当前位置:文档之家› 实验二 顺序存储的线性表实验报告

实验二 顺序存储的线性表实验报告

实验二 顺序存储的线性表实验报告
实验二 顺序存储的线性表实验报告

宁波大红鹰学院实验报告实验名称:实验二顺序存储的线性表

数据结构实验报告 实验一 线性表链式存储运算的算法实现

昆明理工大学信息工程与自动化学院学生实验报告 (201 —201 学年第一学期) 课程名称:数据结构开课实验室:年月日年级、专业、班学号姓名成绩 实验项目名称线性表链式存储运算的算法实现指导教师 教 师 评语教师签名: 年月日 一.实验内容: 线性表链式存储运算的算法实现,实现链表的建立、链表的数据插入、链表的数据删除、链表的数据输出。 二.实验目的: 1.掌握线性表链式存储结构的C语言描述及运算算法的实现; 2.分析算法的空间复杂度和插入和删除的时间复杂度; 3.总结比较线性表顺序存储存储与链式存储的各自特点。 三.主要程序代码分析: LinkList creatListR1() //用尾插入法建立带头结点的单链表 { char *ch=new char(); LinkList head=(LinkList)malloc(sizeof(ListNode)); //生成头结点*head ListNode *s,*r,*pp; r=head; //尾指针初值指向头结点 r->next=NULL; scanf("%s",ch); //读入第一个结点的值 while(strcmp(ch,"#")!=0) { //输入#结束

pp=LocateNode(head,ch); if(pp==NULL) { s=(ListNode *)malloc(sizeof(ListNode)); //生成新的结点*s strcpy(s->data,ch); r->next=s; //新结点插入表尾 r=s; //尾指针r指向新的表尾 r->next=NULL; } scanf("%s",ch); //读入下一个结点的值 } return head; //返回表头指针 } int Insert(ListNode *head) //链表的插入 { ListNode *in,*p,*q; int wh; in=(ListNode *)malloc(sizeof(ListNode));in->next=NULL; //生成新结点p=(ListNode *)malloc(sizeof(ListNode));p->next=NULL; q=(ListNode *)malloc(sizeof(ListNode));q->next=NULL; scanf("%s",in->data); //输入插入的数据 scanf("%d",&wh); //输入插入数据的位置 for(p=head;wh>0;p=p->next,wh--); q=p->next; p->next=in; in->next=q; } void DeleteList(LinkList head,char *key) //链表的删除 { ListNode *p,*r,*q=head; p=LocateNode(head,key); //按key值查找结点的 if(p==NULL) exit(0); //若没有找到结点,退出 while(q->next!=p) //p为要删除的结点,q为p的前结点q=q->next; r=q->next; q->next=r->next; free(r); //释放结点*r } 四.程序运行结果:

线性表练习题(答案)

第2章线性表 一选择题 下列程序段的时间复杂度为( C )。 for( int i=1;i<=n;i++) for( int j=1;j<= m; j++) A[i][j] = i*j ; A. O(m2) B. O(n2) C. O(m*n) D. (m+n) 下面关于线性表的叙述中,错误的是哪一个?(B ) A.线性表采用顺序存储,必须占用一片连续的存储单元。 B.线性表采用顺序存储,便于进行插入和删除操作。 C.线性表采用链接存储,不必占用一片连续的存储单元。 D.线性表采用链接存储,便于插入和删除操作。 线性表是具有n个( C )的有限序列(n>0)。 A.表元素B.字符C.数据元素D.数据项 若某线性表最常用的操作是存取任一指定序号的元素和在最后进行插入和删除运算,则利用( A )存储方式最节省时间。 A.顺序表B.双链表C.带头结点的双循环链表D.单循环链表 某线性表中最常用的操作是在最后一个元素之后插入一个元素和删除第一个元素,则采用( D )存储方式最节省运算时间。 A.单链表B.仅有头指针的单循环链表 C.双链表D.仅有尾指针的单循环链表 设一个链表最常用的操作是在末尾插入结点和删除尾结点,则选用( D )最节省时间。A. 单链表 B.单循环链表 C. 带尾指针的单循环链表 D.带头结点的双循环链表 若某表最常用的操作是在最后一个结点之后插入一个结点或删除最后一个结点。则采用( D )存储方式最节省运算时间。 A.单链表B.双链表C.单循环链表D.带头结点的双循环链表 链表不具有的特点是( B ) A.插入、删除不需要移动元素B.可随机访问任一元素 C.不必事先估计存储空间D.所需空间与线性长度成正比 下面的叙述不正确的是(B,C ) A.线性表在链式存储时,查找第i个元素的时间同i的值成正比 B. 线性表在链式存储时,查找第i个元素的时间同i的值无关 C. 线性表在顺序存储时,查找第i个元素的时间同i 的值成正比 D. 线性表在顺序存储时,查找第i个元素的时间同i的值无关 若长度为n的线性表采用顺序存储结构,在其第i个位置插入一个新元素的算法的时间复杂度为( C )(1<=i<=n+1)。 A. O(0) B. O(1) C. O(n) D. O(n2) 对于顺序存储的线性表,访问结点和增加、删除结点的时间复杂度为(C )。 A.O(n) O(n) B. O(n) O(1) C. O(1) O(n) D. O(1) O(1) 线性表(a1,a2,…,an)以链接方式存储时,访问第i位置元素的时间复杂性为( C )A.O(i)B.O(1)C.O(n)D.O(i-1) 循环链表H的尾结点P的特点是(A )。 A.P->next=H B.P->next= H->next C.P=H D.P=H->next 完成在双循环链表结点p之后插入s的操作是(D );

线性表ADT的顺序存储与链式存储实验报告

实验报告 题目:完成线性表ADT的顺序存储和链式存储方式的实现 一、需求分析 1、本演示程序中,线性表的数据元素类型限定为整型 2、演示程序以用户和计算机的对话方式执行,即在计算机的终端上显示“提 示信息”之后由用户在键盘上键入演示程序规定的运算命令,相应的输出 结果显示在后面。 3、程序的执行命令包括: 创建、撤销、清空、插入、修改、删除、定位等线性表ADT各项基本操作二、概要设计 为实现上述功能,我们给出线性表的抽象数据类型定义,具体的有单向链,双向 链,顺序表等,同时对于上述功能的实现还采用有/无头结点两种方式来实现 1.线性表的抽象数据类型定义为 ADT List{ 数据对象:D={a i|a i∈ElemSet,i=1,2,…,n,n≥0} 数据关系:R1={|ai-1,ai∈D,i=2,…,n} 基本操作: InitList(&L) 操作结果:构造一个空的线性表L DestroyList(&L) 初始条件:线性表L已存在。 操作结果:销毁线性表L。 ClearList(&L) 初始条件:线性表L已存在。 操作结果:将L重置为空表。 ListEmpty(L) 初始条件:线性表L已存在。 操作结果:若L为空表,则返回TRUE,否则返回FALSE。 ListLength(L) 初始条件:线性表L已存在。 操作结果:返回L中的i个数据元素的值。 GetElem(L,i,&e) 初始条件:线性表L已存在,1≤i≤ListLength(L)。 操作结果:用e返回L中第i个数据元素的值。 LocateElem(L,e,compare()) 初始条件:线性表L已存在,compare()是数据元素判定函数 操作结果:返回L中第一个与e满足compare()的数据元素的位序。 若这样的数据元素不存在,则返回值为0. PriorElem(L,cur_e,&pre_e) 初始条件:线性表已存在 操作结果:若cur_e是L的数据元素,且不是第一个,则用pre_e 返回它的前驱,否则操作失败,pre_e无定义。

线性表的顺序存储结构定义和基本操作算法实现

/************线性表的顺序存储结构定义和基本操作算法实现************/ #include "stdio.h" /***********************线性表的顺序存储结构定义*******************/ #define MAX 11 /*线性表可能达到的最大长度值*/ typedef int datatype; typedef struct {datatype data[MAX]; int last;}list; /************************1.线性表的初始化***************************/ void init(list *lp) {lp->last=0;} /************************2.求线性表的长度***************************/ int length(list *lp) { return (lp->last);} /***************3.插入运算,在表第i个位置插入一个值为x的新元素******/ void insert(list *lp,int i,datatype x) { int j; if(lp->last==MAX-1) printf("Overflow!\n"); /*表已满*/ else if(i<1||i>lp->last+1) printf("Error!\n"); /*插入位置错误*/ else {for(j=lp->last;j>=i;j--) lp->data[j+1]=lp->data[j]; /*数据元素后移*/ lp->data[i]=x; /*插入x */ lp->last++; /*表长度加1*/ } } /***************4.删除运算,在表中删除第i个数据元素***************/ void delete(list *lp,int i) { int j; if(i<1||i>lp->last) /*检查空表及删除位置的合法性*/ printf("The %dth element is not exist!",i); /*不存在第i个元素*/ else {for(j=i+1;j<=lp->last;j++) lp->data[j-1]=lp->data[j]; /*向前移动元素*/ lp->last--; /*表长度减1 */ } } /*****************5.查找运算,在表中查找x数据元素*****************/ int locate(list *lp,datatype x) { int i=lp->last; while(i>0 && lp->data[i]!=x)i--; return i;

1.C语言顺序表实验报告

实验报告要求 一、实验目的 二、实验内容 三、程序流程图 四、实验结果(要求检测所有情况的正确性,写出测试条件及相应的测试结果) 五、完成思考题 实验一顺序表的基本操作(2学时) 一、实验目的 了解顺序表的逻辑特征,掌握顺序表的描述方法、特点及有关的概念,掌握顺序表上的插入和删除等基本操作算法。 二、实验内容 在顺序表List []中,实现顺序表的基本操作,包括:初始化顺序表,在表中插入元素、删除元素。 基本要求: (1)顺序表的元素个数可随意设定; (2)可连续测试任意多个元素的插入、删除,(插 入、删除位置及要插入元素数值均从键盘输入); (3)任一操作结束后将顺序表中的内容输出; (4)可由用户选择退出程序。 三、实验要点及说明 顺序表又称为线性表的顺序存储结构,它是用一组地址连续的存储单元依次存放线性表的各个元素。 可按如下格式定义顺序表: #define MAXLEN 50 /* 定义顺序表最大元素个数50 */ typedef struct{ datatype List[MAXLEN];/* 定义顺序表List */ int Num; /* 定义顺序表表长*/ }Seqlist; 模块划分:(1)initiq( )函数:初始化顺序表 (2)insertq( )函数:实现插入功能 (3)deleteq( )函数:实现删除功能 (4)print( )函数:实现输出功能 四、参考源程序 #include #define MAXLEN 50 typedef int datatype; typedef struct{ datatype List[MAXLEN]; int Num; }Seqlist; void initiq(Seqlist *la ); int insertq(Seqlist *la,int n);

数据结构实验线性表的顺序存储结构

南昌航空大学实验报告 课程名称:数据结构实验名称:实验一线性表的链式存储结构班级:080611 学生姓名:冯武明学号:16 指导教师评定:XXX 签名: XXX 题目:设计并实现以下算法:给出用单链表存储多项式的结构,利用后接法生成多项式的单链表结构,实现两个多项式相加的运算,并就地逆置相加后的多项式链式。 一、需求分析 ⒈先构造两个多项式链表,实现两个多项式的和及删除值为零元素的操作,不同用户输入 的多项式不同。 ⒉在演示过程序中,用户需敲击键盘输入值,即可观看结果。 ⒊程序执行的命令包括: (1)构造多项式链表A (2)构造多项式链表B (3)求两张链表的和(4)删除值为零元素,即不创建链表。 二、概要设计 ⒈为实现上述算法,需要线性表的抽象数据类型: ADT Stack { 数据对象:D={a i:|a i∈ElemSet,i=1…n,n≥0} 数据关系:R1={|a i-1,a i∈D,i=2,…n≥0} 基本操作: init(linklist *L) 操作结果: destroylist(List *L) clearlist(List *L) 初始条件:线性表L已经存在,1≤i≤ListLength(&L) 操作结果:用e返回L中第i个数据元素的值。 insfirst(link h,link s) 初始条件:数据元素e1,e2存在 操作结果:以e1,e2中的姓名项作为判定e1,e2是否相等的依据。 delfirst(link h,link *q) 初始条件:数据元素e1,e2存在 操作结果:以e1,e2中的姓名项(为字符串)的≤来判定e1,e2是否有 ≤的关系。

实验报告一顺序表的操作

《数据结构》实验报告一 系别:班级: 学号:姓名: 日期:指导教师: 一、上机实验的问题和要求: 顺序表的查找、插入与删除。设计算法,实现线性结构上的顺序表的产生以及元素的查找、插入与删除。具体实现要求: 从键盘输入10个整数,产生顺序表,并输入结点值。 从键盘输入1个整数,在顺序表中查找该结点的位置。若找到,输出结点的位置;若找不到,则显示“找不到”。 从键盘输入2个整数,一个表示欲插入的位置i,另一个表示欲插入的数值x,将x插入在对应位置上,输出顺序表所有结点值,观察输出结果。 从键盘输入1个整数,表示欲删除结点的位置,输出顺序表所有结点值,观察输出结果。二、程序设计的基本思想,原理和算法描述: (包括程序的结构,数据结构,输入/输出设计,符号名说明等) 三、源程序及注释:

#include <> /*顺序表的定义:*/ #define ListSize 100 /*表空间大小可根据实际需要而定,这里假设为100*/ typedef int DataType; /*DataType可以是任何相应的数据类型如int, float或char*/ typedef struct { DataType data[ListSize]; /*向量data用于存放表结点*/ int length; /*当前的表长度*/ }SeqList; /*子函数的声明*/ void CreateList(SeqList * L,int n); /*创建顺序表函数*/ int LocateList(SeqList L,DataType x); /*查找顺序表*/ void InsertList(SeqList * L,DataType x,int i); /*在顺序表中插入结点x*/ void DeleteList(SeqList * L,int i);/*在顺序表中删除第i个结点*/ void PrintList(SeqList L,int n); /*打印顺序表中前n个结点*/ void main() { SeqList L; int n=10,x,i; /*欲建立的顺序表长度*/ =0;

线性表逆置(顺序表)实验报告

实验一:线性表逆置(顺序表)实验报告 (一)问题的描述: 实现顺序表的逆置算法 (二)数据结构的设计: 顺序表是线性表的顺序存储形式,因此设计如下数据类型表示线性表: typedef struct { ElemType *elem; /* 存储空间基址*/ int length; /* 当前长度*/ int listsize; /* 当前分配的存储容量(以sizeof(ElemType)为单位) */ }SqList; (三)函数功能、参数说明及概要设计: 1.函数Status InitList(SqList *L) 功能说明:实现顺序表L的初始化 算法设计:为顺序表分配一块大小为LIST_INIT_SIZE的储存空间 2.函数int ListLength(SqList L) 功能说明:返回顺序表L长度 算法设计:返回顺序表中的length变量 3.函数Status ListInsert(SqList *L,int i,ElemType e) 功能说明:将元素e插入到顺序表L中的第i个节点 算法设计:判断顺序表是否已满,已满则加空间,未满则继续,将元素e插入到第i个元素之前,并将后面的元素依次往后移 4.函数Status ListTraverse(SqList L,void(*vi)(ElemType*)) 功能说明:依次对L的每个数据元素调用函数vi() 算法设计:依次对L的每个数据元素调用函数vi() 5.函数void Exchange(SqList *L) 功能说明:实现顺序表L的逆置 算法设计:用for循环将顺序表L中的第i个元素依次与第(i+length)个元素交换6.函数void print(ElemType *c) 功能说明:打印元素c 算法设计:打印元素c 2. (四)具体程序的实现

线性表的顺序存储结构定义和基本操作算法实现

#include "" /***********************线性表的顺序存储结构定义*******************/ #define MAX 11 /*线性表可能达到的最大长度值*/ typedef int datatype; typedef struct {datatype data[MAX]; int last;}list; /************************1.线性表的初始化***************************/ void init(list *lp) {lp->last=0;} /************************2.求线性表的长度***************************/ int length(list *lp) { return (lp->last);} /***************3.插入运算,在表第i个位置插入一个值为 x的新元素******/ void insert(list *lp,int i,datatype x) { int j; if(lp->last==MAX-1) printf("Overflow!\n"); /*表已满*/ else if(i<1||i>lp->last+1) printf("Error!\n"); /*插入位置错误*/ else {for(j=lp->last;j>=i;j--) lp->data[j+1]=lp->data[j]; /*数据元素后移*/ lp->data[i]=x; /*插入x */ lp->last++; /*表长度加1*/ } } /***************4.删除运算,在表中删除第i个数据元素***************/ void delete(list *lp,int i) { int j; if(i<1||i>lp->last) /*检查空表及删除位置的合法性*/ printf("The %dth element is not exist!",i); /*不存在第i个元素*/ else {for(j=i+1;j<=lp->last;j++) lp->data[j-1]=lp->data[j]; /*向前移动元素*/ lp->last--; /*表长度减1 */ } } /*****************5.查找运算,在表中查找x数据元素*****************/ int locate(list *lp,datatype x) { int i=lp->last; while(i>0 && lp->data[i]!=x)i--; return i; }

数据结构- 顺序表的基本操作的实现-课程设计-实验报告

顺序表的基本操作的实现 一、实验目的 1、掌握使用VC++上机调试顺序表的基本方法; 2、掌握顺序表的基本操作:建立、插入、删除等运算。 二、实验仪器 安装VC++软件的计算机。 三、实验原理 利用线性表的特性以及顺序存储结构特点对线性表进行相关的基本操作四、实验内容 程序中演示了顺序表的创建、插入和删除。 程序如下: #include #include /*顺序表的定义:*/ #define ListSize 100 typedef struct { int data[ListSize]; /*向量data用于存放表结点*/ i nt length; /*当前的表长度*/ }SeqList; void main() { void CreateList(SeqList *L,int n); v oid PrintList(SeqList *L,int n); i nt LocateList(SeqList *L,int x); v oid InsertList(SeqList *L,int x,int i); v oid DeleteList(SeqList *L,int i); SeqList L;

i nt i,x; i nt n=10; L.length=0; c lrscr(); C reateList(&L,n); /*建立顺序表*/ P rintList(&L,n); /*打印建立后的顺序表*/ p rintf("INPUT THE RESEARCH ELEMENT"); s canf("%d",&x); i=LocateList(&L,x); p rintf("the research position is %d\n",i); /*顺序表查找*/ p rintf("input the position of insert:\n"); s canf("%d",&i); p rintf("input the value of insert\n"); s canf("%d",&x); I nsertList(&L,x,i); /*顺序表插入*/ P rintList(&L,n); /*打印插入后的顺序表*/ p rintf("input the position of delete\n"); s canf("%d",&i); D eleteList(&L,i); /*顺序表删除*/ P rintList(&L,n); /*打印删除后的顺序表*/ g etchar(); } /*顺序表的建立:*/ void CreateList(SeqList *L,int n) {int i; printf("please input n numbers\n"); for(i=1;i<=n;i++) scanf("%d",&L->data[i]); L->length=n;

《数据结构》实验一 线性表及其应用

实验一线性表及其应用 一、实验目的 1.熟悉C语言的上机环境,进一步掌握C语言的结构特点。 2.掌握线性表的顺序存储结构的定义及C语言实现。 3.掌握线性表的链式存储结构——单链表的定义及C语言实现。 4.掌握线性表在顺序存储结构即顺序表中的各种基本操作。 5.掌握线性表在链式存储结构——单链表中的各种基本操作。 二、实验内容 1.顺序线性表的建立、插入及删除。 2.链式线性表的建立、插入及删除。 三、实验步骤 1.建立含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度。 2.利用前面的实验先建立一个顺序表L={21,23,14,5,56,17,31},然后在第i个位置插入元素68。 3.建立一个带头结点的单链表,结点的值域为整型数据。要求将用户输入的数据按尾插入法来建立相应单链表。 四、实现提示 1.由于C语言的数组类型也有随机存取的特点,一维数组的机内表示就是顺序结构。因此,可用C语言的一维数组实现线性表的顺序存储。 在此,我们利用C语言的结构体类型定义顺序表: #define MAXSIZE 1024 typedef int elemtype; /* 线性表中存放整型元素*/ typedef struct { elemtype vec[MAXSIZE]; int len; /* 顺序表的长度*/ }sequenlist; 将此结构定义放在一个头文件sqlist.h里,可避免在后面的参考程序中代码重复书写,另外在该头文件里给出顺序表的建立及常量的定义。 2. 注意如何取到第i个元素,在插入过程中注意溢出情况以及数组的下标与位序(顺序表中元素的次序)的区别。 3.单链表的结点结构除数据域外,还含有一个指针域。用C语言描述结点结构如下: typedef int elemtype; typedef struct node

顺序存储结构的线性表

顺序存储结构的线性表 线性表是最常用且比较简单的一种结构,它是由有限个数据元素组成的有序集合,每个数据元素有一个数据项或者含多个数据项。例如26个英文字母表(A,B,……Z)是一个线性表,表中每一个数据元素由单个字母组成数据项。又如表5.0.1也是一个线性表,表中含八个数据元素,每一个数据元素由n个选手在该项目的竞赛成绩组成。 线性表具有如下结构特征: (1)均匀性。即同一线性表的名数据元素的数据类型一致且数据项相同。 (2)有序性。表中数据元素之间的相对位置是线性的,即存在性一的“第一个”和“最后一个”数据元素。除第一个 和最后一个外,其他元素前面均只有一个数据元素(直接前趋)和后面均只有一个数据元素(直接后继)。 按照表中数据元素的存储方式分顺序存储结构和链式存储结构两类线性表。 1、序存储结构 顺序存储结构是指用一组地址连续的存储单元依次线性表的元素,通常用数组实现。数组的物理实现是一块连续的存储空间,它是按首址(表中第1个元素的地址)+位移来访问每一个元素。 设 loc(a[i])-----A数组中元素i的内存地址(c<=i<=d);

loc(b[i,j])----Bo数组中(i,j)元素的内存地址 (c1<=I<=d1,c2<=j<=d2); loc(a[i])=loc(a[c])+(i-c)*la,la-------atype类型的长度; loc(b[i,j]=loc(b[c1,c2])+((d2-c2+1)*(i-c1)+(j-c2))*lb,lb----atype 类型长度; 一维数组按照下标递增的顺序访问表中元素; a[c]->a[c+1]->……->a[d] 二维数按照先行后列的顺序访问表中元素: b[c1,c2]->b[c1,c+1]->……b[c1,d2]->……>b[i-1,d2]->b[i,c2]-> ……->b[d1,d2-1]->b[d1,d2] 在数组中,数据元素的下标间接反映了数据据元素的存储地址。而计算机内存是随机存储取的装置,所以在数组中存取一个数据元素只要通过下标计算它的存储地址就行了,数组中任意一个元素的存取时间都相等。从这个意义上讲,数组的存储存储结构是一个随机存取的结构。 问题是,虽然数组的顺序分配结构比较简单,便于随机访问数组中的任一元素。但如果数组要保持线性表的特征的话(由下标指明元素间的有序性),其增删操作的效率比较低。特别,当数组很大时,插入与删除运算颇为费时。因此,比较小的数组或元素不常变(很少进行插入与删除运算)的数组可用作线性表,而对于大的线性表或元素经常变动的线性表,可以采链式存储结构。 2、链式存储结构

顺序表实验报告

嘉应学院计算机学院 实验报告 课程名称数据结构实验名称线性表实验地点锡科405 指导老师巫喜红实验时间第2-3周提交时间第3周 班级1303班姓名魏振辉学号131110108 一、实验目的和要求 编写一个程序algo2-1.cpp,实现顺序表的各种基本运算 二、实验环境、内容和方法 实验内容: 1.初始化线性表L; 2.依次采用尾插法插入a,b,c,d,e元素; 3.输出顺序表L; 4.输出顺序表L的长度; 5.判断顺序表L是否为空; 6.输出顺序表L的第3个元素; 7.输出元素a的位置; 8.在第4个元素位置上插入f元素; 9.输出顺序表L; 10.删除L的第3个元素; 11.输出顺序表L; 12.释放顺序表L。 实验环境:Windows xp Visual C++6.0 三、实验过程描述 (详见本文件夹) 四、结果分析 运行结果如下图所示: 初始化线性表,先定义一个变量num,用while循环配合switch语句的使用来达到在未选择退出即num不等

时一直提示操作的效果,每执行一次操都会先运行fflush(stdin)函数来清除缓存区,避免下次操作受到干扰; 1、往线性表里插入元素,位置和元素用空格隔开; 2、查询线性表是否为空 3、输出顺序表 4、查询线性表长度

5、查询某位置的元素。执行查询操作时先用if语句判断查询元素的函数LocateElem(L,e)返回的值来执行不的操作,当返回的值为0时则所查元素不在线性表中; 6、查询木元素的位置。用if语句判断是否正确输入; 7、删除某元素。 8、释放顺序表 9、退出。用if语句每次执行操作时都判断一次指令是否正确。 五、实验总结

数据结构实验一顺序表

数据结构实验一 1、实验目的 ?掌握线性表的逻辑特征 ?掌握线性表顺序存储结构的特点,熟练掌握顺序表的基本运算 2、实验内容: 建立顺序表,完成顺序表的基本操作:初始化、插入、删除、逆转、输出、销毁, 置空表、求表长、查找元素、判线性表是否为空; 1.问题描述:利用顺序表,设计一组输入数据(假定为一组整数),能够对顺序表进行如下操作: ?创建一个新的顺序表,实现动态空间分配的初始化; ?根据顺序表结点的位置插入一个新结点(位置插入),也可以根据给定的值进行插入(值插入),形成有序顺序表; ?根据顺序表结点的位置删除一个结点(位置删除),也可以根据给定的值删除对应的第一个结点,或者删除指定值的所有结点(值删除); ?利用最少的空间实现顺序表元素的逆转; ?实现顺序表的各个元素的输出; ?彻底销毁顺序线性表,回收所分配的空间; ?对顺序线性表的所有元素删除,置为空表; ?返回其数据元素个数; ?按序号查找,根据顺序表的特点,可以随机存取,直接可以定位于第i 个结点,查找该元素的值,对查找结果进行返回; ?按值查找,根据给定数据元素的值,只能顺序比较,查找该元素的位置,对查找结果进行返回; ?判断顺序表中是否有元素存在,对判断结果进行返回; .编写主程序,实现对各不同的算法调用。 2.实现要求: ?“初始化算法”的操作结果:构造一个空的顺序线性表。对顺序表的空间进行动态管理,实现动态分配、回收和增加存储空间; ?“位置插入算法”的初始条件:顺序线性表L 已存在,给定的元素位置为i,且1≤i≤ListLength(L)+1 ; 操作结果:在L 中第i 个位置之前插入新的数据元素e,L 的长度加1; ?“位置删除算法”的初始条件:顺序线性表L 已存在,1≤i≤ListLength(L) ; 操作结果:删除L 的第i 个数据元素,并用e 返回其值,L 的长度减1 ; ?“逆转算法”的初始条件:顺序线性表L 已存在; 操作结果:依次对L 的每个数据元素进行交换,为了使用最少的额外空间,对顺序表的元素进行交换; ?“输出算法”的初始条件:顺序线性表L 已存在; 操作结果:依次对L 的每个数据元素进行输出; ?“销毁算法”初始条件:顺序线性表L 已存在;

线性表的顺序储存结构

交通大学《算法与数据结构》课程 实验报告 班级:计算机科学与技术2014级2班 实验项目名称:线性表的顺序储存结构 实验项目性质: 实验所属课程:算法与数据结构 实验室(中心): B01407 指导教师:鲁云平 实验完成时间:2016 年 3 月21 日

一、实验目的 1、实现线性表的顺序存储结构 2、熟悉C++程序的基本结构,掌握程序中的头文件、实现文件和主文件之 间的相互关系及各自的作用 3、熟悉顺序表的基本操作方式,掌握顺序表相关操作的具体实现 二、实验容及要求 对顺序存储的线性表进行一些基本操作。主要包括: (1)插入:操作方式为在指定元素前插入、在指定元素之后插入、在指定位置完成插入 (2)删除:操作方式可分为删除指定元素、删除指定位置的元素等,尝试实现逻辑删除操作。 (3)显示数据 (4)查找:查询指定的元素(可根据某个数据成员完成查询操作) (5)定位操作:定位指定元素的序号 (6)更新:修改指定元素的数据 (7)数据文件的读写操作等。 其它操作可根据具体需要自行补充。 要求线性表采用类的定义,数据对象的类型自行定义。 三、实验设备及软件 VC6.0 四、设计方案

㈠题目 线性表的顺序存储结构 ㈡设计的主要思路 1、新建SeqList.h头文件,定义SeqList模板类 2、设计类数据成员,包括:T *data(用于存放数组)、int maxSize (最大可容表项的项数)、int last(当前已存表项的最后位置) 3、设计类成员函数,主要包括: int search(T& x)const;//搜索x在表中位置,函数返回表项序号 int Locate(int i)const;//定位第i个表项,函数返回表项序号 bool getData(int i,T& x)const;//去第i个表项的值 void setData(int i,T& x)//用x修改第i个表项的值 bool Insert(int i,T& x);//插入x在第i个表项之后 bool Remove(int i,T& x); //删除第i个表项,通过x返回表项的值 bool IsEmpty();//判表空否,空则返回true;否则返回false bool IsFull();//判表满否,满则返回true;否则返回false void input(); //输入 void output();//输出 void ofile();/存储在文件中 void ifile();//读取文件并显示 ㈢主要功能 1、建立新表 2、对表进行插入(指定元素前、后以及指定位置插入)、删除(指定 元素删除及指定位置删除)、修改等操作 3、显示当前操作表的全部容 4、存储在文件中 5、从文件中读取表 五、主要代码 ㈠SeqList.h中的主要代码: 1、类成员声明部分: protected: T *data; //存放数组 int maxSize; //最大可容纳表项

顺序表的查找、插入与删除实验报告

《数据结构》实验报告一 学院:班级: 学号:姓名: 日期:程序名 一、上机实验的问题和要求: 顺序表的查找、插入与删除。设计算法,实现线性结构上的顺序表的产生以及元素的查找、插入与删除。具体实现要求: 1.从键盘输入10个整数,产生顺序表,并输入结点值。 2.从键盘输入1个整数,在顺序表中查找该结点的位置。若找到,输出结点的位置;若找 不到,则显示“找不到”。 3.从键盘输入2个整数,一个表示欲插入的位置i,另一个表示欲插入的数值x,将x插 入在对应位置上,输出顺序表所有结点值,观察输出结果。 4.从键盘输入1个整数,表示欲删除结点的位置,输出顺序表所有结点值,观察输出结果。 二、源程序及注释: #include #include /*顺序表的定义:*/ #include #define ListSize 100 /*表空间大小可根据实际需要而定,这里假设为100*/ typedef int DataType; /*DataType可以是任何相应的数据类型如int, float或char*/ typedef struct { DataType data[ListSize]; /*向量data用于存放表结点*/ int length; /*当前的表长度*/ }SeqList; void main() { SeqList L; int i,x; int n=10; /*欲建立的顺序表长度*/ L.length=0; void CreateList(SeqList *L,int n); void PrintList(SeqList L,int n); int LocateList(SeqList L,DataType x); void InsertList(SeqList *L,DataType x,int i); void DeleteList(SeqList *L,int i);

数据结构实验线性表及其应用

计算机系数据结构实验报告(1) 实验目的: 帮助学生掌握线性表的基本操作在顺序和链表这两种存储结构上的实现,尤以链表的操作和应用作为重点。 问题描述: 1、构造一个空的线性表L。 2、在线性表L的第i个元素之前插入新的元素e; 3、在线性表L中删除第i个元素,并用e返回其值。 实验要求: 1、分别利用顺序和链表存储结构实现线性表的存储,并设计出在不同的存储结构中线 性表的基本操作算法。 2、在实验过程中,对相同的操作在不同的存储结构下的时间复杂度和空间复杂度进行 分析。 算法分析: 由于两种存储结构都用来创建线性结构的数据表,可采用相同的输出模式和整体结构类似的算法,如下: 实验内容和过程: 顺序存储结构线性表程序清单: //顺序存储结构线性表的插入删除 #include #include <> using namespace std; # define LISTSIZE 100 # define CREMENTSIZE 10 typedef char ElemType; //定义数据元素类型为字符型 typedef struct { ElemType *elem; //数据元素首地址

int len; //当前元素个数 int listsize; //当前存储最大容量 }SqList; //构造一个空的线性表L int InitList(SqList &L) { =(ElemType *)malloc(LISTSIZE*sizeof(ElemType)); if (! exit(-2); //分配空间失败 =0; =LISTSIZE; } //在顺序线性表L中第i个位置之前插入新的元素e int ListInsert(SqList &L,int i,ElemType e) { if (i<1||i>+1) return -1; //i值不合法 if >= { ElemType *newelem=(ElemType *)realloc,+CREMENTSIZE)*sizeof(ElemType)); //存储空间已满,增加分配 if(!newelem) exit (-2); //分配失败 =newelem; +=CREMENTSIZE; } ElemType *q=&[i-1]) ; for (ElemType *p=&[]);p>=q;--p) *(p+1)=*p; //插入位置及其后的元素后移 *q=e; ++; return 1; } //在顺序线性表L中删除第i个元素,并用e返回其值 int ListDelete(SqList &L,int i,ElemType&e) { if (i<1||i> return -1; //i值不合法

顺序表的应用数据结构实验报告记录

顺序表的应用数据结构实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

大学数据结构实验报告 课程名称数据结构实验第(三)次实验实验名称顺序表的应用 学生姓名于歌专业班级学号 实验成绩指导老师(签名)日期2018年9月30日一、实验目的 1.学会定义线性表的顺序存储类型,实现C程序的基本结构,对线性表的一些基本操作和具体的函数定义。 2.掌握顺序表的基本操作,实现顺序表的插入、删除、查找以及求并集等运算。 3.掌握对多函数程序的输入、编辑、调试和运行过程。 二、实验要求 1.预习C语言中结构体的定义与基本操作方法。 2.对顺序表的每个基本操作用单独的函数实现。 3.编写完整程序完成下面的实验内容并上机运行。 4.整理并上交实验报告。 三、实验内容: 1.定义一个包含学生信息(学号,姓名,成绩)的顺序表,使其具有如下功能: (1)根据指定学生个数,逐个输入学生信息 (2)逐个显示学生表中所有学生的相关信息 (3)根据姓名进行查找,返回此学生的学号和成绩 (4)根据指定的位置可返回相应的学生信息(学号,姓名,成绩) (5)给定一个学生信息,插入到表中指定的位置 (6)删除指定位置的学生记录 (7)统计表中学生个数 四、实验设计 1.定义一个包含学生信息(学号,姓名,成绩)的顺序表,使其具有如下功能: (1)根据指定学生个数,逐个输入学生信息 for(count=0; count

实验一 线性表基本操作的编程实现

实验一线性表基本操作的编程实现 【实验目的】 线性表基本操作的编程实现 要求: 线性表基本操作的编程实现(2学时,验证型),掌握线性表的建立、遍历、插入、删除等基本操作的编程实现,也可以进一步编程实现查找、逆序、排序等操作,存储结构可以在顺序结构或链表结构中任选,可以完成部分主要功能,也可以用菜单进行管理完成大部分功能。还鼓励学生利用基本操作进行一些更实际的应用型程序设计。 【实验性质】 验证性实验(学时数:2H) 【实验内容】 把线性表的顺序存储和链表存储的数据插入、删除运算其中某项进行程序实现。建议实现键盘输入数据以实现程序的通用性。为了体现功能的正常性,至少要编制遍历数据的函数。 【注意事项】 1.开发语言:使用C。 2.可以自己增加其他功能。 【思考问题】 1.线性表的顺序存储和链表存储的差异?优缺点分析? 2.那些操作引发了数据的移动? 3.算法的时间效率是如何体现的? 4.链表的指针是如何后移的?如何加强程序的健壮性? 【参考代码】(以下内容,学生任意选择一个完成即可) (一)利用顺序表完成一个班级学生课程成绩的简单管理 1、预定义以及顺序表结构类型的定义 (1) #include #include #define ListSize 100 //根据需要自己设定一个班级能够容纳的最大学生数 (2) typedef struct stu { int num; //学生的学号 char name[10]; //学生的姓名 float physics; //物理成绩 float math; //数学成绩 float english; //英语成绩 }STUDENT; //存放单个学生信息的结构体类型 typedef struct List { STUDENT stu[ListSize]; //存放学生的数组定义,静态分配空间

相关主题
文本预览
相关文档 最新文档