通信系统建模与仿真
- 格式:doc
- 大小:225.50 KB
- 文档页数:11
光学通信系统建模与性能仿真随着信息技术的快速发展,光学通信系统作为一种高速、大容量、低延迟的通信方式,得到了广泛的应用。
光学通信系统建模与性能仿真是一种重要的研究方法,通过对光学通信系统各个组成部分的建模和仿真,能够评估系统的性能、优化系统设计。
光学通信系统主要由发射机、传输介质(光纤)、接收机和信号处理部分组成。
在建模与仿真过程中,首先需要对各个组成部分进行详细的建模。
发射机是光学通信系统中的关键组成部分,其目的是将输入的电信号转换为光信号。
在建模过程中,需要考虑激光器的特性、调制器的调制方式以及驱动电路等。
激光器的建模可以采用理论模型或者实验数据进行仿真,调制器可以采用各种调制算法进行仿真。
传输介质主要是光纤,其损耗、色散、非线性等特性对系统的性能有着重要影响。
在建模与仿真过程中,需要考虑光纤的特性以及光纤之间的连接方式。
光纤的传输特性可以通过建立传输线模型来仿真,通过调整各个参数,可以分析系统对于不同传输距离、不同波长的性能表现。
接收机是将光信号转换为电信号的部分,其主要包括光电探测器、前置放大器和解调器等。
在建模与仿真过程中,需要考虑光电探测器的响应特性、前置放大器的增益、解调器的解调算法等。
通过对这些参数的仿真与优化,可以提高系统的灵敏度和吞吐量。
信号处理部分是光学通信系统中的关键环节之一,其目的是提取、恢复和处理接收到的信号。
在建模与仿真过程中,需要考虑信号处理的算法、滤波器的特性以及误码率的优化等。
通过对信号处理算法的仿真与优化,可以提高系统的抗噪声能力和误码率性能。
在光学通信系统建模与性能仿真中,除了对各个组成部分的建模外,还需要考虑系统中的干扰和信道传输的特性。
系统中的干扰可以包括其他光信号、噪声等,通过对干扰源的建模与仿真,可以评估系统对于不同干扰源的抗干扰能力。
信道传输的特性可以通过建立传输通道模型来进行仿真,在考虑信道传输特性的基础上,优化系统设计,提高系统的传输性能。
在完成光学通信系统建模与性能仿真后,需要进行性能评估与优化。
(1)模型的分类模型分为两大类:一类是物理模型,就是采用一定比例尺按照真实系统的“样子”制作;另一类是数学模型,就是用数学表达式来描述系统的内在规律。
(2)通信系统仿真的方法三种1.公式计算法;2.硬件样机测试研究法;3.波形仿真法(3)仿真在通信系统中所起的作用?仿真在通信系统的设计过程中起着重要作用:在概念定义阶段,仿真给出了顶层的技术要求;在设计进程和开发过程中,仿真与硬件开发一起确定最后的技术条件,并检查子系统对整个系统性能的影响;在运行情况下,仿真可以做检修故障的工具,并且预计系统的EOL性能。
(4)通信仿真系统的建模结构分为哪几种?通信仿真系统的建模结构分成系统建模、设备建模和过程建模三种。
(5)过程建模主要有几种,各自作用?过程建模分为三种:信源、噪声和干扰随机过程建模,随机信道建模,等价随机过程建模。
作用:在系统的设计和检测中,信源经常被用作测试信号,信道建模实际上也是随机过程建模,等价随机过程模型可以减少运动量。
(6)泊松过程的特性?1.X(0)=0,即零初值性;2.对任意的s≥t≥0,∆t≥0,增量X(s+∆t)−X(t+∆t)与X(s)−X(t)具有相同的分布函数,即增量平稳性或齐次性;3.对任意的正整数n,以及任意的非负实数0≤t0≤t1≤⋯≤t n,增量X(t1)−X(t0), X(t2)−X(t1),⋯ , X(t n)−X(t n−1),相互独立,即增量独立性;4.对于足够小的时间∆t,有P[X(∆t)=1]=λ∆t+O(∆t)P[X(∆t)=0]=1−λ∆t+O(∆t)P[X(∆t)≥2]=O(∆t)即称{X(t),t≥0}是强度为λ的泊松方程。
(7)平稳随机过程?所谓平稳随机过程,是指它的任何n维分布函数或概率密度函数与时间起点无关。
(8)试求功率谱密度为P n =n 0/2的白噪声通过理想低通滤波器后的功率谱密度、自相关函数及噪声功率N 。
解:理想低通滤波器特性可由下式表示H (ω)={k 0e −jωtd ,|ω|≤ωH 0 , 其它ω可见|H (ω)|2=K 02,|ω|≤ωH计算输出功率谱密度为P Y (ω)=|H (ω)|2P n (ω)=K 02n 02,|ω|≤ωH 而自相关函数R Y (τ)为R Y (τ)=12π∫P Y (ω)e jωπdω∞−∞ =K 02n 04π∫e jωπωH −ωH dω =K 02n 0f H sin ωH τωH τ, f H =ωH 2π于是,输出噪声功率N 为R Y (0),即 N=R Y (0)= K 02n 0f H可见,输出的噪声功率与K 02、n 0及f H 成正比。
通信系统建模与仿真教学设计随着通信技术的发展,通信系统的建模与仿真成为了提高学生通信技术水平的重要课程环节。
本文将从课程目标、课程内容、教学方法等方面进行探讨通信系统建模与仿真教学设计。
课程目标通信系统建模与仿真是通信专业的核心课程之一,其主要目标是使学生了解通信系统建模与仿真的相关理论和基本方法,掌握常用的通信系统建模与仿真软件,并能够利用软件建立和仿真通信系统的各个环节,从而增强其学习和实践能力。
课程内容通信系统建模与仿真的教学内容涵盖了通信系统的整个建模与仿真过程,包括:一、系统建模系统建模是通信系统建模与仿真的重要环节,其目的是将通信系统的各个组成部分抽象为数学模型,包括信源、信道、调制解调器、信道编码等。
•信源建模:信源建模是将通信系统中的信息源抽象成数学模型,常见的信源有随机信号、数字信号和模拟信号等,其数学模型包括概率分布、功率谱密度等。
•信道建模:信道建模是通信系统建模的难点,其目的是将信道的噪声、失真等因素抽象成数学模型,建立信道传输特性的数学描述。
•调制解调器建模:调制解调器建模是通信系统建模的关键,其主要作用是实现信息的传输和接收,并将低频信号转换为高频信号,以便于信号在信道中传输。
二、系统仿真系统仿真是通信系统建模与仿真的重要环节,其目的是验证通信系统的设计是否可行,评估系统的性能指标,并优化通信系统的各个环节。
•仿真平台:通信系统仿真的软件工具在实践中非常重要,常见的仿真软件有Matlab、Mentor Graphics、VHDL等。
•仿真结果:仿真结果是评估通信系统性能的关键,包括误码率、信号电平、信道容量等多个性能指标。
教学方法通信系统建模与仿真的教学方法应该以理论与实践相结合为主要原则,从以下三个方面进行探讨:一、理论课教学理论课教学是通信系统建模与仿真教学的基础,应当重点讲解信源、信道、调制解调器等基本原理,详细介绍通信系统建模与仿真的方法和技术,提高学生的理解和掌握程度。
详解MATLAB/Simulink通信系统建模与仿真教学设计MATLAB/Simulink是一款广泛应用于各个领域的数学工具,其中Simulink可用于建立系统级仿真模型,以便进行电子、机械、流体和控制系统等领域内的实验分析和设计。
在通信领域中,Simulink非常适合建立通信系统的仿真模型,并用于进行传输计算、信道建模、信号处理和多模调制等。
本文将介绍MATLAB/Simulink通信系统模型的建立,及如何将其应用于通信系统教学设计。
通信系统模型建立数字调制数字调制是通信系统中的关键技术之一。
首先,我们需要在Simulink中建立基带信号源,并使用Math Function模块产生载波信号。
Modulation 模块可用于将基带信号和载波信号结合起来。
为了使得调制系统工作稳定和正常,通常在模型中加入Equalization和Resampling模块,以消除接收端接收到的噪声和信号失真。
当系统处理完成后,我们可以使用Scope模块来对模型工作情况进行进一步的分析。
数字解调数字解调需要在接收端建立解调器模型。
接收端模型包括匹配滤波器、采样器、时钟恢复器、色散补偿器和多值/二次干扰恢复器。
在这个模型中,也需要添加Equalization和Resampling模块以消除接收端所受的噪声和信号失真。
在接收端处理完成之后,我们也可以使用Scope模块对模型结果进行进一步分析。
信道建模信道建模是通信系统中另一个关键环节。
在Simulink中建造通信信道仿真模型,需要引入建立通信信道的数学模型,并建立符合通道模型的信道传输系统。
在建立仿真模型中,包括噪声源、多路复用技术、OFDM技术、信号调制和解调技术。
对于每个信道结构,我们都可以建立相应的仿真模型,进行仿真分析。
OFDM信息传输系统OFDM技术利用多个正交子载波来传输信息,以提高通信质量和可靠性,同时提高频带利用率。
OFDM系统建模主要包括加脉冲造型、IFFT、添加循环前缀、调制调制、运动模糊和色散模拟、反向调制、解压缩、去定时和轻度等模块。
通信系统建模与仿真心得体会本学期的实习课程中,我们开展了通信系统建模与仿真,通过动手操作,我们收获很大,现将心得体会汇总如下:通信系统建模是通信工程和电子信息类专业一门重要的专业主干课,理论性强、概念抽象,公式推导繁琐,学生难以理解和掌握。
实验教学作为通信原理课程教学工作的重要组成部分,对提高学生动手能力、分析解决问题的能力等各方面起着重要作用。
由于计算机仿真技术的广泛应用和飞速发展,能够引入软件仿真技术对复杂通信系统进行建模,利用集成仿真环境和图形图像处理等技术,在PC机上实现可视化的系统虚拟仿真、可以替代传统实验各操作环节的相关软硬件操作环境[4]。
这是现代高校实验教学的发展模式,弥补了实验箱验证性实验教学的不足,能够有效解决实验方式机械、实验设备维护困难和实验内容不系统等问题,其优势在于利用率高,易维护,便于开展综合性和设计性实验。
实验室环境下的仿真模块能够提供动态系统的建模、仿真和综合分析的集成环境,模块库中拥有丰富的模块组,还可以把有特定功能的代码转换成模块,多个模块之间可以组织成一个子系统,因此具有内在的模块化设计功能,可以满足用户设计出各种需要的系统。
为了在仿真过程中可以随时观察结果,仿真模块提供了专门用于显示输出信号的模块,比如示波器和频谱仪。
另外,考虑到用户在仿真结束之后需要进行数据分析和处理,仿真模块的存储模块可以把仿真结果以波形、数据等形式保存到实验室工作空间中。
基于实验室的上述功能,在仿真模块环境下完全可以实现在硬件设备上要完成的实验内容,通过可视化的各种GUI控件,建立直观的动态系统模型,从而为实验教学提供功能丰富、操作便捷的虚拟仿真环境。
实验室具有强大的数值运算能力、方便实用的绘图功能,以及语言的高度集成性和可视化建模仿真等功能,使得它在众多学科领域成为应用开发的基本工具和首选平台。
实验室下的仿真模块仿真环境可以对动态系统进行建模、仿真和分析,采用图形化和模块化的建模方式,模型结构直观,提供专门的输出显示模块和存储模块,便于对仿真数据进行分析和处理。
通信系统建模与仿真课程设计1. 课程设计概述本课程设计旨在通过实际操作,让学生掌握通信系统建模与仿真方法,并能够利用计算机软件进行仿真。
本课程设计主要分为三个部分,分别为理论学习、仿真实验和实验报告撰写。
在理论学习部分,学生将学习通信系统建模的理论知识;在仿真实验部分,学生将通过计算机仿真软件进行实际操作,并仿真分析通信系统性能;在实验报告撰写部分,学生将撰写本次实验的报告,总结实验结果并给出改进方案。
2. 理论学习2.1 通信系统建模基础通信系统建模是通信系统设计的重要部分,其主要目的是建立一个数学模型,描述通信系统的各个组成部分间的关系。
通信系统建模可以大致分为系统的传输模型和噪声模型两部分。
系统的传输模型主要描述信道传输特性,如频率响应、时域响应等;噪声模型则描述了环境、电路和信号本身所引起的噪声影响。
2.2 通信系统仿真方法通信系统仿真是通过计算机对通信系统进行模拟,分析系统性能和验证系统的可行性。
通信系统仿真可以大致分为系统仿真和信号仿真两部分。
系统仿真主要是对通信系统整体进行仿真,分析系统的性能指标,如误码率、信噪比等。
信号仿真则是针对某个信号的特定特性进行仿真,如频谱、时域波形等。
3. 仿真实验3.1 实验内容本次仿真实验的主要内容是使用MATLAB软件对QPSK调制通信系统进行建模和仿真。
实验步骤如下:1.建立信道模型:使用MATLAB建立通信系统中各个模块的数学模型,包括信源、信道、调制器、解调器等模块。
2.信号发送:生成QPSK调制下的随机数据信号,通过调制器进行调制并发送。
3.信号接收:接收信号并通过解调器进行解调。
4.误码率分析:分析误码率、信噪比等性能指标,调整系统参数使其达到最优性能。
3.2 实验要求1.使用MATLAB软件完成实验。
2.通过改变系统参数,分析系统各项性能指标。
3.完成实验报告,并附上实验结果分析和总结。
4. 实验报告实验报告应该包括以下内容:1.实验目的:交代本次实验的目的。
一、实验内容本实验使用SIMULINK进行简单通信系统搭建,比较不同的信道模型和不同的调制方式对信息传递的影响。
二、实验方案通信系统负责将包含信息的消息从发送端有效地传递到接收端。
本文搭建系统的结构图如1-1,图1-1 简单通信系统框图2.1调制方式性能比较本文主要在AWGN信道前提下比较BPSK和QPSK两种调制方式,SIMULINK系统搭建如下,图1-2 基于BPSK调制方式的通信系统图1-3 基于QPSK调制方式的通信系统2.2 不同信道性能比较本文主要在2-FSK的前提下,比较分析两种常见通信信道(AGWN channel,Rayleigh channel)的性能。
其SIMULINK搭建如下,图1-4基于AGWN通信信道的通信系统图1-5基于Rayleigh、AWGN通信信道的通信系统三、参数选择3.1 比较调制方式性能参数设置在图1-2,图1-3两个系统中,本文采用了相同的信源模块、相同的信道模块,不同的调制模块,已达到比较的目的。
信源采用Random Integer Generator模块,参数设置如下:图1-6 信源模块参数设置信道模块采用AWGN Channel模块,参数设置如下:图1-7 AWGN信道参数设置BPSK调制模块与解调模块参数设置如下:图1-8 BPSK调制模块参数设置图1-9 BPSK解调模块参数设置在本文中采用了一个很重要的误码率分析工具bertool,其参数设置如下:3.2 比较信道特性参数设置本节基于2-FSK调试方式下,比较了只有高斯白噪声特性信道和具有两种高斯白噪声、瑞利特性信道误码率情况。
下面将列举几个重要模块的参数设置:图1-10 信源模块参数设置图1-11 2-FSK调制模块参数设置图1-11 2-FSK解调模块参数设置图1-12 瑞利信道参数设置以上参数设置完成之后,我们将在第四部分中,利用Bertool工具得出两种特性的信道对误码率的影响。
四、仿真结果及分析4.1 调制比较仿真结果与分析通过上述参数的设置,我们可以得出一个比较图,如下:图1-13 两种调制方式下,误码率随信噪比的变化从bertool 工具所绘制出的图中,我们可以得出结论:在相同的信源模块以信道模块下,BPSK 调制方式的情况要优于QPSK 。
Matlab中的无线通信系统建模与仿真无线通信技术的应用正在日益广泛,对于研究人员和工程师来说,了解和掌握无线通信系统的建模与仿真技术至关重要。
Matlab作为一种强大的数学软件工具,提供了丰富的函数库和工具箱,可以帮助我们实现无线通信系统的建模与仿真。
一、无线通信系统概述在进入具体的建模与仿真之前,先让我们对无线通信系统有一个基本的了解。
无线通信系统是指通过无线介质传输信息的系统,在现代社会中起着关键的作用。
无线通信系统通常由无线信号发射端、传输介质和无线信号接收端组成。
无线通信系统可以分为模拟通信系统和数字通信系统两种类型。
模拟通信系统使用模拟信号进行传输,而数字通信系统使用数字信号进行传输。
在建模与仿真中,我们主要关注的是数字通信系统。
二、建模与仿真的重要性在无线通信系统的设计和优化过程中,建模与仿真起着关键的作用。
通过建立合适的数学模型,我们可以更好地分析和理解系统的性能特点,并进行系统参数优化。
仿真可以帮助我们在实际系统部署之前,进行性能验证和预测,节省了大量的时间和成本。
三、建模与仿真的步骤1. 系统需求分析在进行建模与仿真之前,首先需要对系统的需求进行分析。
了解系统的工作频段、传输速率、覆盖范围等关键参数,有助于我们确定建模与仿真的范围和目标。
2. 信道建模在无线通信系统中,信道起着至关重要的作用。
信道的特点直接影响到系统的传输性能。
在建模与仿真中,我们需要准确地描述信道的衰落特性、多径效应以及噪声等因素。
常用的信道模型包括AWGN信道模型、瑞利衰落信道模型和多径衰落信道模型等。
3. 发送端建模发送端是无线通信系统的核心部分,它负责将数字信号转换成适用于无线传输的信号。
在建模与仿真中,我们需要考虑发送端的调制方式、编码方式和功率控制等因素。
常用的调制方式包括BPSK、QPSK和16QAM等。
4. 接收端建模接收端负责接收无线信号,并将其转换为数字信号进行处理。
在建模与仿真中,我们需要对接收端的解调方式、译码方式和误码控制等进行建模。
无线通信实验报告院系名称:信息科学与工程学院专业班级:电信1203学生姓名:刘海峰学号: 201216020307 授课教师:杨静老师2015 年10 月31 日实验一基本通信系统的建模一、基本原理数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。
如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。
一般把信号振荡一次(一周)作为360度。
如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。
当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。
载波的初始相位就有了移动,也就带上了信息。
相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。
因此,2PSK信号的时域表达式为(t)=Acos t+)其中,表示第n个符号的绝对相位:=因此,上式可以改写为二、结果分析5101510-410-310-210-1108-PSK 载波调制信号在AWGN 信道下的性能Es/N0误比特率和误符号率误比特率误符号率理论误符号率理论误符号率结果分析:从程序运行结果看仿真得到的误符号率与理论近似值相吻合,而仿真得到的误比特率要高于理论值。
三、源程序%基于通信系统的建模 %作者:刘海峰 %学号:201216020307 %日期:2015年10月31日clc clear all; %清除变量 nsymbol=100000; %每种信噪比下的发送符号数 T=1; %符号周期 fs=100; %采样频率 ts=1/fs; %采样周期t=0:ts:T-ts; %时域矢量 fc=10; %载波频率 c=sqrt(2/T)*exp(j*2*pi *fc*t); %载波信号 c1=sqrt(2/T)*cos(2*pi*fc*t); %同相载波 c2=-sqrt(2/T)*sin(2*pi *fc*t); %正交载波 M=8; %8-PAM graycode=[0 1 2 3 6 7 4 5]; %Gray 编码规则 EsN0=0:15; %信噪比snr1=10.^(EsN0/10); %信噪比转换为线性 msg=randint(1,nsymbol,M); %消息数据 msg1=graycode(msg+1); %Gray 映射 msgmod=pskmod(msg1,M).'; %基带8—PSK 映射 tx=real(msgmod*c); %载波调制 tx1=reshape(tx.',1,len gth(msgmod)*length(c));spow=norm(tx1).^2/nsym bol; %求每个符号的平均功率for indx=1:length(EsN0)sigma=sqrt(spow/(2*snr 1(indx))); %根据符号功率求噪声功率 rx=tx1+sigma*randn(1,l ength(tx1));%加入高斯白噪声 rx1=reshape(rx,length(c),length(msgmod));r1=(c1*rx1)/length(c1); %相关运算 r2=(c2*rx1)/length(c2);r=r1+j*r2;y=pskdemod(r,M);%PSK 解调 decmsg=graycode(y+1); [err,ber(indx)]=biterr (msg,decmsg,log2(M));%误比特率 [err,ser(indx)]=symerr (msg,decmsg);%误符号率 endser1=2*qfunc(sqrt(2*snr1)*sin(pi/M)); %理论误符号率 ber1=1/log2(M)*ser1; %理论误比特率 semilogy(EsN0,ber,'-ko ',EsN0,ser,'-k*',EsN0,ser1,EsN0,ber1,'-k.'); title('8-PSK 载波调制信号在AWGN 信道下的性能') xlabel('Es/N0');ylabel('误比特率和误符号率')legend('误比特率','误符号率','理论误符号率','理论误符号率')实验二 AM 调制信号的Matlab 实现一、实验原理标准调幅波(AM )产生原理:调制信号是来自信源的调制信号(基带信号),这些信号可以是模拟的,亦可以是数字的。
为首调制的高频振荡信号可称为载波,它可以是正弦波,亦可以是非正弦波(如周期性脉冲序列)。
载波由高频信号源直接产生即可,然后经过高频功率放大器进行放大,作为调幅波的载波,调制信号由低频信号源直接产生,二者经过乘法器后即可产生双边带的调幅波。
设载波信号的表达式为t c ωcos ,调制信号的表达式为()t A t m m m ωcos = ,则调幅信号的表达式为:()()[]t t m A t S c AM ωcos 0+=tc ωcos )(t m )(t s AM 0A图1.1 标准调幅波示意图所谓非相干解调(包络检波)是在接收端解调信号时不需要本地载波,而是利用已调信号中的包络信号来恢复原基带信号。
因此,非相干解调一般只适用幅度调制(AM )系统。
忧郁包络解调器电路简单,效率高,所以几乎所有的幅度调制(AM )接收机都采用这种电路。
如下为串联型包络检波器的具体电路。
图2.2 AM 信号的非相干解调原理当RC 满足条件h c w 1w 1≤≤RC 时,包络检波器的输出基本与输入信号的包络变化呈线性关系,即)()(t m t m 00+=A 其中,max0t m )(≥A 。
隔去直流后就得到原信号)(m t 二、结果分析1 1.52 2.53 3.54 4.55-4-20241 1.52 2.53 3.54 4.55-4-2024包络检波是在max 0t m )(≥A 的情况下才能实现的,由上图A=2和A=1两种情况下可以看出当A=2时满足条件max 0t m )(≥A ,AM 波的包络与调制信号m(t)的形状完全一样,可以通过隔直流的方法(包络解调)得到原信号)(m t ;当A=1时,不满足条件max 0t m )(≥A 出现欠调幅,AM 波的包络失真无法通过隔直流的方法(包络解调)得到原信号)(m t ,所以在这种情况下不能用包络检波的方法,只能通过相干解调。
三、源代码%AM 调制信号的Matlab 实现 %作者:刘海峰 %学号:201216020307 %日期:2015年10月31日 clc %清空命令窗口clear all %清空工作区中的变量 t=1:0.0001:5; %t 的范围,步进0.0001 fc=10; %载波信号频率 A=sqrt(2); %直流信号 mt=A*cos(2*pi*t); %调制信号ct=cos(2*pi*fc*t); %载波信号st1=(2+mt).*ct; %正常调幅st2=(1+mt).*ct; %欠调幅subplot(2,1,1); %图形分块plot(t,st1); %绘制st1 hold on; %图形保持plot(t,2+mt,'r'); %绘制包络2 subplot(2,1,2); %图形保持plot(t,st2); %绘制st2 hold on; %图形保持a=abs(1+mt); %取绝对值plot(t,a,'r'); %绘制包络1实验三单极性归零吗的MATLAB实现一、实验原理单极性归零码(RZ)即是以高电平和零电平分别表示二进制码1 和0,而且在发送码1 时高电平在整个码元期间T 只持续一段时间τ,其余时间返回零电平.在单极性归零码中,τ/T 称为占空比.单极性归零码的主要优点是可以直接提取同步信号,因此单极性归零码常常用作其他码型提取同步信号时的过渡码型.也就是说其他适合信道传输但不能直接提取同步信号的码型,可先变换为单极性归零码,然后再提取同步信号。
二、结果分析1234567800.20.40.60.81单极性归零码:10111101t/s幅 度由上图可知10111101 其中1前半个码元期间是高电平,后半个码元期间是低电平(即后半段归零),0是一个码元期间都是低电平。
该码的占空比为1/2,由波形可以看出单极性归零码在matlab 上得到了验证。
三、源代码%单极性归零吗的MATLAB 实现 %作者:刘海峰 %学号:201216020307 %日期:2015年10月31日clc; %清空命令窗口 clear all; %清空工作区的变量 x=[1 0 1 0 1 1 0 1]; %随机序列产生 y=x; t0=2000;t=0:1/t0:length(x); %t的范围和步进长度for i=1:length(x)if x(i)==1 %消息符号为1时for j=1:t0/2y((2*i-2)*t0/2+j)=1; %计算占空比y((2*i-1)*t0/2+j)=0; %计算占空比endelse %消息符号为0时for j=1:t0y((i-1)*t0+j)=0; %占空比计算endendendy=[y,x(i)]; %产生码元的NRZplot(t,y); %绘制y的图像title('单极性归零码:10111101'); %图像标题grid on; %显示当前坐标下的网格线axis([0,i,-0.1,1.1]); %指定坐标轴范围xlabel('t/s');ylabel('幅度'); %坐标轴控制实验四线性分组码的MATLAB实现一、实验原理线性分组码是一类奇偶校验码,它可以由(n,k)形式表示。
编码器将一个k比特信息分组(信息矢量)转变为一个更长的由给定元素符号集组成的n比特编码分组。
当这个符号集包含两个元素(0和1),与二进制相对,称为二进制编码。
将新的信源序列与旧的信源序列之间的关系用矩阵表达出来,然后通过矩阵的运算生成新的序列。
本实验的旧信源序列为M=(0 0 0)~(1 1 1)共八个,通过给出的关系求出生成矩阵为G=[ 1 0 0 1 1 1;0 1 0 1 1 0;0 0 1 0 1 1 ];C=M*G求出新的序列。
二、结果分析实验结果表明对于线性码,分组码是一一对应的编码,映射也是线性的。