当前位置:文档之家› 高压断路器拒动的原因分析

高压断路器拒动的原因分析

高压断路器拒动的原因分析
高压断路器拒动的原因分析

龙源期刊网 https://www.doczj.com/doc/835551882.html,

高压断路器拒动的原因分析

作者:贾晓进

来源:《消费电子·理论版》2013年第11期

摘要:伴随着越来越快的经济发展节奏,电力系统的安全关系到人们的生产和日常生

活,受到越来越高的重视,高压断路器是电力系统中一个比较关键的设备,是变电站发电、供电与变电系统的主要设备,它的好坏直接影响整个变配电系统能否正常运行,及时的发现设备隐患,尽量避免事故的发生,实现安全供电,对整个系统的安全稳定运行十分重要。

关键词:高压断路器;拒动;电力系统

中图分类号:TM561 文献标识码:A 文章编号:1674-7712 (2013) 22-0000-01

影响高压断路器不能正常工作的因素很多,如何保证它可靠安全的运行,是变电所设备管理工作中的首要问题。下面就高压断路器的作用、结构以及变电所出现的高压断路器的拒合、拒跳故障现象结合实际,说明一下它的原因。

一、高压断路器的作用

高压断路器是发电厂、变电所及电力系统中最重要的控制和保护设备,它的作用是:

(1)控制作用。根据电力系统运行的需要,将部分或全部电气设备,以及部分或全部线路投人或退出运行。(2)保护作用。当电力系统某一部分发生故障时,它和保护装置、自动装置相配合,将该故障部分从系统中迅速切除,减少停电范围,防止事故扩大,保护系统中各类电气设备不受损坏,保证系统无故障部分安全运行。

高压断路器的主要结构大体分为:导流部分,灭弧部分,绝缘部分,操作机构部分。高压开关的主要类型按灭弧介质分为:油断路器,空气断路器,真空断路器,六氟化硫断路器,固体产气断路器,磁吹断路器。按操作性质可分为:电动机构,气动机构,液压机构,弹簧储能机构,手动机构。

(1)油断路器。利用变压器油作为灭弧介质,分多油和少油两种类型。(2)六氟化硫断路器。采用惰性气体六氟化硫来灭弧,并利用它所具有的很高的绝缘性能来增强触头间的绝缘。(3)真空断路器。触头密封在高真空的灭弧室内,利用真空的高绝缘性能来灭弧。(4)空气断路器。利用高速流动的压缩空气来灭弧。(5)固体产气断路器。利用固体产气物质在电弧高温作用下分解出来的气体来灭弧。(6)磁吹断路器。断路时,利用本身流过的大电流产生的电磁力将电弧迅速拉长而吸人磁性灭弧室内冷却熄灭。

电力用户对高质量、高可靠供电的需求,高压断路器正向智能化的方向发展。智能高压断路器具有在线监测功能,微处理机控制功能,采用新型的电流及电压传感器。

发电机差动保护动作原因分析

发电机差动保护动作原因分析 一、事故经过 2012年10月23日07时29分,网控值班员听见巨响声同时发现盘面柴发电源二103-16断路器跳闸,网控值班员立即前往网控10KV配电室发现浓烟,经检查柴发电源二103-16高压柜后盖已被甩出,柜内已烧黑。2号发电机纵差保护动作,2号发电机组跳闸。07时33分,低频保护动作,甩负荷至第5轮。07时33分41秒,1号、3号机组跳闸,全厂失电。 二、故障分析 继电保护人员随后调取事故动作报告,发现发电机差动保护动作时刻,差动电流确实已经远超过了整定值,说明在103-16柜故障时刻发抗组差动回路确实存在很大的不平衡电流。与此同时为验证发电机差动回路内一次设备是否有故障,对发电机绕组及其一次母线进行对地及相间绝缘检查,未发现异常。证明发电机等一次设备未发生故障,发抗组保护装臵本身在这次大修期间已经对保护装臵及二次回路连线可靠性及差动极性正确性进行检查均未发现有误之处。差动动作时间和103-16柜发生故障时间基本同时发生,但是就算在故障过程中产生的瞬间大电流对发电机差动回路来说也应该是一个穿越性电流,不应该对发电机差动保护产生影响。随后保护人员调取录波图进行分析,发现故障时刻发电机中性点B相电流波形严重畸变。经过计算,发电机中性点B相电流与发电机机端B相电流之差正好等于装臵

采样的差流值。 从录波图上可以看出,故障时刻发电机中性点B相电流波形发生严重畸变,且故障时刻发电机中性点B相电流与发电机机端电流在同一时刻的相位及幅值均不相同,说明故障电流对发电机中性点电流互感器和发电机机端电流互感器造成的影响不同。 三、波形畸变分析 1、从录波图上可以看出,B相电流波形开始发生畸变前一刻波形

高压断路器爆炸原因及防爆措施详细版

文件编号:GD/FS-1565 (解决方案范本系列) 高压断路器爆炸原因及防 爆措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

高压断路器爆炸原因及防爆措施详 细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1.高压断路器发生爆炸起火的原因 (1)断流容量不满足要求。由于设计不周,断路器的断流容量太小;由于电网的发展,系统短路容量的增大,原有断路器的断流容量不能满足要求;断路器制造质量低劣,不能满足产品名牌参数要求。由于上述原因,当发生短路时,断路器不能切断短路电流,引起断路器爆炸起火。 (2)检修质量不满足要求。如检修中随意改变分、合闸速度,随意改变断路器的燃弧距离(灭弧室至静触头间的距离),均会使断路器的断流容量降低。

(3)运行操作及维护不当。如断路器多次切断短路电流后,按规定未及时安排检修;断路器自动跳闸后,运行人员不准确的多次强送电,使断路器多次受短路电流冲击。这些均使断路器断流能力降低,并由此造成断路器爆炸起火。 (4)运行油位过高。油断路器运行油位过高,使断路器油面以上的缓冲空间减少,当油路器开断短路电流时,由于缓冲空间减少,切断电弧产生的高压油气混合体可能冲出缓冲空间,形成断路器喷油,甚至引起火灾;另外,由于缓冲空间的减少,高压油气混合气体排入缓冲空间后,使缓冲空间的压力增高,如果此压力超过缓冲空间容器的极限强度,断路器可能发生爆炸。 (5)运行油位过低。油断路器运行油位过低,影响其灭弧性能。当切断电弧时,由于油位过低,冷

制粉系统爆炸事故原因分析及预防措施

1 煤粉爆炸的机理 在炉膛或烟道积存了大量的未燃尽可燃物,在与空气按一定比例混合时,形成了新的可燃性混合物。当该混合可燃物获得一定的能量并达到燃烧条件时,在极短的时间迅速点燃。在这个化学反应中将会发生一个链状的燃烧反应,火焰激波迅速传播,因而在极短的时间很快将积存燃料燃尽。爆燃的结果是在极短的时间释放出巨大能量。在制粉系统中,煤粉是由气体来输送,气体和煤粉混合成云雾状混合物,煤粉的自燃引起周围气粉混合物爆炸,产生较大的压力而形成煤粉爆炸。 根据对事故的分析以及爆燃的物理化学起因,得出发生可燃物爆燃事件的因素主要有以下几方面。由于某种原因积存了大量的可燃物,包括可燃气体和可燃固体燃料颗粒,如氢气、一氧化碳、煤粉挥发分中碳氢化合物等气体都可能是导致爆炸的可燃气体;积存的可燃物与足够的氧气或空气相混合,形成了爆炸性混合物,并且混合物达到了爆炸极限(表1列出了3种煤粉与空气混合时的爆炸极限);积存的燃料发生了“自热现象”或遇到了明火使得燃料引燃。这 3个条件是造成可燃物爆炸的必要因素。 表 1 燃煤与空气混合时的爆炸极限

a.挥发分含量。一般说来,含挥发分较高的煤粉易爆炸,含挥发分低的煤粉不易爆炸。这是由于煤粉着火燃烧的开始主要是靠燃烧析出挥发分,挥发分含量高的煤粉容易析出挥发分,而且比较多,能够为煤粉的迅速着火提供足够的能力。根据有关资料介绍,当挥发分小于10%时则无爆炸危险。挥发分大于20%的煤粉,很容易自燃,爆炸的可能性很大。 b.煤粉的粗细。在炉窑中,煤粉的输送是靠气力输送,因此煤粉越细,在细煤粉的周围所吸附聚集的一次风空气或氧气越多,这样就给自燃提供了更优越的条件,从而越容易自燃和爆炸。烟煤的粒度大于0.1min时几乎不会爆炸。综合考虑挥发分和煤粉细度对煤粉着火的影响,对于挥发分高的煤不允许磨得过细。 c.输送煤粉的气体含氧量。含氧的比例越大,爆炸的可能性越大,充足的氧气为混合物的爆炸提供了条件,而在氧浓度低于一定程度时难以发生爆炸。关于煤粉系统含氧量浓度的标准,各个国家都有不同的规定标准,但一般都在15%左右。制粉系统的氧气来源于多种渠道,如干燥风、漏风,输送煤粉的一次风或三次风等。如果煤粉混合物中的含氧量不足,即使存在很强的点燃能,混合物的浓度处于最佳爆炸点,也不可能发生爆炸。 d.煤粉气流混合的温度。混合物的温度升高会减少煤粉颗粒的着火热,加速燃烧的速度,因此温度高易爆炸,低于一定温度则无爆炸危险。煤粉气流混合温度主要指标是指磨煤机出口风温。

发电机差动保护误动原因分析

发电机差动保护误动原因分析 [摘要]差动保护作为发电机的主保护,能否正确动作直接影响到主设备的安全和系统的稳定运行。本篇主要介绍因线路遭受雷击引起发电机组差动保护误动原因进行分析并提出相应的整改措施及电流互感器对差动保护动作的影响进行分析。 [关键词]差动保护;电流互感器;原因分析;整改措施 0 引言 多年来,作为主设备主保护的纵联差动(简称纵差或差动)保护,正确动作率始终在50%~60%徘徊,而零序差动保护甚至低到30%左右,这对主设备的安全和系统的稳定运行都很不利。造成这种局面的原因是多方面的,主要有设计、制造、安装调试和运行维护等。各部门都有或多或少的责任,实际工作中也在不断改进,但是“原因不明”的主设备保护不正确动作事例仍然为数不少。发电机纵差保护可以说是最简单的应用,但仍然存在“原因不明”的误动事故发生,比如在同期操作(人工或自动)过程,主要现象是由于操作不规范,偏离同期三要素(频率、电压幅值、相位)的要求,合闸时发电机发出轰鸣声,随即纵差保护跳闸。 1 发电机差动保护动作情况 山美水电站#1发电机技术改造后于2005年8月投入运行,运行后一切正常。发电机所采用的保护为河南许继集团生产的WFB-800系列保护装置。中性点和机端差动保护电流互感器均为LZZBJ9-10 A2型,10P15 /10P15 级,变比为1500/5,其中中性点电流互感器安装在发电机现场,机端电流互感器安装在新高压开关室,两者相距350m 。如图1 图1 8月23日由于35KV线路遭受雷击,A、B两相短路,雷电波虽经过了一台110KV三卷变的隔离,但还是引起发电机差动保护范围外的区外短路,导致机能差动保护动作。差动保护回路因差流存在并达到动作限值引起差动保护动作,

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理 一、变压器差动保护范围: 变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障: 1、变压器引出线及内部绕组线圈的相间短路。 2、变压器绕组严重的匝间短路故障。 3、大电流接地系统中,线圈及引出线的接地故障。 4、变压器CT故障。 二、差动保护动作跳闸原因: 1、主变压器及其套管引出线发生短路故障。 2、保护二次线发生故障。 3、电流互感器短路或开路。 4、主变压器内部故障。 5、保护装置误动 三、主变压器差动保护动作跳闸处理的原则有以下几点: 1、检查主变压器外部套管及引线有无故障痕迹和异常现象。 2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。如果有,则应及时消除短路点,然后对变压器重新送电。差动保护和瓦斯保护共同组成变压器的主保护。差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。 差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。 四、变压器差动保护动作检查项目: 1、记录保护动作情况、打印故障录波报告。 2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。 3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。 4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。 5、差动保护范围外有无短路故障(其它设备有无保护动作)差动保护二次回路有无接地、短路等现象,跳闸时是否有人在差动二次回路上工作。 五、动作现象及原因分析: 1、差动保护动作跳闸的同时,如果同时有瓦斯保护动作,即使只报轻瓦斯信号,变压器内部故障的可能性极大。 2、差动保护动作跳闸前如变压器套管、引线、CT有异常声响及其它故障现

空调压缩机爆炸原因分析

空调压缩机爆炸原因分析 空调器不制冷的原因很多,需要对空调器各部件的运行情况进行全面检查,找出具体故障问题进行维修处理。其中系统有漏点,造成制冷剂泄露是空调器不制冷的原因之一。在市场实际操作中,在进行制冷系统检漏时,常出现如下违规操作: 1、违规检漏操作导致压缩机爆炸 操作过程:关闭高压阀 开启压缩机 利用压缩机对室外机制冷系统进行充 注空气加压,以便进行漏点的检查 运行数分钟。 结果:压缩机发生爆炸。 过程分析:主要为压缩机吸入空气运行的危险* ● 压缩机内部有一定量的冷冻机油(350cc—950cc 随机型的大小而不同); ● 在特定的压力、温度条件下,冷冻机油会发生自燃,造成压缩机内部出现异常高温、高压状况,最终会造成压缩机壳体破裂继而发生爆炸 压缩机发生爆炸的条件: ●

空调器制冷循环系统高压侧发生堵塞; ● 压缩机运行; ● 吸入空气; 压缩机发生爆炸的机理: 空调器制冷循环系统高压侧堵塞压缩机运行吸入空气数分钟压缩机过热冷冻机油过热汽化压缩机内部油气混合物大量增加,温度、压力持续增加一定压力、温度时,压缩机内油气混合物自燃,温度、压力急剧上升超过压缩机壳体耐压强度继而发生压缩机壳体爆裂。 应对措施: 在进行制冷系统漏点的检查时,不得使用空调器自身压缩机进行打压,必须在停机状态下使用氮气按规范进行。 2、移机时(含更换室内机或需要回收制冷剂的操作),违规回收制冷剂操作引起压缩机爆炸 空调器移机也是一种经常性的业务,在移机过程中均需要进行制冷剂的回收。但是如果操作不当,同样会造成压缩机爆炸的严重后果。 操作过程:压缩机运行关闭高压阀空调器系统低压侧泄漏吸入空 气运行数分钟压缩机爆炸 过程分析:因本台空调器制冷系统存在漏点,系统内因低压侧存在漏点已经没有制冷剂或残留少量的制冷剂,导致压缩机吸入空气并且在高压侧关闭的情况下运

防止制粉系统爆炸的运行措施示范文本

防止制粉系统爆炸的运行措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

防止制粉系统爆炸的运行措施示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1#炉于7月12日、7月28日发生两次制粉系统爆炸 事故,造成磨煤机混合风道破损,严重威胁到人身安全和 电厂生产安全。 从发生这两次事故的过程来看,事故都发生在停磨过 程中。根据发生爆炸的条件分析:在走空磨煤机存煤过程 中,由于磨煤机内部煤粉浓度逐渐降低,逐渐进入煤粉爆 炸极限以内,当磨煤机内存在明火(自燃)和磨煤机内钢 球发生碰撞(微小的金属火花),以及在富氧条件下,就 会发生爆炸。 为减少事故发生的可能,在近一段燃用高挥发份煤种 期间,要求各值做到: 一、磨煤机的启动前

1、磨煤机启动前,测量磨煤机本体各部位温度,确证磨煤机内没有发生自燃;如证实磨内发生自燃,则投入磨煤机消防蒸汽和消防水进行灭火。 2、启磨前,开大冷风挡板,对磨本体及煤粉管进行彻底吹扫后再进行暖磨。 二、磨煤机正常运行 1、磨煤机出口风粉混合温度正常运行控制在≯70℃。 2、经常检查制粉系统各部位温度有无异常,如有异常,立即采取措施。 3、运行中,如果发生断煤,要及时增加另一台给煤机出力并降低磨煤机出力,必要时可以投运消防蒸汽或停运磨煤机,避免磨煤机内料位极低发生爆炸。 三、停运磨煤机 1、根据负荷调度曲线,可以提前将需停运磨煤机出口温度设定到60℃。

高压电机差动保护动作的几种原因

咼压电机差动保护动作的几种原因 时间:2016/1/30 点击数:526 高压电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、 变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。 1电机差动保护动作原因分析 1.1已经投产运行中的电机 已经投产运行的电机当岀现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置岀现了问题。解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断岀故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及 CT和二次回路的问题。 投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这 种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。 这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其 二次线错接在了测量级上,其电机两侧CT的特性不一致。当给 2号35kV主变充电时就会有直流分量和 谐波串到6kV电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值 1.6A左右,动作整定 值1.02A )。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误 动。 2改造或新设备第一次投产时,电机差动保护动作原因分析 由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设 备第一次投产试运行时,往往会岀现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所岀现过的几种情况。 ⑴郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值 6.2A-7.2A。动作整定 值5.2A )。对装置的参数整定,CT的极性、接线进行反复检查均没问题,电机试验也正常。后来确认, 由于电机距离开关柜较远(1000m ),电机中心点CT的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流岀现。测量电动机尾端到开关柜保护装置的接线直阻为 3.5欧,CT带 负载能力为2.2欧。我们从厂家制造了两只专用CT,二次绕组都制成保护级且变比相同,把其副边串接起 来,在不改变变比的情况下,提升了带负载能力。改造后正常。 ⑵郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A,动作整定值21.7A。我们对电机、电缆、CT变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT极性接反(相角差180度),接反后其动作值应在 42A以上,更像是差 动回路或一次回路相序不对,其动作电流肯定大于 21.7A,一般小于42A。其动作值与启动电流 258 2015年9月下 的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算岀来理想状态下

变压器差动保护误动分析及对策(一)

变压器差动保护误动分析及对策(一) 要:文章对微机型变压器差动保护动作的原因,从事件的形成以及保护的原理给予了详细地分析。对新建的、运行的或设备更新改造的发电厂和变电站的变压器差动保护误动提出了对策。 关键词:差动保护误动动作特性电流互感器 0引言 电力变压器是电力系统中最关键的主设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证。作为主设备主保护的微机型纵联差动(简称纵差或差动)保护,虽然经过不断的改进,但是还存在一些误动作的情况,这将造成变压器的非正常停运,影响电力系统的发供电,甚至是造成系统振荡,对电力系统发供电的稳定运行是很不利的。因此对新建或设备更新改造的发电厂和变电站的变压器差动保护误动原因进行分析,并提出了防止变压器差动误动的对策。 1变压器差动保护 变压器差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动的比率差动保护,不管哪种保护功能的差动保护,其差动电流都是通过变压器各侧电流的向量和得到,在变压器正常运行或者保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。

1.1比率差动保护的动作特性比率差动保护的动作特性见图1。当变压器轻微故障时,例如匝间短路的圈数很少时,不带制动量,使保护在变压器轻微故障时具有较高的灵敏度。而在较严重的区外故障时,有较大的制动量,提高保护的可靠性。 二次谐波制动主要区别是故障电流还是励磁涌流,因为变压器空载投运时会产生比较大的励磁涌流,并伴随有二次谐波分量,为了使变压器不误动,采用谐波制动原理。通过判断二次谐波分量,是否达到设定值来确定是变压器故障还是变压器空载投运,从而决定比率差动保护是否动作。二次谐波制动比一般取0.12~0.18。对于有些大型的变压器,为了增加保护的可靠性,也有采用五次谐波的制动原理。 1.2差动速断保护的作用差动速断保护是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断的定值是按躲过变压器的励磁涌流,和最大运行方式下穿越性故障引起的不平衡电流,两者中的较大者。定值一般取(4~14)Ie。 2变压器差动保护误动作原因分析 根据变压器差动保护误动作可能性的大小,大致分为新建发电厂和变电站、运行中发电厂和变电站、设备更新改造的发电厂和变电站三个方面进行说明,这种分类方法并不是绝对相互区别,只是为了便于在分析问题时优先考虑现实问题。 2.1新建发电厂和变电站变压器差动保护误动作原因分析新建变电站的变压器差动保护误动作,在变压器差动保护误动作中占了较大的比

高压PT柜爆炸原因分析

PT 柜高压互感器熔断故障的处理和分析 柜高压互感器 互感器熔断故障的处理和分析
高压 PT 柜在高压中起什么作用 1、提供测量电压和电量的表计提供实时电压信号; 2、向需要电压驱动的继电保护提供电压信号 高压开关柜中 PT 柜的作用是什么 PT 柜:电压互感器柜,一般是直接装设到母线上,以检测母线电压和实现保护 功能。内部主要安装电压互感器 PT、隔离刀、熔断器和避雷器等。 其作用: 1、电压测量,提供测量表计的电压回路 2、可提供操作和控制电源 3、每段母线过电压保护器的装设 4、继电保护的需要,如母线绝缘、过压、欠压、备自投条件等等。 (高压柜屏顶电压小母线的电源就是由 PT 柜提供的, 柜内既有测量 PT 又有 PT 计量 PT (原先都是要求测量 PT 和计量 PT 是分开的, 因为规范规定计量用互感 器的等级要高于保护用互感器的等级,但现在如没有特殊要求也有不分开的,共 用),都上屏顶的电压小母线,为其它出线高压柜提供测量、计量、保护用电源 等) 安装互感器,供保护及计量仪表,也可以通过电压互感器为操作系统提供工作电 源。 高压 PT 柜的原理
PT 柜:电压互感器柜,一般是直接装设到母线上,以检测母线电压和实现保护 功能。内部主要安装电压互感器 PT、隔离刀、熔断器和避雷器等。其作用:1、 电压测量,提供测量表计的电压回路 2、可提供操作和控制电源 3、每段母线 过电压保护器的装设 4、继电保护的需要,如母线绝缘、过压、欠压、备自投条 件等等。(高压柜屏顶电压小母线的电源就是由 PT 柜提供的,PT 柜内既有测 量 PT 又有计量 PT(原先都是要求测量 PT 和计量 PT 是分开的,因为规范规定 计量用互感器的等级要高于保护用互感器的等级, 但现在如没有特殊要求也有不 分开的,共用),都上屏顶的电压小母线,为其它出线高压柜提供测量、计量、 保护用电源等) PT 的作用:把高电压按比例关系变换成 100V 或更低等级的标准二次电压,供保 护、计量、仪表装置使用。同时,使用电压互感器可以将高电压与电气工作人员 隔离。
PT 柜高压熔断器熔断故障的处理和分析
我厂新建石灰石均化库有 4 台 6KV 高压柜, 分别是电源进线柜、 柜、 PT 变压器柜、 高压电动机柜(见图 1(a))。在试运转期间, PT 柜高压熔断器有两次熔断一相,

锅炉压力容器爆炸事故原因分析及预防措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 锅炉压力容器爆炸事故原因分析及预防措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3673-61 锅炉压力容器爆炸事故原因分析及 预防措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 锅炉爆炸事故的几种原因: 1)水蒸气爆炸:该容器破裂,容器内液面上的压力瞬即下降为大气压力,原工作压力下高于100℃的饱和水此时成了极不稳定、在大气压力下难于存在的"过饱和水",其中的一部分即瞬时汽化,体积骤然膨胀许多倍,在容器周围空间形成爆炸。 2)超压爆炸:由于各种原因使锅炉主要承压部件筒体、封头、管板、炉胆等承受的压力超过其承载能力而造成的锅炉爆炸。预防措施主要是加强运行管理。 3)缺陷导致爆炸:是指锅炉承受的压力并未超过额定压力,但因锅炉主要承压部件出现裂纹、严重变形、腐蚀、组织变化等情况,导致主要承压部件丧失承载能力,突然大面积破裂爆炸。

光纤差动保护动作原因分析

关于线路光纤差动保护误动的原因分析 1、摘要 2014年5月30日晚22:57分,在内蒙杭锦旗源丰生物热电厂,发生两条线路光纤差动保护动作跳闸事故;后经调度同意恢复线路供电,在操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸,经检查1#主变没有任何故障,申请调度令再次恢复供电,调度同意并仅限最后一次恢复供电,当又一次次操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸。至此,不能正常运行。 2、基本概况及事故发生经过 内蒙杭锦旗源丰生物热电厂有两台发电机变压器组,主变高压侧为35KV系统,两路进线由上级220KV变电站引来,两路进线之间有母联开关,启动备用变压器由Ⅰ段母线供电。由于两路进线在上级变电站为同段母线输送,所以正常运行时母联合环,两台机组并列运行。听当值运行人员讲,5月30日晚22:08分,事故发生之前系统报出过TV断线、零序过压、主变过负荷故障,并且C相系统电压均为零的状况,即刻到35KV配电室巡视,最终发现在Ⅱ段主变出线柜跟前闻见焦糊味。当即汇报调度采取措施,申请调度断开35KV母联开关310,保证Ⅰ段发电机变压器组正常运行。然后意在使Ⅱ段发电机变压器组退出运行,以便检查Ⅱ段主变出线柜焦糊味的来源情况。结果在间隔50分钟后,当晚22:57分左右,2#主变差动保护动作,跳开高低压侧开关,发电机解列.Ⅰ段、Ⅱ段线路光纤差动保护莫名其秒的同时动作跳闸,1#主变高低压侧开关紧跟着也跳闸,造成全厂停电事故。

上述情况发生后,向调度汇报,申请恢复线路供电,以保厂用系统不失电安全运行。调度要求自行检查故障后在送电,在晚上23:50分,检查出2#主变出线柜C相CT接地烧毁,后向调度汇报并经调度同意恢复了供电。厂用电所带设备运转正常后,计划启动Ⅰ段发电机变压器组,调度同意.在3:49分,操作1#主变冲击合闸时,本条线路光纤差动保护动作跳闸,同时向调度汇报。在检查1#主变没有任何故障后,申请调度令,恢复杭源一回线供电.调度同意并仅限最后一次恢复供电, 4:52分, 操作1#主变冲击合闸时, 本条线路光纤差动保护再次动作跳闸,11:33分申请调度恢复本厂厂用电系统,经调度同意,在11:39分恢复了厂用电系统. 根据其它运行人员反映,在此次事故之前,也有光纤差动保护动作跳闸的事情发生,而且不只一次。并且奇怪的是,在两台机组并列运行时,想让两台机组分段运行。在分断联络开关时,线路光纤差动保护也会同时动作跳闸,两条线路全部失电。或是正常操作断开一条线路时,也会使另一条线路光纤差动保护动作跳闸,说明光纤差动保护动作非常不可靠,存在着巨大引患. 3、光纤差动保护误动的原因分析 经过认真检查,2#主变出线柜C相CT接地烧毁(一次对二次及地绝缘为零),B相CT也有严重拉弧现象,C相CT二次侧也有拉弧过的痕迹.A、B、C相CT一次触头螺丝没有紧死,有不同程度的虚接现象。必须重新更换CT.这也说明相关装置报出TV断线、零序过压、主变过负荷故障的原因所在, C相CT接地并存在严重拉弧现象,那么 C相系

差动保护误动原因分析及解决措施

差动保护误动原因分析及解决措施 摘要:文章针对变压器差动保护误动率较高的现状,阐述了变压器差动保护的工作原理和作用,探究了引起变压器差动保护误动的原因,主要包括以下几方面:二次回路接线错误或设备性能欠佳、区外故障、电流互感器局部暂态饱和及和应涌流等,并提出了相应的解决措施。 关键词:差动保护;误动;和应涌流 变压器是配电网的重要组成设备,其运行状态直接影响着配电网供电的稳定性和可靠性,为了确保变压器安全、可靠的运行,通常给变压器安装差动保护装置,目前多数变压器都采用纵联差动保护为主保护。然而运行时,差动保护引起的保护误动时常出现,据相关部门的统计数据显示,某区域在2010~2013年,变压器差动保护共动作1 035次,其中误动作有237次,误动率高达22.9%,部分误动原因没有查清楚,就允许变压器继续运行,给整个配电网的可靠运行造成安全隐患。基于此,本文对变压器差动保护误动问题进行了探讨。 1 差动保护的基本工作原理及作用 1.1 基本工作原理 变压器正常运行时,高低两侧的不平衡电流近似于零,若保护区域内发生异常或者故障,同时不平衡电流数值达到差动继电器动作电流时,保护装置开始动作,跳开断路器,切断故障点。 1.2 保护作用 差动保护是相对合理、完善的快速保护之一,能准确反映出变压器绕组的各种短路,例如:相间、匝间及引出线上的相间短路等,避免变压器内部及引出线之间的各种短路导致变压器损坏的重要作用。 2 差动保护误动的原因分析及解决措施 2.1 二次回路接线错误或设备性能欠佳 经过多年运行统计可知,引起差动保护误动的一个原因是二次回路接线错误或者二次设备性能欠佳。变压器差动保护二次接线线路复杂,通常要进行三角形和星形接法的变换,现场调试时工作人员一疏忽就极易将接线弄错,主要表现在以下几方面:电流互感器极性接反、组别和相别错误。为了避免上述问题,可加强对调试安装人员进行专业技能培训,提高业务水平,在调试运行时,关键环节要重点进行检查。 2.2 区外故障

电动机差动保护的原理及应用

电动机差动保护的原理及应用 摘要:本文阐述了大型电动机差动保护原理。分析了差动保护的分类及对灵敏度的影响并介绍了差动原理逻辑图。 关键词:差动保护、比率差动、二次谐波闭锁比率差动 引言 大型高压电动机作为昂贵的电气主设备在发电厂,化工厂等大企业得到广泛的应用。如果发生严重故障导致电机烧毁,将严重影响生产的正常进行,造成巨大的经济损失,因此必须对其提供完善的保护。现有电动机综合保护装置主要针对中小型电动机,为其提供电流速断,热过载反时限过流,两段式定时限负序,零序电流,转子停滞,启动时间过长,频繁启动等保护功能。而对于2000KW以上特大容量电动机,则无法满足其内部故障时对保护灵敏度与速动性的要求,因而研制此装置并配合综合保护装置,为高压电动机提供更可靠更灵敏的保护措施。按照《电力装置的继电保护和自动装置设计规范》GB50062的要求:2MW 及以上的电机应装设纵差保护。 一概述 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s 的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1*(电机的端电流),Ia2、Ia2*、Ic2、Ic2*(电机的中性线电流),带*的为极性端。 保护装置的原理接线图如图2所示。电流互感器应具有相同的特性,并能满足10%误差要求。 微机保护原理框图见图如下:

高压开关设备反事故技术措施(1)

高压开关设备反事故技术措施 目录 1 总则 2 选用高压开关设备技术措施 3 新装和检修高压开关设备技术措施 4 预防断路器灭弧室烧损、爆炸 5 预防套管、支持绝缘子和绝缘提升杆闪络、爆炸 6 预防断路器拒分、拒合和误动等操作故障 7 预防直流操作电源故障引起断路器拒动、烧损 8 预防液压机构漏油、慢分 9 预防断路器进水受潮 10 预防高压开关设备机械损伤 11 预防SF6高压开关设备漏气、污染 12 预防高压开关设备载流导体过热 13 预防高压开关柜事故 14 预防隔离开关事故 16 附则 附录SF6气体和气体绝缘金属封闭开关设备技术标准 高压开关设备反事故技术措施 1 总则 1.1 为提高高压开关设备(以下简称开关设备)的运行可靠性,根据事故分析和各地区、各部门的经验,提出以下反事故技术措施,国家电力公司系统各有关设计、基建、安装、运

行、检修和试验单位均应认真执行。各运行单位亦应结合本地区具体情况和经验,制订适合本地区的补充反事故技术措施。 1.2 为保证开关设备安全运行,必须建立和健全专业管理体系,加强开关设备专业的技术管理工作,各单位均应认真贯彻和执行国家电力公司颁布的《高压开关设备管理规定》和《高压开关设备质量监督管理办法》的各项条款。 1.3 各级电力公司要加强对开关设备安装、运行、检修或试验人员的技术培训工作,使之熟悉和掌握所辖范围内开关设备结构性能及安装、运行、检修和试验的技术要求。 2 选用高压开关设备技术措施 2.1 凡不符合国家电力公司《高压开关设备质量监督管理办法》,国家(含原机械、电力两部)已明令停止生产、使用的各种型号开关设备,一律不得选用。 2.2 凡新建变电所的高压断路器,不得再选用手力操作动机构。对正在运行的高压断路器手力操动机构要尽快更换,以确保操作人员的人身安全。 2.3 中性点不接地、小电流接地及二线一地制系统应选用异相接地开断试验合格的开关设备。 2.4 切合电容器组应选用开断电容电流无重击穿及适合于频繁操作的断路器。 2.5 对电缆线路和35kV及以上电压等级架空线路,应选用切合时无重击穿的断路器。2.6 用于切合110kV及以上电压等级变压器的断路器,其过电压不应超过2.5~2.0倍。2.7 对于频繁启停的高压感应电机回路应选用SF6断路器或真空断路器、接触器等开关设备,其过电压倍数应满足感应电机绝缘水平的要求,同时应采取过电压保护措施。 3 新装和检修高压开关设备技术措施 3.1 设备的交接验收必须严格按照国家、电力行业和国家电力公司标准、产品技术条件及合同书的技术要求进行。不符合交接验收条件不能验收投运。

锅炉制粉系统爆炸的原因及措施(新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 锅炉制粉系统爆炸的原因及措 施(新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

锅炉制粉系统爆炸的原因及措施(新版) 针对我司近期的生产状况,对锅炉制粉系统的爆炸做了具体的分析,并做出了相关的措施,主要内容如下: 一、制粉系统自燃及爆炸的原因 1、制粉系统内积煤与积粉。 比如在制粉系统停止时,没有抽尽磨煤机中的煤粉或是磨煤机入口存在积煤等等,不论制粉系统是否运行,都有可能将积煤引燃。 2、磨煤机出口温度过高。 由于磨煤机出口温度高,可能引燃煤粉 3、磨煤机断煤。 如磨煤机断煤,可能倒至出口温度超温。 4、煤粉过细,水分过低。 5、粉仓严重漏风。

粉仓漏风,进入粉仓的氧气可能引起煤粉自燃 6、高挥发分的煤粉在煤粉仓内存积过久。 高挥发份的煤如果存积时间过长,可能蓄积的热量导致煤粉自燃 7、煤中含有油质或有易爆品物等。 8、一次风管因磨损漏粉或法兰连接漏粉。 9、热风门内漏 由于热风门内漏,导致大量热风进入磨煤机内,造成存煤自燃,再次启动时引起制粉系统爆炸。 10、粗粉分离器内堆积煤粉自燃 粗粉分离器的细粉内锥体下部和固定帽锥之间的环形缝隙有时被杂物堵塞而造成大量的积粉,可能导致煤粉自燃 11、磨煤机夹球或摩擦。 12、有外来火源。 二、自燃及爆炸的预防措施 1、消除系统内的积煤与积粉。

真空断路器爆炸导致主变烧毁的原因分析

真空断路器爆炸导致主变烧毁的原因分析 巴东县电力公司所辖的一座35kV变电站,在一次倒闸操作中,出现10kV真空断路器爆炸,导致主变烧毁的事故,笔者参加了安全事故调查分析处理,现对事故的现场进行介绍和分析,探讨事故的真正原因。 1变电站基本情况 该站是巴东县电网中一座建设规模比较小主变容量较小地理位置比较偏远的35kV变电站。该变电站配备一台主变,型号为S9-1250/35;35kV进线通过户外隔离开关直接接到35kV高压开关柜,10kV出线共四回,高压设备全部采用的户内高压开关柜,主变高压开关柜型号是:KYN10-40.5金属封闭铠装移动式高压开关柜。主变10kV出线开关柜型号是:XGN2-10。综合自动化设备(保护设备、监控系统)采用Builder系列设备。该变电站按少人值班形式设计安装。电气主接线图见图1。 2事故的经过及其处理 事故前的运行方式:事故前,系统正常运行。该站35kV、10kV母线、主变均正常运行,该站3条10kV出线对外供电,一条10kV线路因机械闭锁故障待检修后供电。事故前主变实际负荷200kW左右。 事故过程及处理。据当班人员介绍:2005年4月24日15:40左右,因10kV出线2的开关柜机械闭锁故障,需要停电检修,因处理故障时与10kV母线安全距离不够,为了保证安全,需要将主变低压侧断路器跳开,值班人员先跳开10kV101断路器,在拉开1011隔离开关后,突然听见该开关柜内有“吱吱”的放电声音,接着发生震耳的爆炸声和强烈的电弧光,开关柜内火光冲天,整个高压室内烟雾弥漫,数秒钟后,主变发出刺耳的尖叫声,主变压力释放器动作喷油,持续数秒钟后,上一级变电站线路速断保护动作跳闸,将该故障设备退出系统,导致全站供电中断。值班人员迅速拉开35kV进线隔离开关,关闭全站所有直流电源,并将有关事故情况迅速上报调度及公司各级领导。 图1电气主接线图 事故以后,对事故现场进行了认真的检查,事故造成主变低压侧开关柜彻底报废:101断路器真空泡爆炸(断路器在开位,开关的动、静触头间没有发现因分断容量不够所造成的电弧熔化的痕迹)、1011隔离开关(在开位、没有明显的带负荷拉合隔离开关电弧烧毁的现象)及引线灼伤。主变低压侧开关柜内10kV电流互感器及101断路器下端母排及支持瓷绝缘子灼伤。1019接地开关三相的动静触头的尖端烧伤较为严重,10kV高压电缆没有受到损伤。 事故造成主变彻底烧毁(主变喷油、主变箱体严重变形、测试绝缘高低压绕组对地绝缘为零、低压绕组B相已经熔断) 事故后,认真检查了后台监控装置,找寻有关故障前的运行状况和事故信息。因通讯系统失灵导致事故时,没有记忆到任何事故信息和故障前的运行状况。据值班员反应已经长时间没有正常工作。 3事故原因探析 对事故后设备的现场进行了认真的检查分析:发现事故的原因主要是由于主变10kV侧断路

电动机差动保护误动原因分析与对策

电动机差动保护误动原因分析与对策 摘要:随着新建火力发电动机组容量地不断扩大,相应的辅机容量随之增大,纵联差动保护作为2MV A及以上高压电动机的主保护得到了越来越广泛地应用。介绍了电动机纵联差动保护,并针对纵联差动保护经常误动的情况,分析了电动机纵联差动保护误动作的原因,并给出了相应地解决办法,以确保机组地安全稳定运行。 关键词: 差动保护电流互感器不平衡电流 Abstract: along with the newly built thermal power motivation group capacity expands unceasingly, the corresponding auxiliary capacity increases, longitudinal differential protection of high voltage motor as2MV A and above the main protection is applied more and more widely. Introduces motor differential protection, and for longitudinal differential protection maloperation analysis often, motor differential protection maloperation cause, and gives corresponding solutions, to ensure the safe and stable operation of unit. Key words: differential protection current transformer current balance 0 引言 随着电力行业的不断发展,新建火力发电动机组容量越来越大,相应的辅机容量也随之增大。根据第9.6.1条的规定:2MV A及以上的电动机应装设纵联差动保护。对于2MV A以下中性点具有分相引线的电动机,当电流速断保护灵敏性不够时,也应装设本保护。在纵联差动保护的实际应用中,经常由于两侧电流互感器的相序、极性连接不当或电流互感器本身选择不合理等原因误动作,严重影响主要辅机的正常运转,危及机组地安全运行。为解决这个问题,须找出差动保护误动作的原因,并提出切合可行的改进措施。 1 纵联差动保护介绍 由图1可见,在不考虑电流互感器励磁电流影响的情况下,当电动机正常运行时,流过电动机绕组两侧的电流一致。以A相电流为例,电动机一次侧的电流Ia1和Ia2大小相等,方向一致,经过电流互感器转换到二次侧电流分别是Ia1’和Ia2’,从理论上讲Ia1’和Ia2’也应大小相等,方向一致。这样,流过纵联差动保护装置内部差动元件的电流就为零,差动保护不动作。当电动机内部发生相

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

相关主题
文本预览
相关文档 最新文档