,锅炉用不锈钢材料制作,共有四层,从内向外依次是加热层、冷却层、溢流层和纯滞后管道层(盘管长达20米)。 热电阻为Pt100,三线制工作。 温度变送器内部已有内置电源,不能再接外加电源。 系统用2Kw的加热丝进行加热,并采用可控硅移相触发模块(移相触发角与输入电流成正比),本模块输入为4—20mA的标准电流,输出为380V的交流电。 3、液位传感器 本装置采用扩散硅压力变送器(不锈钢隔离膜片),标准二线制进行传输,因此工作时需要串接24V电源。 压力变送器通电15分钟后,方可调整零点和量程。使用的原则是:没通电,不加压;先卸压,再断电。 零点调整:在水箱液位为零时,调整输出电流表的读数为4mA。 满量程调整:在水箱加满水时,调整输出电流表的读数为20mA。

调整的原则是:先调零点,再调满量程,要反复多次调整(满量程调整后会影响零点)。 4、电动调节阀 采用德国PS公司生产的PSL 202型智能电动调节阀。调节阀由220V50HZ电源供电。工作环境温度为-20—70摄氏度,输入信号为4—20mA的控制信号,输出信号为4—20mA 的阀位信号。 5、变频器 采用日本三菱FR-S520变频器,内控为0—50HZ,外控为4—20mA,可通过控制屏上的双掷开关进行切换。 内控:上电时,EXT灯先亮,开关打到内控,Run灯亮,开始内控变频控制水泵。 外控:开关打到外控,按PU/EXT键,使EXT灯亮,按Run运行,按Stop停运。 内外控切换时,要注意按键和开关配合使用。 6、水泵 采用丹麦格兰富水泵,扬程高达10米,噪音很低。 7、流量计 流量计由流量传感器和转换器组成。 采用LDS-10S型电磁流量传感器,其流量为0—0.3立方米/秒,压力为1.6Mpa,4—20mA 标准输出,可与显示、记录仪表、积算器配套,避免了涡轮流量计非线性与死区大的缺点。 转换器采用LDZ-4型电磁流量转换器。 它为内置电源。 8、调节器 采用上海万迅公司的AI全通用人工智能调节器。708型为模糊控制器,818型为PID 控制器。 输入为1、2端子,输入为1—5V。 输出为7、8端子,输出为4—20mA。 主要功能是:接受反馈信号Vi,与给定Vs进行比较,得到偏差,并对偏差进行PID连续运算,通过改变PID参数,可改变控制作用。

过程控制实验报告

过程控制实验实验报告 班级:自动化1202 :益伟 学号:120900321

2015年10月 信息科学与技术学院 实验一 过程控制系统建模 作业题目一: 常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。 答:常见的工业过程动态特性的类型有:无自平衡能力的单容对象特性、有自平衡能力的单容对象特性、有相互影响的多容对象的动态特性、无相互影响的多容对象的动态特性等。通常的模型有一阶惯性模型,二阶模型等。 单容过程模型 1、无自衡单容过程的阶跃响应实例 已知两个无自衡单容过程的模型分别为s s G 5.01)(=和s e s s G 55.01)(-=,试在Simulink 中 建立模型,并求单位阶跃响应曲线。 Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示: 2、自衡单容过程的阶跃响应实例 已知两个自衡单容过程的模型分别为122)(+=s s G 和s e s s G 51 22 )(-+= ,试在Simulink 中建立模型,并求单位阶跃响应曲线。 Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响的多容过程的阶跃响应实例 已知有相互影响的多容过程的模型为1 21 ) (2 2++= Ts s T s G ξ,当参数1=T , 2.1 ,1 ,3.0 ,0=ξ时,试在Simulink 中建立模型,并求单位阶跃响应曲线 在Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示: 4、无相互影响的多容过程的阶跃响应实例 已知两个无相互影响的多容过程的模型为) 1)(12(1 ) (++= s s s G (多容有自衡能力的对象)和 ) 12(1 )(+= s s s G (多容无自衡能力的对象),试在Simulink 中建立模型,并求单位阶跃响应曲线。 在Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:

过程控制实验报告8

实验报告 课程名称:过程控制 实验名称:单回路控制系统的参数整定专业:自动化专业 姓名: 学号: 2013 /2014 学年第 2 学期

实验一单回路控制系统的参数整定 2014年4月28日 一、实验要求 1、了解调节器特性的实验测试方法; 2、掌握依据飞升特性曲线求取对象动态特性参数和调节器参数的方法; 3、熟悉单回路控制系统的工程整定方法。 二、实验内容 测得某工业过程的单位阶跃响应数据,如附表所示;单位阶跃响应曲线,如图1所示: 0.2 0.4 0.6 0.8 1 1.2 t/s y ( t ) 0.2 0.4 0.6 0.8 1 1.2 t/s y ( t ) 图1 单位阶跃响应曲线 1、试用高阶传递函数描述该过程的动态特性; G(s)=K/(Ts+1) 2=1.25/(25.9s+1) 2*e^-10s 2、在Simulink中搭建解算出的被控对象单回路控制系统; 3、采用稳定边界法整定调节器参数,并给出P、PI、PID三种调节器的控制曲线; Kp=5,Pm=1/Kp=0.2时,等幅振荡,Tm80。

P: 2Pm=0.4 PI: 2.2Pm=0.44 0.85Tm=68 PID: 1.7Pm=0.34 0.5Tm=40 0.125Tm=10 三种调节器的控制曲线:

4、比较、分析实验结果 P调节器稳态产生了静差;PI调节器相对P调节器稳态无静差,但是调节时间延长;PID 调节器相对前两者无论上升时间还是调节时间都变短了,稳态也无静差。

实验报告 课程名称:过程控制 实验名称:串级控制系统专业:自动化专业 姓名: 学号: 2013 /2014 学年第 2 学期

A3000过程控制实验指导 第一章教学文稿

A3000过程控制实验指导第一章

第一章 A3000高级过程控制实验系统概述本章介绍A3000高级过程控制实验系统整个测试平台的构成。A3000包括物理硬件系统以及配置的软件系统。 第一节总体架构 A3000测试平台总体物理系统如图1.1所示,包括控制系统和现场系统,控制系统可有30多种,现场系统可具有现场总线。总体逻辑结构如图1.2所示。 图1.1 Au3000测试平台物理系统 图1.2 总体逻辑结构

A3000现场系统特性: ?尺寸:1450(毫米宽度)X700(毫米深度)X1950(毫米高度),全不锈钢框架;?电力:三相接地四线制380V 0%,单相三线制,220V 10%; ?能耗:最大额定用电6kw/h。自来水120L,可重复使用; A3000控制系统特性: ?尺寸:800(宽度)X60(深度)X1950(高度)。标准工业机柜; ?电力:单相三线制,220V 10%; ?能耗:最大额定用电1kw/h; 第二节测试平台现场系统 物理受控系统包括了测试对象单元、供电系统、传感器、执行器(包括变频器及移相调压器),从而组成了一个只需接受外部标准控制信号的完整、独立的现场环境。下面使用示意图和流程图方式介绍现场系统的结构、原理、操作和维护。 系统必须可靠接地,以防止因动力设备静电积累而造成触电或设备损坏。 一现场系统结构示意图 现场系统结构示意图如图1.3所示。 图1.3 现场系统结构示意图

总体的测点清单如表1.1所示。 表1.1 整体流程测点清单 注:所列信号类型为原始信号,在控制柜中Pt100经过变送器转换成了4~20mA。一般两线制信号在IO面板上已经连接了24V和GND,可以按照四线制方式使用。执行机构一般2~10V控制,控制信号经过500欧姆采样电阻被转换成4-20毫安控制。

过程控制实验指导书

实验系统认知 A3000高级过程控制实验系统独创现场系统概念,而不是对象系统。现场系统包括了实验对象单元、供电系统、传感器、执行器(包括电动调节阀、变频器及调压器)、以及半模拟屏,从而组成了一个只需接受外部标准控制信号的完整、独立的现场环境。 1、A3000特点 (1)现场系统通过一个现场控制机柜,集成供电系统、变频器、移相调压器、以及现场继电器,所有驱动电力由现场系统提供。它仅需通过标准接线端子接收标准控制信号即能完成所有实验功能。从而实现了现场系统与控制系统完全独立的模块化设计。 (2)现场控制机柜内有工业标准接线端子。这种标准信号接口可以使现场系统与用户自行选定的DCS系统、PLC系统、DDC系统方便连接,甚至用户自己用单片机组成的系统都可以对现场系统进行控制。 (3)现场系统的设计另外的优势是保证动力线与控制线的电磁干扰隔离。 (4)现场系统的设计保证了控制系统只需要直流低压就可以了,使得系统设计更模块化,更安全、具有更大的扩展性。 A3000-FS现场及系统结构原理图如图2-1,图2-2所示。

图2-1 A3000现场实物图 图2-2 A3000现场系统结构图

现场系统包括三个水箱,一个大储水箱,一个锅炉,一个工业用板式换热器,两个水泵,大功率加热管,滞后时间可以调整的滞后系统,一个硬件联锁保护系统。传感器和执行器系统包括5个温度、3个液位、1个压力,1个电磁流量计,1个涡轮流量计,1个电动调节阀,两个电磁阀,2个液位开关。 2、现场系统机柜面板 ? 电源:220V AC单相总电源空开,380V AC三相总电源空开。 ? 开关:两个两位自锁旋钮开关,分别是加热器电源开关和变频器电源开关。四个三位自锁旋钮开关,分别是1#、2#电磁阀手自动以及关闭开关。变频器手自动启动信号以及关闭开关,2#水泵手自动运行以及关闭开关。 ? 电压表:显示24VDC开关电源的电压值。 ? 变频器:对于A3000FBS系统,则具有Profibus DP控制端子。 ? 指示灯:安装有8个指示灯和滞后管系统的两手动调节阀。分别为单相电,三相电通电指示。以及两个水泵、两个电磁阀开启时,其状态指示灯分别点亮。当锅炉内水位低于低限液位开关时,液位开关断开,联锁控制的低限液位指示灯点亮,表明锅炉内液位很低或无液位。提示禁止对锅炉加热。往锅炉内注水等到当锅炉内水位达到或超过低限液位开关时,液位开关闭合,联锁控制的低限液位指示灯灭,可以开始对锅炉加热。当锅炉内水位超过高限液位开关时,液位开关闭合,联锁控制的高限液位指示灯点亮,表明锅炉内液位很高或超过高位限制,应及时把锅炉内液体排出一部分。 3、支路分析 现场系统包含两个支路。支路1有1#水泵,换热器,锅炉,还可以直接注水到三个水箱以及锅炉。支路2有2#水泵,压力变送器,电动调节阀,三个水箱,还有一路流入换热器进行冷却。 (1)支路1分析 支路1包括左边水泵,1#流量计,电磁阀等组成,可以到达任何一个容器,锅炉以及换热器。水泵可以使用变频器控制流量,电磁阀可能没有。 由于支路1可以与锅炉形成循环水,可以做温度控制实验。为了保证加热均匀,应该使用动态水,本系统设计了一个水循环回路来达到此目的。即打开JV304、

相关主题
文本预览
相关文档 最新文档