当前位置:文档之家› 测量工具方法

测量工具方法

测量工具方法
测量工具方法

1 基本工作原理

GPS RTK(Real Time Kinematic)~tJ量技术是以载波相位观测量为根据的实时差分GPS实时动态测量定位系统。RTK系统采用差分法降低了载波相位测量改正后的残余误差及接收机钟差和卫星改正后的残余误差等因素的影响,测量精度达到厘米级。

实时动态测量的基本工作方法是,在基准站上安置1台GPS接收机,对所有可见GPS卫星进行连续的观测,并将其观测数据通过无线电传输设备实时地发送给用户观测站(流动站)。在流动站上,GPS接收机在接收GPS卫星信号的同时,通过无线电接收设备,接收基准站传输的观测数据和转换参数,然后根据GPS相对定位的原理,即时解算出相对基准站的基线向量,解算出基准站的WGS一84坐标;再通过预设的wGS一84坐标系与地方坐标系的转换参数,实时地计算并显示出用户需要的三维坐标及精度。

2 仪器设备的发展

2.1 国外的主要进展90年代后,GPS仪器又有了一些新发展。相继推出了多态雷达系统、层析雷达系统。三维雷达技术具有明显提高解决浅层地质问题的能力,但却因耗时费力得不到普遍的应用。为此,Frank Lehman等研制出空自动的组合地质雷达激光经纬仪系统。利用该系统,一人可在2h内完成25m×25m范围的三维数据采集。三个方向上的定位精度为士2.5cm。数据处理、成图可在lh内完成,比传统方法的效率提高5~10倍。

2.2 国内的进展90年代我国引进了一批地质雷达仪器并将它]用于工程和灾害地质调查。近年来,国内地质雷达仪器的研制也取得了较大的进展煤炭科学院西安分院物探所研制成功了适用于矿山防爆要求的DVL防爆型矿井雷达系列。原电子工业部第二十二研究所相继研究成功了LT一1,2,3型GPS。航天工业总公司爱迪尔国际探测技末公司推出了商品化的撂地雷达系列产品。国内外生产的多种类型的GPS仪器,一般都具有较好的性能,可供不同探测目标选用。

3 数据采集与处理

3.1 90年代初,GPS资料由单点采集过渡到连续采集。使GPS 技术的应用向前迈进了一大步。

3.2 地震资料处理的方式基本适用于GPS资料的处理。为了更好地将石油地震的先连技术;进到GPS 领域,一些公司之间开展了合作。比如,1990年后SSI公司与地震图像软件公司(SISL)达成协议,SSI公司按地震资料输出格式设计Pulse EKKO GPS系统,将SISL 公司开发的地震资料处理软件用于GPS资料的处理。这些软件包括各类滤波、反褶积及资料显示等。

3.3 据SSI公司1998年底披露,该公司即将发行改进软件一EKKO 三维2型软件。采用2型三维软件,用户可以在方便的条件下试验下述不同软件的组台处理,以便提高数据的立体特征。该三维软件包括去频率颤动、噪声滤波、背景清除、包络线和偏移。

3.4 透射法取得的资料必须经过处理才能显示成解释所需的资料。SSI公司于1997年开发出可用于将GPS透射资料变换成可用于解释图像的软件。实施步骤包括:原始资料编辑和归类、采集波至、利用美国矿业局的地震层析软件对资料进行层析成像处理,绘制速度、衰减及波傲图件以及图像处理等。

3.5 针对当前GPS技术的应用研究中,只侧重探测能力试验和数字模拟研究而对GPS 资料解释研究不够的现状,雷林源提出了与GPS资料解释工作有关的基本理论和方法以及一些基本问题的求解。提出的基本问题包括电磁波在地层中传播的波阻抗;地层分界面上电磁波场强的反射与透射系数;地层中电磁波速度和反射波的相位以及GPS 探测深度等。

4 应用实例

GPS技术经过多年的发展,证明具有多方面的用途。国内刊物对一些普通的应用已给予了较多的介绍。这些应用包括:在水文地质方面可以用于浅部地下环境调查;在工程地质勘察

方面可用于调查地下埋藏物、隧道、岩溶等。

4.1 调查地质环境污染

4.1.1 一座建立在石灰岩地区的硝化纤维厂,由于污水的泄漏导致硝化纤维对地质环境的污染,为了探测地表至潜水面(约6am)岩溶结构可能捕获的硝化纤维,在18个30米深和7个50m深的钻孔中作了井中雷达探测。对收集到的资料作常规处理后,采用惠更斯一基尔霍夫(HK)叠加法绘制出三维雷达图。从深度为10m的重建图像上可以看出几个受硝化纤维污染的位置在后来的开挖中,证示了GPS的探测成果。

4.1.2 探测碳氢污染物试验多年来的野外试验已证明GPS具有调查地质环境污染的能力。国外专家在lm×0.4m×0.5m 箱体中作了精心的试验,试图再一次验证GPS探测污染的能力,并用相关攒:型说明雷达响应与一些水文参数间的关系。通过试验和GPS数据的处理和解释得出结论:在污染物达到饱和对,利用GPS探不到潜水面;在相邻未受污染区可探到潜水面对,GPS可用于监测潜水面上的污染物;小型实验有助于探测或验证砂质土壤的水文地质参数,如毛细作用水头、污染物羽状流的传播速度;GPS能成功探测石油污染。

4.2 南极永冻场地安全检查在一个南极考查计划利用的场地内,发现地下0.3~0.5m位置的冰内有一些融水坑(据2000年初中央电视台报道,我国南极科考队也发现了与此相似的冰水湖)。它们将给场地的利用带来负面的影响。为此,利用GPS对场地进行了调查。通过对记录的绕射波结构及其他信息的分析,在3.5m左右深度发现一些有40m长、含分散水的冰层带,但含水量较少。

4.3 区域水文地质调查雷达相图被定义为某一特定地层产生的雷达反射图像特征均总和,指的是雷达剖面资料上内眼可见的反射波的不同组合形式。雷达资料观测中,地质体的构造和结构特征会影响雷达响应并产生特征效应。这些特征效应被称为雷达相图元素。自1990年以来,荷兰TNO应用地学研究所在荷兰30多个适合于GPS调查试验的点上作了测量,用于评价GPS对不同水文地质目标成像和描述目标特征的可能性。探查成果揭示出荷兰不同沉积环境下雷达相图元素的特征,该相图集对确定地下水文地质层序的位置有益。

5 建议与总结

采用GPS RTK技术可以使外业测量一步到位,省掉许多不必要的中间环节,最大限度地减少外业工作量,从而使整个测量工期达到最短。同时,外业工序的简化和迅速完成也可以使所有的后续专业工序。整体总结如下:①GPS RTK 应用于水下地形测量是一种理想的作业方式,在工程测量中应大力推行。②在通视条件较差的地区,应用RTK测量,可以减少测站转点数量,加快测量速度。③GPS RTK 的无线电数据链在树木较多地区或高坎下,工作链接质量较差,求得固定解的时间较长,操作人员需要耐心,不能以浮点解替代固定解。

RTK(Real - time kinematic

简介

RTK技术是建立在实时处理两个测站的载波相位基础上的。它能实时提供观测点的三维坐标,并达到厘米级的高精度。

通过RTK技术能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分方法,是GPS应用的重大里程碑,它的出现为

工程放样、地形测图,各种控制测量带来了新曙光,极大地提高了外业作业效率。

RTK技术优点

1、 RTK作业自动化、集成化程度高,测绘功能强大。RTK可胜任各种测绘内、外业。流动站利用内装式软件控制系统,无需人工干预便可自动实现多种测绘功能,使辅助测量工作极大减少,减少人为误差,保证了作业精度。

2、降低了作业条件要求。RTK技术不要求两点间满足光学通视,只要求满足“电磁波通视”和对天基本通视,因此,和传统测量相比,RTK技术受通视条件、能见度、气候、季节等因素的影响和限制较小,在传统测量看来由于地形复杂、地物障碍而造成的难通视地区,只要满足RTK的基本工作条件,它也能轻松地进行快速的高精度定位作业。

3、定位精度高,数据安全可靠,没有误差积累。不同于全站仪等仪器,全站仪在多次搬站后,都存在误差累积的状况,搬的越多,累积越大,而RTK则没有,只要满足RTK的基本工作条件,在一定的作业半径范围内,RTK 的平面精度和高程精度都能达到厘米级。

4、作业效率高。在一般的地形地势下,高质量的RTK设站一次即可测完10km半径左右的测区,大大减少了传统测量所需的控制点数量和测量仪器的“搬站”次数,仅需一人操作,在一般的电磁波环境下几秒钟即得一点坐标,作业速度快,劳动强度低,节省了外业费用,提高了测量效率。

5、操作简便、数据处理能力强。南方测绘RTK的基准站无需任何设置,移动站就可以边走边获得测量结果坐标或进行坐标放样。数据输入、存储、处理、转换和输出能力强,能方便快捷地与计算机、其它测量仪器通信。南方测绘灵锐S82-2008、灵锐S86在基准站架设、移动站操作、手簿软件的使用方面都比较简单易学。

RTK(Real - time kinematic)实时动态差分法。这是一种新的常用的GPS测量方法,以前的静态、快速静态、动态测量都需要事后进行解算才能获得厘米级的精度,而RTK是能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分方法,是GPS应用的重大里程碑,它的出现为工程放样、地形测图,各种控制测量带来了新曙光,极大地提高了外业作业效率。

RTK综述

高精度的GPS测量必须采用载波相位观测值,RTK定位技术就是基于载波相位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。在RTK作业模式下,基准站通过数据链将其观测值和测站坐标信息一起传送给流动站。流动站不仅通过数据链接收来自基准站的数据,还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理,同时给出厘米级定位结果,历时不足一秒钟。流动站可处于静止状态,也可处于运动状态;可在固定点上先进行初始化后再进入动态作业,也可在动态条件下直接开机,并在动态环境下完成周模糊度的搜索求解。在整周末知数解固定后,即可进行每个历元的实时处理,只要能保持四颗以上卫星相位观测值的跟踪和必要的几何图形,则流动站可随时给出厘米级定位结果。

关键技术

RTK技术的关键在于数据处理技术和数据传输技术,RTK定位时要求基准站接收机实时地把观测数据(伪距观测值,相位观测值)及已知数据传输给流动站接收机,数据量比较大,一般都要求9600的波特率,这在无线电上不难实现。

随着科学技术的不断发展,rtk技术已由传统的1+1或1+2发展到了广域差分系统WADGPS,有些城市建立起CORS系统,这就大大提高了RTK的测量范围,当然在数据传输方面也有了长足的进展,由原先的电台传输发展到现在的GPRS和GSM 网络传输,大大提高了数据的传输效率和范围。在仪器方面,现在的仪器不仅精度高而且比传统的RTK更简洁、更容易操作!

RTK技术如何应用

1.各种控制测量传统的大地测量、工程控制测量采用三角网、导线网方法来施测,不仅费工费时,要求点间通视,而且精度分布不均匀,且在外业不知精度如何,采用常规的GPS静态测量、快速静态、伪动态方法,在外业测设过程中不能实时知道定位精度,如果测设完成后,回到内业处理后发现精度不合要求,还必须返测,而采用RTK来进行控制测量,能够实时知道定位精度,如果点位精度要求满足了,用户就可以停止观测了,而且知道观测质量如何,这样可以大大提高作业效率。如果把RTK用于公路控制测量、电子线路控制测量、水利工程控制测量、大地测量、则不仅可以大大减少人力强度、节省费用,而且大大提高工作效率,测一个控制点在几分钟甚至于几秒钟内就可完成。

2.地形测图过去测地形图时一般首先要在测区建立图根控制点,然后在图根控制点上架上全站仪或经纬仪配合小平板测图,现在发展到外业用全站仪和电子手簿配合地物编码,利用大比例尺测图软件来进行测图,甚至于发展到最近的外业电子平板测图等等,都要求在测站上测四周的地貌等碎部点,这些碎部点都与测站通视,而且一般要求至少2-3人操作,需要在拼图时一旦精度不合要求还得到外业去返测,现在采用RTK时,仅需一人背着仪器在要测的地貌碎部点呆上一二秒种,并同时输入特

征编码,通过手簿可以实时知道点位精度,把一个区域测完后回到室内,由专业的软件接口就可以输出所要求的地形图,这样用RTK仅需一人操作,不要求点间通视,大大提高了工作效率,采用RTK配合电子手簿可以测设各种地形图,如普通测图、铁路线路带状地形图的测设,公路管线地形图的测设,配合测深仪可以用于测水库地形图,航海海洋测图等等。

3.放样程放样是测量一个应用分支,它要求通过一定方法采用一定仪器把人为设计好的点位在实地给标定出来,过去采用常规的放样方法很多,如经纬仪交会放样,全站仪的边角放样等等,一般要放样出一个设计点位时,往往需要来回移动目标,而且要2-3人操作,同时在放样过程中还要求点间通视情况良好,在生产应用上效率不是很高,有时放样中遇到困难的情况会借助于很多方法才能放样,如果采用RTK技术放样时,仅需把设计好的点位坐标输入到电子手簿中,背着GPS接收机,它会提醒你走到要放样点的位置,既迅速又方便,由于GPS是通过坐标来直接放样的,而且精度很高也很均匀,因而在外业放样中效率会大大提高,且只需一个人操作。

RTK技术的推广应用的主要方向

1、双星系统

双星系统(GPS+GLONASS双系统导航定位)是GPS RTK发展的热点,它可接收14-20颗卫星左右,是常规RTK所无法比拟的,该技术使GPS设备具备最短时间达到厘米级精度的能力与最强的抗干扰遮挡能力。

2、VRS

VRS(Virtual Reference Station虚拟参考站)正在改善着RTK定位的质量和距离,增强RTK的可靠性,并减少OTF初始化的时间。VRS技术,可以在50Km左右时使RTK定位平面位置精度为1—2cm,并无需设立自己的基准站。其应用领域将逐渐涵盖陆地测量、地籍测量、航空摄影测量、GIS、设备控制、电子和煤气管道、变形监测、精准农业、水上测量、环境应用等诸多领域。

VRS是天宝提出的网络RTK作业模式,现在世界上90%的网络RTK都是应用VRS。

3、GPS

GPS为代表的卫星导航应用产业已成为当今国际公认的八大无线产业之一,也是全球发展最快的三大信息产业(蜂窝网Mobile cellular/PCS、因特网Internet/Intranet/Extranet和全球定位系统GPS)之一。GPS与计算机、通信、GIS、RS等技术的集成与融合必将使GPS技术的应用领域得到更大范围的拓广。

经纬仪的使用方法

经纬仪是测量工作中的主要测角仪器。由望远镜、水平度盘、竖直度盘、水准器、基座等组成。测量时,将经纬仪安置在三脚架上,用垂球或光学对准器将仪器中心对准地面测站点上,用水准器将仪器定平,用望远镜瞄准测量目标,用水平度盘和竖直度盘测定水平角和竖直角。按精度分为精密经纬仪和普通经纬仪;按读数设备可分为光学经纬仪和游标经纬仪;按轴系构造分为复测经纬仪和方向经纬仪。此外,有可自动按编码穿孔记录度盘读数的编码度盘经纬仪;可连续自动瞄准空中目标的自动跟踪经纬仪;利用陀螺定向原理迅速独立测定地面点方位的陀螺经纬仪和激光经纬仪;具有经纬仪、子午仪和天顶仪三种作用的供天文观测的全能经纬仪;将摄影机与经纬仪结合一起供地面摄影测量用的摄影经纬仪等。

一、经纬仪的结构

DJ6经纬仪是一种广泛使用在地形测量、工程及矿山测量中的光学经纬仪。主要由水平度盘、照准部和基座三大部分组成。

1、基座部分

用于支撑基照准部,上有三个脚螺旋,其作用是整平仪器2、照准部

照准部是经纬仪的主要部件,照准部部分的部件有水准管、光学对点器、支架、横轴、竖直度盘、望远镜、度盘读数系统等。

3、度盘部分

DJ6光学经纬仪度盘有水平度盘和垂直度盘,均由光学玻璃制成。水平度盘沿着全圆从0°~360°顺时针刻画,最小格值一般为1°或30′

二、经纬仪的安置方法

1)三脚架调成等长并适合操作者身高,将仪器固定在三脚架上,使仪器基座面与三脚架上顶面平行。

2)将仪器舞摆放在测站上,目估大致对中后,踩稳一条架脚,调好光学对中器目镜(看清十字丝)与物镜(看清测站点),用双手各提一条架脚前后、左右摆动,眼观对中器使十字丝交点与测站点重合,放稳并踩实架脚。

3)伸缩三脚架腿长整平圆水准器

4)将水准管平行两定平螺旋,整平水准管。

5)平转照准部90度,用第三个螺旋整平水准管。

6)检查光学对中,若有少量偏差,可打开连接螺旋平移基座,使其精确对中,旋紧连接螺旋,再检查水准气泡居中。

三、度盘读数方法

光学经纬仪的读数系统包括水平和垂直度盘、测微装置、读数显微镜等几个部分。水平度盘和垂直度盘上的度盘刻划的最小格值一般为1°或30′,在读取不足一个格值的角值时,必须借助测微装置,DJ6级光学经纬仪的读数测微器装置有测微尺和平行玻璃测微器两种。

(1)测微尺读数装置

目前新产DJ6级光学经纬仪均采用这种装置。

在读数显微镜的视场中设置一个带分划尺的分划板,度盘上的分划线经显微镜放大后成像于该分划板上,度盘最小格值(60′)的成像宽度正好等于分划板上分划尺1°分划间的长度,分划尺分60个小格,注记方向与度盘的相反,用这60个小格去量测度盘上不足一格的格值。量度时以零刻度线线为指标线。(2)单平行玻璃板测微器读数装置

单平行玻璃板测微器的主要部件有:单平行板玻璃、扇形分划尺和测微轮等。这种仪器度盘格值为30′,扇形分划尺上有90个小格,格值为30′/90=20″。

测角时,当目标瞄准后转动测微轮,用双指标线夹住度盘分划线影像后读数。整度数根据被夹住的度盘分划线读出,不足整度数部分从测微分划尺读出。

(3)读数显微镜

光学经纬仪读数显微镜的作用是将读数成像放大,便于将度盘读数读出。

(4)水准器

光学经纬仪上有2~3个水准器,其作用是使处于工作状态的经纬仪垂直轴铅垂、水平度盘水平,水准器分管水准器和圆水准器两种。

*管水准器

管水准器安装在照准部上,其作用是仪器精确整平。

*圆水准器

圆水准器用于粗略整平仪器。它的灵敏度低,其格值为8″/ 2mm 。

四、经纬仪的角度测量原理

1. 水平角的测量原理

水平角是指过空间两条相交方向线所作的铅垂面间所夹的

二面角,角值为0°~360°。空间两直线OA和OB相交于点O,将点A,O,B沿铅垂方向投影到水平面上,得相应的投影点A′,O′,B′,水平线O′A′和O′B′的夹角β就是过两方向线所作的铅垂面间的夹角,即水平角。

水平角的大小与地面点的高程无关。

测量角度的仪器在测量水平角时必须具备两个基本条件:

(1)能给出一个水平放置的,且其中心能方便地与方向线交点置于同一铅垂线上的刻度圆盘——水平度盘;

(2)要有一个能瞄准远方目标的望远镜,且要能在水平面

和竖直面内作全圆旋转,以便通过望远镜

瞄准高低不同的目标A和B。图中水平角β为A和B两个方向

读数之差:β=b-a

2. 垂直角的测量原理

垂直角是指在同一铅垂面内,某目标方向的视线与水平线间

的夹角α,也称竖直角或高度角;垂直角的角值为0°~±90°。

视线与铅垂线的夹角称为天顶距,天顶距z的角值范围为0°~180°。

当视线在水平线以上时垂直角称为仰角,角值为正;视线在

水平线以下时为俯角,角值为负

由此可知测角仪器经纬仪还必须装有一个能铅垂放置的度盘——垂直度盘,或称竖盘。

水准仪、经纬仪、全站仪的使用方法

水准仪及其使用方法

高程测量是测绘地形图的基本工作之一,另外大量的工程、建筑施工也必须量测地面高程,利用水准仪进行水准测量是精密测量高程的主要方法。

一、水准仪器组合:

1.望远镜

2.调整手轮

3.圆水准器

4.微调手轮

5.水平制动手轮

6.管水准器

7.水平微调手轮

8.脚架

二、操作要点:

在未知两点间,摆开三脚架,从仪器箱取出水准仪安放在三脚架上,利用三个机座螺丝调平,使圆气泡居中,跟着调平管水准器。水平制动手轮是调平的,在水平镜内通过三角棱镜反射,水平重合,就是平水。将望远镜对准未知点(1)上的塔尺,再次调平管水平器重合,读出塔尺的读数(后视),把望远镜旋转到未知点(2)的塔尺,调整管水平器,读出塔尺的读数(前视),记到记录本上。

计算公式:两点高差=后视-前视。

三、校正方法:

将仪器摆在两固定点中间,标出两点的水平线,称为a、b线,移动仪器到固定点一端,标出两点的水平线,称为a’、b ’。计算如果a-b≠a’-b’时,将望远镜横丝对准偏差一半的数值。用校针将水准仪的上下螺钉调整,使管水平泡吻合为止。重复以上做法,直到相等为止。

四、水准仪的使用方法

水准仪的使用包括:水准仪的安置、粗平、瞄准、精平、读数五个步骤。

1. 安置

安置是将仪器安装在可以伸缩的三脚架上并置于两观测点之间。首先打开三脚架并使高度适中,用目估法使架头大致水平并检查脚架是否牢固,然后打开仪器箱,用连接螺旋将水准仪器连接在三脚架上。

2. 粗平

粗平是使仪器的视线粗略水平,利用脚螺旋置园水准气泡居于园指标圈之中。具体方法用仪器练习。在整平过程中,气泡移动的方向与大姆指运动的方向一致。

3. 瞄准

瞄准是用望远镜准确地瞄准目标。首先是把望远镜对向远处明亮的背景,转动目镜调焦螺旋,使十字丝最清晰。再松开固定螺旋,旋转望远镜,使照门和准星的连接对准水准尺,拧紧固定螺旋。最后转动物镜对光螺旋,使水准尺的清晰地落在十字丝平面上,再转动微动螺旋,使水准尺的像靠于十字竖丝的一侧。

4. 精平

精平是使望远镜的视线精确水平。微倾水准仪,在水准管上部装有一组棱镜,可将水准管气泡两端,折射到镜管旁的符合水准观察窗内,若气泡居中时,气泡两端的象将符合成一抛物线型,说明视线水平。若气泡两端的象不相符合,说明视线不水平。这时可用右手转动微倾螺旋使气泡两端的象完全符合,仪器便可提供一条水平视线,以满足水准测量基本原理的要求。注意?气泡左半部份的移动方向,总与右手大拇指的方向不一致。

5. 读数

用十字丝,截读水准尺上的读数。现在的水准仪多是倒象望远镜,读数时应由上而下进行。先估读毫米级读数,后报出全部读数。

注意,水准仪使用步骤一定要按上面顺序进行,不能颠倒,特别是读数前的符合水泡调整,一定要在读数前进行。

五、水准仪的测量

测定地面点高程的工作,称为高程测量。高程测量是测量的基本工作之一。高程测量按所使用的仪器和施测方法的不同,可以分为水准测量、三角高程测量、GPS高程测量和气压高程测量。水准测量是目前精度最高的一种高程测量方法,它广泛应用于国家高程控制测量、工程勘测和施工测量中。

水准测量的原理是利用水准仪提供的水平视线,读取竖立于两个点上的水准尺上的读数,来测定两点间的高差,再根据已知点高程计算待定点高程。

如下图所示,在地面上有A、B两点,已知A点的高程为HA、为求B点的高程HB,在A、B两点之间安骨水准仪,A、B两点亡各竖立一把水准尺,通过水准仪的望远镜读取水平视线分别在A、B两点水准尺上截取的读数为a和b,可以求出A、B两点问的高差为:

设水准测量的前进方向为A点至B点,则称A点为后视点,其水准尺读数a为后视读数;称B点为前视点,其水准尺读数b为前视读数。因此,两点间的高差等于:

hAB=后视读数-前视读数

若后视读数大于前视读数,则高差为正,表示B点比A点高,hAB>0;若后视读数小于前视读数,则高差为负,表示B点比A点低,hAB<0。

如果A、B两点相距不远,且高差不大,则安置一次水准仪,就可以测得高差hAB。此时B点高程为:

当架设一次水准仪需要测量多个前视点B1,B2,…,Bn的高程时,采用视线高程计算这些点的高程就非常方便。设水准仪对竖立在B1,B2,…,Bn点上的水准尺读数分别为b1,b2,…,bn时,则高程计算公式为:

如果A、B两点相距较远或高差较大,安置一次仪器无法测得其高差时,就需要在两点间增设若干个作为传递高程的临时立尺点,称为转点(简称TP点),如图中的TP1,TP 2,…点,并依次连续设站观测,设测得的各站高差为:

六、保养与维修

1.水准仪是精密的光学仪器,正确合理使用和保管对仪器精度和寿命有很大的作用;

2.避免阳光直晒,不许可证随便拆卸仪器;

3.每个微调都应轻轻转动,不要用力过大。镜片、光学片不准用手触片;

4.仪器有故障,由熟悉仪器结构者或修理部修理;

5.每次使用完后,应对仪器擦干净,保持干燥。

经纬仪的使用方法

一、经纬仪

经纬仪是测量工作中的主要测角仪器。由望远镜、水平度盘、竖直度盘、水准器、基座等组成。

测量时,将经纬仪安置在三脚架上,用垂球或光学对点器将仪器中心对准地面测站点上,用水准器将仪器定平,用望远镜瞄准测量目标,用水平度盘和竖直度盘测定水平角和竖直角。按精度分为精密经纬仪和普通经纬仪;按读数设备可分为光学经纬仪和游标经纬仪;按轴系构造分为复测经纬仪和方向经纬仪。此外,有可自动按编码穿孔记录度盘读数的编码度盘经纬仪;可连续自动瞄准空中目标的自动跟踪经纬仪;利用陀螺定向原理迅速独立测定地面点方位的陀螺经纬仪和激光经纬仪;具有经纬仪、子午仪和天顶仪三种作用的供天文观测的全能经纬仪;将摄影机与经纬仪结合一起供地面摄影测量用的摄影经纬仪等。

DJ6经纬仪是一种广泛使用在地形测量、工程及矿山测量中的光学经纬仪。主要由水平度盘、照准部和基座三大部分组成。

1、基座部分

用于支撑基照准部,上有三个脚螺旋,其作用是整平仪器

2、照准部

照准部是经纬仪的主要部件,照准部部分的部件有水准管、光学对点器、支架、横轴、竖直度盘、望远镜、度盘读数系统等。

3、度盘部分

DJ6光学经纬仪度盘有水平度盘和垂直度盘,均由光学玻璃制成。水平度盘沿着全圆从0°~360°顺时针刻画,最小格值一般为1°或30′。

二、经纬仪的安置方法

1)三脚架调成等长并适合操作者身高,将仪器固定在三脚架上,使仪器基座面与三脚架上顶面平行。

2)将仪器舞摆放在测站上,目估大致对中后,踩稳一条架脚,调好光学对中器目镜(看清十字丝)与物镜(看清测站点),用双手各提一条架脚前后、左右摆动,眼观对中器使十字丝交点与测站点重合,放稳并踩实架脚。

3)伸缩三脚架腿长整平圆水准器

4)将水准管平行两定平螺旋,整平水准管。

5)平转照准部90度,用第三个螺旋整平水准管。

6)检查光学对中,若有少量偏差,可打开连接螺旋平移基座,使其精确对中,旋紧连接螺旋,再检查水准气泡居中。三、度盘读数方法

光学经纬仪的读数系统包括水平和垂直度盘、测微装置、读数显微镜等几个部分。水平度盘和垂直度盘上的度盘刻划的最小格值一般为1°或30′,在读取不足一个格值的角值时,必须借助测微装置,DJ6级光学经纬仪的读数测微器装置有测微尺和平行玻璃测微器两种。

(1)测微尺读数装置

目前新产DJ6级光学经纬仪均采用这种装置。

在读数显微镜的视场中设置一个带分划尺的分划板,度盘上的分划线经显微镜放大后成像于该分划板上,度盘最小格值(60′)的成像宽度正好等于分划板上分划尺1°分划间的长度,分划尺分60个小格,注记方向与度盘的相反,用这60个小格去量测度盘上不足一格的格值。量度时以零零分划线为指标线。

(2)单平行玻璃板测微器读数装置

单平行玻璃板测微器的主要部件有:单平行板玻璃、扇形分划尺和测微轮等。这种仪器度盘格值为30′,扇形分划尺上有90个小格,格值为30′/90=20″。

测角时,当目标瞄准后转动测微轮,用双指标线夹住度盘分划线影像后读数。整度数根据被夹住的度盘分划线读出,不足整度数部分从测微分划尺读出。

(3)读数显微镜

光学经纬仪读数显微镜的作用是将读数成像放大,便于将度盘读数读出。

(4)水准器

光学经纬仪上有2~3个水准器,其作用是使处于工作状态的经纬仪垂直轴铅垂、水平度盘水平,水准器分管水准器和园水准器两种。

*管水准器

管水准器安装在照准部上,其作用是仪器精确整平。

*圆水准器

圆水准器用于粗略整平仪器。它的灵敏度低,其格值为8″/ 2mm 。

四、经纬仪的角度测量原理

1. 水平角的测量原理

水平角是指过空间两条相交方向线所作的铅垂面间所夹的二面角,角值为0°~360°。空间两直线OA和OB相交于点O,将点A,O,B沿铅垂方向投影到水平面上,得相应的投影点A′,O′,B′,水平线O′A′和O′B′的夹角β就是过两方向线所作的铅垂面间的夹角,即水平角。

水平角的大小与地面点的高程无关。

测量角度的仪器在测量水平角时必须具备两个基本条件:

(1)能给出一个水平放置的,且其中心能方便地与方向线交点置于同一铅垂线上的刻度园盘——水

平度盘;

(2)要有一个能瞄准远方目标的望远镜,且要能在水平面和竖直面内作全圆旋转,以便通过望远镜

瞄准高低不同的目标A和B。图中水平角β为A和B两个方向读数之差:β=b-a

2. 垂直角的测量原理

垂直角是指在同一铅垂面内,某目标方向的视线与水平线间的夹角α,也称竖直角或高度角;垂直角的角值为0°~±90°。视线与铅垂线的夹角称为天顶距,天顶距z的角值范围为0°~180°。

当视线在水平线以上时垂直角称为仰角,角值为正;视线在水平线以下时为俯角,角值为负,如图所示。

由此可知测角仪器经纬仪还必须装有一个能铅垂放置的度盘——垂直度盘,或称竖盘。

全站仪的使用方法

一、全站仪简介

全站仪,即全站型电子速测仪(Electronic Total Station)。是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。因其一次安置仪器就可完成该测站上全部测量工作,所以称之为全站仪。广泛用于地上大型建筑和地下隧道施工等精密工程测量或变形监测领域。

全站仪是一种集光、机、电为一体的新型测角仪器,与光学经纬仪比较电子经纬仪将光学度盘换为光电扫描度盘,将人工光学测微读数代之以自动记录和显示读数,使测角操作简单化,且可避免读数误差的产生。电子经纬仪的自动记录、储存、计算功能,以及数据通讯功能,进一步提高了测量作业的自动化程度。

全站仪与光学经纬仪区别在于度盘读数及显示系统,电子经纬仪的水平度盘和竖直度盘及其读数装置是分别采用两个相同的光栅度盘(或编码盘)和读数传感器进行角度测量的。根据测角精度可分为0.5″,1″,2″,3″,5″,10″等几个等级。

二、全站仪的组成

全站仪几乎可以用在所有的测量领域。电子全站仪由电源部分、测角系统、测距系统、数据处理部分、通讯接口、及显示屏、键盘等组成。

同电子经纬仪、光学经纬仪相比,全站仪增加了许多特殊部件,因此而使得全站仪具有比其它测角、测距仪器更多的功能,使用也更方便。这些特殊部件构成了全站仪在结构方面独树一帜的特点。

1.同轴望远镜

全站仪的望远镜实现了视准轴、测距光波的发射、接收光轴同轴化。同轴化的基本原理是:在望远物镜与调焦透镜间设置分光棱镜系统,通过该系统实现望远镜的多功能,即既可瞄准目标,使之成像于十字丝分划板,进行角度测量。同时其测距部分的外光路系统又能使测距部分的光敏二极管发射的调制红外光在经物镜射向反光棱镜后,经同一路径反射回来,再经分光棱镜作用使回光被光电二极管接收;为测距需要在仪器内部另设一内光路系统,通过分光棱镜系统中的光导纤维将由光敏二极管发射的调制红外光传也送给光电二极管接收,进行而由内、外光路调制光的相位差间接计算光的传播时间,计算实测距离。

同轴性使得望远镜一次瞄准即可实现同时测定水平角、垂直角和斜距等全部基本测量要素的测定功能。加之全站仪强大、便捷的数据处理功能,使全站仪使用极其方便。

2.双轴自动补偿

在仪器的检验校正中已介绍了双轴自动补偿原理,作业时若全站仪纵轴倾斜,会引起角度观测的误差,盘左、盘右观测值取中不能使之抵消。而全站仪特有的双轴(或单轴)倾斜自动补偿系统,可对纵轴的倾斜进行监测,并在度盘读数中对因纵轴倾斜造成的测角误差自动加以改正(某些全站仪纵轴最大倾斜可允许至±6'),也可通过将由竖轴倾斜引起的角度误差,由微处理器自动按竖轴倾斜改正计算式计算,并加入度盘读数中加以改正,使度盘显示读数为正确值,即所谓纵轴倾

斜自动补偿。

双轴自动补偿的所采用的构造(现有水平,包括Topcon,Trimble):使用一水泡(该水泡不是从外部可以看到的,与检验校正中所描述的不是一个水泡)来标定绝对水平面,该水泡是中间填充液体,两端是气体。在水泡的上部两侧各放置一发光二极管,而在水泡的下部两侧各放置一光电管,用一接收发光二极管透过水泡发出的光。而后,通过运算电路比较两二极管获得的光的强度。当在初始位置,即绝对水平时,将运算值置零。当作业中全站仪器倾斜时,运算电路实时计算出光强的差值,从而换算成倾斜的位移,将此信息传达给控制系统,以决定自动补偿的值。自动补偿的方式初由微处理器计算后修正输出外,还有一种方式即通过步进马达驱动微型丝杆,把此轴方向上的偏移进行补正,从而使轴时刻保证绝对水平。

3.键盘

键盘是全站仪在测量时输入操作指令或数据的硬件,全站型仪器的键盘和显示屏均为双面式,便于正、倒镜作业时操作。

4.存储器

全站仪存储器的作用是将实时采集的测量数据存储起来,再根据需要传送到其它设备如计算机等中,供进一步的处理或利用,全站仪的存储器有内存储器和存储卡两种。

全站仪内存储器相当于计算机的内存(RAM),存储卡是一种外存储媒体,又称PC卡,作用相当于计算机的磁盘。

5.通讯接口

全站仪可以通过BS—232C通讯接口和通讯电缆将内存中存储的数据输入计算机,或将计算机中的数据和信息经通讯电缆传输给全站仪,实现双向信息传输。

三、全站仪的使用

全站仪具有角度测量、距离(斜距、平距、高差)测量、三维坐标测量、导线测量、交会定点测量和放样测量等多种用途。内置专用软件后,功能还可进一步拓展。

全站仪的基本操作与使用方法:

1、水平角测量

(1)按角度测量键,使全站仪处于角度测量模式,照准第一个目标A。

(2)设置A方向的水平度盘读数为0°00′00〃。

(3)照准第二个目标B,此时显示的水平度盘读数即为两方向间的水平夹角。

2、距离测量

(1)设置棱镜常数

测距前须将棱镜常数输入仪器中,仪器会自动对所测距离进行改正。

(2)设置大气改正值或气温、气压值

光在大气中的传播速度会随大气的温度和气压而变化,15℃和760mmHg是仪器设置的一个标准值,此时的大气改正为0ppm。实测时,可输入温度和气压值,全站仪会自动计算大气改正值(也可直接输入大气改正值),并对测距结果进行改正。(3)量仪器高、棱镜高并输入全站仪。

(4)距离测量

照准目标棱镜中心,按测距键,距离测量开始,测距完成时显示斜距、平距、高差。

全站仪的测距模式有精测模式、跟踪模式、粗测模式三种。精测模式是最常用的测距模式,测量时间约2.5S,最小显示单位1mm;跟踪模式,常用于跟踪移动目标或放样时连续测距,最小显示一般为1cm,每次测距时间约0.3S;粗测模式,测量时间约0.7S,最小显示单位1cm或1mm。在距离测量或坐标测量时,可按测距模式(MODE)键选择不同的测距模式。

应注意,有些型号的全站仪在距离测量时不能设定仪器高和棱镜高,显示的高差值是全站仪横轴中心与棱镜中心的高差。

3、坐标测量

(1)设定测站点的三维坐标。

(2)设定后视点的坐标或设定后视方向的水平度盘读数为其方位角。当设定后视点的坐标时,全站仪会自动计算后视方向的方位角,并设定后视方向的水平度盘读数为其方位角。

工量具的使用方法详解讲解

工量具的使用方法 目录 第一章钢直尺、内外卡钳及塞尺 (2) 一钢直尺 (2) 二内外卡钳 (3) 三塞尺 (5) 第二章游标读数量具 (6) 一游标卡尺的结构型式 (6) 二游标卡尺的读数原理和读数方法 (8) 三游标卡尺的测量精度 (9) 四游标卡尺的使用方法 (10) 五游标卡尺应用举例 (12) 六高度游标卡尺 (13) 七深度游标卡尺 (13) 八齿厚游标卡尺 (14) 第三章螺旋测微量具 (15) 一外径百分尺的结构 (15) 二百分尺的工作原理和读数方法 (16) 三百分尺的精度及其调整 (17) 四百分尺的使用方法 (18) 五百分尺的应用举例 (19) 六杠杆千分尺 (20) 七内径百分尺 (20) 八内测百分尺 (21) 九三爪内径千分尺 (21) 十公法线长度千分尺 (22) 十一壁厚千分尺 (22) 十二板厚百分尺 (22) 十三尖头千分尺 (23) 十四螺纹千分尺 (23) 十五深度百分尺 (23) 十六数字外径百分尺 (23) 第四章量块 (24) 一量块的用途和精度 (24) 二成套量块和量块尺寸的组合 (24) 三量块附件 (25) 第五章指示式量具 (26) 一百分表的结构 (26) 二百分表和千分表的使用方法 (27) 三杠杆百分表 (29)

四杠杆百分表和千分表的使用方法 (30) 五内径百分表 (32) 六内径百分表的使用方法 (33) 第六章角度量具 (33) 一万能角度尺 (33) 二游标量角器 (34) 三万能角尺 (35) 四带表角度尺 (36) 五中心规 (36) 六正弦规 (36) 七车刀量角台 (38) 第七章水平仪 (39) 一条式水平仪 (39) 二框式水平仪 (40) 三光学合像水平仪 (43) 第八章量具的维护和保养 (44) 参考文献 (45) 第一章钢直尺、内外卡钳及塞尺 一钢直尺 钢直尺是最简单的长度量具,它的长度有150,300,500和1000 mm四种规格。图1-1是常用的150 mm钢直尺。 图1-1 150 mm钢直尺 钢直尺用于测量零件的长度尺寸(图1-2),它的测量结果不太准确。这是由于钢直尺的刻线间距为1mm,而刻线本身的宽度就有0.1~0.2mm,所以测量时读数误差比较大,只能读出毫米数,即它的最小读数值为1mm,比1mm小的数值,只能估计而得。 (a) (b) (c)

七种基本测量工具的使用方法和注意事项的异同点

七种基本测量工具的使用方法和 注意事项的异同点 初中物理共有七个直接测量型实验:《用刻度尺测长度》、《用量筒测固体、液体的体积》、《用天平测固体、液体的质量》、《用温度计测水的温度》、《用弹簧测力计测力》、《用电流表测电流》、《用电压表测电压》。在这七个实验中,分别是用刻度尺、量筒、天平、温度计、弹簧测力计、电流表、电压表这七种基本测量工具测出了长度、体积、质量、温度、力、电流、电压这七个物理量的值。 这七种基本测量工具虽然在原理、构造、用途上各不相同,但在使用方法和注意事项上却存在不少共同之处: 1、使用前都要根据测量的实际需要,选择适当的测量工具。如刻度尺的使用:测量窗帘的尺寸,我们用能准确到厘米的刻度尺就够了,而给窗户安装玻璃,我们就必须选用能准确到毫米的刻度尺;再如温度的测量:测较低的温度,应选用酒精温度计,而测高温,要选用沸点较高的水银温度计,测体温,则要选用更准确的体温计。 2、使用前都要观察所选工具的单位、分度值和量程,确定这种仪器(或仪表)是否适合使用,观察分度值就是认清它们刻度的每一小格代表的值,目的是测量时会读数。对于一个给定的刻度尺、量筒、温度计、弹簧测力计,每一小格表示的值是一定的,而电流表和电压表,因它们一般有两个量程,对于不同的量程,每一小格表示的值是不同的,因而要先观察选用的量程,再读数,对于天平,则要认清标尺上的最大值和每一小格表示的值。 3、使用前一定要注意零点和调整(校零),目的是为了测量的准确。如刻度尺,要观察它的零刻度线在哪里,是否有磨损;天平要先进行调节,即先把天平放在水平台上,把游码放在标尺左端的零刻度处,调节横梁右端的螺母,使指针掼在刻度盘的中央,这时横梁平衡;弹簧测力计、电流表、电压表都要先把指针调到零点上。

公路工程测量方法总结

公路工程测量方法总结 一、常用计算公式和常用命令 1、已知A(X1,Y1)、B(X2,Y2)、C(X3,Y3)三点,求圆心O点坐标(X,Y)。 Y= ((X32+ Y32- X22- Y22)/(2X3-2X2) -(X22+ Y22- X12- Y12)/(2X2-2X1))/((Y1- Y2)/(X2-X1)-(Y2- Y3)/(X3-X2)) X=(X22+ Y22-2Y2Y- X12- Y12+2Y1Y)/(2X2-2X1) 结论:(X1-X) 2 +(Y1-Y) 2=(X2-X) 2 +(Y2- Y) 2=(X3-X) 2 +(Y3- Y) 2 2、三角形面积计算:已知三角形的三条边A、B、C,求三角形面积S。 D=(A+B+C)/2 S=√(D*(D-A)*(D-B)*(D-C))。 3、已知两条直线方位角和两条直线上任一点坐标,求交点坐标O(X,Y)。【直线MN,方 位角F、N点坐标(X1,Y1);直线HP:方位角E、H点坐标(X2,Y2)】。 交点O坐标:X=(X2*tan E- X1*tan F- Y2+Y1)/(tan E-tan F) Y= X*tan F- X1* tan F+ Y1 4、已知路基设计标高A、计算填土高程B、上次填土高程或原地面高程(基本为直线)C、 路基设计宽度L和边坡坡度为i,标高B到标高C的填土面积S。 S=((2A-B-C)*i+L)*(B-C) 5、缓和曲线坐标计算公式:【R为圆曲线半径(右偏为正,反之为负)、L为缓和曲线总长、 Z为起算切线方位角(即ZH或HZ点所在直线上的方位角)、D为起算点桩号、(X1,Y1)为ZH或HZ点坐标】 A=K-D W=A-A5/(40R2L2) (数学坐标X) E=A3/(6RL)-A7/(336R3L3) (数学坐标Y) X= X1+W cos Z-E sin Z Y= Y1+W sin Z+E cos Z C=A-A5/(90R2L2) 【(C为弦长,A为计算点到起算点的缓曲线弧长,L为缓和曲线全长),由于A5/(90R2L2)此值为微量,可以把C约等于A,得A=C+C5/(90R2L2) 】 F"FWJ"=Z+90*A2/(RLπ)为偏角(计算点的切线方位角)(F"FWJ":在CASIOfx-4800 计算器中将F值赋给FWJ并显示出来,在CASIOfx-4850计算器中将F值赋给FWJ并 显示出来为:"FWJ":F)。 6、圆曲线坐标计算公式:【R为圆曲线半径(右偏为正,反之为负)、Z为起算方位角、D 为起算点桩号、(X1,Y1)为ZY或YZ点坐标】 L=K-D【(计算点到起算点的弧长,D为起点桩号),弧长另一计算公式:L=Raπ/180 】

温度和风速测量方法总结

第一章风速测量 1.1风速测量 风是空气流动时产生的一种自然现象。空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。风是一个矢量,用风向和风速表示。地面风指离地平面10─12米高的风。风向指风吹来的方向,一般用16个方位或360°表示。以360°表示时,由北起按顺时针方向度量。风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。 1.2 风杯风速计 风杯风速计是最常见的一种风速计。转杯式风速计最早由英国鲁宾孙发明,当时是四杯,后来改用三杯。它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。转速可以用电触点、测速发电机或光电计数器等记录。 图1.1 风杯风速计

1.3 叶轮风速仪 风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。 法国KIKO叶轮风速仪工作原理如图1.2所示。叶轮的轴杆启动内含八个电磁极的原型磁铁,置于磁铁旁的双霍尔传感器感测到侧场中电磁极的转变信号。传感器的信号转换为电子频率且和风速成正比,并感测旋转方向。 图1.2 KIMO原理 1.4 热线风速计 一根被电流加热的金属丝,流动的空气使它散热,利用散热速率和风速的平方根成线性关系,再通过电子线路线性化(以便于刻度和读数),即可制成热线风速计。 金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为0.2 mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。 0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:

机械加工常用测量器具和使用知识

机械加工常用测量器具和使用知识 根据“测量器具的选择原则”,选用适当的测量器具进行测量。测量器具的计量工作应遵循测量器具的保养、检修、鉴定计划,确保所用量检具精度、灵敏度、准确度。测量器具的正确使用方法,请参照使用说明书或相关参考资料,轻拿轻放、保持清洁、防锈、防振,合理存放保管。 一、平板 1、钢制平板一般用于冷作放样或样板修整;铸铁平板除具有钢制平板用途外,经压砂后可作研磨工具;大理石平板不须涂防锈油脂,且受温度影响较小,但湿度高时易变形。 2、 0、1、2级平板一般作检验用,3级平板一般作划线用。 3、平板安放平稳,一般用三个支承点调整水平面。大平板增加的支承点须垫平垫稳,但不可破坏水平,且受力须均匀,以减少自重受形。 4、平板应避免因局部使用过频繁而磨损过多,使用中避免热源的影响和酸碱的腐蚀。 5、平板不宜承受冲击、重压、或长时间堆放物品。 二、样板直尺和平尺 1、样板直尺使用时不得碰撞,应确保棱边的完整性,手握持绝热板部分,避免温度影响响精度和产生锈蚀。 2、测量前,应检查尺的测量面不得有划痕、碰伤、锈蚀等缺陷。表面应清洁光亮。 3、平尺工作面不应有蚀蚀、斑痕、鳞片、凹坑、裂缝以及其他缺陷。平尺应无磁性。 4、一般应按不同要求选用不同精度的平尺。 三、直角尺 1、 00级和0级直度角尺一般用于检验精密量具;1级用于检验精密工件;2级用于检验一般工件。 2、使用前,应先检查各工作面和边缘是否被碰伤。角尺的长边的左、右面和短边的上、下面都是工件面(即内外直角)。将直尺工作面和被检工作面擦净。 3、使用时,将直度角尺靠放在被测工件的工作面上,用光隙法鉴别工件的角度是否正确。注意轻拿、轻靠、轻放,防止变曲变形。

固体密度的测量方法汇总

固体密度的测量方法汇总 钢城实验学校 闫晓丽 物理学是一门以实验为基础的学科,在初中物理的学习中,密度的测量贯穿整个力学内容,测量的方法涉及到质量、密度、浮力、压强、机械等知识,然而在教学教材中只简单的介绍了利用测质量、体积从而计算密度的间接测量方法,其实还有很多的方法。本论文,正是要较全面的搜索、概括、归纳固体密度的各种测量方法。 (一)v m 法: 1.基本法 原理:ρ=m/V 器材:天平、量筒、水、金属块、细绳 步骤:1)、用天平称出金属块的质量m ; 2)、往量筒中注入适量水,读出体积为V 1, 3)、用细绳系住金属块放入量筒中,浸没,读出体积为V 2。 表达式:) (12v v m -=ρ 测固体体积方法如下: ① 不溶于水 密度比水大 排水法测体积 例题:(2010年重庆物理中考试题)17.五一节,教物理的晓丽老师在解放碑百货店买了一个金灿灿的实心饰品,同学们特别想知道这个饰品是否是纯金的(ρ金=19.3×103kg/m 3)。他们选用托盘天平、量筒、细线、烧杯和水等,进行了如下的实验操作: A.把托盘天平放在水平桌面上; B.把游码放在标尺的零刻度线处,调节横梁上的平衡螺母,使横梁在水平位置平衡; C.将饰品用细线系好后慢慢地放入量筒中,并记下水和饰品的总体积

D.在量筒中倒入适量的水,并记下水的体积; E.将饰品放在左盘中,在右盘中增减砝码并移动游码直至横梁在水平位置平衡。 请你帮组同学们回答下面五个问题: (1)正确的实验操作顺序是:A、B (余下步骤请用字母序号填出);(2)在调节平衡螺母时,发现指针偏向分度盘的左侧,如图16甲所示。此时应将平衡螺母向端调节(选填“左或右”),直到指着指向分度盘的中央。 (3)用调好的天平称量饰品的质量,当天平再次平衡时,右盘中砝码的质量和游码的位置如图16乙所示,则饰品的质量是g;用细线拴好饰品放入装有适量水的量筒中,如图16丙所示,则饰品的体积是cm3; (4)通过计算可知饰品的密度为g/cm3,由此可以确定饰品不是纯金的;(5)适量的水”的含义 是。 ②密度比水小按压法、捆绑法、吊挂法、埋砂法。 例题:(2002年重庆物理中考试题)13.请测定一形状不规则的石蜡块的体积v(已知石蜡的密度为ρ,水的密度为ρ水,且ρ<ρ水).所用器材不限.要求: (1)写出使用的主要器材、简要步骤和需要测定的物理量, (2)写出相应的体积表达式. 王强同学已设计出了一种方法(见方法一),请你再设计三种不同的方法,并按要求填在横线上. 方法一:(1)用天平称出石蜡块的质量m.(2)V=m/ρ

常用量具的使用方法

常用量具的使用方法 一、游标卡尺: 普通游标卡尺 数显卡尺 游标卡尺游标卡尺是工业上常用的测量长度的仪器,它由尺身及能在尺身上滑动的游标组成,如图2.3-1所示。若从背面看,游标是一个整体。游标与尺身之间有一弹簧片(图中未能画出),利用弹簧片的弹力使游标与尺身靠紧。游标上部有一紧固螺钉,可将游标固定在尺身上的任意位置。尺身和游标都有量爪,利用内测量爪可以测量槽的宽度和管的内径,利用外测量爪可以测量零件的厚度和管的外径。深度尺与游标尺连在一起,可以测槽和筒的深度。

尺身和游标尺上面都有刻度。以准确到0.1毫米的游标卡尺为例,尺身上的最小分度是1毫米,游标尺上有10个小的等分刻度,总长9毫米,每一分度为0.9毫米,比主尺上的最小分度相差0.1毫米。量爪并拢时尺身和游标的零刻度线对齐,它们的第一条刻度线相差0.1毫米,第二条刻度线相差0.2毫米,……,第10条刻度线相差1毫米,即游标的第10条刻度线恰好与主尺的9毫米刻度线对齐,如图2.3-2。 当量爪间所量物体的线度为0.1毫米时,游标尺向右应移动0.1毫米。这时它的第一条刻度线恰好与尺身的1毫米刻度线对齐。同样当游标的第五条刻度线跟尺身的5毫米刻度线对齐时,说明两量爪之间有0.5毫米的宽度,……,依此类推。 在测量大于1毫米的长度时,整的毫米数要从游标“0”线与尺身相对的刻度线读出。 游标卡尺的使用 用软布将量爪擦干净,使其并拢,查看游标和主尺身的零刻度线是否对齐。如果对齐就可以进行测量:如没有对齐则要记取零误差:游标的零刻度线在尺身零刻度线右侧的叫正零误差,在尺身零刻度线左侧的叫负零误差(这件规定方法与数轴的规定一致,原点以右为正,原点以左为负)。 测量时,右手拿住尺身,大拇指移动游标,左手拿待测外径(或内径)的物体,使待测物位于外测量爪之间,当与量爪紧紧相贴时,即可读数,如图2.3-3所示。

测量工具方法汇总

1 基本工作原理 GPS RTK(Real Time Kinematic)~tJ量技术是以载波相位观测量为根据的实时差分GPS实时动态测量定位系统。RTK系统采用差分法降低了载波相位测量改正后的残余误差及接收机钟差和卫星改正后的残余误差等因素的影响,测量精度达到厘米级。 实时动态测量的基本工作方法是,在基准站上安置1台GPS接收机,对所有可见GPS卫星进行连续的观测,并将其观测数据通过无线电传输设备实时地发送给用户观测站(流动站)。在流动站上,GPS接收机在接收GPS卫星信号的同时,通过无线电接收设备,接收基准站传输的观测数据和转换参数,然后根据GPS相对定位的原理,即时解算出相对基准站的基线向量,解算出基准站的WGS一84坐标;再通过预设的wGS一84坐标系与地方坐标系的转换参数,实时地计算并显示出用户需要的三维坐标及精度。 2 仪器设备的发展 2.1 国外的主要进展90年代后,GPS仪器又有了一些新发展。相继推出了多态雷达系统、层析雷达系统。三维雷达技术具有明显提高解决浅层地质问题的能力,但却因耗时费力得不到普遍的应用。为此,Frank Lehman等研制出空自动的组合地质雷达激光经纬仪系统。利用该系统,一人可在2h内完成25m×25m范围的三维数据采集。三个方向上的定位精度为士2.5cm。数据处理、成图可在lh内完成,比传统方法的效率提高5~10倍。 2.2 国内的进展90年代我国引进了一批地质雷达仪器并将它]用于工程和灾害地质调查。近年来,国内地质雷达仪器的研制也取得了较大的进展煤炭科学院西安分院物探所研制成功了适用于矿山防爆要求的DVL防爆型矿井雷达系列。原电子工业部第二十二研究所相继研究成功了LT一1,2,3型GPS。航天工业总公司爱迪尔国际探测技末公司推出了商品化的撂地雷达系列产品。国内外生产的多种类型的GPS仪器,一般都具有较好的性能,可供不同探测目标选用。 3 数据采集与处理 3.1 90年代初,GPS资料由单点采集过渡到连续采集。使GPS 技术的应用向前迈进了一大步。 3.2 地震资料处理的方式基本适用于GPS资料的处理。为了更好地将石油地震的先连技术;进到GPS 领域,一些公司之间开展了合作。比如,1990年后SSI公司与地震图像软件公司(SISL)达成协议,SSI公司按地震资料输出格式设计Pulse EKKO GPS系统,将SISL 公司开发的地震资料处理软件用于GPS资料的处理。这些软件包括各类滤波、反褶积及资料显示等。 3.3 据SSI公司1998年底披露,该公司即将发行改进软件一EKKO 三维2型软件。采用2型三维软件,用户可以在方便的条件下试验下述不同软件的组台处理,以便提高数据的立体特征。该三维软件包括去频率颤动、噪声滤波、背景清除、包络线和偏移。 3.4 透射法取得的资料必须经过处理才能显示成解释所需的资料。SSI公司于1997年开发出可用于将GPS透射资料变换成可用于解释图像的软件。实施步骤包括:原始资料编辑和归类、采集波至、利用美国矿业局的地震层析软件对资料进行层析成像处理,绘制速度、衰减及波傲图件以及图像处理等。 3.5 针对当前GPS技术的应用研究中,只侧重探测能力试验和数字模拟研究而对GPS 资料解释研究不够的现状,雷林源提出了与GPS资料解释工作有关的基本理论和方法以及一些基本问题的求解。提出的基本问题包括电磁波在地层中传播的波阻抗;地层分界面上电磁波场强的反射与透射系数;地层中电磁波速度和反射波的相位以及GPS 探测深度等。 4 应用实例 GPS技术经过多年的发展,证明具有多方面的用途。国内刊物对一些普通的应用已给予了较多的介绍。这些应用包括:在水文地质方面可以用于浅部地下环境调查;在工程地质勘察

测量工具及其使用方法

第二章测量工具及其使用方法 第一节测量工具 量具或检验的工具,称为计量器具,其中比较简单的称为量具;具有传动放大或细分机构的称为量仪。 一般的测绘工作使用的量具有: 简易量具:有塞尺、钢直尺、卷尺和卡钳等,用于测量精度要求不高的尺寸。 游标量具:有游标卡尺、高度游标卡尺、深度游标卡尺、齿厚游标卡尺和公法线游标卡尺等,用于测量精密度要求较高的尺寸。 千分量具:有内径千分尺、外径千分尺和深度千分尺等,用于测量高精度要求的尺寸。 平直度量具:水平仪,用于水平度测量。 角度量具:有直角尺、角度尺和正弦尺等,用于角度测量。 根据我们教学的具体情况,这里仅简单介绍一下钢直尺、卡钳、游标卡尺的使用方法。图2-1为几种常用的测量工具。 (1)钢直尺 (3)游标卡尺(4)外卡钳 (2)千分尺 (5)内卡钳 图2-1 测量工具 一、钢直尺 使用钢直尺时,应以左端的零刻度线为测量基准,这样不仅便于找正测量基准,而且便

于读数。测量时,尺要放正,不得前后左右歪斜。否则,从直尺上读出的数据会比被测的实际尺寸大。 用钢直尺测圆截面直径时,被测面应平,使尺的左端与被测面的边缘相切,摆动尺子找出最大尺寸,即为所测直径。 二、卡钳 凡不适于用游标卡尺测量的,用钢直尺、卷尺也无法测量的尺寸,均可用卡钳进行测量。 卡钳结构简单,使用方便。按用途不同,卡钳分为内卡钳和外卡钳两种:内卡钳用于测量内部尺寸,外卡钳用于测量外部尺寸。按结构不同,卡钳又分为紧轴式卡钳和弹簧式卡钳两种。 卡钳常与钢直尺,游标卡尺或千分尺联合使用。测量时操作卡钳的方法对测量结果影响很大。正确的操作方法是:用内卡钳时,用母指和食指轻轻捏住卡钳的销轴两侧,将卡钳送入孔或槽内。用外卡钳时,右手的中指挑起卡钳,用母指和食指撑住卡钳的销轴两边,使卡钳在自身的重量下两量爪滑过被测表面。卡钳与被测表面的接触情况,凭手的感觉。手有轻微感觉即可,不宜过松,也不要用力使劲卡卡钳。 使用大卡钳时,要用两只手操作,右手握住卡钳的销轴,左手扶住一只量爪进行测量。 测量轴类零件的外径时,须使卡钳的两只量爪垂直于轴心线,即在被测件的径向平面内测量。测量孔径时,应使一只量爪于孔壁的一边接触,另一量爪在径向平面内左右摆动找最大值。 校好尺寸后的卡钳轻拿轻放,防止尺寸变化。把量得的卡钳放在钢直尺、游标卡尺或千分尺上量取尺寸。测量精度要求高的用千分尺,一般用游标卡尺,测量毛坯之类的用钢直尺校对卡钳即可。 三、游标卡尺 游标卡尺在使用前应检查卡尺外观,轻轻推、拉尺框检查各部位的相互作用、两测量面的光洁程度。移动游标,使两量爪测量面闭合,观察两量爪测量面的间隙(精度为0.02毫米卡尺的间隙应小于0.006毫米;精度为0.05毫米和0.1毫米卡尺的间隙应小于0.01毫米),然后校对“0”位。校对“0”位时,无论游标尺是否紧固,“0”位都应正确。当紧固或松开游标尺时,“0”位若发生变化,不要使用。 游标卡尺的正确使用方法: 1.测量外尺寸时,应先把量爪张开比被测尺寸稍大;测量内尺寸时,把量爪张开得比被测尺寸略小,然后慢慢推或拉动游标,使量爪轻轻接触被测件表面。(图2-2 )

常用的测绘量具以及测量零件尺寸的方法

常用的测绘量具以及测量零件尺寸的方法

1. 测量零件尺寸时常用的测量工具 测量尺寸常用量具有:钢板尺、外卡钳和内卡钳。测量较精确的尺寸,则用游标卡尺,如图1-3所示。 2. 常用的测量方法 (1) 测量长度尺寸的方法 一般可用钢板尺或游标卡尺直接测量,如图 1-4所示。 (2) 测量回转面直径尺寸的方法 用内卡钳测量内径,外卡钳测量外径。测量时,要把内、外卡钳上下、前后移动,测得最大值为其直径尺寸,测量值要在钢板尺上读出。遇到精确的表面,可用游标卡尺测量,方法与用内外卡钳相同,如图 1-5 a、b、c、d 所示。 (3) 测量壁厚尺寸 一般可用钢板尺直接测量,若不能直接测出,可用外卡钳与钢板尺组合,间接测出壁厚,如图1-6所示。 (4) 测量中心高 利用钢板尺和内卡钳可测出孔的中心高,如图 1-7 所示。也可用游标卡尺测量中心高。 (5) 测量孔中心距 可用内卡钳、外卡钳或游标卡尺测量,如图 1-8 所示。

(6) 测量圆角 一般可用圆角规测量,如图 1-9 是一组圆角规,每组圆角规有很多片,一半测量外圆角,一半侧量内圆角,每一片标着圆角半径的数值。测量时,只要在圆角规中找到与零件被测部分的形状完全吻合的一片,就可以从片上得知圆角半径的大小。 (7) 测量螺纹 测量螺纹需要测出螺纹的直径和螺距。螺纹的旋向和线数可直接观察。对于外螺纹,可测量外径和螺距,对于内螺纹可测量内径和螺距。测螺距可用螺纹规测量,螺纹规是由一组带牙的钢片组成,如图 1-10所示,每片的螺距都标有数值,只要在螺纹规上找到一片与被测螺纹的牙型完全吻合,从该片上就得知被测螺纹的螺距大小。然后把测得的螺距和内、外径的数值与螺纹标准核对,选取与其相近的标准值。 《画法几何及机械制图》零件测绘实验教程 一、课程所属类型及服务专业 课程属于技术基础课,服务机械类各专业。 二、实验的目的和要求 1实验目的: 通过对轴、盘盖、箱体三类零件的测绘以及对减速箱拆卸,了解零件测绘的一般步骤,掌握其测绘的常用方法,熟悉量具的选用和使用。进一步巩固零件的视图选择和表达方法,以及查表计算等有关知识。 2实验要求: 对不同形状的轴、盘盖、箱体三类零件进行测绘,在方格纸上绘制草图,根据其的大小和复杂程度选择合适的图幅,绘制零件图,并填写实验报告。 三、学时分配及实验项目表

密度测量方法汇总己

密度测量方法汇总己 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

密度测量方法汇总 一、天平量筒法 1、常规法 实验原理:ρ= m/v 实验器材:天平(砝码)、量筒、烧杯、滴管、线、水、石块 实验步骤: (1)调节好的天平,测出石块的质量m ; (2)在量筒中倒入适量的水,测出水的体积V 1 (3)将石块用细线拴好,放在盛有水的量筒中,(排水法)测出总体 积V 2; 实验结论: 2、天平测石块密度 方案1(烧杯、水、细线) 实验原理:ρ= m/v 实验器材:天平、水、空瓶、石块 实验过程: 1、用天平测石块质量m 1 2、瓶中装满水,测出质量m2 1 2v v m -= V m = ρ

3、将石块放入瓶中,溢出一部分水后,测出瓶、石块及剩余水的质量m 3 推导及表达式:m排水=m1+m2-m3 V石=V排水 =(m1+m2-m3)/ρ水 ρ石=m 1/V石=m 1ρ水/(m1+m2-m3) 方案2(烧杯、水、细线) 实验原理:ρ= m/v 实验器材:烧杯、天平、水、细线、石块 实验过程: 1、在烧杯中装适量水,用天平测出杯和水的总质量m 1 2、用细线系住石块浸没入水中,使石块不与杯底杯壁接触,用天平测总质量 m2 3、使石块沉入水底,用天平测出总质量m 3 推导及表达式:m石=m3-m1 V石=V排=(m2-m1)/ρ水 ∴ρ石=m石/V石=(m3-m1)ρ水/(m2-m1) 3、等体积法 实验器材:天平(含砝码)、刻度尺、烧杯(无刻度)、适量的水、足量的牛奶、细线。

1.用调节好的天平,测出空烧杯的质量m 0; 2.将适量的水倒入烧杯中,用天平测出烧杯和水的总质量m 1,用刻度尺量出水面达到的高度h (或用细线标出水面的位置); 3.将水倒出,在烧杯中倒入牛奶,使其液面达到h 处(或达到细线标出的位置),用天平测出烧杯和牛奶的总质量m 2。 实验结果: ∵ 因为水和牛奶的体积相等, V 牛=V 水 ∴ 4、 等质量法 实验器材:天平、刻度尺、两个相同的烧杯(无刻度)、适量的水、足量的牛奶、滴管。 实验步骤: (1)调节天平,将两个相同的烧杯分别放在天平的左右盘上; (2)将适量的水和牛奶分别倒入两个烧杯中,直至天平再次平衡为止; (3)用刻度尺分别测量出烧杯中水面达到的高度h 水和牛奶液面达到的高度h 牛。 水 水 牛 牛 = ρρm m

各种尺寸测量量具的使用方法.

量具的使用方法 目录 第一章钢直尺、内外卡钳及塞尺 (3) 一钢直尺 (3) 二内外卡钳 (3) 三塞尺 (6) 第二章游标读数量具 (8) 一游标卡尺的结构型式 (8) 二游标卡尺的读数原理和读数方法 (9) 三游标卡尺的测量精度 (11) 四游标卡尺的使用方法 (12) 五游标卡尺应用举例 (14) 六高度游标卡尺 (16) 七深度游标卡尺 (16) 八齿厚游标卡尺 (17) 第三章螺旋测微量具 (19) 一外径百分尺的结构 (19) 二百分尺的工作原理和读数方法 (21) 三百分尺的精度及其调整 (22) 四百分尺的使用方法 (23) 五百分尺的应用举例 (24) 六杠杆千分尺 (25) 七内径百分尺 (25) 八内测百分尺 (27) 九三爪内径千分尺 (27) 十公法线长度千分尺 (27) 十一壁厚千分尺 (28) 十二板厚百分尺 (28) 十三尖头千分尺 (28) 十四螺纹千分尺 (29) 十五深度百分尺 (29) 十六数字外径百分尺 (29) 第四章量块 (30)

一量块的用途和精度 (30) 二成套量块和量块尺寸的组合 (30) 三量块附件 (31) 第五章指示式量具 (33) 一百分表的结构 (33) 二百分表和千分表的使用方法 (33) 三杠杆百分表 (37) 四杠杆百分表和千分表的使用方法 (37) 五内径百分表 (40) 六内径百分表的使用方法 (41) 第六章角度量具 (42) 一万能角度尺 (42) 二游标量角器 (43) 三万能角尺 (44) 四带表角度尺 (44) 五中心规 (45) 六正弦规 (45) 七车刀量角台 (47) 第七章水平仪 (49) 一条式水平仪 (49) 二框式水平仪 (50) 三光学合像水平仪 (53) 第八章量具的维护和保养 (55) 参考文献 (56)

玉镯尺寸测量方法汇总

玉手镯尺寸指内径的大小,也称圈口大小,以戴入手腕后有一个手指间隙为宜。试戴有困难者可用肥皂之类的助滑剂,一旦戴上不易轻易取下。据市场销售情况,玉镯进货以大圈为宜,小圈口滞销,据一家珠宝店统计,同时进货的各掺半玉镯,两年过后,大圈口者售近90%,小圈口者仅售出10。大圈口和小圈口的销售,需因地而异,北京、天津等北方以内径 56~62mm销路最好。广东一带南方,手镯尺寸内径以53~58mm为宜。这仅是南北方宏观情况,特殊情况,当然各地都有,要因地因人制宜,下面雾露河翡翠网为您介绍手镯尺寸测量方法。 第一种手镯尺寸测量方法 1、选择手镯的尺寸时是看手镯的内圈直径而定的。各位可以按图中的方式,将姆指和尾指尽量紧紧靠拢,请朋友帮忙用软尺量出mm长度,除以3.14,即是适合你的手镯内圈。喜欢略松或略紧的朋友,可以前后加减10~20mm,不宜过大。 2、把手自然放平,不要绷紧,用一根线围手掌最宽处的周长,量的时候如果手很软的女士可以量紧点,手骨偏硬的可以量到刚好把线拉紧的程度即可,最后量出线的长度就是你的手寸大小了。量出的周长除以3.14,再加1~2mm即是适合您的手镯的内径。例如:您测量的周长是170mm,那么170/3.14+1~2=55~56mm。 3、在选戴手镯时,要能将手镯戴入4个长手指(即大拇指除外)并至“虎口”处,感觉稍紧一些,然后将手镯取下,测量一下内径,例如刚好是55毫米,那么,这个尺寸就是适合你的圈口了。有些人喜欢戴得稍松一点,选择时,就选择圈口大1~2毫米,这样便可以较容易地戴上取下了。也有一些人习惯戴小一些的手镯,或者戴上就不打算再取下来,这样的话,就可以反过来将尺寸减少1~2毫米。一般在选择时,应先试戴一下。试戴时,可涂些洗洁精或肥皂水在手上,并请人帮助,用点力将手镯戴进手腕即可。 第二种翡翠手镯尺寸测量方法 步骤一:把“大拇指”移到小拇指的指根处,如图所示

测量电阻方法大全

高考必看:测量电阻方法大全 一、滑动变阻器两种电路接法的选择 滑动变阻器以何种接法接入电路,应遵循安全性、精确性、节能性、方便性原则综合考虑,灵活择取. (一)、电学实验中电路和器材的选择 ① 基本原则: 安全——不损坏实验器材; 精确——尽可能减小实验误差; 方便——在保证实验正常进行的前提下,选用的电路和器材应便于操作,读得的数据便于处理。 ② 实验器材的选取: a 电源允许的最大电流要大于电路中的实际电流。 b 用电器的额定电流不能小于通过该用电器的实际最大电流。 c 电压表和电流表的量程不能小于被测电压和电流的最大值。 d 电压表和电流表的指针应指到满偏刻度三分之二的位置左右。 (二)、下列三种情况必须选用分压式接法 1)要求回路中某部分电路电流或电压实现从零开始可连续调节时(如:测定导体 的伏安特性、校对改装后的电表等电路),即大范围内测量时,必须采用分压接法. (2)当用电器的电阻R L 远大于滑动变阻器的最大值 R0,且实验要求的电压变化范围较大(或要求测量多组数 据)时,必须采用分压接法

(3)若采用限流接法,电路中实际电压(或电流)的最小值仍超过 只能采用分压接法 . (三 )、下列情况可 选用限流式接法 (1)测量时电路电流或电压没有要求从零开始连续调节,只是小范围内测量,且 R L 与 R 0 接近或 R L 略小于 R 0,采用限流式接法 . (2)电源的放电电流或滑动变阻器的额定电流太 小, 采用限流式接法 . (3)没有很高的要求,仅从安全性和精确性角度分 析两者均可采用时, 可考虑安装简便和节能因素采用限流 式接法 . 下面举例说明: 例一电阻额定功率为 0.01 W ,阻值不详 .用欧姆表粗测其阻值约为 40 kΩ .现有下列仪表元件,试设计适当的电路,选择合适的元件,较精确地测定其阻值 . ①电流表, 量程 0~ 300 μA ,内阻 150 Ω;②电流表, 量程 0~1000 μA ,内阻 45 Ω; ③电压表,量程 0~3 V ,内阻 6 kΩ;④电压表,量程 0~15 V ,内阻 30 kΩ; ⑤电压表,量程 0~50 V ,内阻 100 kΩ;⑥干电池两节,每节电动势为 1.5 V ; ⑦直流稳压电源,输出电压 6 V ,额定电流 3 A ;⑧直流电源,输出电压 24 V ,额定电流 0.5 A ;⑨直流电源,输出电压 100 V ,额定电流 0.1 A ;⑩滑动变阻器, 0~50 Ω,3 W ; ○11滑动变阻器, 0~2 kΩ,1 W ; ○12电键一只,连接导线足量 . 分析:由于现有器材中有电流表和电压表,故初步确定用伏安法测定此电阻的阻值 . 又因待测电阻为一大电阻,其估计阻值比现有电压表的内阻大或相近,故应该采用电流 表内接法 .由于现有滑动变阻器最大阻值比待测电阻小得多,因此,若用滑动变阻器调节 待测电阻的电流和电压,只能采用分压接法,如图(否则变阻器不能实现灵敏调节) .为 了确定各仪表、元件的量程和规格,首先对待测电阻的额定电压和电流作出估算:最大 电流为 Im = 500μA ;最大电压 Um =20 V.由于实验中的电流和电压可以小于而不能超过 待测电阻的额定电流和额定电压,现有两个电流表内阻相近,由内阻所引起的系统误差 相近, 而量程 0~1000 μA 接入电路时, 只能在指针半偏转以下读数, 引起的偶然误差较 大,故选用量程为 0~300 μ Α的电流表 .这样选用电流表后,待测电阻上的最大实际电压 约为 3×10-4×40×103 V =12 V ,故应选用量程为 15 V 的电压表,由于在图中所示的 电路中,要实现变阻器在较大范围内灵敏调节,电源电压应比待测电阻的最大实际电压 高,故电源应选输出电压为 24 V 一种(其额定电流也远大于电路中的最大实际电流,故 可用) . 关于变阻器的选择,由于采用分压接法,全部电源电压加在变阻器上 .若是把 0~50 R L 的额定值时, 不能满足分压式接法的要求时,

各种检测量具使用方法

游标卡尺的原理及使用方法 游标卡尺是一种测量精度较高、使用方便、应用广泛的量具,可直接测量工件的外径,内径、宽度、长度、深度尺寸等(图7-7),其读数准确度有0.1mm、0.05mm和0.02mm三种。下面以0.02mm(即1/50)游标卡尺为例,说明其刻线原理、读数方法、测量方法及注意事项。

刻线原理如图7-8 a)所示,当主尺和副尺的卡脚始合时,主尺上的零线对准副尺上的零线对准副尺上的每一小格为1mm,取主尺49mm长度在刻尺上等分为50个格。即: 副尺每格长度= 主、副尺每格之差=1mm-0.98mm=0.02mm 读数方法如图7-8 b)所示,游标卡尺的读数可分为三步: 第一步:根据副尺零线以左的主尺上的最近刻度读出整数; 第二步:根据副尺零线以右与主尺某一刻线对准刻线数乘以0.02读出小数; 第三步:将上面的整数和小数两部份相加,即得总尺寸。如图7-8b)中的读数为: 23+12×0.02=23.4(mm) 测量方法游标卡尺的测量方法如图7-9所示。其中图a)为测量工件外径的方法,图b)为测量工件内径的方法,图c)为测量工件宽度的方法,图d)为测量工件深度的方法。 注意事项使用游标卡尺时应注意以下事项: 使用前先擦尽卡脚,然后合拢两卡脚使之贴合,检查主、副尺零线是否对齐。若未对齐,应在测量后根据原始误差修正读数。

测量时,方法要正确,读数时要垂直于尺面,否则测量不正确。 当卡脚与被测工件接触后,用力不能过大,以免卡脚变形或磨损,降低测量的准确度。 不得用卡尺测量毛坯表面。使用完毕后须擦拭干净,放入盒内。 游标卡尺的种类很多,除了上述普通游标卡尺外,还有专门用于测量深度和高度的深度游标卡尺和高度游标卡尺。高度游标卡尺还可以用于钳工精密划线。 双曲面 如何使用百分尺,百分尺(厘尺)的使用方法

密度测量方法汇总

密度测量方法汇总 一、天平量筒法 1、常规法测固体密度 实验原理:ρ= m/v 实验器材:天平(砝码)、量筒、烧杯、滴管、线、水、石块 实验步骤: (1)调节好的天平,测出石块的质量m ; (2)在量筒中倒入适量的水,测出水的体积V 1 (3)将石块用细线拴好,放在盛有水的量筒中,(排水法)测出总体积V 2; 实验结论: 2、天平测石块密度 方案1(烧杯、水、细线) 实验原理:ρ= m/v 实验器材:天平、水、空瓶、石块 实验步骤: 1、用天平测石块质量m 1 2、瓶中装满水,测出质量m 2 3、将石块放入瓶中,溢出一部分水后,测出瓶、石块及剩余水的质量m 3 推导及表达式:m 排水=m 1+m 2-m 3 V 石=V 排水 =(m 1+m 2-m 3)/ρ水 ρ石=m 1/V 石 =m 1ρ水/(m 1+m 2-m 3) 方案2(烧杯、水、细线) 实验原理:ρ= m/v 实验器材:烧杯、天平、水、细线 、石块 实验步骤: 1、在烧杯中装适量水,用天平测出杯和水的总质量m 1。 2、用细线系住石块浸没入水中,使石块不与杯底杯壁接触,用天平测总质量 m 2. 3、使石块沉入水底,用天平测出总质量m 3 推导及表达式:m 石=m 3-m 1 V 石=V 排=m 排/ρ水=(m 2-m 1)/ρ水 ∴ρ石=m 石/V 石 =(m 3-m 1)ρ水/(m 2-m 1) 3、等体积法测液体密度 实验器材:天平(含砝码)、刻度尺、烧杯(无刻度)、适量的水、足量的牛奶、细线。 实验步骤: 1.用调节好的天平,测出空烧杯的质量m 0; 12v v m V m

2.将适量的水倒入烧杯中,用天平测出烧杯和水的总质量m 1,用刻度尺量出水面达到的高度h (或用细线标出水面的位置); 3.将水倒出,在烧杯中倒入牛奶,使其液面达到h 处(或达到细线标出的位置),用天平测出烧杯和牛奶的总质量m 2。 实验结果: ∵ 因为水和牛奶的体积相等, V 牛=V 水 ∴ 4、 等质量法测液体密度 实验器材:天平、刻度尺、两个相同的烧杯(无刻度)、适量的水、足量的牛奶、滴管。 实验步骤: (1)调节天平,将两个相同的烧杯分别放在天平的左右盘上; (2)将适量的水和牛奶分别倒入两个烧杯中,直至天平再次平衡为止; (3)用刻度尺分别测量出烧杯中水面达到的高度h 水和牛奶液面达到的高度h 牛。 实验结果: ∵ 因为水和牛奶的质量相等, m 牛=m 水 ∴ ρ牛V 牛=ρ水V 水 ρ牛h 牛S =ρ水h 水S ρ牛h 牛=ρ水h 水 即 ρ牛= 二、利用浮力测固体密度: 1、浮力法——天平 器材:天平、金属块、水、细绳 实验步骤: 1)往烧杯装满水,放在天平上称出质量为 m 1; 2)将金属块轻轻放入水中,溢出部分水,再将烧杯放在天平上称出质量为m 2; 3) 将金属块取出,把烧杯放在天平上称出烧杯和剩下水的质量m 3。 表达式:ρ=(m 2-m 3)/ 【(m 1-m 3)/ ρ水】=ρ水(m 2-m 3)/(m 1-m 3) 2.浮力法----量筒 器材:木块、水、细针、量筒 实验步骤: 1)、往量筒中注入适量水,读出体积为V 1; 2)、将木块放入水中,漂浮,静止后读出体积 V 2; 3)、用细针插入木块,将木块完全浸入水中,读出体积为V 3。 表达式:ρ=ρ水(V 2-V 1)/(V 3-V 1) 水 水水牛牛--==ρρρ0 10 2m m m m m m m m 水 牛水ρ h h

蛋白质含量测定方法汇总

实验七蛋白质含量测定 测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。 [目的要求] 1.掌握测定蛋白质的含量基本方法。 2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。 一、染料法 [实验原理] 在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。利用这个原理可以测定蛋白质含量。 该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。 [器材] 吸量管;试管;721型分光光度计 [试剂] 1.标准牛血清白蛋白溶液:配成0.1mg/ml的溶液。 2.待测蛋白质溶液。 3.染料溶液:称取考马斯亮蓝G-250 0.1g溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。 [操作步骤] 按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。 2.样品测定:

取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。 二、双缩脲(Biuret)法测定蛋白质含量 [实验原理] 在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。蛋白质分子含有众多肽键(—CO-NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量成正比,可用比色法测定蛋白含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于快速,但并不需要十分精确的蛋白质测定。 [试剂] 1.双缩脲试剂:取CuSO4·5H20(c.P.)1.5g和酒石酸钾钠(c.P.)6.0g以少量蒸馏水溶解,再加2.5mol/L NaOH溶液300ml,KI 1.0g,然后加水至1000ml。棕色瓶中避光保存。长期放置后若有暗红色沉淀出现,即不能使用。 2.标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10g/L的标准蛋白溶液,可用BSA浓度1g/L的A280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05mol/L NaOH配制。 [器材] 1.试管:15×150mm 试管7只; 2.1ml,5ml移液管; 3.坐标纸; 4.721分光光度计。 [操作步骤]

相关主题
文本预览
相关文档 最新文档