当前位置:文档之家› 数学二轮复习专题3 三角函数与平面向量(学案)

数学二轮复习专题3 三角函数与平面向量(学案)

数学二轮复习专题3  三角函数与平面向量(学案)
数学二轮复习专题3  三角函数与平面向量(学案)

2011届高考数学二轮专题三三角函数与平面向量

高考中,三角函数主要考查学生的运算能力、灵活运用能力,在客观题中,突出考察基本公式所涉及的运算、三角函数的图像基本性质,尤其是对角的范围及角之间的特殊联系较为注重。解答题中以中等难度题为主,涉及解三角形、向量及简单运算。三角函数部分,公式较多,易混淆,在运用过程中,要观察三角函数中函数名称的差异、角的差异、关系式的差异,确定三角函数变形化简方向。

平面向量的考察侧重平面向量的数量积以及平面向量的平行、垂直关系的坐标运算。向量是数学中的重要概念,并和数一样,也能运算。但同时,平面向量的工具性不容忽视。以向量的平行、垂直、所成角为载体,与三角、解析几何、不等式等知识点的综合是我们值得注意的方向。

关于三角向量命题方向:(1)三角函数、平面向量有关知识的运算;(2)三角函数的图像变换;(3)向量与三角的综合运用及解三角形。(4)与其它知识的结合,尤其是与解析几何的结合。小题大都以考察基本公式、基本性质为主,解答题以基础题为主,中档题可能有所涉及,压轴题可能性不大。

1、同角的三角函数关系:平方关系

22

2

2

2

2

sin cos1

1

1tan

cos

1

1cot

sin

αα

α

α

α

α

?

?+=

?

?

+=

?

?

?

+=

??

;倒数关系

sin csc1

cos sec1

tan cot1

αα

αα

αα

?=

?

?

?=

?

??=

?

商数关系sin tan cos cos cot sin αααααα?

=????=??

2、诱导公式可以概括为一句口诀:奇变偶不变,符号看象限。

诱导公式用角度和弧度制表示都成立,记忆方法可以概括为“奇变偶不变,符号看象限”,“变”与“不

变”是相对于对偶关系的函数而言的,sin α与cos α对偶,“奇”、“偶”是对诱导公式中2

k π

?+α的整数k 来讲的,象限指2k π?+α中,将α看作锐角时,2k π?+α所在象限,如将cos(23π+α)写成cos (32

π

?+α),

因为3是奇数,则“cos ”变为对偶函数符号“sin ”,又2

3π+α看作第四象限角,cos(

2

+α)为“+”,所

以有cos(

2

+α)=sin α。 3、两角和与差的三角函数

(1)和(差)角公式①;sin cos cos sin )sin(βαβαβα±=±

②;sin sin cos cos )cos(βαβαβα =±③β

αβ

αβαtan tan 1tan tan )tan(

±=±

(2)二倍角公式:①αααcos sin 22sin =;

②ααααα2

222sin 211cos 2sin cos 2cos -=-=-=;③α

α

α2

tan 1tan 22tan -=

(3)经常使用的公式 ①升(降)幂公式:2

1cos 2sin 2αα-=

、2

1cos 2cos 2αα+=、1sin cos sin 22

ααα=; ②辅助角公式:22sin cos sin()a b a b ααα?+=++(?由,a b 具体的值确定); ③正切公式的变形:tan tan tan()(1tan tan )αβαβαβ+=+-?三角函数式的化简

常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的

逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。

三角函数的求值类型有三类

(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。 4、三角函数的图象与性质

正弦函数、余弦函数、正切函数的图像

1-1y=sinx

-3π2

-5π2

-7π2

7π2

2

3π2

π2

-π2

-4π-3π

-2π4π

2ππ

o y x

1-1y=cosx

-3π2

-5π2

-7π

2

7π2

5π2

3π2

π2

-π2

-4π-3π

-2π

π

o

y

x

y=tanx

3π2

π

π2

-

3π2

-π-

π2

o

y

x

三角函数的单调区间:x y sin =的递增区间是??

?

??

?+

-

222

2πππ

πk k ,)(Z k ∈,递减区间是??????

++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是??

? ?

?

+-22

ππππk k ,)(Z k ∈,

函数B x A y ++=)sin(?ω),(其中00>>ωA 最大值是B A +,最小值是A B -,周期是ω

π

2=

T ,频

率是πω2=

f ,相位是?ω+x ,初相是?;其图象的对称轴是直线)(2

Z k k x ∈+=+π

π?ω,凡是该图象与直线B y =的交点都是该图象的对称中心

由y =sin x 的图象变换出y =sin(ωx +?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变

形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换)

先将y =sin x 的图象向左(?>0)或向右(?<0=平移|?|个单位,再将图象上各点的横坐标变为原来的

ω

1

倍(ω>0),便得y =sin(ωx +?)的图象

途径二:先周期变换(伸缩变换)再平移变换。 先将y =sin x 的图象上各点的横坐标变为原来的ω

1

倍(ω>0),再沿x 轴向左(?>0)或向右(?<0=

平移

ω

?|

|个单位,便得y =sin(ωx +?)的图象。

由y =A sin(ωx +?)的图象求其函数式:给出图象确定解析式y =A sin (ωx +?)的题型,有时从寻找“五

点”中的第一零点(-

ω

?

,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。 对称轴与对称中心:sin y x =的对称轴为2

x k ππ=+,对称中心为(,0) k k Z π∈;cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+;对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。

求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间;

求三角函数的周期的常用方法:经过恒等变形化成“sin()y A x ωφ=+、cos()y A x ωφ=+”的形式,在利用周期公式,另外还有图像法和定义法

五点法作y =A sin (ωx +?)的简图:五点取法是设x =ωx +?,由x 取0、2π、π、2

π

3、2π来求相应

的x 值及对应的y 值,再描点作图。 5、解三角形

Ⅰ.正、余弦定理⑴正弦定理

R C

c

B b A a 2sin sin sin ===(R 2是AB

C ?外接圆直径) 注:①C B A c b a sin :sin :sin ::=;②C R c B R b A R a sin 2,sin 2,sin 2===; ③

C

B A c

b a C

c B b A a sin sin sin sin sin sin ++++===。 ⑵余弦定理:A bc c b a cos 22

2

2

-+=等三个;注:bc

a c

b A 2cos 2

22-+=等三个。

Ⅱ。几个公式:

⑴三角形面积公式:))(2

1

(,))()((sin 2

1

21c b a p c p b p a p p C ab ah S ABC ++=

---===

?; ⑵内切圆半径r=c

b a S ABC ++?2;外接圆直径2R=

;sin sin sin C c

B b A a

==

⑶在使用正弦定理时判断一解或二解的方法:⊿ABC 中,sin sin A B A B >?>

6、向量是数形结合的典范。向量的几何表示法——有向线段表示法是运用几何性质解决向量问题的基础。在向量的运算过程中,借助于图形性质不仅可以给抽象运算以直观解释,有时甚至更简捷。

向量运算中的基本图形:①向量加减法则:三角形或平行四边形;②实数与向量乘积的几何意义——共线;③定比分点基本图形——起点相同的三个向量终点共线等。 7、 向量的三种线性运算及运算的三种形式。

向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的结果是向量,两个向量数量积的结果是数量。每一种运算都可以有三种表现形式:图形、符号、坐标语言。

主要内容列表如下:

运 算

图形语言

符号语言

坐标语言

加法与减法

--OA +→

--OB =→

--OC

--OB -→--OA =→

--AB

记→

--OA =(x 1,y 1),→

--OB =(x 1,y 2) 则→

--OA +→

--OB =(x 1+x 2,y 1+y 2) →

--OB -→

--OA =(x 2-x 1,y 2-y 1)

→--OA +→--AB =→

--OB

实数与向量 的乘积

--AB =λ→

a

λ∈R

记→

a =(x,y) 则λ→

a =(λx,λy)

两个向量 的数量积

a 2→

b =|→a ||→b | cos<→

a ,→

b >

记→a =(x 1,y 1), →

b =(x 2,y 2)

则→a 2→

b =x 1x 2+y 1y 2

8、 运算律

加法:→a +→b =→b +→a ,(→a +→b )+→c =→a +(→b +→

c )

实数与向量的乘积:λ(→a +→b )=λ→a +λ→b ;(λ+μ)→a =λ→a +μ→a ,λ(μ→a )=(λμ) →

a

两个向量的数量积:→a 2→b =→b 2→a ;(λ→a )2→b =→a 2(λ→b )=λ(→a 2→b ),(→a +→b )2→c =→a 2→c +→b 2→

c 说明:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算,例如(→a ±→

b )2

=2

2

b b a 2a →

→→→+?± 9、 重要定理、公式

(1)平面向量基本定理;如果1e →+2e →是同一平面内的两个不共线向量,那么对于该平面内任一向量→

a ,有且只有一对数数λ1,λ2,满足→

a =λ

1

1e →

2

2e →

,称λ11e →λ+λ22e →为1e →,2e →

的线性组合。

根据平面向量基本定理,任一向量→a 与有序数对(λ1,λ2)一一对应,称(λ1,λ2)为→

a 在基底{1e →

,2e →

}下的坐标,当取{1e →

,2e →

}为单位正交基底{→

i ,→j }时定义(λ1,λ2)为向量→

a 的平面直角坐标。 向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若A(x ,y), 则→--OA =(x,y );当向量起点不在原点时,向量→

--AB 坐标为终点坐标减去起点坐标,即若A (x 1,y 1), B (x 2,y 2),则→--AB =(x 2-x 1,y 2-y 1)

(2)两个向量平行的充要条件符号语言:若→

a ∥→

b ,→

a ≠→

0,则→

a =λ→

b

坐标语言为:设→

a =(x 1,y 1),→

b =(x 2,y 2),则→

a ∥→

b ?(x 1,y 1)=λ(x 2,y 2),即???λ=λ=21

21y y x x ,或x 1y 2-x 2y 1=0

(3)两个向量垂直的充要条件符号语言:→a ⊥→b ?→a 2→

b =0

坐标语言:设→a =(x 1,y 1), →b =(x 2,y 2),则→a ⊥→

b ?x 1x 2+y 1y 2

=0

考点一 有关三角函数的概念和公式的简单应用 例1:若

)

2

sin()tan()2cos()sin(απ

απαπαπ+---=3

3

-

,且()πα,0∈. 求(1)α

αααsin cos sin cos +-;(2)ααα2

cos cos sin 1+-的值.

例2:已知tan

2

α

=2,则

6sin cos 3sin 2cos αα

αα

+-的值为 .

【名师点睛】①给角求值问题,利用诱导公式找到给定角和常见特殊角的联系求出值;②对于给值求值的问题的结构特点是“齐次式”,求值时通常利用同角三角函数关系式,常数化为正弦和余弦的性质,再把正弦化为正切函数的形式.

考点二 有关三角函数的性质问题

例3:已知函数2()23sin cos 2cos 1()f x x x x x R =+-∈(Ⅰ)求函数()f x 的最小正周期及在区间0,

2π??

????

上的最大值和最小值;(Ⅱ)若006(),,542f x x ππ??

=∈????

,求0cos 2x 的值。

【名师点睛】(1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化

简三角函数式,尽量化为y =A sin(ωx +φ)+B 的形式,然后再求解.

(2)对于形如y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2

sin(ωx +φ)(cos φ=

a

a 2+b

2

,sin φ=b a 2+b 2

)的形式来求.

例4:设函数()sin cos f x m x x =+()x R ∈的图象经过点π

2

?? ???

,1.(Ⅰ)求()y f x =的解析式,并求函数的

最小正周期和单调递增区间(Ⅱ)若(

)2sin 12

f A π

=,其中A 是面积为

33

2

的锐角ABC ?的内角,且2AB =,求AC 和BC 的长.

【名师点睛】求函数y =A sin(ωx +φ)(或y =A cos(ωx +φ),或y =A tan(ωx +φ))的单调区间 (1)将ω化为正.(2)将ωx +φ看成一个整体,由三角函数的单调性求解. 例5:已知函数()sin()sin()cos (,)66

f x x x x a a R a π

π

=+

+-++∈为常数.(Ⅰ)求函数()f x 的最小正周

期;(Ⅱ)若函数()f x 在[-2π,2

π

]上的最大值与最小值之和为3,求实数a 的值.

【名师点睛】求三角函数式最值的方法(1)将三角函数式化为y =A sin(ωx +φ)+B 的形式,进而结合三角函数的性质求解.(2)将三角函数式化为关于sin x ,cos x 的二次函数的形式,进而借助二次函数的性质求解.

考点三 三角函数的图象变换 例6:为了得到函数sin(2)3

y x π

=-的图像,只需把函数sin(2)6

y x π

=+

的图像

(A )向左平移

4π个长度单位 (B )向右平移4π

个长度单位 (C )向左平移2π个长度单位 (D )向右平移2

π

个长度单位

【名师点睛】三角函数图象的变换规则是:平移时“左加右减,上加下减”,伸缩的倍数是,求三角函数的

最值,一般要把三角函数化为f (x )=Asin(ωx +φ)+B 的形式,有时还要注意ωx+φ的取值范围. 例7:已知函数)2

||,0,0)(sin()(π

?ω?ω<

>>+=A x A x f 的

部分图象如下图所示:(1)求函数)(x f 的解析式并写出其所有对称中心;(2)若)(x g 的图象与)(x f 的图象关于点 P (4,0)对称,求)(x g 的单调递增区间.

【名师点睛】本题①三角函数图象与x 轴的交点中,相邻两个交

点之间的距离正好是半个周期,从而确定参数ω,由最高点和最低点可确定振幅A ,代入某一点的坐标到三角函数解析式可以确定初相?;②求给定区间上的三角函数的最值(或值域)问题,一般思路是求x ω?+的范围,并作为一个整体,借助基本函数sin ,cos y x y x ==解决.由图象求解析式时,“找准关键点”的确定很重要,尽量使A 取正值. 考点四 三角恒等变换

例8:cos13

计算sin43cos 43

-sin13的值等于( )

A .

12

B .

33

C .

22

D .

32

例9:若4

cos 5α=-

,α是第三象限的角,则1tan 21tan

2

αα

+=-

(A) 12

-

(B) 12

(C) 2 (D) -2

例10:23sin 702cos 10

-=-

( )

A .

12

B .

22

C .2

D .

32

【名师点睛】给值求值、给值求角问题. ⑴发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”;⑵寻找联系:运用相关公式,找出差异之间的内在联系;⑶合理转化:选择恰当的公式,促使差异的转化. 例11:求值:

000

cos 40sin50(13tan10)

sin 701cos 40

++?+

【名师点睛】合理转化:选择恰当的公式,促使差异的转化. 例12:已知(0,)2π

α∈,(,)2πβπ∈,7cos 29β=-,7

sin()9

αβ+= (Ⅰ) 求cos β的值;(Ⅱ) 求sin α的值.

【名师点睛】善于观察条件中的角与欲求式中角的内在联系,整体运用条件中角的函数值可使问题简化.角的常见变换:α+2β=(α+β)+β,(α-β2)-(α2-β)=α+β2

考点五 解三角形及实际应用

例13:在成且已知的对边分别为角中c b a B c b a C B A ABC ,,,13

5

sin ,,,,,,=?等比数列。 (Ⅰ)求

C

A tan 1

tan 1+的值;(Ⅱ)若c a B ac +=求,12cos 的值。

【名师点睛】正弦定理、余弦定理都体现了三角形的边角关系,解题时要根据具体题目合理选用,有时还需要交替使用.

例14:如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于

A 点北偏东45°,

B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西

60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?

【名师点睛】将所求问题归结为一个或多个三角形问题中.运用解三角形的知识解决实际问题时,关键是

把题设条件转化为三角形中的已知元素,然后解三角形求之.

例15:O 某港口要将一件重要物品用小艇送到一艘正在航行的轮船上。在小艇出发时,轮船位于港口O 北偏西30

且与该港口相距20海里的A 处,并以30海里/小时的航行速度沿正东方向匀速行驶。假设该小船沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇。(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理

D C

B

A

由。

【名师点睛】应用解三角形知识解决实际问题需要下列四步:(1)分析题意,准确理解题意,分清已知与所

求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,

并将已知条件在图形中标出; (3)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等

有关知识正确求解.(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案. 考点六 向量的概念、向量的运算、向量的基本定理

例16:如图,在四边形ABCD 中,||||||4,0,AB BD DC AB BD BD DC →

++=?=?=

→→→→=?+?4||||||||DC BD BD AB ,则→

→→?+AC DC AB )(的值为( )

A.2

B. 22

C.4

D.24

【名师点睛】:本题考查向量与实数的积,注意积的结果还是一个向量,向量的加法运算,结果也是一个向量,还考查了向量的数量积,结果是一个数字.

例17: 已知向量(cos ,sin )(0),(sin ,cos )OA m m m OB ααββ=≠=-

,其中O 为坐标原点(Ⅰ)若

6

π

αβ=+

且 0m >,求向量OA 与OB 的夹角(Ⅱ)当实数αβ、 变化时,求2AB OB -

的最大值

【名师点睛】本题是平面向量和三角函数的交汇问题,着重考查了根据图象确定函数的表达式,进而确定图象上点的坐标、向量的模、两向量的夹角等知识. 考点七 向量与三角函数的综合问题

例18:已知向量(1,cos 3sin ),((),cos )a x x b f x x ωωω=-+=

,其中ω>0,且a b ⊥ ,又()f x 的图

像两相邻对称轴间距为3

2

π.(Ⅰ)求ω的值;(Ⅱ) 求函数()f x 在[-2,2ππ]上的单调减区间.

【名师点睛】:向量与三角函数结合是高考命题的一大热点,在解决有关向量的平行、垂直问题时,先利用向量的坐标运算,再利用平行、垂直的充要条件即可简化运算过程

例19:(4cos sin )(sin 4cos )ααββ===

设向量,,,,a b c (cos 4sin )ββ-,

. 2tan()||tan tan 16.αβαβ-++=

(1)若与垂直,求的值;(2)求的最大值;

(3)若,求证:

a b c b c a//b

【名师点睛】:此题主要考查向量的模、两向量平行和垂直的充要条件、向量的和、差、数乘、数量积等平面向量的基本概念和基本运算,同时考查同角三角函数的基本关系式、二倍角的正弦公式、两角和的正弦与余弦公式,具有较强的综合性.解决这类综合性问题,除了正确理解和掌握相关的知识以外,还需要具有较强的运算求解能力和推理论证能力.熟练地掌握平面向量的四种运算、向量的模以及两向量平行与垂直的充要条件这些平面向量的核心内容,是解决这类问题的关键.

例20:已知ABC ?中的内角,,A B C 的对边分别为,,a b c ,定义向量()

2sin ,3m B =-

2cos 2,2cos 12B n B ??=- ??

? 且//m n .

(Ⅰ)求函数()sin 2cos cos2sin f x x B x B =-的单调递增区间;(Ⅱ)如果2b =,求ABC ?的面积的最大值

【名师点睛】三角函数、三角形和平面向量是高考高频题,综合性强,但难度不大,考查的都是基础知识和基本运算.以三角形为载体,以向量为工具,通过向量的坐标运算考查三角函数的化简求值是高考热点.

例21:已知点))(sin 2,cos 2(),1,1(),1,1(R C B A ∈-θθθ,O 为坐标原点。(Ⅰ)若C A =2B B -

,求

sin 2θ的值;(Ⅱ)若实数,m n 满足mOA nOB OC += ,求22(3)m n -+的最大值。

【名师点睛】:向量与三角函数的综合,实质上是借助向量的工具性。(1)解决这类问题的基本思路方法是将向量转化为代数运算;(2)常用到向量的数乘、向量的代数运算,以及数形结合的思路。 考点八.向量与函数问题的交汇

例22:已知平面向量a =(3,-1),b =(21, 2

3).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b ,

y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间.

【名师点睛】:第1问中两种解法是解决向量垂直的两种常见的方法:一是先利用向量的坐标运算分别求得两个向量的坐标,再利用向量垂直的充要条件;二是直接利用向量的垂直的充要条件,其过程要用到向量的数量积公式及求模公式,达到同样的求解目的(但运算过程大大简化,值得注意)。第2问中求函数的极值运用的是求导的方法,这是新旧知识交汇点处的综合运用.

例23:向量b a

,满足1==b a ,)0(,3>-=+k b k a b a k .(1)求b a ?关于k 的解析式)(k f ;(2)请你分别探讨a ⊥b 和a ∥b 的可能性,若不可能,请说明理由,若可能,求出k 的值;(3)求a 与b 夹角的最

大值.

【名师点睛】:此题主要考查向量的模、两向量平行和垂直的充要条件、向量的和、差、数乘、数量积等平

面向量的基本概念和基本运算.熟练地掌握平面向量的四种运算、向量的模以及两向量平行与垂直的充要条件这些平面向量的核心内容,是解决这类问题的关键.

三角函数1.要区别正角、负角、零角、锐角、钝角、区间角、象限角、终边相同角的概念头脑中要

有一根弦:角的范围已经扩展了,系列角如何表示,相关角如何表示。

2.在已知一个角的三角函数值,求这个角的其他三角函数值时,要注意题设中角的范围,并对不同的象限分别求出相应的值在应用诱导公式进行三角式的化简、求值时,应注意公式中符号的选取

3.单位圆中的三角函数线,是三角函数的一种几何表示,利用三角函数线进行求角和解三角不等式,有时候会更简单。

4.要善于将三角函数式尽可能化为只含一个三角函数的“标准式”,或者换元后成为一个初等函数式(换元后注意定义域的确定),进而可求得某些复合三角函数的最值、最小正周期、单调性等对函数式作恒

等变形时需特别注意保持定义域的不变性

5.函数的单调性是在给定的区间上考虑的,只有属于同一单调区间的两个函数值才能由它的单调性来比较大小,要注意单调区间是一个连续区间。

6.三角函数很好地体现了对称性和周期性的关系,要把这种关系拓展到一般函数。对称性用处:对称轴和最值对应,对称点和零点对应.

7.熟练三角函数图象的作图方法,注意定义域有限制的作图训练。通过作图去体验和巩固图象间的变换关系。

8.熟悉公式的记忆和运用

(1)诱导公式:奇变偶不变,符号看象限;

(2)两角和差的正弦、余弦、正切公式的正面运用和逆用; (3)倍角公式以及变形,体会降幂和和差化积的意图;

(4)合一变形:asinx+bsinx=()?++x b a sin 22。但要控制难度,限制在?是特殊角的范围内。 提醒:一些常见的变形技巧:(1)化切为弦;(2)遇公因式提取公因式;(3)凑角(不要盲目用一些公式展开,关键是看已知角和所求角有没有特殊关系。比如相差180度,90度等)

9.关注三角函数在三角形中的应用,结合平面几何的性质寻找边角关系,要特别重视正弦定理和余弦定理在解三角形中的计算,掌握三角形面积公式的多种计算方法。

三角函数这部分内容在高考中的难度要求是不高的,所以在复习的时候要控制难度,但由于公式多,性质复杂,变形有一定的技巧,所以要花较多的时间加强训练,学习时注意化归思想和数形结合思想的渗透,注意易错点。

平面向量1.透彻理解向量的概念。向量概念的两大要素“方向和长度”使向量既有“形”又有“数”的特征,既联系几何又联系代数,是高中数学重要的知识网络交汇点,是数形结合的重要载体。要抱着这样的观点去学习向量知识。

2.先从向量的几何特征进行学习,包括向量相等,向量共线的概念,平面向量的基本定理,以及向量的加减、实数与向量的积、向量的数量积等运算的几何表示,目的是给向量建立一个系统的几何体系。

3.向量的坐标运算使得几何问题可以通过代数运算加以解决,在对向量的几何特征掌握透彻的前提下,

理解记忆相关公式。如:向量共线、垂直的充要条件,向量的数量积运算,线段定比分点公式、平移公式等。

4.向量的数量积运算是平面向量的重要内容,它与实数之间积的运算既有区别又联系,要辨别清楚。向量的数量积运算是采取几何运算公式还是坐标运算公式,要甄别清楚;两个公式同时运用,又可构造出一个等式。要会灵活应用向量的数量积公式求向量的模和两点间的距离。

5.要把平面几何的性质、定理迁移到平面向量来,使得平面向量的几何推导成为可能,但题目的难度要有所控制。如:①在平行四边形ABCD 中,若AD AB =,则0)()(=-?+AD AB AD AB ,即菱形模型。若AD AB ⊥,则AD AB AD AB -=+,即矩形模型。②在ABC ?中,2

2

2

OC OB OA ==,O 是

ABC ?的外心;AC AB +一定过BC 的中点;通过ABC ?的重心;0=++OC OB OA ,O 是ABC ?的

重心;OA OC OC OB OB OA ?=?=?,O 是ABC ?的垂心;)(

AC

AC AB

AB +

λ)(R ∈λ通过ABC ?的内心;

0=?+?+?OC c OB b OA a 则O 是ABC ?的内心;222)(2

1

AC AB AC AB S ABC ?-?=

?.

1、设ABC ?的内角A 、B 、C 的对边长分别为a 、b 、c,且32

b +32

c -32

a =42bc .(Ⅰ) 求sinA 的值;(Ⅱ)

2sin()sin()

441cos 2A B C A

ππ

+++-的值. 解:(Ⅰ)由余弦定理得22222cos 23

b c a A bc +-==又0A π<<故2

1sin 1cos 3A A =-=

(Ⅱ)原式22sin()sin()2sin()sin()

44441cos 22sin A A A A A A

ππππ

π+-++-=

=- 22222

2(sin cos )(sin cos )

22222sin A A A A A +-=

222sin cos 72sin 2

A A A -==-

2、在ABC ?中,a b c 、、分别为内角A B C 、、的对边,且2sin a A (2)sin (2)sin b c B c b C =+++ (Ⅰ)求A 的大小;(Ⅱ)若sin sin 1B C +=,试判断ABC ?的形状.

解:(Ⅰ)由已知,根据正弦定理得c b c b c b a )2()2(22

+++= 即bc c b a ++=2

2

2

由余弦定理得

A bc c b a cos 2222-+=故?=-=120,2

1

cos A A

(Ⅱ)由(Ⅰ)得.sin sin sin sin sin 2

22C B C B A ++=又1sin sin =+C B ,得2

1

sin sin =

=C B 因为?<

3、在?ABC 中,

cos cos AC B AB C =。(Ⅰ)证明B=C :(Ⅱ)若cos A =-13,求sin 4B 3π?

?+ ??

?的值。

解(Ⅰ)证明:在△ABC 中,由正弦定理及已知得

sin B sin C =cosB

cosC

.于是sinBcosC-cosBsinC=0, 即sin (B-C )=0.因为B C ππ-<-<,从而B-C=0. 所以B=C. (Ⅱ)由A+B+C=π和(Ⅰ)得A=π-2B,故cos2B=-cos (π-2B )=-cosA=

13

. 又0<2B<π,于是sin2B=21cos 2B -=

223.从而sin4B=2sin2Bcos2B=42

9

, cos4B=22

7cos 2sin 29B B -=-

.所以4273sin(4)sin 4cos cos 4sin 33318

B B B πππ-+=+= 4、已知函数()2

(1cot )sin sin()sin()44f x x x m x x π

π=+++-。(1) 当m=0时,求()f x 在区间384ππ??

????

,上的取值范围;(2) 当tan 2a =时,()3

5

f a =,求m 的值。 解:(1)当m=0时,22cos 1cos 2sin 2()(1)sin sin sin cos sin 2

x x x

f x x x x x x -+=+

=+= 1[2sin(2)1]24x π=-+,由已知3[,]84x ππ∈,得22[,1]42x π-∈-从而得:()f x 的值域为12

[0,]2

+ (2)2cos ()(1)sin sin()sin()sin 44x f x x m x x x ππ=+

++-化简得:11

()[sin 2(1)cos 2]22

f x x m x =+++ 当tan 2α=,得:222

2sin cos 2tan 4sin 2sin cos 1tan 5a a a a a a a ===++,3

cos 25

a =,代入上式,m=-2. 5、(Ⅰ)○1证明两角和的余弦公式C :cos()cos cos sin sin αβαβαβαβ++=-; ○2由C αβ+推导两角和的正弦公式S :sin()sin cos cos sin αβαβαβαβ++=+.(Ⅱ)已知△ABC 的面积1,32

S AB AC =?=

且3

5

cos B =

,求cosC .

6、设函数22()cos()2cos ,32

x

f x x x R π=+

+∈.(Ⅰ) 求()f x 的值域;(Ⅱ) 记△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,若()1f B =,1b =,3c =,求a 的值. 解(Ⅰ)()22cos cos

sin sin cos 133f x x x x ππ=-++13

cos sin cos 122

x x x =--++ 135

cos sin 1sin()1226

x x x π=-+=++,()f x 的值域为[]0,2 (Ⅱ)由()f B =1得5sin()116B π+

+=即5sin()06B π+=又因0B π<<故6

B π

= 由余弦定理2222cos b a c ac B =+-得2

320a a -+=解得2a =或1a =

高中数学苏教版必修四学案:1.2.2 同角三角函数关系

第2课时三角函数线 学习目标 1.掌握正弦、余弦、正切函数的定义域. 2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切. 3.能利用三角函数线解决一些简单的三角函数问题.

知识点一有向线段 思考1比如你从学校走到家和你从家走到学校,效果一样吗? 思考2如果你觉得效果不同,怎样直观的表示更好? 梳理有向线段 (1)有向线段:规定了________(即规定了起点和终点)的线段称为有向线段. (2)有向直线:规定了正方向的直线称为有向直线. (3)有向线段的数量:根据有向线段AB与有向直线l的方向相同或相反,分别把它的长度添上______或______,这样所得的数,叫做有向线段的数量,记为AB. (4)单位圆:圆心在________,半径等于____________的圆. 知识点二三角函数线 思考1在平面直角坐标系中,任意角α的终边与单位圆交于点P,过点P作PM⊥x轴,过点A(1,0)作单位圆的切线,交α的终边或其反向延长线于点T,如图所示,结合三角函数的定义,你能得到sin α,cos α,tan α与MP,OM,AT的关系吗?

思考2三角函数线的方向是如何规定的? 思考3三角函数线的长度和方向各表示什么?梳理

知识点三正弦、余弦、正切函数的定义域 思考对于任意角α,sin α,cos α,tan α都有意义吗?梳理三角函数的定义域

类型一 三角函数线 例1 作出-5π 8的正弦线、余弦线和正切线. 反思与感悟 (1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得到正弦线和余弦线. (2)作正切线时,应从点A (1,0)引单位圆的切线交角的终边或终边的反向延长线于一点T ,即可得到正切线AT . 跟踪训练1 在单位圆中画出满足sin α=1 2的角α的终边,并求角α的取值集合.

高中数学三角函数知识点(复习)

三角函数知识点复习 §1.1.1、任意角 1、正角、负角、零角、象限角的概念. 2、 与角终边相同的角的集合: . §1.1.2、弧度制 1、把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、 . 3、弧长公式:. 4、扇形面积公式:. §1.2.1、任意角的三角函数 1、设是一个任意角,它的终边与单位圆交于点,那么: 2、 设点为角终边上任意一点,那么:(设),,, 3、 ,,在四个象限的符号和三角函数线的画法. 正弦线:MP; 余弦线:OM; 正切线:AT 5、特殊角0°,30°,45°,60°, 1、平方关系:. 2、商数关系:. 3、倒数关系: §1.3、三角函数的诱导公式 (概括为“奇变偶不变,符号看象限”) 1、 诱导公式一: (其中:)

2、 诱导公式二: 3、诱导公式三: 4、诱导公式四: 5、诱导公式五: 6、诱导公式六: §1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象: 2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大 最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图. 在上的五个关键点为:

§1.4.3、正切函数的图象与性质 图表归纳:正弦、余弦、正切函数的图像及其性质

图象

定 义 域 值 域 [-1,1][-1,1] 最 值 周 期 性 奇 偶 性 奇偶 单调性在上单调递增 在上单调递减 在上单调递增 在上单调递减 对称性对称轴方程: 对称中心 对称轴方程: 对称中心

1、记住正切函数的图象: 2、记住余切函数的图象:

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

【2019A新教材高中数学必修第一册】5.2.1 三角函数的概念 导学案

5.2.1 三角函数的概念 1.借助单位圆理解任意角三角函数的定义; 2.根据定义认识函数值的符号。理解诱导公式一; 3.能初步运用定义分析和解决与三角函数值有关的一些简单问题。 1.教学重点:任意角的三角函数(正弦函数、余弦函数、正切函数)的定义; 2.教学难点:任意角的三角函数概念的建构过程,解决与三角函数值有关的一些简单问题。 一、设角, 是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。 那么(1) 的正弦函数。叫做α记作 ,;sin α=y 即 (2) 的余弦函数。叫做α记作 ,;cos α=x 即 (3) 的正切。叫做α记作 ;tan α=x y 即 )0(tan ≠=x x y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。 二、三角函数的定义域。 三角函数 定义域 αsin =y αcos =y αtan =y 三、诱导公式 =+)2sin(παk ;=+)2(cos παk ; =+)2(tan παk 。Z k ∈ 一、探索新知 探究一.角α的始边在x 轴非负半轴,终边与单位圆交于点P 。当πα=时,点P 的坐标是什么?当

322ππα或= 时,点P 的坐标又是什么?它们唯一确定吗? 探究二 :一般地,任意给定一个角α,它的终边OP 与单位圆交点P 的坐标能唯一确定吗? 1.任意角的三角函数定义 设角, 是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。 那么(1) 的正弦函数。叫做α记作 ,;sin α=y 即 (2) 的余弦函数。 叫做α记作 ,;cos α=x 即 (3) 的正切。叫做α记作 ;tan α=x y 即 )0(tan ≠=x x y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。 正弦函数,余弦函数,正切函数都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将他们称为三角函数. 通常将它们记为:正弦函数 R x x y ∈=,sin 余弦函数 R x x y ∈=,cos 正切函数 )(2,tan Z k k x x y ∈+≠=ππ 探究三:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量。以比值为函数值的函数,设)2 ,0(π ∈x ,把按锐角三角函数定义求得的锐角x 的正弦记为1z ,并把按本节三角函数定义求得的 x 的正弦记为1y 。1z 与1y 相等吗?对于余弦、正切也有相同的结论吗?

高中数学三角函数知识点总结(非常好用)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π 180°≈°=57°18ˊ. 1°= 180 π≈(rad ) 3.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: x y + O — — + # x y O — + + — + y O ) | — + + —

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1。(2)商数关系:αα cos sin =tan α (z k k ∈+≠ ,2 ππ α) 6.诱导公式:记忆口诀:2 k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号 看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ' ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

高中数学三角函数模型的简单应用学案苏教版必修

§1.6三角函数模型的简单应用 【学习目标 细解考纲】 1、会用三角函数解决一些简单的问题,体会三角函数是描述周期变化现象的重要函数模型. 2通过对三角函数的应用,发展数学应用意识,求对现实世界中蕴涵的一些数学模型进行思考和作出判断. 【知识梳理 双基再现】 1、三角函数可以作为描述现实世界中_________现象的一种数学模型. 2、|sin |y x =是以____________为周期的波浪型曲线. 3、如图所示,有一广告气球,直径为6m ,放在公司大楼上空,当行人仰望气球中心的仰角030BAC ∠=时,测得气球的视角01β=,若θ很小时,可取sin θθ≈,试估算该气球离地高度BC 的值约为( ). A .72cm B .86cm C .102cm 【小试身手 轻松过关】 1、设()y f t =是某港口水的深度关于时间t (时)的函数,其中024t ≤≤,下表是该港口某一天从0至24时记录的时间与水深的关系. 经长期观察,函数()y f t =的图象可以近似地看成函数sin()y k A t ω?=++的图象. 根据上述数据,函数()y f t =的解析式为( ) A .123sin ,[0,24]6t y t π=+∈ B .123sin(),[0,24]6 t y t ππ=++∈ C .123sin ,[0,24]12t y t π=+∈ D .123sin(),[0,24]122 t y t ππ=++∈ 2、如图,是一弹簧振子作简谐运动的图象,横轴表示振动的时间,纵轴表示振子的位移,则这个振子振动的函数解析式是____________. 3、如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过 12 周期后,乙点的位置将移至( ) A .甲 B .乙 C .丙 D .丁

三角函数与平面向量(好)

三角函数与平面向量 一:考点分析 小题主要考查三角函数图象与性质,利用诱导公式与和差角公式、倍角公式、正余弦定 理求值化简,有时与向量相结合。大题一般三角函数的图象与性质与向量及解三角形相结合。 1任意角的三角函数: (1)弧长公式:I |aR R 为圆弧的半径,a 为圆心角弧度数,I 为弧长。 cosa 2.已知 tan -- =2,,则 3sin 2一一 -cos sin -- +1=( ) A.3 B.-3 C.4 D.-4 3 .已知sin 、,2 cos .. 3 , 则tan ( ) A.二 B .2 C D . 2 2 2 4.若 sin(— 3 1 5 ) ,贝U cos(—— )的值为 ( ) A 1 f 1 2 2 2^2 A. — B. c. D. 3 3 3 3 类型二:三角恒等变换 1.若 sin( ) 4 5 (o,—), 则sin 2 cos 的值等于 5 2 2 2.若 cos2 2 则cos +sin 的值为 sin( 4) 2 3.已知角 e 的顶点与原点重合,始边与 x 轴正半轴重合,终边在直线 n 类型一: 诱导公式的应用 3 sin(2 ) cos(3 ) cos( ) 1 .化简: 2 sin( )sin(3 ) cos( ) (4)诱导公式:(奇变偶不变,符号看象限) (2) 扇形的面积公式: S llR R 2 (3) 同角三角函数关系式:商数关系: 为圆弧的半径,I 为弧长。 , sin a tana 平方关系: sin 2a cos 2 a 1 k 所谓奇偶指的是整数 k 的奇偶性; 2 y = 2x 上,则

人教版 高中数学必修4 三角函数知识点

高中数学必修4知识点总结 第一章 三角函数(初等函数二) ?? ?? ?正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<, 则sin y r α= ,cos x r α= ,()tan 0y x x α= ≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=M P ,cos α=O M ,tan α=AT . 12、同角三角函数的基本关系:()2 2 1sin cos 1αα+=

高中数学学案:三角函数的最值问题

高中数学学案:三角函数的最值问题 1. 会通过三角恒等变形、利用三角函数的有界性、结合三角函数的图象,求三角函数的最值和值域. 2. 掌握求三角函数最值的常见方法,能运用三角函数最值解决一些实际问题. 1. 阅读:必修4第24~33页、第103~116页、第119~122页. 2. 解悟:①正弦、余弦、正切函数的图象和性质是什么?②三角函数y =A sin (ωx +φ)(A>0,ω>0)的最值及对应条件;③两角和与差的正弦、余弦、正切公式是什么?辅助角公式是否熟练?④二倍角公式是什么?由倍角公式得到的降幂扩角公式是什么?必修4第123页练习第4题怎么解? 3. 践习:在教材空白处,完成必修4第131页复习题第9、10、16题. 基础诊断 1. 函数f(x)=sin x,x ∈? ????π6,2π3的值域为? ?? ??12,1__. 2. 函数f(x)=sin x -cos ? ?? ??x +π6的值域为3]__. 解析:因为f(x)=sin x -cos (x +π6)=sin x -32cos x +12sin x =32sin x -32cos x =3sin (x -π6), 所以函数f(x)=sin x -cos (x +π6)的值域为[-3,3]. 3. 若函数f(x)=(1+3tan x)cos x,0≤x<π2,则f(x)的最大值为__2__. 解析:f(x)=(1+3tan x)cos x =cos x +3sin x =2sin ? ????x +π6.因为0≤x<π2,所以π6≤x +π6<2π3,所以sin ? ????x +π6∈???? ??12,1, 所以当sin ? ?? ??x +π6=1时,f(x)有最大值2. 4. 函数y =2sin 2x -3sin 2x 范例导航 考向? 形如y =a sin 2x +b cos x +c 的三角函数的最值

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化: ,23600π= ,1800 π= 1rad =π 180°≈57.30°=57°18ˊ 1°= 180 π≈0.01745(rad ) 3.弧长及扇形面积公式 (1)弧长公式:r l .α= α----是圆心角且为弧度制 (2)扇形面积公式:S=r l .2 1 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: 记忆口诀:一全正,二正弦,三两切,四余弦

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1 (2)商数关系:ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式: 记忆口诀:把2 k π α±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. x y O — + + — + y O — + + —

2018版高中数学三角函数1.2.1任意角的三角函数一导学案新人教A版

1.2.1 任意角的三角函数(一) 学习目标 1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等. 知识点一 任意角的三角函数 使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,作PM ⊥x 轴于M ,设P (x ,y ),|OP |=r . 思考1 角α的正弦、余弦、正切分别等于什么? 答案 sin α=y r ,cos α=x r ,tan α=y x . 思考2 对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变? 答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关. 思考3 在思考1中,当取|OP |=1时,sin α,cos α,tan α的值怎样表示? 答案 sin α=y ,cos α=x ,tan α=y x . 梳理 (1)单位圆 在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. (2)定义 在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α, 即sin α=y ; ②x 叫做α的余弦,记作cos α,即cos α=x ; ③y x 叫做α的正切,记作tan α,即tan α=y x (x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.

高中数学三角函数

三角函数常见题 1、A,B,C为三角形内角,已知1+cos2A-cos2B-cos2C=2sinBsinC,求角A 解:1+cos2A-cos2B-cos2C=2sinBsinC 2cos2A-1-2cos2B+1+2sin2C=2sinBsinC cos2A-cos2B+sin2(A+B)=sinBsinC cos2A-cos2B+sin2Acos2B+2sinAcosAsinBcosB+cos2Asin2B=sinBsinC cos2A-cos2Acos2B+2sinAcosAsinBcosB+cos2Asin2B=sinBsinC 2cos2AsinB+2sinAcosAcosB=sin(180-A-B) 2cosA(cosAsinB+sinAcosB)-sin(A+B)=0 Sin(A+B)(2cosA-1)=0 cosA=1/2 A=60 2、证明:(1+sinα+cosα+2sinαcosα)/(1+sinα+cosα)=sinα+cosα <===>1+sina+cosa+2sinacosa=sina+cosa+(sina+cosa)2 <===>1+sina+cosa+2sinacosa=sina+cosa+1+2sinacosa <===>0=0恒成立 以上各步可逆,原命题成立 证毕 3、在△ABC中,sinB*sinC=cos2(A/2),则△ABC的形状是? sinBsin(180-A-B)=(1+cosA)/2 2sinBsin(A+B)=1+cosA 2sinB(sinAcosB+cosAsinB)=1+cosA sin2BsinA+2cosAsin2B-cosA-1=0 sin2BsinA+cosA(2sin2B-1)=1 sin2BsinA-cosAcos2B=1 cos2BcosA-sin2BsinA=-1 cos(2B+A)=-1 因为A,B是三角形内角 2B+A=180 因为A+B+C=180 所以B=C 三角形ABC是等腰三角形 4、求函数y=2-cos(x/3)的最大值和最小值并分别写出使这个函数取得最大值和最小值的x的集合 -1≤cos(x/3)≤1 -1≤-cos(x/3)≤1 1≤2-cos(x/3)≤3 值域[1,3] 当cos(x/3)=1时即x/3=2kπ即x=6kπ时,y有最小值1此时{x|x=6kπ,k∈Z} 当cos(x/3)=-1时即x/3=2kπ+π即x=6kπ+3π时,y有最小值1此时{x|x=6k π+3π,k∈Z} 5、已知△ABC,若(2c-b)tanB=btanA,求角A [(2c-b)/b]sinB/cosB=sinA/cosA 正弦定理c/sinC=b/sinB=2R代入

高中数学第一章三角函数1.1.1任意角学案(含解析)新人教A版必修4

高中数学第一章三角函数1.1.1任意角学案(含解析)新人教A 版必修4 考试标准 课标要点学考要求高考要求 任意角的概念 a a 终边相同的角的表示 b b 象限角的概念 b b 注:“a”表示“了解”,“b”表示“理解”,“c”表示“掌握”. 知识导图 学法指导 1.结合实例明确任意角的概念. 2.本节的重点是理解并掌握正角、负角、零角的概念,掌握用集合的形式表示终边相同的角,并会判断角的终边所在的象限. 1.角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 2.角的表示 顶点:用O表示; 始边:用OA表示,用语言可表示为起始位置; 终边:用OB表示,用语言可表示为终止位置. 状元随笔(1)在画图时,常用带箭头的弧来表示旋转的方向.

(2)为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可以简记成“α”. 3.角的分类 类型定义图示 正角按逆时针方向旋转形成的角 负角按顺时针方向旋转形成的角 零角一条射线没有作任何旋转,称它形成了一个零角 在直角坐标系中研究角时,当角的顶点与原点重合,角的始边与x轴的非负半轴重合时,角的终边在第几象限,就说这个角是第几象限角,如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 5.终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.状元随笔(1)α为任意角,“k∈Z”这一条件不能漏. (2)k·360 °与α中间用“+”连接,k·360 °-α可理解成k·360 °+(-α). (3)当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差360 °的整数倍.终边不同则表示的角一定不同. [小试身手] 1.判断下列命题是否正确. (正确的打“√”,错误的打“×”) (1)角的始边、终边是确定的,角的大小是确定的.( ) (2)第一象限的角一定是锐角.( ) (3)终边相同的角是相等的角.( ) 答案:(1)×(2)×(3)× 2.下列各角:-60°,126°,-63°,0°,99°,其中正角的个数是( ) A.1 B.2 C.3 D.4 解析:结合正角、负角和零角的概念可知,126°,99°是正角,-60°,-63°是负角,0°是零角,故选B. 答案:B

高中数学必修三角函数知识点与题型总结

高中数学必修三角函数知 识点与题型总结 Last updated on the afternoon of January 3, 2021

三角函数典型考题归类 1.根据解析式研究函数性质 例1(天津理)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84?? ????,上的最小值和最大值. 【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ????? ?=-++++ ? ? ?????? ?. 求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间. 【相关高考2】(湖南理)已知函数2π()cos 12f x x ? ?=+ ?? ?,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间. 2.根据函数性质确定函数解析式 例2(江西)如图,函数π 2cos()(00)2 y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(0,且 该函数的最小正周期为π. (1)求θ和ω的值; (2)已知点π02A ?? ??? ,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当0y = 0ππ2x ?? ∈???? ,时,求0x 的值. 【相关高考1】(辽宁)已知函数2 ππ()sin sin 2cos 662x f x x x x ωωω??? ?=++--∈ ? ???? ?R ,(其中0ω>),(I )求函数()f x 的值域;(II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交 点间的距离为 π 2 ,求函数()y f x =的单调增区间.

三角函数与平面向量综合题的六种类型

第1讲 三角函数与平面向量综合题3.17 题型一:三角函数与平面向量平行(共线)的综合 【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量. (Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 题型二. 三角函数与平面向量垂直的综合 【例2】 已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π 2 ,2π),且→a ⊥→b . (Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π 3)的值. 题型三. 三角函数与平面向量的模的综合 【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=2 5 5.(Ⅰ)求cos(α-β)的值;(Ⅱ) 若-π2<β<0<α<π 2,且sinβ=-513,求sinα的值. 题型四 三角函数与平面向量数量积的综合 【例4】设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ) 求实数m 的值;(Ⅱ)求函数f(x)的最小值. 题型五:结合三角形中的向量知识考查三角形的边长或角的运算 【例5】(山东卷)在ABC ?中,角,,A B C 的对边分别为,,a b c ,tan C = (1)求cos C ;(2)若5 2 CB CA ?= ,且9a b +=,求c . 题型六:结合三角函数的有界性,考查三角函数的最值与向量运算 【例6】()f x a b =? ,其中向量(,cos 2)a m x = ,(1sin 2,1)b x =+ ,x R ∈,且函数 ()y f x =的图象经过点(,2)4 π . (Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。 题型七:结合向量的坐标运算,考查与三角不等式相关的问题 【例7】设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈ ,函数()()f x a a b =?+ . (Ⅰ)求函数()f x 的最大值与最小正周期;(Ⅱ)求使不等式3 ()2 f x ≥成立的x 的取值集. 【跟踪训练】 三角函数与平面向量训练反馈 1、已知向量=(x x x 3,52-),=(2,x ),且⊥,则由x 的值构成的集合是( ) A 、{0,2,3} B 、{0,2} C 、{2} D 、{0,-1,6} 2、设02x π≤≤, sin cos x x =-,则 ( ) A .0x π≤≤ B . 74 4x π π≤≤ C .544 x ππ ≤≤ D . 32 2 x π π ≤≤ 3、函数1cos 4tan 2sin )(++?=x x x x f 的值域是 。 4、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos cos 2B b C a c =-+. (1)求角B 的大小; (2)若 b a + c =4,求a 的值. 5、已知向量 )1),3 (cos(π + =x ,)21),3(cos(-+ =π x ,)0),3 (sin(π+=x 函数 x f ?=)(, x g ?=)(, x h ?-?=)( (1)要得到)(x f y =的图象,只需把)(x g y =的图象经过怎样的平移或伸缩变换? (2)求)()()(x g x f x h -=的最大值及相应的x .

高中数学三角函数知识点

高中数学第四章-三角函数知识点汇总 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°= 180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:2 11||2 2 s lr r α= = ?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 r y =α sin ; r x = αcos ; x y = α tan ; y x = α cot ; x r = α sec ;. y r = α csc . 5、三角函数在各象限的符号:(一全二正弦,三切四余弦) 正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. 7. 三角函数的定义域: SIN \C O S 三角函数值大小关系图 1、2、3、4表示第一、二、三、四象限一半所在区域 (3) 若 o

高中数学三角函数学案精编

三角函数的概念 〖考纲要求〗理解三角函数的概念,正确进行弧度和角度的换算;掌握任意角三角函数定义、符号. 〖复习要求〗掌握任意角三角函数的概念,正确进行弧度和角度的换算;熟练掌握任意角三角函数定义、符号,会用任意角三角函数定义 和符号处理问题;了解三角函数线. 〖复习建议〗掌握任意角三角函数的概念,正确进行弧度和角度的换算;熟练掌握任意角三角函数定义、符号,会用任意角三角函数定义 和符号处理问题;熟记特殊的三角函数值. 〖双基回顾〗⑴角的定义: . ⑵叫正角;叫负角;叫零角. ⑶终边相同角的表示:或者 . ⑷1弧度的定义是 .弧度与角度换算关系是 .⑸任意角三角函数定义为: sin= cos= tan= · P(x,y) x y O 任意角三角函数的符号规则:在扇形中: .S扇 = 。 形

l r ⑹两个特殊的公式: 如果∈,那么sin<<推论:>0则sin< 如果∈,那么1<sin+cos≤ 一、知识点训练: 1、终边在y轴上的角的集合是 . 2、终边在Ⅱ的角的集合是 . 3、适合条件|sin|=-sin的角是第象限角. 4、在-720o到720o之间与-1050o终边相同的角是 . 5、sin2·cos3·tan4的符号是………………………………………………………………………() (A)小于0 (B)大于0 (C)等于0 (D)不确定 6、已知角的终边过点P(-4m,3m),则 2sin+cos=…………………………………………() (A)1或者-1 (B)或者- (C)1或者- (D)-1或者 二、典型例题分析: 1、确定的符号

2、角终边上一点P的坐标为(-,y)并且,求cos与tan的值. 3、如果角的终边在直线y=3x上,求cos与tan的值. 4、扇形的周长为20cm,问其半径为多少时其面积最大? 三、课堂练习: 1、角终边上有一点(a,a) 则sin=…………………………………………………………() (A) (B) -或 (C) - (D)1 2、如果是第二象限角,那么-是第……………………………………………()象限角 (A)Ⅱ或Ⅲ (B) Ⅰ或Ⅱ (C) Ⅰ或Ⅲ (D) Ⅱ或Ⅳ 3、“=2k+(k是整 数)”是“tan=tan”的…………………………………………………() (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分条件也不必要条件 4、如果角与的终边关于y轴对称,则cos+cos= . 5、在(-4,4)上与角终边相同的所有角为 . 四、课堂小结: 1、要熟悉任意角的概念,掌握角度与弧度的转化方法,熟练掌握任意角三角函数的定义方法. 2、已知角的一个三角函数值求其它三角函数值时,必须对讨论角的范围 3、知道所在的象限能熟练求出所在象限. 五、能力测试:姓名得分 1、下列结果为正值的是……………………………………………………………………………() (A)cos2-sin2 (B)tan3·sin2 (C)cos2·sin2 (D) sin2·tan2 *2、已知锐角终边上有一点(2sin3,-2cos3),那么=………………………………………()

高一三角函数知识点梳理总结

高一三角函数知识 §1.1任意角和弧度制 ?? ? ??零角负角:顺时针防线旋转正角:逆时针方向旋转 任意角..1 2.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.. ①与α(0°≤α<360°)终边相同的角的集合:{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{ } Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对 的弧长为l ,则其弧度数的绝对值|r l = α,其中r 是圆的半径。 5. 弧度与角度互换公式: 1rad =(π 180)°≈57.30° 1°=180 π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:? ?? ? ??∈+<

高中数学三角函数知识点及试题总结

高考三角函数 1.特殊角的三角函数值: 2.角度制与弧度制的互化:,23600π= ,1800π= 3.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: sin α cos α tan α x y + O — — + x y O — + + — + y O — + + —

5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1。(2)商数关系:α α cos sin =tan α (z k k ∈+≠ ,2 ππ α) 6.诱导公式:记忆口诀:2 k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号 看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2παα??+= ???,cos sin 2παα??+=- ??? . 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质

相关主题
文本预览
相关文档 最新文档