当前位置:文档之家› 圆形工作井沉井结构计算

圆形工作井沉井结构计算

圆形工作井(沉井)结构计算

本次计算结构简图如下:

下沉计算

工作井采用排水下沉

地下水位埋深3.90m(根据地勘成果)。

根据地勘资料,素填土、淤泥、粉质粘土及砂质粘性土侧摩阻力系数f分别取20kPa、10kPa、25kPa和25kPa。

多层土单位摩阻力标准值f k按各层土单位摩阻力标准值取加权平均值f ka,计算式如下:

11

20*6.0310*2.525*1.325*1.1718.85n ki si i ka n

si i f h f KPa h ==+++===∑∑(6.03+2.5+1.3+1.17)

沉井井壁自重G=212.09×25=5302 KN

当井外壁为阶梯形时,沉井与土间的总摩阻力T 按下图计算:

相应公式及计算结果为:

()()10.750.752

1(18.85 2.50.718.85115 2.50.718.855) 3.1429.82

3889ka ka ka T f h f H m h f m d KN

=?+?--+????=?+??--+?????=()π 沉井排水下沉系数

,53020 1.363 1.053889

fw k

st G F k T --===> 经计算,沉井下沉系数大于1.05,下沉系数满足规范要求。

抗浮验算

沉井井壁自重: G 1=5302.25KN

沉井底板自重: G 2=3.142×4.02×0.6×25=754.08KN

封底砼自重:G3=76.51×24=1836.24KN

沉井总重:G=G1+G2+G3 =5302.25+754.08+1836.24=7892.57KN

浮力F=3.142×4.92×9.07×10=6842.36KN

G / F = 7892.57/6842.36=1.153>1.05

经计算,抗浮系数大于1.05,满足规范要求。

井壁水平内力及配筋计算

圆形井筒在稳定下沉的条件下,井壁的承受的水平荷载为均布荷载,受力情况为轴心受压。但是由于井外土质及扰动程度并非均匀,而且在下沉过程中总要发生偏斜,从而便井壁在同一水平环上的土压力呈不均匀分布,导致井壁的弯矩相差大。

目前圆形沉井内力计算常用的方法是将井体积作受对称不均匀压力作用的封闭圆环,取其中四分之一圆环计算。假定90°的井圈上两点处的土壤内摩擦角差值5°~10°。本工程土壤内摩擦角差值取7.5°计算。

根据地质资料,按加权平均值取土容重r = 17.7kN/m3,内摩擦角φ=13°。

φ1=13°+7.5°=20.5°

φ2=13°-7.5°=5.5°

H=12.0m

P A=1.27×17.7×12×tg2(45°-φ1/ 2)=129.82kN

P B=1.27×17.7×12×tg2(45°-φ2/ 2)=222.56kN

ω’=ω-1 土压力不均衡度

ω= PB/ P A

ω’=222.56/129.82–1=0.7144

γc——沉井井壁的中心半径(m)

N A=P Aγc(1+0.7854ω’)

N B=P Aγc(1+0.5ω’)

M A=0.1366P Aγc2ω’

M B=-0.1488P Aγc2ω’

式中:N A——较小侧土压力的A截面上的轴力(kN/m)

N B——较大侧土压力的B截面上的轴力(kN/m)

M A——较小侧土压力的A截面上的弯矩(kN·m)

M B——较大侧土压力的B截面上的弯矩(kN·m)

M A=0.1366×129.82×4.452×0.7144=250.87kN·m

M B=-0.1488×129.82×4.452×0.7144=-273.28kN·m

αSB=(1.2×273.28×106)/(19.1×1000×6942)=0.0356

ζB=1- (1-2αSB)^0.5=0.0362

A s=f cζ

B h。/f y=(19.1×0.0362×1000×694)/360=1333mm2

选配钢筋φ22@150 A s=2534mm2,

裂缝计算

执行规范:

《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》

《给水排水工程构筑物结构设计规范》(GB 50069-2002), 本文简称《给排水结构规范》

1 设计资料

1.1 截面尺寸参数

1.2 材料参数

1.3 荷载及其它参数

2 计算过程及计算结果

(1)受拉钢筋应力计算

σsq=M q/(0.87h0A s)=273280000/(0.87×694×2534)=178.62N/mm2 (2)按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率

ρte=A s/A te=A s/(0.5bh)=2534/(0.5×1000×750)=0.0068

(3)裂缝间受拉钢筋应变不均匀系数

=

te sq

< 0.4, 取ψ=0.4

(4)最大裂缝宽度计算

max 1.8

sq

E s

0.11

te

+1?0.4000?

1.5?

0.0068

(5)验算

最大裂缝宽度:0.192(mm)<[ωmax]=0.200(mm)

经计算,选配φ22@150满足规范要求。

根据钢筋混凝土沉井结构设计及施工手册,对井径不大于8.0m,沉井深度或第一节下沉高度大于5.0m的钢筋混凝土圆形沉井,可不作竖向内力计算。

结构设计pkpm软件satwe计算结果分析 (2)

结构设计pkpm软件SATWE计算结果分析 SATWE软件计算结果分析 一、位移比、层间位移比控制 规范条文: 新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求: 结构休系Δu/h限值 框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000 名词释义: (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。 (2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。 控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点: 1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。 2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。 3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。 结构位移输出文件(WDISP.OUT) Max-(X)、Max-(Y)----最大X、Y向位移。(mm) Ave-(X)、Ave-(Y)----X、Y平均位移。(mm) Max-Dx ,Max-Dy : X,Y方向的最大层间位移

常用结构分析设计软件之比较

常用结构软件比较 目前的结构计算程序主要有:PKPM系列(TAT、SATWE)、TBSA系列(TBSA、TBWE、TBSAP)、BSCW、GSCAD、 SAP系列。其他一些结构计算程序如ETABS等,虽然功能强大,且在国外也相当流行,但国内实际上使用的不多,故不做详细讨论。 一、结构计算程序的分析与比较 1、结构主体计算程序的模型与优缺点 从主体计算程序所采用的模型单元来说 TAT和TBSA属于结构空间分析的第一代程序,其构件均采用空间杆系单元,其中梁、柱均采用简化的空间杆单元,剪力墙则采用空间薄壁杆单元。在形成单刚后再加入刚性楼板的位移协调矩阵,引入了楼板无限刚性假设,大大减少了结构自由度。 SATWE、TBWE和TBSAP 在此基础上加入了墙元,SATWE和TBSAP还加入了楼板分块刚性假设与弹性楼板假设,更能适应复杂的结构。SATWE提供了梁元、等截面圆弧形曲梁单元、柱元、杆元、墙元、弹性楼板单元(包括三角形和矩形薄壳单元、四节点等参薄壳单元)和厚板单元(包括三角形厚板单元和四节点等参厚板单元)。另外,通过与JCCAD的联合,还能实现基础-上部结构的整体协同计算。TBSAP提供的单元除了常用的杆单元、梁柱单元外,还提供了用以计算板的四边形或三角形壳元、墙元、用以计算厚板转换层的八节点四十八自由度三维元、广义单元(包括罚单元与集中单元),以及进行基础计算用的弹性地基梁单元、弹性地基柱单元(桩元)、三角形或四边形弹性地基板单元和地基土元。TBSAP可以对结构进行基础-上部结构-楼板的整体联算。 从计算准确性的角度来说 SAP84是最为精确的,其单元类型非常丰富,而且能够对结构进行静力、动力等多种计算。最为关键的是,使用SAP84时能根据结构的实际情况进行单元划分,其计算模型是最为接近实际结构。 BSCW和GSCAD的情况比较特殊,严格说来这两个程序均是前后处理工具,其开发者并没有进行结构计算程序的开发。但BSCW与其计算程序一起出售,因此有必要提一下。BSCW一直是使用广东省建筑设计研究院的一个框剪结构计算软件,这个程序应属于空间协同分析程序,即结构计算的第二代程序(第一代为平面分析,第二代为空间协同,第三代为空间分析)。GSCAD则可以选择生成SS、TBSA、TAT或是SSW的计算数据。SS和SSW均是广东省建筑设计研究院开发的,其中SS采用空间杆系模型,与TBSA、TAT属于同一类软件;而SSW根据其软件说明来看也具有墙元,但不清楚其墙元的类型,而且此程序目前尚未通过鉴定。 薄壁杆件模型的缺点是: 1、没有考虑剪力墙的剪切变形。 2、变形不协调。

沉井施工合同范本

工程专业劳务合同 年月日

工程专业劳务合同 甲方: 乙方: 根据《中华人民共和国合同法》、《中华人民共和国建筑法》及《建设工程质量管理条例》等法律法规之规定,并结合本工程的实际情况,遵循平等自愿、公平和诚实信用的原则,经甲、乙双方自愿友好协商一致,就乙方承包甲方施工项目及相关事宜,共同达成如下合同条款,双方严格遵守执行。 一、工程概况 1、工程名称: 2、工程地点: 3、工程内容: 4、承包方式: 二、工程工期 开工日期:年月日 竣工日期:年月日 总工期为天,本合同工期内如遇地质原因、不可抗力因素时,工期经甲方同意后方可顺延。 三、承包总价 1、本工程总价约:元(以最终实际结算总价为准) 四、施工质量、工艺、验收标准及工程量计量

1、施工质量:严格按照甲方所指定的施工工艺的要求进行施工 2、施工工艺:工程质量达到国家现行的工程质量验收标准 3、验收标准:施工验收标准按国家现行市政工程质量验收标准、给排水管道工程施工验收规范 4、工程量计量:所有结算工程量由甲乙双方现场签收内容为准并签字确认,作为工程量计算及结算的依据。 五、工程价款结算与支付 1、工程价款结算: 乙方以双方现场签收内容为准,,经甲方认可后按实结算。 2、工程款项支付方式: 本工程施工完工后,工程款支付按照甲方同业主签订的合同同期同比例支付给乙方指定账户,乙方提供相应数额的建筑业发票。 六、双方职责 (一)甲方职责 1、负责在乙方进场前提供施工场地,并配合乙方施工前的定位工作。 2、协助乙方办理相关手续,协调好施工现场周边关系。 3、提供乙方施工所需水、电、通道等(注:水电费由乙方自行承担,可从乙方工程款中扣除)。 4、做好施工质量、工期的监督工作和工程质量的验收工作。 (二)乙方职责 1、乙方严格按照施工图纸、施工规范及技术要求进行施工;确保质量目标的实现。 2、遵守甲方各项管理制度,自觉接受甲方管理。

Autodesk Robot 结构设计分析软件标准入门手册

Autodesk Robot 结构设计分析软件 标准入门手册

目录 Autodesk Robot 结构设计分析软件 快速浏览 (1) 软件概述 (3) Robot模块 (3) Robot的页面布局 (5) 软件的基本配置 (6) 首选项 (6) 工程首选项 (7) 导航功能 (8) Robot工作界面的使用方法 (10) 系统菜单 (10) 文件菜单 (11) 编辑菜单 (11) 浏览菜单 (12) 图形菜单 (12) 荷载菜单 (12) 分析菜单 (13)

结果菜单 (13) 设计菜单 (13) 工具菜单 (14) 窗口菜单 (14) 帮助菜单 (14) 布置系统 (15) 输入结构分析数据 (18) 分析结构 (22) 结果预览 (24) 梁的示意图 (24) 面的示意图 (26) 彩图结果 (28) 结构元素的设计 (29) 钢构件和木构件的设计 (29) 钢连接设计 (32) RC设计 (34) 所需钢筋面积(理论值)的计算 (34) 假设钢筋面积的计算 (35) 报告及输出计算书 (37) 快捷键列表 (39) 三维框架结构 (41) 软件配置 (43)

模块定义 (44) 杆的定义(二维框架)……………………………………… 44 约束的定义 (45) 2D椼架的定义 (46) 荷载定义 (47) 特殊荷载工况下荷载的定义 (48) 复制已有框架 (52) 横向梁的定义 (53) 交叉约束的定义 (54) 复制已定义的杆(梁横截面或支撑) (56) 结构分析 (57) 结果预览 (58) 以图形的形式预览梁的结构 (58) 以表格的形式预览杆的结构 (60) 压力分析 (61) 打印前的准备 (64) “捕捉”视图和计算记录的数据 (64) 准备输出的计算书 (65) 打印输出计算报告 (67) RC和钢混合结构 (71) 程序的配置 (73)

圆形工作井沉井结构计算

圆形工作井沉井结构计 算 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

圆形工作井(沉井)结构计算 本次计算结构简图如下: 下沉计算 工作井采用排水下沉 地下水位埋深3.90m(根据地勘成果)。 根据地勘资料,素填土、淤泥、粉质粘土及砂质粘性土侧摩阻力系数f分别取20kPa、10kPa、25kPa和25kPa。 多层土单位摩阻力标准值f k按各层土单位摩阻力标准值取加权平均值f ka,计算式如下:沉井井壁自重G=212.09×25=5302 KN 当井外壁为阶梯形时,沉井与土间的总摩阻力T按下图计算: 相应公式及计算结果为: 沉井排水下沉系数 经计算,沉井下沉系数大于1.05,下沉系数满足规范要求。 抗浮验算 沉井井壁自重: G 1 =5302.25KN 沉井底板自重: G 2 =3.142×4.02×0.6×25=754.08KN 封底砼自重: G 3 =76.51×24=1836.24KN 沉井总重: G=G 1+G 2 +G 3 =5302.25+754.08+1836.24=7892.57KN 浮力F=3.142×4.92×9.07×10=6842.36KN G / F = 7892.57/6842.36=1.153>1.05 经计算,抗浮系数大于1.05,满足规范要求。 井壁水平内力及配筋计算 圆形井筒在稳定下沉的条件下,井壁的承受的水平荷载为均布荷载,受力情况为轴心受压。但是由于井外土质及扰动程度并非均匀,而且在下沉过程中总要发生偏斜,从而便井壁在同一水平环上的土压力呈不均匀分布,导致井壁的弯矩相差大。 目前圆形沉井内力计算常用的方法是将井体积作受对称不均匀压力作用的封闭圆环,取其中四分之一圆环计算。假定90°的井圈上两点处的土壤内摩擦角差值5°~10°。本工程土壤内摩擦角差值取7.5°计算。 根据地质资料,按加权平均值取土容重r = 17.7kN/m3,内摩擦角φ=13°。 φ 1=13°+7.5°=20.5°

常用结构计算软件与结构概念设计

常用结构计算软件与结构概念设计 论文作者:不详 摘要:随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得以大幅度的提高。与此同时,人们对结构计算软件的依赖性也越来越大,有时甚至过分地相信计算软件,而忽略了结构概念设计的重要性。 关键词:常用结构计算软件概念设计 1、结构计算软件的局限性、适用性和近似性。 随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得以大幅度的提高。与此同时,人们对结构计算软件的依赖性也越来越大,有时甚至过分地相信计算软件,而忽略了结构概念设计的重要性。由于种种原因,目前的结构计算软件总是存在着一定的局限性、适用性和近似性,并非万能。如:结构的模型化误差;非结构构件对结构刚度的影响;楼板对结构刚度的影响;温度变化在结构构件中产生的应力;结构的实际阻尼(比);回填土对地下室约束相对刚度比;地基基础和上部结构的相互作用等等。有些影响因素目前还无法给出准确的模型描述,也只能给出简化的表达或简单的处理,受人为影响较大。加之,建筑体型越来越复杂,这就对结构计算软件提出了更高的要求,而软件本身往往又存在一定的滞后性。正是因为如此,结构工程师应对所用计算软件的基本假定、力学模型及其适用范围有所了解,并应对计算结果进行分析判断确认其正确合理、有效后方可用于工程设 计。 2、现阶段常用的结构分析模型 实际结构是空间的受力体系,但不论是静力分析还是动力分析,往往必须采取一定的简化处理,以建立相应的计算简图或分析模型。目前,常用的结构分析模型可分为两大类:第一类为平面结构空间协同分析模型;另一类为三维空间有限元分析模型。 1) 平面结构空间协同分析模型。将结构划分若干片正交或斜交的平面抗侧力结构,但对任意方向的水平荷载和水平地震作用,所有正交或斜交的抗侧力结构均参与工作,并按空间位移协调条件进行水平力的分配。楼板假定在其自身平面内刚度无限大。这一分析模型目前已经很少采用。其主要适用于平面布置较为规 则的框架结构、框-剪结构、剪力墙结构等。 2) 三维空间有限元分析模型。将建筑结构作为空间体系,梁、柱、支撑均采用空间杆单元,剪力墙单元模型目前国内有薄壁杆件模型、空间膜元模型、板壳单元模型以及墙组元模型。楼板可假定为弹性,也可假定在其自身平面内刚度无限大,还可假定楼板分块无限刚。该模型以节点位移为未知量,由矩阵位移法形 成线性方程组求解。 3、常用结构计算软件 多、高层结构的基本受力构件有柱、梁、支撑、剪力墙和楼板。柱、梁及支撑均为一维构件,可用空间杆单元来模拟其受力状态。空间杆单元的每个端点有6个自由度,即3个平动自由度和3个转角自由度。对一维构件,各种有限元分析软件对这类构件的模型化假定差异不大。剪力墙和普通楼板均为二维构件,这两种构件的模型化假定是关键,它直接决定了多、高层结构分析模型的科学性,同时也决定了软件分析结果的精度和可信度。目前国内外流行的几个结构计 算软件对剪力墙和楼板的模型化假定差异较大。现进行分述。 3.1 TAT结构计算软件 TAT是由中国建筑科学研究院开发的建筑结构专用软件,采用菜单操作,图形化输入几何数据和荷载数据。程序对剪力墙采用开口薄壁杆件模型,并假定楼板在平面内刚度无限大,平面外刚度为零。这使得结构的自由度大为减少,计算分析得到一定程度的简化,从而大大提高了计算效率。薄壁杆件模型采用开口薄壁杆件理论,将整个平面联肢墙或整个空间剪力墙模拟为开口薄壁杆件,每个杆件有两个端点,每个端点有7个自由度,前6个自由度的含义与空间杆单元相同,第7个自由度是用来描述薄壁杆件截面翘曲的。开口薄壁杆件模型的基本假定为: 1) 在线弹性条件下,杆件截面外形轮廓线在其自身平面内保持不变,在平面外可以翘曲,同时忽略其剪切变形的影响。这一假定实际上增大了结构的刚度,薄 壁杆件单元及其墙肢越多,则结构刚度增大的程度越高。 2) 将同一层彼此相连的剪力墙墙肢作为一个薄壁杆件单元,将上下层剪力墙洞口之间的部分作为连梁单元。这一假定将实际结构中连梁对墙肢的线约束简化为

圆形沉井在顶力作用下的内力分析

圆形沉井在顶力作用下的内力分析 发表时间:2012-12-04T10:14:03.107Z 来源:《建筑学研究前沿》2012年7月作者:唐凡[导读] 本文针对圆形沉井工作在顶力作用下的受力特点,采用土体对井壁的反力按向心余弦曲线分布在半圆上的计算假定 唐凡武汉市给排水工程设计院有限公司 430034 摘要:本文针对圆形沉井工作在顶力作用下的受力特点,采用土体对井壁的反力按向心余弦曲线分布在半圆上的计算假定,推导了结构内力分析计算公式,并结合算例与现行计算手册进行了比较。 关键词:圆形沉井顶管工作井结构分析 Round in open caisson jacking force under the action of an internal force analysis TangFan wuhan city water supply and drainage engineering to design Co., LTD. 430034 Abstract: this paper work in open caisson round top force under the action of mechanical characteristics, use of the soil wall reverse force to the heart cosine curve distribution according to the calculation of the assumption in half, the paper derives the structural internal force analysis and calculation formula, and an example and current calculation manual are compared. Keywords: circular pipe jacking in open caisson work well structure analysis 1 前言 给排水工程中,圆形沉井构筑物的管道采用顶管法施工时,一般利用沉井的井壁做顶管的后背。利用沉井井壁做后背时,其后背的土压力分布图形比较复杂,较合理的假定为空间曲面分布,在结构近似分析中一般简化为3种反力图形:即向心均匀分布、三角形分布和正弦或余弦曲线分布。 采用向心均匀分布假定虽然结构分析比较简单,但和实际工况有较大的出入。本文在前人研究工作的基础上,采用土体对井壁的反力按向心余弦曲线分布在半圆上的计算假定,以期对圆形沉井工作井在顶力作用下的结构分析有所改进。反力分布假定如图1所示,其中图1a为井体周围的均匀土压力,图1b为圆形沉井在顶力作用下,顶力所引起的圆周向不均匀土压力,图1c为圆形沉井在顶力作用下,顶力所引起的垂直向不均匀土压力。

倒挂井工作井计算书

圆形水池设计(YSC-1) 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2002), 本文简称《混凝土规范》 《建筑地基基础设计规范》(GB 50007-2002), 本文简称《地基规范》 《给水排水工程构筑物结构设计规范》(GB50069-2002), 本文简称《给排水结构规范》《给水排水工程钢筋混凝土水池结构设计规程》(CECS138-2002), 本文简称《水池结构规程》 ----------------------------------------------------------------------- 1 设计资料 1.1 基本信息 圆形水池形式:敞口 池内液体重度10.0kN/m3 浮托力折减系数1.00 裂缝宽度限值0.20mm 抗浮安全系数1.10 水池的几何尺寸如下图所示: 1.2 荷载信息 地面活荷载:10.00kN/m2 活荷载组合系数:0.90 荷载分项系数:

自重 :1.20 其它恒载:1.27 地下水压:1.27 其它活载:1.40 荷载准永久值系数: 顶板活荷载 :0.40 地面堆积荷载:0.50 地下水压 :1.00 温(湿)度作用:1.00 不考虑温度作用 1.3 混凝土与土信息 土天然重度:18.00kN/m3土饱和重度:20.00kN/m3 土内摩擦角ψ:30.0度 地基承载力特征值fak=120.00kPa 基础宽度和埋深的地基承载力修正系数ηb=1.00、ηd=1.00 混凝土等级:C30 纵筋级别:HRB335 混凝土重度:25.00kN/m3 配筋调整系数:1.20 2 计算内容 (1)荷载标准值计算 (2)抗浮验算 (3)地基承载力计算 (4)内力及配筋计算 (5)抗裂度、裂缝计算 (6)混凝土工程量计算 3 荷载标准值计算 底板:恒荷载: 池壁自重: 29.65kN/m2 覆土自重:6.53kN/m2 活荷载: 地面活荷载:0.57kN/m2 池壁:恒荷载: 池外侧土压力(池底):38.11kN/m2 活荷载: 地面活荷载 :3.33kN/m2 4 地基承载力验算: 计算基础底面的压力: 池壁内壁圆面积:Aic=πR2 = 3.14×3.0002 = 28.27m2 池壁外壁圆面积:A t=π(R+t)2=3.14×(3.000+0.35)2=35.26m2池壁自重Gs=γc×A s×H=25.00×6.98×6.352=1108.77kN 底板自重Gb=γc×A b×t2=25.00×37.39×0.60=560.89kN 水池自重Gp=Gs+Gb=1108.77+560.89=1669.66kN

数据结构课程设计计算器

数据结构课程设计报告 实验一:计算器 设计要求 1、问题描述:设计一个计算器,可以实现计算器的简单运算,输出并检验结果的正确性,以及检验运算表达式的正确性。 2、输入:不含变量的数学表达式的中缀形式,可以接受的操作符包括+、-、*、/、%、(、)。 具体事例如下: 3、输出:如果表达式正确,则输出表达式的正确结果;如果表达式非法,则输出错误信息。 具体事例如下: 知识点:堆栈、队列 实际输入输出情况: 正确的表达式

对负数的处理 表达式括号不匹配 表达式出现非法字符 表达式中操作符位置错误 求余操作符左右出现非整数 其他输入错误 数据结构与算法描述 解决问题的整体思路: 将用户输入的中缀表达式转换成后缀表达式,再利用转换后的后缀表达式进行计算得出结果。 解决本问题所需要的数据结构与算法: 用到的数据结构是堆栈。主要算法描述如下: A.将中缀表达式转换为后缀表达式: 1. 将中缀表达式从头逐个字符扫描,在此过程中,遇到的字符有以下几种情况: 1)数字 2)小数点 3)合法操作符+ - * / %

4)左括号 5)右括号 6)非法字符 2. 首先为操作符初始化一个map priority,用于保存各个操作符的优先级,其中+ -为0,* / %为1 3. 对于输入的字符串from和输出的字符串to,采用以下过程: 初始化遍历器std::string::iterator it=infix.begin() 在当it!=from.end(),执行如下操作 4. 遇到数字或小数点时将其加入到后缀表达式: case'1':case'2':case'3':case'4':case'5':case'6':case'7':case '8':case'9':case'0':case'.': { to=to+*it; break; } 5. 遇到操作符(+,-,*,/,%)时,如果此时栈顶操作符的优先级比此时的操作符优先级低,则将其入栈,否则将栈中的操作符从栈顶逐个加入到后缀表达式,直到栈空或者遇到左括号,并将此时的操作符加入到栈中,在此过程中需判断表达式中是否出现输入错误: case'+':case'-':case'*':case'/':case'%': { if((it+1)==from.end()) { cout<<"输入错误:运算符号右边缺少运算数"<

设计院常用结构计算软件比较

常用结构软件比较 摘要:本人在设计院工作,有机会接触多个结构计算软件,加上自己也喜欢研究软件,故对各种软件的优缺点有一定的了解。现在根据自己的使用体会,从设计人员的角度对各个软件作一个评价,请各位同行指正。本文仅限于混凝土结构计算程序。 关键词:结构软件结构设计 目前的结构计算程序主要有:PKPM系列(TAT、SATWE)、TBSA系列(TBSA、TBWE、TBSAP)、BSCW、GSCAD、SAP系列。其他一些结构计算程序如ETABS等,虽然功能强大,且在国外也相当流行,但国内实际上使用的不多,故不做详细讨论。 一、结构计算程序的分析与比较 1、结构主体计算程序的模型与优缺点 从主体计算程序所采用的模型单元来说 TAT和TBSA属于结构空间分析的第一代程序,其构件均采用空间杆系单元,其中梁、柱均采用简化的空间杆单元,剪力墙则采用空间薄壁杆单元。在形成单刚后再加入刚性楼板的位移协调矩阵,引入了楼板无限刚性假设,大大减少了结构自由度。SATWE、TBWE 和TBSAP在此基础上加入了墙元,SATWE和TBSAP还加入了楼板分块刚性假设与弹性楼板假设,更能适应复杂的结构。SATWE提供了梁元、等截面圆弧形曲梁单元、柱元、杆元、墙元、弹性楼板单元(包括三角形和矩形薄壳单元、四节点等参薄壳单元)和厚板单元(包括三角形厚板单元和四节点等参厚板单元)。另外,通过与JCCAD的联合,还能实现基础-上部结构的整体协同计算。TBSAP提供的单元除了常用的杆单元、梁柱单元外,还提供了用以计算板的四边形或三角形壳元、墙元、用以计算厚板转换层的八节点四十八自由度三维元、广义单元(包括罚单元与集中单元),以及进行基础计算用的弹性地基梁单元、弹性地基柱单元(桩元)、三角形或四边形弹性地基板单元和地基土元。TBSAP可以对结构进行基础-上部结构-楼板的整体联算。 从计算准确性的角度来说 SAP84是最为精确的,其单元类型非常丰富,而且能够对结构进行静力、动力等多种计算。最为关键的是,使用SAP84时能根据结构的实际情况进行单元划分,其计算模型是最为接近实际结构。BSCW和GSCAD的情况比较特殊,严格说来这两个程序均是前后处

深隧矩形工作井计算书

矩形工作井计算 一. 技术条件 1.采用人工挖孔形式施工 2.根据本工程地质条件,综合考虑土体采用如下指标: 土容重取 3/19m kN s =γ 土有效容重取 3'/10m kN s =γ 粘聚力 kPa c 10= 内摩擦角?=10φ 3.地下水位按地质资料偏保守取为地面以下1.5米计算 4.井结构高度 根据管道埋深,井深约为10~11H m =,根据侧土压力及水压的大小将井壁厚度分为3段:5H m ≤,取壁厚0.6a m =;58m H m <≤,取壁厚0.8a m =;811m H m <≤,取壁厚 1.0a m =。井底板取0.7m 厚。井内净空尺寸为:00 6.09.5b l m m ?=? 二. 使用阶段抗浮验算 按井深11H m =进行计算,工作井重量: 井壁:()()()12229.5 6.00.650.83 1.0322571820.650.83 1.034K G kN +??+?+??+????=?=?+?+?????? 底板:2250.7811.51610K G kN =???= 井总重12718216108792K K K G G G kN =+=+= 地下水浮力: ()()()()107.210.75 1.57.611.13811.537987WK F kN =???-+??+??=???? 抗浮安全系数:/8792/7987 1.1 1.05K WK G F ==>,

故抗浮稳定性满足要求。 三. 施工阶段井壁计算(封底前) (一)井深5H m ≤井段,取地面以下5m 处计算土水压力 1.等效内摩擦角D φ的计算: Z c tg tg s D γφφ2245245-??? ??-=??? ? ?- 1021045450.62922195D tg tg φ?????-=--= ? ????? ? ()()450.62924532.2225.7D arctg φ=-?=-?= 2.内力计算,按闭合框架计算 ()()()211111245225.719 1.5105 1.54510(5 1.5)60.1/21.27 1.2760.176.3/D k S S w k p h H h tg H h tg kN m p p kN m φγγγ??'=+--+?-?? ???? ???=?+?--+?-=?? ????? ==?= 闭合框架尺寸:壁厚a=0.6m , ()()()()0060.69.50.6 6.610.1b l b a l a m m ?=+?+=+?+=? 长短跨比/10.1/6.6 1.53n l b === 转角处的弯矩: 2323160.1 6.61 1.53395./121121 1.531.27502./k k k p b n M kN m m n M M kN m m ---????+?+=== ? ?++????== 长边跨中弯矩: 220.1250.12560.110.1395372./1.27472./l k k k l l k M p l M kN m m M M kN m m +-++=-=??-=== 短边跨中弯矩:

圆形沉井基础设计示例

圆形沉井基础设计示例 一、设计资料 某公路桥为预应力钢筋混凝土剪支梁桥,其2号墩为圆形实体墩,墩底设计高程为13.29m,基础拟采用钢筋混凝土沉井基础。 墩址处河床高程为15.30m,河流最低水位16.10m,施工时的水位17.00m。河床一般冲刷线高程为13.80m,局部冲刷线高程10.60m。墩址处各土层资料见表1. 表3.1 各土层主要参数表 沉井材料为钢筋混凝土,除底节与顶盖混凝土等级为C20外,其余均为C15.沉井沉至设计高程后,以水下混凝土封底,井孔填以砂石,顶盖为厚1.5m的钢筋混凝土板。按《公路桥涵地基与基础设计规范》(JTG D63—2007)、《公路圬工桥涵设计规范》(JTG D61—2004)及《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)等设计计算。 二、初步设计 (1)沉井高度 根据墩底高程要求,沉井顶部高程为13.29m。 ①按水文条件:局部冲刷深度15.3010.60 4.70 '=-=,而根据规定大、中 h m 桥基础埋深应≥2.0m,故沉井所需高度为: =+= H m 4.72 6.70() 然而,若按此深度,沉井底部将位于砂土层内,而该层从其力学性能指标来看,并非理想地基持力层。 ②按地质条件:因风化页岩及其底下的页岩力学性能好,故井底最好嵌入岩层中,这里将井底嵌入风化页岩0.5m,则

13.29 3.290.510.5()H m =-+= ③按地基承载力,沉井底面位于风化页岩层为宜。 根据以上分析,拟采用沉井高度H=10.5m ,沉井顶面标高13.29m ,沉井底面高程为2.79m 。按施工与构造要求,将沉井分为二节施工,第一节沉井高度为5.5m ,第二节沉井高度为5.0m 。 (2)沉井平面尺寸 考虑到桥墩形式,采用圆形沉井。底节直径5.0m ,壁厚1.15m ,第二节沉井直径4.9m ,壁厚为1.10m 。具体尺寸如图所示。 刃脚踏面宽度0.15m ,刃脚高1.40m ,则内侧倾角为: 1.40arctan 54.545 1.00 θ==> 三.荷载计算 (1)上部结构传递的荷载 上部桥梁结构传递给墩底的荷载有多种组合,本算例中以低水位时两孔荷载作为验算对象。其中,双孔上部结构恒载、活载及墩身自重等产生的墩底竖向力 10099.4N kN =,水平力371.6H k N =,两者在墩底产生的总弯矩为 7438.6M kN m =?。其余荷载组合从略。 (2)沉井自重 沉井自重力为各组成部分自重力之和,按上述初步拟定的沉井几何尺寸对其各部分的体积和自重力计算如下。 ①顶盖重 重度3125.0kN m γ= 2 1( 3.7/4 1.5)25.016.1325.0403.3()G kN π=???=?= ②封底混凝土重 设计封底混凝土厚度为:1.4+1.0+1.0+0.3=3.7m 重度3223.0kN m γ= 2 22 22 2 2.7 3.1 2.7 1.35 1.35 2.35 2.35 ( 2.3 1.0 1.4)2 3.0 4 2 3 30.4123.0699.4() G kN π-+?+=?+ ?+ ??=?=

工作井结构设计计算书

1.设计条件 工程概况 本计算书为中山市沙溪镇东南片区排水主干管工程顶管工作井、接收井结构设计,工作井、接收井施工方法采用逆作法,即先进行四周外侧及井底的水泥 搅拌桩施工,桩身达到设计强度后,再开挖基坑施工护壁成井。基坑每开挖1m 深度土,现浇一节1m 圆形护壁。 本设计以最大深度工作井和最大深度接收井为控制设计。已知:设计地面标高:,井壁底标高:工作井为,接收井为。 拟定工作井尺寸:0.55t m =, 3.5R m =,8.1D m =, 5.39H m = 拟定接收井尺寸:0.35t m =, 2.0R m =, 4.7D m =, 5.99H m = 井身材料 — 混凝土:采用C30,214.3/c f N mm =,21.43/t f N mm =。 钢筋:钢筋直径d<10mm 时,采用R235钢筋,2270/y f N mm =;d ≥10mm 时,采用热轧钢筋HBR335,2300/y f N mm =。 地质资料 地质资料如下表1所示,地下水位高度为,即井外水位高度为, 井底以下4米采用搅拌桩处理,则井底下地下水位高度为:工作井、接收井。 表1 土的物理力学指标

、 图1-1 工作井、接收井示意图!

2.井壁水平框架的内力计算及结构配筋计算 将井壁简化成平面圆形闭合刚架计算,计算截面取井壁底部1米一段进行环向计算,不考虑四周搅拌桩支护的作用。 工作井井壁内力计算及配筋 2.1.1按承载能力极限状态进行计算 2.1.1.1外力计算 (1)水土压力计算(考虑地下水作用) , 井外侧地面堆载按215/d q KN m =考虑。 根据《给水排水工程钢筋混凝土沉井结构设计规程》CECS137-2002第6.2.3条,并假设同一标高的水平截条上沿井壁互成90°的两点土的内摩擦角相差±5°,计算区域井壁A 、B 点外侧水平向水土压力: 图2-1 土压力分布示意图 井壁外侧水平向土压力采用郎金主动土压力计算值,地下水位以下土采用浮容重。计算公式如下: 25 5()(45)2(45)2 2 o o A d E q z tg ctg ??γ- - ? ? - - ++=+- --

沉井计算实例

沉井计算实例 某公路独塔斜拉桥桥塔基础,基础平、立、剖面尺寸见图9-40,采用挖土下沉施工。 9.5.1设计资料 1.混凝土:底节沉井采用C25;其它各节采用C20;封底采用C25;盖板采用C25。 2.混凝土的设计强与参数:混凝土的设计强度与参数见表9-5。 3.钢材:A 3钢筋: R g =240MPa ;A 3钢板:[δω]=145MPa, [τ]=85MPa 9.5.2决定沉井高度及各部分尺寸 1.沉井高度 根据冲刷计算和最低水位要求,以及按地基土质条件、地基承载力要求沉井底面位于弱风化基岩层一定深度为宜,故定出沉井顶面标高为173.7m ,沉井底面标高为162.2m ,亦即沉井所需的高度H 为 H=183.7-162.2=21.5 m 考虑到施工期间的水位情况,底节沉井高度不宜太小,所以底节沉井高取为6.0m ,第一节顶节高度取决于上部结构的重量,与顶盖高度及牛腿受力要求有关,所以顶节沉井高取为5.5m ;其余两节均分剩下的高度,即每节高为5.0m 。 2.沉井平面尺寸 考虑到桥塔墩形式,采用两端半圆形中间为矩形的沉井,圆端的外半径为5.2m ,矩形长度为16.0m ,宽度为10.0m 。井壁厚度顶节取0.6m ,第二节厚度为1.4m ,第三节厚度为1.5m ,底节厚度为1.6m ,其它尺寸详见图9-40。 刃脚踏 面宽度采用0.1m ,刃脚高度为1.99m ,刃脚内侧倾角为:32667.1)1.06.1/(99.1tan =-=θ, θ=52?59'13.74">45?。 9.5.3沉降系数计算

1. 沉井自重计算 (1).第一节沉井自重 砼重度 1γ=25 kN/m 3 体积 V 1=[(52 -4.42 )π+(16×10-16×8.8)]×3.5 +[(1+1.5)/2×0.7+1.3×2.0]×(16×2+2×3.7×π) +2×0.8×7.4×2+0.52 /2×8×2 =129.2+192.0+25.68=346.9 m 3 自重 Q 1=346.9×25=8673 kN (2).第二节沉井自重 砼重度 2γ=25 kN/m 3 体积 V 2={(5.12-3.72 )π+[16×10.2-(3.6×2+7.2)×7.4+2/5.02×8]}×5.0 =(38.7+57.6) ×5.0=481.5 m 3 自重 Q 2=481.5×25=12037.5 kN (3). 第三节沉井自重 砼重度 3γ=25 kN/m 3 体积 V 3={(5.22-3.72)π+[(16×10.4)-(3.6×2+7.2)×7.4+0.52 /2×8]}×5.0 ={41.9+60.8}×5.0=513.5 m 3 自重 Q 3=513.5×25=12837.5 kN (4).底节沉井自重 砼重度 4γ=25 kN/m 3 体积 V 4={(5.32 -3.72 )π+[(16×10.6)-(3.6×2+7.2)×7.4+0.52 /2×8]}×6.0 ={45.2+64.04}×6.0=655.4 m 3 自重 Q 4=655.4×25=16385.0 kN 沉井自重:∑Q=8673+12037.5+12837.5+16385=49933 kN (5).盖板: 砼容重 5γ=25 kN/m 3 体积 V 5=[(5-0.6)2 π+16×(10-1.2)]×3.5=705.7 m 3 自重 Q 5=705.7×25=17642.5 kN (6). 封底: 砼容重 6γ=24 kN/m 3 体积 V 6=[3.72 π+(3.6×2+7.2)×7.4-0.52 /2×8]×4.5=148.6×4.5=668.6 m 3 自重 Q 6=668.6×24=16046.4 kN ∑Q =654321Q Q Q Q Q Q +++++ =8673+12037.5+12837.5+16385.0+17642.5+16046.4=83621.9 kN 2.浮力计算(按一半计算) Q '=(346.9+481.5+513.5+655.4)/2×10=9986.5 kN 3. 沉降系数计算 f =(18+30)/2=24,设计取22.5 h =21.5m u =2πr+16×2 =64.7 m ∑=u h f T =22.5×21.5×64.7=31299.0 kN T Q Q K '-= =276.10.312995 .998649933=- 9.5.4地基应力计算

常用建筑结构设计软件比较

常用结构软件比较 本人在设计院工作,有机会接触多个结构计算软件,加上自己也喜欢研究软件,故对各种软件的优缺点有一定的了解。现在根据自己的使用体会,从设计人员的角度对各个软件作一个评价,请各位同行指正。本文仅限于混凝土结构计算程序。 目前的结构计算程序主要有:PKPM系列(TAT、SATWE)、TBSA系列(TBSA、TBWE、TBSAP)、BSCW、GSCAD、 SAP系列。其他一些结构计算程序如ETABS等,虽然功能强大,且在国外也相当流行,但国内实际上使用的不多,故不做详细讨论。 一、结构计算程序的分析与比较 1、结构主体计算程序的模型与优缺点 从主体计算程序所采用的模型单元来说 TAT和TBSA属于结构空间分析的第一代程序,其构件均采用空间杆系单元,其中梁、柱均采用简化的空间杆单元,剪力墙则采用空间薄壁杆单元。在形成单刚后再加入刚性楼板的位移协调矩阵,引入了楼板无限刚性假设,大大减少了结构自由度。 SATWE、TBWE和TBSAP在此基础上加入了墙元,SATWE和TBSAP还加入了楼板分块刚性假设与弹性楼板假设,更能适应复杂的结构。SATWE提供了梁元、等截面圆弧形曲梁单元、柱元、杆元、墙元、弹性楼板单元(包括三角形和矩形薄壳单元、四节点等参薄壳单元)和厚板单元(包括三角形厚板单元和四节点等参厚板单元)。另外,通过与JCCAD的联合,还能实现基础-上部结构的整体协同计算。TBSAP提供的单元除了常用的杆单元、梁柱单元外,还提供了用以计算板的四边形或三角形壳元、墙元、用以计算厚板转换层的八节点四十八自由度三维元、广义单元(包括罚单元与集中单元),以及进行基础计算用的弹性地基梁单元、弹性地基柱单元(桩元)、三角形或四边形弹性地基板单元和地基土元。TBSAP可以对结构进行基础-上部结构-楼板的整体联算。 从计算准确性的角度来说 SAP84是最为精确的,其单元类型非常丰富,而且能够对结构进行静力、动力等多种计算。最为关键的是,使用SAP84时能根据结构的实际情况进行单元划分,其计算模型是最为接近实际结构。 BSCW和GSCAD的情况比较特殊,严格说来这两个程序均是前后处理工具,其开发者并没有进行结构计算程序的开发。但BSCW与其计算程序一起出售,因此有必要提一下。BSCW一直是使用广东省建筑设计研究院的一个框剪结构计算软件,这个程序应属于空间协同分析程序,即结构计算的第二代程序(第一代为平面分析,第二代为空间协同,第三代为空间分析)。GSCAD则可以选择生成SS、TBSA、TAT或是SSW的计算数据。SS和SSW均是广东省建筑设计研究院开发的,其中SS采用空间杆系模型,与TBSA、TAT属于同一类软件;而SSW根据其软件说明来看也具有墙元,但不清楚其墙元的类型,而且此程序目前尚未通过鉴定。 薄壁杆件模型的缺点是: 1、没有考虑剪力墙的剪切变形。 2、变形不协调。 当结构模型中出现拐角刚域时,截面的翘曲自由度(对应的杆端力为双力矩)不连续,造成误差。另外由于此模型假定薄壁杆件的断面保持平截面,实际上忽略了各墙肢的次要变形,增大了结构刚度。同一薄壁杆墙肢数越多,刚度增加越大;薄壁杆越多,刚度增加越大。但另一方面,对于剪力墙上的洞口,空间杆系程序只能作为梁进行分析,将实际结构中连梁对墙肢的一段连续约束简化为点约束,削弱了结构刚度。连梁越高,则削弱越大;连梁越多,则削弱越大。所以计算时对实际结构的刚度是增大还是削弱要看墙肢与连梁的比例。 杆单元点接触传力与变形的特点使TBSA、TAT等计算结构转换层时误差较大。因为从实

矩形顶管工作井井壁计算

概述 沉井是顶管工作井的常用结构形式。矩形沉井制作简单,结构布置灵活,平面利用率也较高,但是其主要缺点是受力性能不如圆形沉井好,其计算过程也相对复杂。而在现有的结构设计手册中,还没有一套完整的矩形沉井在顶管时结构受力计算的标准模式。 故本文以单孔矩形顶管井为例,对矩形顶管工作井井壁的结构计算方法进行探讨。 顶力的确定 在计算顶管井受力之前,首先应确定顶力的大小。《市政工程施工及验收规范》pⅳ-99第四章中有述最大允许顶力是通过对工作井后靠土体稳定验算而求得的,即保证工作井在土体中不移动,不倾覆所能承受的最大外力。 1. 抗滑移计算----确定最大顶力 请见下列公式及简图。 f ----最大顶力; fp----顶力作用下井后靠土体产生的被动土压力; fa----主动土压力; f摩----土体对井外表面产生的摩阻力(一般不计); s----安全系数,1.0~1.2。 2. 抗倾覆计算----验算最大顶力

《规程》在“顶力估算与后靠土体稳定验算”中指出,顶力所产生的力矩可忽略不计。 井壁内力计算 顶力作用下,后背井壁受力较大,但我们并不能就此下结论:井壁的配筋计算应由此工况下得出的内力控制。相反,大量计算结果证明,使用阶段井外水压力作用下的内力才是控制非受顶侧井壁配筋的首要因素。 使用阶段井壁的内力计算 一般情况下,我们认为当沉井沉到设计标高,刃脚内侧土被掏空时,作用于井壁上的水平荷载为最大,此法对于不排水下沉施工方法是可行的,其计算方法也比较简单:沿井壁每隔2~3m或于变截面处划分为若干水平区段按水平框架进行计算,这在《给排水工程结构设计手册》上已有详尽的描述。就排水下沉的沉井来说,此工况下无水压力作用,并不能就此判断此时所受的水平荷载为最大。实际的施工情况是到底板浇筑完毕(甚至是顶管施工结束)才恢复地下水位。因此,我们不妨将底板浇筑完毕,井外水位恢复之时作为控制井壁计算的工况。这也可以说是“使用阶段井壁内力计算”的确切意义。前面提到,我们在计算井壁时,常将水平框架作为井壁的不动铰支座。当有了底板的作用,就不宜单独将井壁下部支撑设为不动铰支座,尤其是顶管工作井在底板和井壁间往往加设接驳器,我们就更应视下边缘为固定端,来考虑支座钢筋的配筋。顶管施工阶段井壁的内力计算。 这一工况下井壁的计算,是整个顶管工作井结构计算中一个比较关键的部分。计算模式的确立,可以从两种角度入手。其一、参考圆形顶管井井壁的设计思路,将顶力作用点作为井壁上在该点上的水平框架或竖向框架的一个不动铰支座。(如图)当然,采用这种计算模式是有一定的局限性。我们知道,只有当井壁(无中间支座)高度不大于井壁最大跨度的2倍或井壁最小跨度大于2倍井壁(无中间支座)的高度时,可沿井深或竖向截取单位长度,按水平或竖向框架进行计算。如不符合上述条件,我们只得按双向板计算井壁,中间有一不动铰支座,便会给计算带来很大麻烦。 那么第二种角度,将顶力做为荷载的一部分加以考虑。下图为工作井荷载作用的水平示意图,fa表示作用于沉井非受顶侧的主动土压力,fp表示后背靠土体应顶力作用而产生的被动土压力,f为顶力作用。而在施工期工作井外的水压力可能存在,也可能尚未恢复。而水压力对受顶侧井壁的内力是有减无增的,所

相关主题
文本预览
相关文档 最新文档