当前位置:文档之家› 自动控制实验指导书2012

自动控制实验指导书2012

自动控制实验指导书2012
自动控制实验指导书2012

自动控制原理实验指导书

东南大学自动化学院

自动控制原理实验室2012.8

目录

第一章实验系统概述------------------------ 3 第二章硬件的组成及使用-------------------- 4 第三章 THBDC-1软件的使用说明-------------- 7 第一节 THBDC-1界面介绍 -------------------- 7 第二节 THBDC-1软件的使用说明 -------------- 10第四章自动控制原理实验 ------------------- 13 实验一典型环节的电路模拟 ----------------- 13实验二二阶系统的瞬态响应 ----------------- 18实验三闭环电压控制系统研究 --------------- 21实验四系统频率特性的测试 ------------------ 23实验五 Matlab/Simulink仿真实验 ------------ 25实验六串联校正研究 ----------------------- 26实验七非线性系统的相平面分析法 ----------- 28实验八采样控制系统的分析 ----------------- 33实验九控制系统极点的任意配置 ------------- 36实验十状态观测器设计 --------------------- 39实验十一控制系统大型设计实验 --------------- 43

第一章实验系统概述

“THBDC-1改进型控制理论·计算机控制技术实验平台”是天煌公司结合教学和实践的需要,根据东南大学自动控制原理实验室提出的要求,而进行精心设计的实验系统。适用于高校的自动控制原理、计算机控制技术等课程的实验教学。该实验平台具有实验功能全、资源丰富、使用灵活、接线可靠、操作快捷、维护简单等优点。

实验台的硬件部分主要由直流稳压电源、低频信号发生器、阶跃信号发生器、低频频率计、交/直流数字电压表、模拟运算放大器、数据采集接口单元、步进电机单元、轴流电机单元、温度控制单元、力矩电机系统、通用单元电路、电位器组等单元组成。

上位机软件则集中了虚拟示波器、信号发生器、VBScript脚本编程器、实验仿真等多种功能于一体。其中虚拟示波器可显示各种波形,有X-T、X-Y、Bode图三种显示方式,并具有图形和数据存储、打印的功能,而VBScript脚本编程器提供了一个开放的编程环境,用户可在上面编写各种算法及控制程序,由于使用了研华公司开发的PCI-1711转接卡,可以十分方便的利用Matlab/Simulink软件对被控对象进行实时控制。

实验台通过电路单元模拟控制工程中的各种典型环节和控制系统,并对控制系统进行模拟仿真研究,使学生通过实验对控制理论及计算机控制算法有更深一步的理解,并提高分析与综合系统的能力。同时通过对本实验装置中轴流电机、步进电机、炉温系统、力矩电机系统四个实际被控对象的控制,使学生熟悉各种算法在实际控制系统中的应用。

在实验设计上,控制理论既有连续部分的实验,又有离散部分实验;既有经典理论实验,又有现代控制理论实验;而计算机控制系统除了常规的实验外,还增加了当前工业上应用广泛、效果卓著的模糊控制、神经元控制、二次型最优控制等实验。

第二章硬件的组成及使用

一、直流稳压电源

直流稳压电源主要用于给实验平台提供电源。有±5V/0.5A、±15V/0.5A及+24V/1.0A五路,每路均有短路保护自恢复功能。它们的开关分别由相关的钮子开关控制,并由相应发光二极管指示。其中+24V主用于温度控制单元和直流电机单元。

实验前,启动实验平台左侧的空气开关和实验台上的电源总开关。并根据需要将±5V、±15V、+24V钮子开关拔到“开”的位置。

实验时,通过2号连接导线将直流电压接到需要的位置。

二、低频函数信号发生器及锁零按钮

低频函数信号发生器由单片集成函数信号发生器专用芯片及外围电路组合而成,主要输出有正弦信号、三角波信号、方波信号、斜坡信号和抛物线信号。输出频率分为T1、T2、T3、T4四档。其中正弦信号的频率范围分别为0.1Hz~3.3Hz、2.5Hz~86.4Hz、49.8Hz~1.7KHz、700Hz~10KHz三档,V p-p值为16V。

使用时先将信号发生器单元的钮子开关拔到“开”的位置,并根据需要选择合适的波形及频率的档位,然后调节“频率调节”和“幅度调节”微调电位器,以得到所需要的频率和幅值,并通过2号连接导线将其接到需要的位置。

另外本单元还有一个锁零按钮,用于实验前运放单元中电容器的放电。当按下按钮时,通用单元中的场效应管处于短路状态,电容器放电,让电容器两端的初始电压为0V;当按钮复位时,单元中的场效应管处于开路状态,此时可以开始实验。

三、阶跃信号发生器

阶跃信号发生器主要提供实验时的阶跃给定信号,其输出电压范围为-5~+5V,正负档连续可调。使用时根据需要可选择正输出或负输出,具体通过“阶跃信号发生器”单元的拔动开关来实现。当按下自锁按钮时,单元的输出端输出一个可调(选择正输出时,调RP1电位器;选择负输出时,调RP2电位器)的阶跃信号(当输出电压为1V时,即为单位阶跃信号),实验开始;当按钮复位时,单元的输出端输出电压为0V。

注:单元的输出电压可通过实验台上的直流数字电压表来进行测量。

四、低频频率计

低频频率计是由单片机89C2051和六位共阴极LED数码管设计而成的,具有输入阻抗大和灵敏度高的优点。其测频范围为:0.1Hz~10.0KHz。

低频频率计主要用来测量函数信号发生器或外来周期信号的频率。使用时先将低频频率计的电源钮子开关拔到“开”的位置,然后根据需要将测量钮子开关拔到“外测”(此时通过“输入”或“地”输入端输入外来周期信号)或“内测”(此时测量低频函数信号发生器输出信号的频率)。

另外本单元还有一个复位按钮,以对低频频率计进行复位操作。

注:将“内测/外测”开关置于“外测”时,而输入接口没接被测信号时,频率计有时会显示一定数据的频率,这是由于频率计的输入阻抗大,灵敏度高,从而感应到一定数值的频率。此现象并不影响内外测频。

五、交/直流数字电压表

交/直流数字电压表有三个量程,分别为200mV、2V、20V。当自锁开关不按下时,它作直流电压表使用,这时可用于测量直流电压;当自锁开关按下时,作交流毫伏表使用,它具有频带宽(10Hz~400kHz)、精度高(±5‰)和真有效值测量的特点,即使测量窄脉冲信号,也能测得其精确的有效值,其适用的波峰因数范围可达到10。

六、通用单元电路

通用单元电路具体见实验平台所示“通用单元电路**”单元、“带调零端的运放单元”“反相器单元”和“无源元件单元”。这些单元主要由运放、电容、电阻、电位器和一些自由布线区等组成。通过接线和短路帽的选择,可以模拟各种受控对象的数学模型,主要用于比例、积分、微分、惯性等电路环节的构造。一般为反向端输入,其中电阻多为常用阻值51k、100k、200k、510k;电容多在反馈端,容值为0.1uF、1uF、10uF,其中通用单元电路二、三、九反向输入端有0.1uF电容,通用单元电路八反向输入端有4.7uF电容,可作带微分的环节。

以通用单元为例,现在搭建一个积分环节,比例常数为1s。我们可以选择常用元件100k、10uF,T=1k×10uF=1s,其中通用单元电路二是满足要求的,把对应100k和10uF的插针使用短路帽连接起来,锁零按钮按下去先对电容放电,然后用二号导线把正单位阶跃信号输入到积分单元的输入端,积分电路的输出端接入反向器单元,保证输入、输出方向的一致性。观察输出曲线,其具体电路如下图所示。

七、非线性单元

由两个含有非线性元件的电路组成,一个含有双向稳压管,另一个含有两个单向二极管并且需要外加正负15伏直流电源,可研究非线性环节的静态特性和非线性系统。其中10k、47k 电位器由电位器组单元提供。例如47k电位器,既可由一号导线连接也可由二号导线连接电位器单元组中的可调电位器两个端点。

以连接死区非线性环节为例,输入端与正电源端、输入端与负电源端分别为两个10k可调电位器的固定端,分别用导线连接;正电源所连电位器的可调端与D1相连,另一个可调端与D2相连。然后使用低频函数信号发生器输出10Hz\16v的正弦波,用导线连接到非线性环节的输入端。实验前断开电位器与电路的连线,用万用表测量R的阻值,然后再接入电路中。

八、零阶保持器

零阶保持器为实验主面板上U3单元。它采用“采样-保持器”组件LF398,具有将连续信号

离散后的零阶保持器输出信号的功能,其采样频率由外接的方波信号频率决定。使用时只要接入外部的方波信号及输入信号即可。

九、数据采集接口单元

数据采集卡采用研华产的PCI-1711,它可直接插在IBM-PC/AT 或与之兼容的计算机内,其采样频率为100K;有16路单端A/D模拟量输入,转换精度均为12位;2路D/A模拟量输出,转换精度均为12位;16路数字量输入,16路数字量输出。接口板安装在计算机内PCI插槽上,通过实验平台转接口与PC上位机的连接与通讯。

数据采集卡接口部分包含模拟量输入输出(AI/AO)与开关量输入输出(DI/DO)两部分。其中列出AI有4路,AO有2路,DI/DO各8路。

利用计算机做虚拟示波器观察一个模拟信号,可以用导线直接连接到接口中AD端;若使用采集卡中的信号源,用DA输出(即实验中我们通常将信号输入到AD1端,软件内部信号DA1输出)。

十、实物实验单元

包括温度控制单元、直流电机单元、步进电机单元和力矩电机系统,主要用于计算机控制技术实验中,使用方法详见实验指导书。

本实验系统可以通过简单的连接,将一些不太复杂的被控对象接人实验平台,方便地进行不同对象的控制实验。

第三章 THBDC-1软件的使用说明 第一节 THBDC-1界面介绍

从开始菜单处打开软件界面"THBDC-1",打开之后软件界面如图1所示

(图1)

1、数据采集

从菜单的"系统"下面找到"开始采集"界面如图3:

(图3)

参数与操作区

菜单

状态区

示波器窗口

Urb数据长度——采集卡每次请求包的长度(最小64,最大2048,要求必须是64的整数倍)。(默认值是1024)一般不需要设置,在采用频率很低时,该值可以调低到512,256等合适的值,注意:只有系统停止采集状态时才允许缓存设置。

缓存数据长度——每次送入示波器的数据长度(必须大于等于Urb数据长度,最大819200,要求是偶数)。缓存数据长度将影响示波器的数据刷新快慢,即缓存越长示波器刷新的越慢,反之亦然。默认值是4096,可以适当设置。

通道选择——选择AD采集的通道(通道1为采集卡的1通道,通道1-2为采集卡的1和2通道,此时双通道采集,每个通道的实际采样频率为设置采样频率的一半)。

采样频率——设置采集卡的采样频率(注要:单位是K,即最小为1000Hz,最大可以达到250KHz)。采集卡的默认增益系数为1。

分频系数——波形在Chart模式时,可以任意调节采样频率。该原理是等间隔均匀丢弃数据点。也即相当于降低了采样频率,该功能特点是不需要停止采集,随着滑动按钮的调节,可以马上看到调节结果。主要用在实验时对象信号频率很低,而实验又需要显示整个实验波形过程,这时通过滑动按钮可以调到合理的波形。(值1对应无分频,值20对应每缓存长度数据只显示1点)。

窗口长度——调节Chart模式时的波形历史数据长度。

基准平移——可以逻辑设置幅值的平移增量。双通道采集时可以用来分段显示波形。

基准增益——可以逻辑设置幅值的比例系数。

状态栏第一格为系统运行状况信息栏,第二栏为当前波形实时分析的频率值(注要:双通道时,是指第一通道波形的频率),第三栏第四栏为十字跟踪时,跟踪线X1与波形相交点的时基坐标值和幅值坐标值。第五栏和第六栏为十字跟踪时,跟踪线X2与波形相交点的时基坐标值和幅值坐标值。第七栏第八栏为跟踪线X2与跟踪线X1的坐标值差,第九栏为|X2-X1|坐标值差的倒数。当X1X2刚好对应一个波形时,该倒数即为该波形的频率。

开始采集之后,界面如下图,我们就可以对示波器进行操作:

2、幅值自动

选择:调整示波器窗口始终随着波形的幅值满屏显示。

取消:取消自动调整,同时弹出对话框,设置最大,最小显示幅值。

3、时基自动

选择:调整示波器窗口始终随着波形的时间满屏显示。

取消:取消自动调整。

暂停显示

选择:暂停显示。

取消:取消自动调整。

4、波形同步

选择:同步显示波形(注要:只有波形模式在Plot X,Plot(X1,X2),Plot(X1+X2)三种模式下有效,其它模式不起作用)。

取消:取消同步显示。

5、波形模式

Chart X ——单通道采集时,连续左移方式显示波形;

Plot X ——单通道采集时,连续一屏一屏从左到有刷新显示波形,此时波形显示长度就是缓存数据长度;单通道同步显示必须在此模式下;

Chart(X1,X2)——双通道时,分别显示。显示原理同Chart X ;

Plot(X1,X2)——双通道时,分别显示。显示原理同PlotX ;

Chart(X1+X2)——双通道时,两波形叠加显示。显示原理同Chart X ;

Plot(X1+X2)——双通道时,两波形叠加显示。显示原理同PlotX ;

Plot(X1,X2)——双通道时,X1数值为时间轴,X2为幅值轴。显示原理同PlotX ;

6、波形操作

XY轴放大——在此操作模式下,可以任意放大鼠标选定的矩形波形窗口到满屏。

X轴放大——在此操作模式下,可以任意放大鼠标选定的时间轴区域波形到满屏。

Y轴放大——在此操作模式下,可以任意放大鼠标选定的幅值轴区域波形到满屏。

十字跟踪——在此操作模式下,示波器会弹出两跟踪线。用户可以用鼠标拖动跟踪线到指定的位置,状态栏会实时显示跟踪线和波形交叉点的坐标位置。

线型/点型——改变波形的形状。即线型时连线显示,点型时,点式显示。

7、缩放复位

复位放大缩小后的波形到原始状态。

8、基准复位

复位控制区里的水平,基准按钮到初始状态。

9、波形清除

清除波形。

10、波形复制

波形拷贝到粘贴板。

11、建议正弦波的频率与采样频率如下设置:

正弦波的频率在0.2Hz到2Hz的时,采样频率为1000Hz;

正弦波的频率在2Hz到50Hz的时,采样频率为5000Hz。

第二节THBDC-1软件的使用说明

1、X-t的使用

1.1 采用实验台上的通用实验单元,组建一个惯性环节,如下图8所示:

(图8)

电路中的参数取:R1=100K,R2=100K,Ro=200K,C=1uF;将Ui端连接到阶跃信号输出端,Uo端连接到数据采集口单元的AD1,且阶跃信号的输出幅值为2V;

1.2 从开始菜单处打开软件界面“THBDC-1”,打开后软件界面如图9:

(图9)

1.3 将窗口长度的指针移向大,点击开始采集按钮,并按下阶跃按钮,输出2V的阶跃信号,即可记录如下图10所示:

(图10)

注意:在X-t视图下,也可以采用双通道观察,具体操作步骤和单通道观察实验波形一致。

2、X-Y的使用

2.1 按照下图所示,连接实验电路:

将r(t)连接到数据采集接口的AD1和低频函数信号发生器的正弦波输出端,c(t)端连接到数据采集接口的AD2。

2.2 打开THBDC-1软件,将AD参数设置为:通道选择:通道(1-2),采样频率:50;点

击开始采集按钮,并选择菜单中的示波器选项—波形模式—Chart XY;即可得到如下图所示:

2.3 打开函数信号发生器的开关,输出正弦波,即可得到X-Y图:

第四章 自动控制原理实验 实验一 典型环节的电路模拟

一、实验目的

1. 熟悉THBDC-1型 信号与系统·控制理论及计算机控制技术实验平台及上位机软件的使用;

2. 熟悉各典型环节的阶跃响应特性及其电路模拟;

3. 测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备

1. THBDC-1型 控制理论·计算机控制技术实验平台;

2. PC 机一台(含上位机软件)、数据采集卡、37针通信线1根、16芯数据排线、采接卡接口线;

三、实验内容

1. 设计并组建各典型环节的模拟电路;

2. 测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;

四、实验原理

自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。熟悉这些典型环节

的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。

本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1. 比例(P )环节 图1-1

比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。它的传递函数与方框图分别为:

K S U S U S G i O ==

)

()

()(

当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

2. 积分(I )环节 图1-2

积分环节的输出量与其输入量对时间的积分成正比。它的传递函数与方框图分别为:

设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

图1-3

3. 比例积分(PI)环节

比例积分环节的传递函数与方框图分别为:

其中T=R 2C ,K=R 2/R 1

设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

图1-4

4. 比例微分(PD)环节

比例微分环节的传递函数与方框图分别为:

)1()1()(11

2

CS R R R TS K s G +=

+= 其中C R T R R K D 112,/==

设U i (S)为一单位阶跃信号,图1-5示出了比例系数(K)为2、微分系数为T D 时PD 的输出响应曲线。

图1-5

Ts

S U S U s G i O 1

)()()(=

=

)11(11)()()(21211212CS

R R R CS R R R CS R CS R S U S U s G i O +=+=+=

=

.

5. 惯性环节

惯性环节的传递函数与方框图分别为:

当U i (S)输入端输入一个单位阶跃信号,且放大系数(K)为1、时间常数为T 时响应曲

线如图1-7所示。

图1-7

五、实验步骤

1. 比例(P )环节

根据比例环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R 0=200K 。

若比例系数K=1时,电路中的参数取:R 1=100K ,R 2=100K 。 若比例系数K=2时,电路中的参数取:R 1=100K ,R 2=200K 。

当u i 为一单位阶跃信号时,用上位软件观测(选择“通道1-2”,其中通道AD1接电路的输出u O ;通道AD2接电路的输入u i )并记录相应K 值时的实验曲线,并与理论值进行比较。

另外R 2还可使用可变电位器,以实现比例系数为任意设定值。 注:为了更好的观测实验曲线,实验时可适当调节软件上的分频系数(一般调至刻度2)和选

择“

”按钮(时基自动),以下实验相同。

2. 积分(I )环节

根据积分环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。

1

)()()(+=

=

TS K

S U S U s G i

O

图中后一个单元为反相器,其中R 0=200K 。

若积分时间常数T=1S 时,电路中的参数取:R=100K ,C=10uF(T=RC=100K ×10uF=1); 若积分时间常数T=0.1S 时,电路中的参数取:R=100K ,C=1uF(T=RC=100K ×1uF=0.1); 当u i 为一单位阶跃信号时,用上位机软件观测并记录相应T 值时的输出响应曲线,并与理论值进行比较。

注:当实验电路中有积分环节时,实验前一定要用锁零单元进行锁零,实验时要退去锁零。

3. 比例积分(PI)环节

根据比例积分环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R 0=200K 。

若取比例系数K=1、积分时间常数T=1S 时,电路中的参数取:R 1=100K ,R 2=100K ,C=10uF(K= R 2/ R 1=1,T=R 1C=100K ×10uF=1);

若取比例系数K=1、积分时间常数T=0.1S 时,电路中的参数取:R 1=100K ,R 2=100K ,C=1uF(K= R 2/ R 1=1,T=R 1C=100K ×1uF=0.1S )。

通过改变R 2、R 1、C 的值可改变比例积分环节的放大系数K 和积分时间常数T 。 当u i 为一单位阶跃信号时,用上位软件观测并记录不同K 及T 值时的实验曲线,并与理论值进行比较。

4. 比例微分(PD)环节

根据比例微分环节的方框图,选择实验台上的通用电路单元设计并组建其模拟电路,如下图所示。

图中后一个单元为反相器,其中R 0=200K 。

若比例系数K=1、微分时间常数T=1S 时,电路中的参数取:R 1=100K ,R 2=100K ,C=10uF(K= R 2/ R 1=1,T=R 1C=100K ×10uF=1S);

若比例系数K=0.5、微分时间常数T=1S时,电路中的参数取:R1=200K,R2=100K,C=10uF(K= R2/ R1=0.5,T=R1C=100K×10uF=1S);

当u i为一单位阶跃信号时,用上位软件观测并记录不同K及T值时的实验曲线,并与理论值进行比较。

注:本实验中的10uF电容需从实验台左面板“通用单元电路五”中连接。

5. 惯性环节

根据惯性环节的方框图,选择实验台上的通用电路单元设计并组建其相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R0=200K。

若比例系数K=1、时间常数T=1S时,电路中的参数取:R1=100K,R2=100K,C=10uF(K= R2/ R1=1,T=R2C=100K×10uF=1)。

若比例系数K=1、时间常数T=2S时,电路中的参数取:R1=100K,R2=200K,C=10uF(K= R2/ R1=2,T=R2C=200K×10uF=2)。

通过改变R2、R1、C的值可改变惯性环节的放大系数K和时间常数T。

当u i为一单位阶跃信号时,用上位软件观测并记录不同K及T值时的实验曲线,并与理论值进行比较。

7. 根据实验时存储的波形及记录的实验数据完成实验报告。

六、实验报告要求

1. 画出各典型环节的实验电路图,并注明参数。

2. 写出各典型环节的传递函数。

3. 根据测得的典型环节单位阶跃响应曲线,分析参数变化对动态特性的影响。

七、实验思考题

1. 用运放模拟典型环节时,其传递函数是在什么假设条件下近似导出的?

2. 积分环节和惯性环节主要差别是什么?在什么条件下,惯性环节可以近似地视为积分环节?而又在什么条件下,惯性环节可以近似地视为比例环节?

3. 在积分环节和惯性环节实验中,如何根据单位阶跃响应曲线的波形,确定积分环节和惯性环节的时间常数?

4. 为什么实验中实际曲线与理论曲线有一定误差?

5、为什么PD实验在稳定状态时曲线有小范围的振荡?

实验二 二阶系统的瞬态响应

一、实验目的

1. 通过实验了解参数ζ(阻尼比)、n ω(阻尼自然频率)的变化对二阶系统动态性能的影响;

2. 掌握二阶系统动态性能的测试方法。 二、实验内容、原理

1. 二阶系统的瞬态响应

用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为

2

2

2

2)()(n

n n S S S R S C ωζωω++= (2-1) 闭环特征方程:022

2=++n n S ωζω

其解 12

2,1-±-=ζωζωn n S ,

针对不同的ζ值,特征根会出现下列三种情况: 1)0<ζ<1(欠阻尼),2

2,11ζ

ωζω-±-=n n j S

此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。它的数学表达式为:

式中21ζωω-=n d ,ζ

ζβ2

1

1-=-tg 。

2)1=ζ(临界阻尼)n S ω-=2,1

此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。 3)1>ζ(过阻尼),12

2,1-±-=ζωζωn n S

此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。

(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)

图2-1 二阶系统的动态响应曲线

)

t (Sin e 111)t (C d t 2

n βωζζω+--

=-

虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。

2. 二阶系统的典型结构

典型的二阶系统结构方框图和模拟电路图如2-2、如2-3所示。

图2-2 二阶系统的方框图

图2-3 二阶系统的模拟电路图(电路参考单元为:U 7、U 9、U 11、U 6)

图2-3中最后一个单元为反相器。 由图2-4可得其开环传递函数为:

)1S T (S K

)s (G 1+=

,其中:21T k K =, R

R k X 1= (C R T X 1=,RC T 2=)

其闭环传递函数为: 1

121

T K S T 1S T K

)S (W +

+=

与式2-1相比较,可得 RC 1T T k 211n ==ω,X

112R 2R

T k T 21=

=ξ 三、实验步骤

根据图2-3,选择实验台上的通用电路单元设计并组建模拟电路。

1.

n ω值一定时,图2-3中取C=1uF ,R=100K(此时10=n ω),Rx 为可调电阻。系统输入一单

位阶跃信号,在下列几种情况下,用“THBDC-1”软件观测并记录不同ξ值时的实验曲线。

1.1取R X =200K 时,ζ=0.25,系统处于欠阻尼状态,其超调量为45%左右; 1.2取R X =100K 时,ζ=0.5,系统处于欠阻尼状态,其超调量为16.3%左右; 1.3取R X =51K 时,ζ=1,系统处于临界阻尼状态;

2. ξ值一定时,图2-3中取R=100K ,R X =250K(此时ζ=0.2)。系统输入一单位阶跃信号,在下列几种情况下,用“THBDC-1”示波器观测并记录不同n ω值时的实验曲线,注意时间变化。

2.1若取C=10uF 时,1=n ω,记录阶跃响应,并测响应时间和超调量。窗口长度最大。 2.2若取C=0.1uF (将U 7、U 9电路单元改为U 10、U 13)时,100=n ω

,记录阶跃响应,并

测响应时间和超调量。30S和0.3S

四、实验报告要求

1. 画出二阶系统线性定常系统的实验电路,并写出闭环传递函数,表明电路中的各参数;

2. 根据测得系统的单位阶跃响应曲线,分析开环增益K和时间常数T对系统的动态性能的影响。

五、实验思考题

1. 如果阶跃输入信号的幅值过大,会在实验中产生什么后果?

2. 在电路模拟系统中,如何实现负反馈和单位负反馈?

3. 为什么本实验中二阶系统对阶跃输入信号的稳态误差为零?

计算机组成原理实验指导书

“计算机组成原理” 实验指导书 伟丰编写 2014年12月

实验一算术逻辑运算实验 一、实验目的 1、掌握简单运算器的组成以及数据传送通路。 2、验证运算功能发生器(74LS181)的组合功能。 二、实验容 运用算术逻辑运算器进行算术运算和逻辑运算。 三、实验仪器 1、ZY15Comp12BB计算机组成原理教学实验箱一台 2、排线若干 四、实验原理 实验中所用的运算器数据通路如图1-1所示。其中运算器由两片74LS181以并/串形式构成8位字长的ALU。运算器的两个数据输入端分别由两个锁存器(74LS273)锁存,锁存器的输入连至数据总线,数据输入开关(INPUT)用来给出参与运算的数据,并经过一三态门(74LS245)和数据总线相连。运算器的输出经过一个三态门(74LS245)和数据总线相连。数据显示灯已和数据总线(“DATA BUS”)相连,用来显示数据总线容。

图1-l 运算器数据通路图 图1-2中已将实验需要连接的控制信号用箭头标明(其他实验相同,不再说明)。其中除T4为脉冲信号,其它均为电平控制信号。实验电路中的控制时序信号均已部连至相应时序信号引出端,进行实验时,还需将S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU_G、SW_G 各电平控制信号与“SWITCH”单元中的二进制数据开关进行跳线连接,其中ALU_G、SW_G 为低电平有效,LDDR1、LDDR2为高电平有效。按动微动开关PULSE,即可获得实验所需的单脉冲。 五、实验步骤 l、按图1-2连接实验线路,仔细检查无误后,接通电源。(图中箭头表示需要接线的地方, 2、用INPUT UNIT的二进制数据开关向寄存器DR1和DR2置数,数据开关的容可以用与开关对应的指示灯来观察,灯亮表示开关量为“1”,灯灭表示开关量为“0”。以向DR1中置入11000001(C1H)和向DR2中置入01000011(43H)为例,具体操作步骤如下:首先使各个控制电平的初始状态为:CLR=1,LDDR1=0,LDDR2=0,ALU_G=1,SW_G=1,S3 S2 S1 S0 M CN=111111,并将CONTROL UNIT的开关SP05打在“NORM”状态,然后按下图所示步骤进行。

流体传动与控制2012实验指导书

《液压传动》实验指导书刘玲腾刘继忠编 南昌大学机电工程学院

实验注意事项 一、液压实验是学习液压传动课程的一个重要组成环节,它可以帮助学生加深理解液压传动中的基本概念,巩固加深课堂教学内容;掌握一般液压元件和回路的实验方法及操作技能;增强实际动手能力,培养学生分析问题和解决问题的能力。因此学生对每次实验必须认真对待。 二、在每次实验前,要认真复习课程有关的内容并预习实验指导书。 三、实验前,应在实验台旁熟悉实验设备和仪器、操纵、测量等方法。在教师指导下,按实验指导书中的内容、步骤进行。 四、在实验室内必须遵守实验室有关规章制度。 五、实验完毕,应整理好场地和仪器、工具,切断电源,认真填写实验报告,按期交指导教师批阅。 六、实验成绩作为本课考核成绩的一部份。

目录 一、液压泵拆装 (1) 二、液压阀拆装 (7) 三、节流调速回路性能实验 (10) 四、液压传动系统回路组装实验 (13)

实验一液压泵拆装 一、实验目的 液压元件是液压系统的重要组成部分,通过对液压泵的拆装可加深对泵结构及工作原理的了解。并能对液压泵的加工及装配工艺有一个初步的认识。 二、实验用工具及材料 内六角扳手、固定扳手、螺丝刀、各类液压泵、液压阀及其它液压元件 三、实验内容及步骤 拆解各类液压元件,观察及了解各零件在液压泵中的作用,了解各种液压泵的工作原理,按一定的步骤装配各类液压泵。 1.轴向柱塞泵 型号:cy14—1型轴向柱塞泵(手动变量) 结构见图1—1 图1-1 (1)实验原理 当油泵的输入轴9通过电机带动旋转时,缸体5随之旋转,由于装在缸体中的柱塞10

控制工程基础实验指导书(答案)

控制工程基础实验指导书 自控原理实验室编印

(内部教材)

实验项目名称: (所属课 程: 院系: 专业班级: 姓名: 学号: 实验日期: 实验地点: 合作者: 指导教师: 本实验项目成绩: 教师签字: 日期: (以下为实验报告正文) 、实验目的 简述本实验要达到的目的。目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。 二、实验仪器设备 列出本实验要用到的主要仪器、仪表、实验材料等。 三、实验内容 简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。 四、实验步骤 简述实验操作的步骤以及操作中特别注意事项。 五、实验结果

给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。 六、讨论 分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。 七、参考文献 列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资 料。 格式如下 作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码

实验一控制系统典型环节的模拟、实验目的 、掌握比例、积分、实际微分及惯性环节的模拟方法; 、通过实验熟悉各种典型环节的传递函数和动态特性; 、了解典型环节中参数的变化对输出动态特性的影响。 二、实验仪器 、控制理论电子模拟实验箱一台; 、超低频慢扫描数字存储示波器一台; 、数字万用表一只;

、各种长度联接导线。 三、实验原理 运放反馈连接 基于图中点为电位虚地,略去流入运放的电流,则由图 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。 、比例环节 实验模拟电路见图所示 U i R i U o 接示波器 以运算放大器为核心元件,由其不同的输入网络和反馈网络组成的各种典型环节,如图所示。图中和为复数阻抗,它们都是构成。 Z2 Z1 Ui ,— U o 接示波器 得:

《控制系统CAD》实验指导书

《控制系统CAD及仿真》实验指导书 自动化学院 自动化系

实验一SIMULINK 基础与应用 一、 实验目的 1、熟悉并掌握Simulink 系统的界面、菜单、工具栏按钮的操作方法; 2、掌握查找Simulink 系统功能模块的分类及其用途,熟悉Simulink 系统功能模块的操作方法; 3、掌握Simulink 常用模块的内部参数设置与修改的操作方法; 4、掌握建立子系统和封装子系统的方法。 二、 实验内容: 1. 单位负反馈系统的开环传递函数为: 1000 ()(0.11)(0.0011) G s s s s = ++ 应用Simulink 仿真系统的阶跃响应曲线。 2.PID 控制器在工程应用中的数学模型为: 1 ()(1)()d p i d T s U s K E s T s T s N =+ + 其中采用了一阶环节来近似纯微分动作,为保证有良好的微分近似效果,一般选10N ≥。试建立PID 控制器的Simulink 模型并建立子系统。 三、 预习要求: 利用所学知识,编写实验程序,并写在预习报告上。

实验二 控制系统分析 一、 实验目的 1、掌握如何使用Matlab 进行系统的时域分析 2、掌握如何使用Matlab 进行系统的频域分析 3、掌握如何使用Matlab 进行系统的根轨迹分析 4、掌握如何使用Matlab 进行系统的稳定性分析 5、掌握如何使用Matlab 进行系统的能观测性、能控性分析 二、 实验内容: 1、时域分析 (1)根据下面传递函数模型:绘制其单位阶跃响应曲线并在图上读标注出峰值,求出系统 的性能指标。 8 106) 65(5)(2 32+++++=s s s s s s G (2)已知两个线性定常连续系统的传递函数分别为1G (s)和2G (s),绘制它们的单位脉冲响 应曲线。 4 5104 2)(2 321+++++=s s s s s s G , 27223)(22+++=s s s s G (3)已知线性定常系统的状态空间模型和初始条件,绘制其零输入响应曲线。 ?? ??????????--=????? ???? ???212107814.07814.05572.0x x x x []?? ????=214493 .69691.1x x y ??? ???=01)0(x 2、频域分析 设线性定常连续系统的传递函数分别为1G (s)、2G (s)和3G (s),将它们的Bode 图绘制在一张图中。 151)(1+= s s G ,4 53.0)(22++=s s s G ,16.0)(3 +=s s G 3、根轨迹分析 根据下面负反馈系统的开环传递函数,绘制系统根轨迹,并分析系统稳定 的K 值范围。 ) 2)(1()()(++= s s s K s H s G

工程热力学实验 二氧化碳PVT实验指导书(2012.06.07)

二氧化碳临界状态观测及p-v-T关系的测定 一、实验目的 1. 观察二氧化碳气体液化过程的状态变化和临界状态时气液突变现象,增加对临界状态概念的感性认识。 2. 加深对课堂所讲的工质的热力状态、凝结、汽化、饱和状态等基本概念的理解。 3. 掌握二氧化碳的p-v-T关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。 4. 学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。 二、实验原理 当简单可压缩系统处于平衡状态时,状态参数压力、温度和比容之间有确切的关系,可表示为: (,,)=0 (7-1-1) F p v T 或 =(,) (7-1-2) v f p T 在维持恒温条件下、压缩恒定质量气体的条件下,测量气体的压力与体积是实验测定气体p-v-T关系的基本方法之一。1863年,安德鲁通过实验观察二氧化碳的等温压缩过程,阐明了气体液化的基本现象。 当维持温度不变时,测定气体的比容与压力的对应数值,就可以得到等温线的数据。 在低于临界温度时,实际气体的等温线有气、液相变的直线段,而理想气体的等温线是正双曲线,任何时候也不会出现直线段。只有在临界温度以上,实际气体的等温线才逐渐接近于理想气体的等温线。所以,理想气体的理论不能说明实际气体的气、液两相转变现象和临界状态。 二氧化碳的临界压力为73.87bar(7.387MPa),临界温度为31.1℃,低于临界温度时的等温线出现气、液相变的直线段,如图1所示。30.9℃

是恰好能压缩得到液体二氧化碳的最高温度。在临界温度以上的等温线具有斜率转折点,直到48.1℃才成为均匀的曲线(图中未标出)。图右上角为空气按理想气体计算的等温线,供比较。 1873年范德瓦尔首先对理想气体状态方程式提出修正。他考虑了气体分子体积和分子之间的相互作用力的影响,提出如下修正方程: ()()p a v v b RT + -=2 (7-1-3) 或写成 pv bp RT v av ab 320-++-=() (7-1-4) 范德瓦尔方程式虽然还不够完善,但是它反映了物质气液两相的性质和两相转变的连续性。 式(7-1-4)表示等温线是一个v 的三次方程,已知压力时方程有三个根。在温度较低时有三个不等的实根;在温度较高时有一个实根和两个虚根。得到三个相等实根的等温线上的点为临界点。于是,临界温度的等温线在临界点有转折点,满足如下条件: ( )??p v T =0 (7-1-5)

控制工程基础实验指导书(答案) 2..

实验二二阶系统的瞬态响应分析 一、实验目的 1、熟悉二阶模拟系统的组成。 2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单 位阶跃响应。 3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调 整时间ts。 4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。 5、学会使用Matlab软件来仿真二阶系统,并观察结果。 二、实验仪器 1、控制理论电子模拟实验箱一台; 2、超低频慢扫描数字存储示波器一台; 3、数字万用表一只; 4、各种长度联接导线。 三、实验原理 图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。 图2-1 二阶系统原理框图

图2-1 二阶系统的模拟电路 由图2-2求得二阶系统的闭环传递函 12 22 122112 /() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为 (1)(2), 对比式和式得 n ωξ== 12 T 0.2 , T 0.5 , n S S ωξ====若令则。调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、 临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。 (1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为: 图2-3 0 < ξ < 1时的阶跃响应曲线 (2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为: 如图2-4为二阶系统工作临界阻尼时的单位响应曲线。 (2) +2+=222n n n S S )S (G ωξω ω1 ()1sin( ) (3) 2-3n t o d d u t t tg ξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线 e t n o n t t u ωω-+-=)1(1)(

PLC控制系统实验指导书(三菱)(精)

电气与可编程控制器实验指导书 实验课是整个教学过程的—个重要环节.实验是培养学生独立工作能力,使用所学理解决实际问题、巩固基本理论并获得实践技能的重要手段。 一 LC控制系统实验的目的和任务实验目的 1.进行实验基本技能的训练。 2.巩固、加深并扩大所学的基本理论知识,培养解决实际问题的能。 3.培养实事求是、严肃认真,细致踏实的科学作风和良好的实验习惯。为将来从事生产和科学实验打下必要的基础。 4.直观察常用电器的结构。了解其规格和用途,学会正确选择电器的方法。 5.掌握继电器、接触器控制线路的基本环节。 6.初步掌握可编程序控制器的使用方法及程序编制与调试方法。 应以严肃认真的精神,实事求是的态度。踏实细致的作风对待实验课,并在实验课中注意培养自己的独立工作能力和创新精神 二实验方法 做一个实验大致可分为三个阶段,即实验前的准备;进行实验;实验后的数据处理、分及写出实验报告。 1.实验前的准备 实验前应认真阅读实验指导书。明确实验目的、要求、内容、步骤,并复习有关理论知识,在实验前要能记住有关线路和实验步骤。 进入实验室后,不要急于联接线路,应先检查实验所用的电器、仪表、设备是否良好,了解各种电器的结构、工作原理、型号规格,熟悉仪器设备的技术性能和使用

方法,并合理选用仪表及其量程。发现实验设备有故障时,应立即请指导教师检查处理,以保证实验顺利进行。 2. 联接实验电路 接线前合理安排电器、仪表的位置,通常以便于操作和观测读数为原则。各电器相互间距离应适当,以联线整齐美观并便于检查为准。主令控制电器应安装在便于操作的位置。联接导线的截面积应按回路电流大小合理选用,其长度要适当。每个联接点联接线不得多余两根。电器接点上垫片为“瓦片式”时,联接导线只需要去掉绝缘层,导体部分直接插入即可,当垫片为圆形时,导体部分需要顺时针方向打圆圈,然后将螺钉拧紧,下允许有松脱或接触不良的情况,以免通电后产生火花或断路现象。联接导线裸露部分不宜过长。以免相邻两相间造成短路,产生不必要的故障。 联接电路完成后,应全面检查,认为无误后,请指导老师检查后,方可通电实验。 在接线中,要掌握一般的控制规律,例如先串联后并联;先主电路后控制电路;先控制接点,后保护接点,最后接控制线圈等。 3.观察与记录 观察实验中各种现象或记录实验数据是整个实验过程中最主要的步骤,必须认真对待。 进行特性实验时,应注意仪表极性及量程。检测数据时,在特性曲线弯曲部分应多选几个点,而在线性部分时则可少取几个点。 进行控制电路实验时。应有目的地操作主令电器,观察电器的动作情况。进一理解电路工作原理。若出现不正常现象时,应立即断开电源,检查分析,排除故障后继续实验。 注意:运用万用表检查线路故障时,一般在断电情况下,采用电阻档检测故障点;在通电情况下,检测故障点时,应用电压档测量(注意电压性质和量程;此外,还要注意

计算机组成原理虚拟实验指导书

计算机组成原理实验指导书 (虚拟实验系统)

实验1 1位全加器 ?实验目的 ?掌握全加器的原理及其设计方法。 ?熟悉组成原理虚拟教学平台的使用。 ?实验设备 与非门(3片)、异或门(2片)、开关若干、指示灯若干 ?实验原理 1位二进制加法器单元有三个输入量:两个二进制数Ai,Bi和低位传来的进位信号Ci,两个输出量:本位和输出Si以及向高位的进位输出C(i+1),这种考虑了全部三个输入量的加法单元称为全加器。来实验要求利用基本门搭建一个全加器,并完成全加器真值表。 ?实验步骤 各门电路芯片引脚显示于组件信息栏。 1. 测从组件信息栏中添加所需组件到实验流程面板中,按照图1.1所示搭建实验。 图1.1 组合逻辑电路实验流程图

2. 打开电源开关,按表1设置开关的值,完成表1-1。 表1-1 实验2 算术逻辑运算实验 ?实验目的 ?了解运算器的组成结构 ?掌握运算器的工作原理 ?掌握简单运算器的组成以及数据传送通路 ?验证运算功能发生器(74LS181)的组合功能 ?实验设备 74LS181(2片),74LS273(2片), 74LS245(2片),开关若干,灯泡若干,单脉冲一片 ?实验原理 实验中所用的运算器数据通路图如图2.1所示,实验中的运算器由两片74LS181以并/串形式构成8位字长的ALU。运算器的输出经过一个三态门(74LS245)和数据总线相连,运算器的两个数据输入端分别由两个锁存器(74LS373)锁存,锁存器的输入连至数据总线,数据开关用来给出参与运算的数据(A和B),并经过一个三态门(74LS245)和数据显示灯相连,显示结果。 ?74LS181:完成加法运算 ?74LS273:输入端接数据开关,输出端181。在收到上升沿的时钟信号前181和其 输出数据线之间是隔断的。在收到上升沿信号后,其将输出端的数据将传到181, 同时,作为触发器,其也将输入的数据进行保存。因此,通过增加该芯片,可以通 过顺序输入时钟信号,将不同寄存器中的数据通过同一组输出数据线传输到181 芯片的不同引脚之中 ?74LS245:相当于181的输出和数据显示灯泡组件之间的一个开关,在开始实验后

201209级《发动机原理》实验指导书.

《发动机原理》课程实验指导书彭辅明袁守利编 汽车工程学院 2012年4月

前言 1.实验总体目标、任务与要求 1、巩固所学的理论知识、加深对内燃机性能实验的认识和了解。 2、掌物内燃机性能试验和某些专项试验的试验方法。 3、了解内燃机试验台架的基本组成和常用测试仪表的结构及其工作原理,并掌物其使用方法。 4、掌物对实验数据进行处理以及对实验结果进行分析的基本方法。 2.适用专业 热能与动力工程、车辆工程、汽车服务工程 3.先修课程 《发动机构造》、《热能与动力机械测试技术》。 4.实验项目与学时分配(见表一) 5. 实验改革与特色 通过学生在实验过程中的实际操作,培养学生的实验技能和实际动手的能力,进一步加深对理论知识的掌物和理解。

实验一发动机速度特性 1、掌物发动机速度特性的试验方法。 2、学会对实验数据进行处理,对实验结果进行分析;并绘制发动机速度特性曲线图。 二、实验条件 1、东南4A91电控汽油发动机机(Pemax=77Kw/6000r/min)一台 2、CW150型电涡流测功机一台 3、FST2S发动机数控试验台一台 3、FCM-D转速油耗测量仪一台 4、温度计一只 5、大气压力计一只 6、93#车汽油 20升 三、实验原理 发动机速度特性:在发动机油门开度一定(部分开度或全开)的情况下,研究其功率Pe、扭矩Ttq、耗油量B及燃油消耗率be与转速n之间的关系。 四、实验内容和要求 1、调整测功机负荷及指挥全组协调动作,一人;测功机负荷的调整应均匀、准确,尽量避免大幅度增加或减小测功机负荷,造成发动机的转速剧烈波动。 2、调节、监视发动机油门,一人;当发动机出现异常情况时应立即减小或关闭发动机油门。 3、测量发动机转速和油耗,一人;测量转速时,应注意转速的上下波动情况,当转速的波动值超过±20r/min,该组实验数据应视为无效并重做。 4、调节,监视发动机冷却水出水温度,一人;保持发动机冷却水出水温度稳定在80±5℃范围内,出现气阻现象(无冷却水排除或冷却水出水温度超过100℃),应立即报告,以便及时停机。 5、监视发动机机油压力、温度,一人;出现异常情况应及时报告。 6、记录发动机扭矩(测功机读数)Ttq、发动机转速n、耗油质量△m和耗油时间△t, 一人;实验数据记录应准确无误。 7、绘制实验监督曲线,一人;当发现实验过程中因某些特殊原因而引起误差过大的点,应及时指出,以便补测校正。 五、实验方法与步骤 1、按照附录一《发动机台架试验安全操作规范》,作好试验前的准备工作。确认发

《控制系统计算机仿真》实验指导书

实验一 Matlab使用方法和程序设计 一、实验目的 1、掌握Matlab软件使用的基本方法; 2、熟悉Matlab的数据表示、基本运算和程序控制语句 3、熟悉Matlab绘图命令及基本绘图控制 4、熟悉Matlab程序设计的基本方法 二、实验内容 1、帮助命令 使用help命令,查找sqrt(开方)函数的使用方法; 2、矩阵运算 (1)矩阵的乘法 已知A=[1 2;3 4]; B=[5 5;7 8]; 求A^2*B (2)矩阵除法 已知A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; A\B,A/B (3)矩阵的转置及共轭转置 已知A=[5+i,2-i,1;6*i,4,9-i]; 求A.', A' (4)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9]; 求A中第3列前2个元素;A中所有列第2,3行的元素; (5)方括号[] 用magic函数生成一个4阶魔术矩阵,删除该矩阵的第四列 3、多项式 (1)求多项式p(x) = x3 - 2x - 4的根 (2)已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] , 求矩阵A的特征多项式; 求特征多项式中未知数为20时的值; 4、基本绘图命令 (1)绘制余弦曲线y=cos(t),t∈[0,2π] (2)在同一坐标系中绘制余弦曲线y=cos(t-0.25)和正弦曲线y=sin(t-0.5),t∈[0,2π] 5、基本绘图控制 绘制[0,4π]区间上的x1=10sint曲线,并要求: (1)线形为点划线、颜色为红色、数据点标记为加号; (2)坐标轴控制:显示范围、刻度线、比例、网络线 (3)标注控制:坐标轴名称、标题、相应文本; 6、基本程序设计 (1)编写命令文件:计算1+2+?+n<2000时的最大n值; (2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。 三、预习要求 利用所学知识,编写实验内容中2到6的相应程序,并写在预习报告上。

过程控制系统实验指导书解析

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

电子_基础实验指导书 2012

电子科技专业基础实验 电子科学与技术学院编 2012.1

电子科技专业基础实验 1 微波基本测量 (1) 2 二维电场的模拟实验 (7) 3 电磁波的布拉格衍射实验 (12) 4 射频图像传输 (16) 5 偏振光实验 (23) 6 光源光谱特性的测量 (29) 7 光磁共振实验 (32) 8 半导体光电导实验 (41) 9 光栅实验 (47) 10 单色仪的标定实验 (51) 11 迈克尔逊干涉仪 (54) 12 半导体光伏效应实验 (60) 13 半导体霍尔效应实验 (66) 14 PN结正向压降温度特性实验 (72) 15 半导体少数载流子寿命测量 (77) 16 四探针测电阻率实验 (80)

实验1 微波基本测量技术 一.实验目的 1. 学习微波的基本知识; 2. 了解波导测量系统,熟悉基本微波元件的作用; 3.了解微波在波导中传播的特点,掌握微波基本测量技术; 4.掌握大、中、小电压驻波系数的测量原理和方法; 5.学习用驻波测量线校准晶体检波器特性的方法。 二.实验原理 (一)微波基本知识 在微波波段,随着工作频率的升高,导线的趋肤效应和辐射效应增大,使得普通的双导线不能完全传输微波能量,而必须改用微波传输线。常用的微波传输线有平行双线、同轴线、带状线、微带线、金属波导管及介质波导等多种形式的传输线,本实验用的是矩形波导管,波导是指能够引导电磁波沿一定方向传输能量的传输线。 传输线的特性参量与工作状态在波导中常用相移常数。波导波长,驻波系数等特性参量来描述波导中的传输特征,对于一个横截面为b a ×的矩形波导中的TE 10波: 自由空间波长 /c f λ=, 截止(临界)波长 2c a λ=, 波导波长 /g λλ= (1) 相移常量 2/g βπλ=,, 反射系数 Γ=E 反/E 入 驻波比 max min /E E ρ=, 由此可见,微波在波导中传输时,存在着一个截止波长c λ,波导中只能 传输λ<c λ的电磁波。波导波长g λ>自由空间波长λ。 在实际应用中,传输线并非是无限长,此时传输线中的电磁波由人射波 和反射波迭加而成,传输线中的工作状态主要决定于负载的情况。 (1)波导终端接匹配负载时,微波功率全部被负载吸收,无反射波, 波导中呈行驻波状态.此时|Γ|=0,ρ=l 。

计算机过程控制系统(DCS)课程实验指导书(详)

计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验 一、实验目的 1、通过实验熟悉单回路反馈控制系统的组成和工作原理。 2、分析分别用P、PI和PID调节时的过程图形曲线。 3、定性地研究P、PI和PID调节器的参数对系统性能的影响。 二、实验设备 AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。 三、实验原理 图2-15为单回路水箱液位控制系统 单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。 一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。 图2-16 P、PI和PID调节的阶跃响应曲线

计算机组成原理实验

计算机组成原理上机实验指导

一、实验准备和实验注意事项 1.本课程实验使用专门的TDN-CM++计算机组成原理教学实验设备,使用前后均应仔细检查主机板,防止导线、元件等物品落入装置内导致线路短路、元件损坏。 2.完成本实验的方法是先找到实验板上相应的丝印字及其对应的引出排针,将排针用电缆线连接起来,连接时要注意电缆线的方向,不能反向连接;如果实验装置中引出排针上已表明两针相连,表明两根引出线内部已经连接起来,此时可以只使用一根线连接。 3.为了弄清计算机各部件的工作原理,前面几个实验的控制信号由开关单元“SWITCH UNIT”模拟输入;只有在模型机实验中才真正由控制器对指令译码产生控制信号。在每个实验开始时需将所有的开关置为初始状态“1”。 4.本实验装置的发光二极管的指示灯亮时表示信号为“0”,灯灭时表示信号为“1”。 5.实验接线图中带有圆圈的连线为实验中要接的线。 6.电源关闭后,不能立即重新开启,关闭与重启之间至少应有30秒间隔。 7.电源线应放置在机内专用线盒中。 8.保证设备的整洁。

二、实验设备的数据通路结构 利用本实验装置构造的模型机的数据通路结构框图如下图。其中各单元内部已经连接好,单元之间可能已经连接好,其它一些单元之间的连线需要根据实验目的用排线连接。 图0-2 模型机数据通路结构框图

实验一运算器实验:算术逻辑运算实验 一.实验目的 1.了解运算器的组成结构; 2.掌握运算器的工作原理; 3.掌握简单运算器的数据传送通路。 4.验证运算功能发生器(74LSl81)的组合功能。 二.实验设备 TDN-CM++计算机组成原理教学实验系统一台,排线若干。 三.实验原理 实验中所用的运算器数据通路如图1-l所示。其中两片74LSl81以串行方式构成8位字长的ALU,ALU的输出经过一个三态门(74LS245)和数据总线相连。三态门由ALU-B控制,控制运算器运算的结果能否送往总线,低电平有效。 为实现双操作数的运算,ALU的两个数据输入端分别由二个锁存器DR1、DR2(由74LS273实现)锁存数据。要将数据总线上的数据锁存到DR1、DR2中,锁存器的控制端LDDR1和LDDR2必须为高电平,同时由T4脉冲到来。 数据开关(“INPUT DEVICE”)用来给出参与运算的数据,经过三态门(74LS245)后送入数据总线,三态门由SW-B控制,低电平有效。数据显示灯(“BUS UNIT”)已和数据总线相连,用来显示数据总线上的内容。 图中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信号外,其它均为电平信号。由于实验电路中的时序信号均已连至“W/R UNIT”的相应时序信号引出端,因此,在进行实验时,只需将“W/R UNIT”的T4接至“STATE UNIT”的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲。 ALU运算所需的电平控制信号S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU-B、SW-B均由“SWITCH UNIT”中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B为低电平有效,LDDRl、LDDR2为高电平有效。 对单总线数据通路,需要分时共享总线,每一时刻只能由一组数据送往总线。

单片机原理实验指导书(2012.10)

《单片机原理》实验指导书 计算机科学与技术系2012年8月

目录 第一部分单片机仿真实验 (1) 实验一:流水灯实验 (1) 实验二:中断实验 (4) 实验三:定时器中断实验 (6) 实验四:串行口实验 (9) 实验五:矩阵式键盘输入识别 (13) 实验六:LCD循环显示设计 (19) 第二部分单片机硬件实验............................错误!未定义书签。第一章试验箱系统概述 ...................................错误!未定义书签。 一、系统地址分配........................................... 错误!未定义书签。 二、系统接口定义........................................... 错误!未定义书签。 三、通用电路简介........................................... 错误!未定义书签。第二章实验指导...............................................错误!未定义书签。实验七P1口亮灯和P1口加法器实验........... 错误!未定义书签。实验八简单I/O口扩展(选作).................. 错误!未定义书签。实验九8255控制交通灯................................ 错误!未定义书签。实验十128*64LCD液晶显示 .......................... 错误!未定义书签。

第一部分单片机仿真实验 实验一:流水灯实验 一、实验目的: 通过对P3口地址的操作控制8位LED流水点亮,从而认识单片机的存储器。 二、实验原理图 实验参考电路图如下: 三、参考实验程序 //流水灯实验 #include //包含单片机寄存器的头文件 sfr x=0xb0; //P3口在存储器中的地址是b0H,通过sfr可定义8051内核单片机 //的所有内部8位特殊功能寄存器,对地址x的操作也就是对P1口的

控制工程-实验指导书-修订版

《控制工程基础》实验指导书常熟理工学院机械工程学院 2009.9

目录 1.MATLAB时域分析实验 (2) 2.MATLAB频域分析实验 (4) 3.Matlab校正环节仿真实验 (8) 4.附录:Matlab基础知识 (14)

实验1 MATLAB 时域分析实验 一、实验目的 1. 利用MATLAB 进行时域分析和仿真。 要求:(1)计算连续系统的时域响应(单位脉冲输入,单位阶跃输入,任意输入)。 2.掌握Matlab 系统分析函数impulse 、step 、lsim 、roots 、pzmap 的应用。 二、实验内容 1.已知某高阶系统的传递函数为 ()265432 220501584223309240100 s s G s s s s s s s ++=++++++,试求该系统的单位脉冲响应、单位阶跃响应、单位速度响应和单位加速度响应。 MATLAB 计算程序 num=[2 20 50]; den=[1 15 84 223 309 240 100]; t= (0: 0.1: 20); figure (1); impulse (num,den,t); %Impulse Response figure (2); step(num,den,t);%Step Response figure (3); u1=(t); %Ramp.Input hold on; plot(t,u1); lsim(num,den,u1,t); %Ramp. Response gtext(‘t’); figure (4); u2=(t.*t/2);%Acce.Input u2=(0.5*(t.*t)) hold on; plot(t,u2); lsim(num,den,u2,t);%Acce. Response

单回路控制系统实验过程控制实验指导书

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静(动)态水温定值控制实验 实验三 实验项目名称:单容液位定值控制系统 实验项目性质:综合型实验 所属课程名称:过程控制系统 实验计划学时:2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和(原理)要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃

给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 (一)、智能仪表控制 1.按照图3-5连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。 图3-4 中水箱单容液位定值控制系统

计算机组成原理实验指导书

计算机组成原理 实验报告 学号: 姓名: 提交日期: 成绩: 计算机组成原理实验报告 Computer Organization Lab Reports ______________________________________________________________________________ 班级: ____ 姓名:____学号:_____ 实验日期:____

一.实验目的 1. 熟悉Dais-CMX16+达爱思教仪的各部分功能和使用方法。 2. 掌握十六位机字与字节运算的数据传输格式,验证运算功能发生器及进位控制的组合功能。了解运算器的工作原理。 3. 完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。 ______________________________________________________________________________二.实验环境 Dais-CMX16+达爱思教仪 ______________________________________________________________________________三.实验原理 实验中所用的运算器数据通路如图1-1所示。ALU运算器由CPLD描述。运算器的输出经过2片74LS245三态门与数据总线相连,2个运算寄存器AX、BX的数据输入端分别由4个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。 图1-1 运算器数据通路 图1-1中,AXW、BXW在“搭接态”由实验连接对应的二进制开关控制,“0”有效,通过【单拍】按钮产生的负脉冲把总线上的数据打入,实现AXW、BXW写入操作。 表1-1 ALU运算器编码表 算术运算逻辑运算 M M13 M12 M11 功能M M13 M12 M11 功能 M S2 S1 S0 M S2 S1 S0 0 0 0 0 A+B+C 1 0 0 0 读B 0 0 0 1 A—B —C 1 0 0 1 非A 0 0 1 0 RLC 1 0 1 0 A-1

2012-AutoCAD实验指导书

实验一熟悉AutoCAD基本环境及设置 一实验目的 1、熟悉AutoCAD的软硬件环境、启动、退出、文件管理等方法; 2、熟悉AutoCAD的工作界面、系统配置的修改等; 3、熟悉键盘和鼠标输入命令的方法。 二实验内容 1、认识AutoCAD的硬件及设备配置,学习启动、退出AutoCAD; 2、练习文件管理,包括新建文件、打开旧文件、保存、另存文件等操作; 3、练习用“选项”对话框进行常用的缺省配置修改; 4、练习用键盘和鼠标输入命令,学习工作界面中各部分功能区的使用。 三实验过程及说明 1.启动AutoCAD 进入WindowsXP开始界面后,用鼠标双击桌面上AutoCAD图标,或执行“开始”菜单中AutoCAD命令启动AutoCAD。 2.进入AutoCAD后基本练习 1)新建一文件,分别用“从草图开始”、“使用样板”、“使用向导”三种创建方法; 2)对应三种不同的创建新图的方法,练习绘图界限(LIMITS)、绘图单位(UNITS)等基本设置的操作; 3)熟悉工作界面,主要包括:标题行、下拉菜单、功能区、绘图区、工具栏(标准、绘图屏幕菜单)、命令提示区、状态栏、滚动条、十字光标等,如图1-1所示; 图1-1 AutoCAD 界面的构成

4)了解系统配置选项的修改,通过“选项”对话框练习常用的三项修改:绘图背景色、按实际情况显示线宽、自定义右键功能;(选择“显示”选项卡,修改绘图区背景颜色为白色;选择“用户系统配置”选项卡,设置线宽随图层、按实际大小显示;选择“用户系统配置”选项卡,自定义右键功能。) 说明:其它选项的缺省配置是否修改,根据具体情况自定。 3.退出AutoCAD 退出时,切不可直接关机(会丢失文件),应按下列方法之一进行: 1)从下拉菜单中选取:“文件”→“退出” 2)从键盘键入:EXIT或QUIT 3)单击工作界面标题行右边的“关闭”按钮 如果当前图形没有全部存盘,输入退出命令后,AutoCAD会弹出“退出警告”对话框,操作该对话框后,方可安全退出AutoCAD。 4.用键盘和鼠标练习输入命令LINE、ERASE、UNDO、REDO、ESC等。 1)用LINE命令画几组直线。通过练习要熟悉“C”选项和“U”选项的应用; 2)用ERASE命令擦除。通过它要逐步熟悉3种选择实体的方式;(窗交,框选,单选) 3)用UNDO(U)命令撤销前3个命令,用REDO返回一个命令; 4)用ESC终止命令,回到“Command:”提示符下。 注意: 所有命令在“Command:”提示符下输入,可用键盘直接输入命令名,也可再下拉菜单、功能区或屏幕菜单中直接点取;操作命令中需要选项时,请单击右键,使用右键菜单选项。 四实验题目 1)用NEW命令新建一张图(图幅为A3),进行基本设置后,运用键盘、鼠标等输入命令画图。以实验报告形式说明你新建该图形的步骤及设置情况。 2)用QSAVE命令指定路径,已“一面视图”为名保存。 3)用SAVE AS(另存为)命令将图形另存到软盘上或硬盘上的另一处。 4)关闭当前图形,用OPEN命令打开图形文件“一面视图”。 5)练习结束,关闭当前图形,正确退出AutoCAD。 6)以实验报告形式回答以下问题: (1)AutoCAD的操作界面由哪几部分组成?各部分的作用是什么? (2)如何设置作图窗口的颜色和十字光标的大小? (3)图形文件的“Save”(保存)与“Save as”(另存)有何区别?

相关主题
文本预览
相关文档 最新文档