当前位置:文档之家› 第二章圆锥曲线与方程单元测试卷

第二章圆锥曲线与方程单元测试卷

第二章圆锥曲线与方程单元测试卷
第二章圆锥曲线与方程单元测试卷

第二章圆锥曲线与方程单元测试卷

一、选择题:

1.双曲线2

214

x y -=的实轴长为( )

A .3

B .4

C .5

D .12

2.抛物线22y x =的准线方程为( )

A .14y =-

B .18y =-

C .12x =

D .1

4

x =-

3.已知椭圆

22

1102

x y m m +=--,长轴在y 轴上.若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8

4.抛物线21

4

x y =

的焦点到准线的距离为( ) A .2 B .4 C .18 D .1

2

5.已知椭圆()222104x y a a +

=>与双曲线22

193

x y -=有相同的焦点,则a 的值为( )

4 D.10

6.若双曲线()22

22103

x y a a -=>的离心率为2,则实数a 等于( )

A.2 C.

3

2

D.1 7.曲线221259x y +

=与曲线()22

19259x y k k k

+=<--的( ) A.长轴长相等 B.短轴长相等 C.焦距相等 D.离心率相等

8.已知抛物线2:4C y x =的焦点为F ,点,A B 在C 上且关于x 轴对称,点,M N 分别为,AF BF 的中点,且AN BM ⊥,则AB =( )

A ..

C .8或8

D .12或12

9.已知双曲线22

221x y a b

-=(0,0)a b >>的一条渐近线过点,且双曲线的一个焦点在抛物

线2y =的准线上,则双曲线的方程是( )

A .22

12128x y -=

B .2212821x y -

= C .22134x y -=

D .22

143x y -

= 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点A (0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )

92

11.已知椭圆22

22:1(0)x y E a b a b

+=>>的右焦点为F .短轴的一个端点为M ,直线:340

l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于4

5

,则椭圆E 的离心率的取值围是( )

A .

B .3(0,]4

C .

D .3

[,1)4

12.已知直线1y x =-与双曲线221ax by +=(0a >,0b <)的渐近线交于A ,B 两点,且过

原点和线段AB 中点的直线的斜率为a

b

的值为( )

A .27-

B .2-.2- D .3

- 第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横一上.

13.若双曲线1162

2=-m

x y 的离心率2=e ,则=m ________.

14.动圆经过点(3,0)A ,且与直线:3l x =-相切,则动圆圆心M 的轨迹方程是____________.

15.已知椭圆C :2

213

x y +=,斜率为1的直线l 与椭圆C 交于,A B 两点,且AB =,则直

线l 的方程为___________.

16.已知抛物线x y 42=,过其焦点F 作直线l 交抛物线于,A B 两点,M 为抛物线的准线与x 轴的交点,3

4

tan =

∠AMB ,则=AB _____. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)

已知:p 方程

22192x y m m +=-表示焦点在x 轴上的椭圆,:q 双曲线22

15x y m -=的离心率

2e ?∈ ?. (1)若椭圆

22192x y m m +=-的焦点和双曲线22

15x y m

-=的顶点重合,数m 的值; (2)若“p q ∧”是真命题,数m 的取值围.

18.(本小题满分12分)

已知抛物线2:4C y x =与直线24y x =-交于A B ,两点. (1)求弦AB 的长度;

(2)若点P 在抛物线C 上,且ABP ?的面积为12,求点P 的坐标.

19.(本小题满分12分)

设双曲线2

22:1(0)x C y a a

-=>与直线:1l x y +=交于两个不同的点,A B ,求双曲线C 的离心率e

的取值围.

20.(本小题满分12分)

已知抛物线()220y px p =>上的点()3,T t 到焦点F 的距离为4. (1)求t ,p 的值;

(2)设A ,B 是抛物线上分别位于x 轴两侧的两个动点,且5OA OB ?=(其中O 为坐标原点).求证:直线AB 过定点,并求出该定点的坐标.

21.(本小题满分12分)

已知双曲线()22

22:10,0x y C a b a b

-=>>的一个焦点为)

3,0F

,实轴长为2,经过点()2,1M 作

直线l 交双曲线C 于,A B 两点,且M 为AB 的中点. (1)求双曲线C 的方程; (2)求直线l 的方程.

22.(本小题满分12分)

已知椭圆()2222:10x y C a b a b

+=>>

的离心率2e =,焦距为2.

(1)求椭圆C 的方程;

(2)已知椭圆C 与直线0x y m -+=相交于不同的两点,M N ,且线段MN 的中点不在圆

221x y +=,数m 的取值围.

第二章圆锥曲线与方程单元测试卷 参考答案及解析

1. 【答案】B 【解析】由双曲线方程可知2

4,2,24a a a =∴=∴=,所以实轴长为4.

2. 【答案】B 【解析】22y x =,则212x y =

,则抛物线开口向上,且112,24p p ==,可得准线方程为1

8

y =-. 3. 【答案】D 【解析】将椭圆的方程转化为标准形式

为22

1+=,显然2106m m m ->-?>

且2222-=,解得8m =.

4. 【答案】C 【解析】抛物线2

14x y =的焦点到准线的距离为p ,而112,48p p =?=因此选C.

5. 【答案】C 【解析】根据题意可知2

49312a -=+=,结合0a >的条件,可知4a =,故选C.

6. 【答案】B 【解析】∵2c e a =

=,∴2c a =,又2239b ==,222

c a b =+

,∴2249,a a a =+=7. 【答案】C 【解析】曲线

221259x y +=表示的椭圆焦点在x 轴上,长轴长为10,短轴长为6,离心率为45,焦距为8.曲线

()22

19259x y k k k

+=<--表示的椭圆焦点在x

轴上,长轴长为

,短轴长为

8.故选C .

8. 【答案】D 【解析】设)2,(),2,(t t B t t A -,则),2

1(),,21(t t N t t M -++,

所以1(,2t

AN -=-

1(2t

BM -=,依据AN BM ⊥可得09)2

1(2=--t t ,可得310±=t ,

故||AB

=12=

9. 【答案】D 【解析】双曲线的一条渐近线是b y x a =,

2b a

=①,

抛物线2

y =

的准线是x =

因此c =222

7a b c +==②,由①②

联立解得2a b =???=??22143x y -=.故选D . 10. 【答案】A 【解析】由题意,设P 在抛物线准线的投影为P ',抛物线的焦点为F ,则1

(,0)2

F ,根据

抛物线的定义可知点P 到该抛物线的准线的距离为PP PF '=,则点P 到点A (0,2)的距离与点P 到该抛物线准线的距离之和

d PF PA AF =+≥==,故选A.

11. 【答案】A 【解析】设1F 是椭圆的左焦点,由于直线:340l x y -=过原点,因此,A B 两点关于原点对

称,从而四边形1AF BF 是平行四边形,所以1BF BF AF +=4BF +=,

即24a =,2a =,设(0,)M b ,则45b d =

,所以4455

b ≥,1b ≥,

则12b ≤<,又2222

4c a b b =-=-,

所以0c <≤

0c a <≤. 12. 【答案】B 【解析】双曲线221ax by +=的渐近线方程可表示为22

0ax by +=,由22

1,0,

y x ax by =-??+=?得()220a b x bx b +-+=,设()()1122,,,A x y B x y ,则12x x +2b a b =

+,则122a

y y a b

+=+,所以过原点和线段AB

中点的直线的斜率为12

12121222

y y y y a k x x x x b ++=

===++,故选B . 13. 【答案】48

【解析】依题意离心率2e ==,解得48m =. 14. 【答案】212y x = 【解析】设点(,)M x y ,设

M 与直线:3l x =-的切点为N ,则MA MN =,即动点M 到定点A 和定

直线:3l x =-的距离相等,所以点M 的轨迹是抛物线,且以(3,0)A 为焦点,以直线:3l x =-为准线,所以6p =,所以动圆圆心的轨迹方程为212y x =. 15. 【答案】 1.y x =±

【解析】设直线方程为y x b =+

22

46330x bx b ++-=, 21212633,

b b x x x x -∴+=-=,121AB x =-,

1.y x =±

AB 的方程()1-=x k y ,()11,y x A ,()22,y x B ,

因为34tan =∠AMB ,所以34

1

111122

1122

11=+?+++-+x y x y x x ,

整理得()()()2121213

4

11342y y x x x x k +++=-,①

()1-=x k y 与x y 42=联立可得()0422222=++-k x k x k ,

可得121=x x ,24

2

21+=

+k x x ,则421-=y y ,代入①可得, ()2214342k

x x k ?=

-, 所以32138k x x =-,所以2

3

2

238424??

?

??=-??? ??+k k ,解得33±=k , 所以1424

221=+=+k x x ,

所以1641963

1

1=-?+=AB .

17. 【答案】(1)4

3

m =(2)2.53m <<

【解析】(1)由925m m --=,得4

3

m =.

(2)由题意得,p 与q 同时为真,

当p 为真时,920m m ->>,解得03m <<,

党q 为真时,350,225m

m +><<,解得2.55m <<,

当p 真、q 真时,03

2.55

m m <

∴实数m 的取值围是2.53m <<.

18. 【答案】

(1) ()9,6或()4,4-【解析】 (1)设()11,A x y 、()22,B x y ,

1

或4,∴A

、B 两点的坐标为()1,2-、()4,4

PAB S =

, 202y -或04y =- ∴P 点坐标为9,6或4,4-.

19. 【答案】()

2,2?+∞ ?【解析】由C 与l 相交于两个不同的点,可知方程组22

21,

1,

x y a x y ?-=???+=?

有两组不同的解,消去y ,并整理得()22221220,a x a x a -+-=

()2

4

22

10,4810,

a a a a ?-≠?

∴?+->??解得01a a <<≠且,

圆锥曲线单元测试卷1

圆锥曲线单元测试卷 时间:120分钟,满分150分 一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的选项中,只有一项是符合题目要求的. 1. ★若抛物线24y x =上一点P 到焦点F 的距离是10,则P 点的坐标是( ) A .()9,6 B .()9,6± C .()6,9 D .()6,9± 2. ★★点(),P m n 在圆221x y +=上运动,则点(),2Q m n mn +运动的轨迹方程是( ) A .y C .(x 3.★★★ 率为 24. ,A B 两点,且 A . 5. ★★设k A C 6. A .(0,7. ★★双曲线 22 1916 x y -=的一个焦点到一条渐近线的距离等于( ) A B .3 C .4 D .2

8. ★★★椭圆 22 1369 x y +=的弦被点()4,2平分,则此弦所在的直线方程是( ) A .20x y -=B .24x y +=C .2314x y +=D .28x y += 9. ★★★已知动点(),P x y 满足34x y =+,则P 点的轨迹是( ) A 10. A 11. OAB ?A 12. A (0)x > 13. 14.M 点15. ★★若椭圆的两个焦点为()11,0F -,()21,0F ,长轴长为10,则椭圆的方程为 。 16. ★★★给出如下四个命题:①方程2 2 210x y x +-+=表示的图形是圆;②椭圆椭圆 22 132 x y +=的离 心率e =;③抛物线2 2x y =的准线的方程是18x =-;④双曲线 2214925y x -=-的渐近线方程是5 7 y x =±。其中所有不正确命题的序号是 。 三、解答题:本大题6小题,共70分

第二章 圆锥曲线与方程(复习)

第二章 圆锥曲线与方程(复习) 校对人:聂格娇 审核人:徐立朝 1.掌握椭圆、双曲线、抛物线的定义及标准方程; 2.掌握椭圆、双曲线、抛物线的几何性质; 3.能解决直线与圆锥曲线的一些问题. 7881,找出疑惑之处) 复习2: ① 若椭圆221x my +=,则它的长半轴长为__________; ②双曲线的渐近线方程为20x y ±=,焦距为10,则双曲线的方程为 ; ③以椭圆22 12516 x y +=的右焦点为焦点的抛物线方程为 .

二、新课导学 ※ 典型例题 例1 当α从0到180变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 变式:若曲线22 11x y k k +=+表示椭圆,则k 的取值范围是 . 小结:掌握好每类标准方程的形式. 例2设1F ,2F 分别为椭圆C :22 22x y a b + =1(0)a b >>的左、右两个焦点. ⑴若椭圆C 上的点A (1,32 )到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标; ⑵设点K 是(1)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 变式:双曲线与椭圆22 12736 x y +=有相同焦点,且经过点,求双曲线的方程.

※动手试试 练1.已知ABC ?的两个顶点A,B坐标分别是(5,0) -,(5,0),且AC,BC 所在直线的斜率之积等于m(0) m≠,试探求顶点C的轨迹. 练2.斜率为2的直线l与双曲线 22 1 32 x y -=交于A,B两点,且4 AB=, 求直线l的方程. 三、总结提升 ※学习小结 1.椭圆、双曲线、抛物线的定义及标准方程; 2.椭圆、双曲线、抛物线的几何性质; 3.直线与圆锥曲线. ※知识拓展 圆锥曲线具有统一性: ⑴它们都是平面截圆锥得到的截口曲线; ⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线; ⑶它们的方程都是关于x,y的二次方程.

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

《圆锥曲线与方程》单元测试卷 答案

《圆锥曲线与方程》单元测试卷 一、选择题:(本大题共10小题,每小题4分,共40分.) 1.方程132-=y x 所表示的曲线是 ( ) (A )双曲线 (B )椭圆 (C )双曲线的一部分 (D )椭圆的一部分 2.平面内两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么 ( ) (A )甲是乙成立的充分不必要条件 (B )甲是乙成立的必要不充分条件 (C )甲是乙成立的充要条件 (D )甲是乙成立的非充分非必要条件 3.椭圆14222=+a y x 与双曲线12 2 2=-y a x 有相同的焦点,则a 的值是 ( ) (A )12 (B )1或–2 (C )1或12 (D )1 4.若抛物线的准线方程为x =–7, 则抛物线的标准方程为 ( ) (A )x 2=–28y (B )y 2=28x (C )y 2=–28x (D )x 2=28y 5.已知椭圆19 252 2=+y x 上的一点M 到焦点F 1的距离为2,N 是MF 1的中点,O 为原点,则|ON|等于 (A )2 (B ) 4 (C ) 8 (D ) 2 3 ( ) 6.顶点在原点,以x 轴为对称轴的抛物线上一点的横坐标为6,此点到焦点的距离等于10,则抛物线焦点到准线的距离等于 ( ) (A ) 4 (B )8 (C )16 (D )32 7.21F F 为双曲线2 214 x y -=-的两个焦点,点P 在双曲线上,且1290F PF ∠=o ,则21PF F ?的面积是 (A ) 2 (B )4 (C )8 (D )16 ( ) 8.过点P (4,4)与双曲线22 1169 x y -=只有一个公共点的直线有几条 ( ) (A ) 1 (B ) 2 (C )3 (D )4 9、已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其交于N M 、两点,MN 中点的横坐标为3 2-,则此双曲线的方程是 ( )

高中数学圆锥曲线与方程教案

高中数学圆锥曲线与方 程教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 2.1 求曲线的轨迹方程(新授课) 一、教学目标

知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).

第二章圆锥曲线与方程单元测试卷

第二章圆锥曲线与方程单元测试卷 一、选择题: 1.双曲线2 214 x y -=的实轴长为( ) A .3 B .4 C .5 D .12 2.抛物线22y x =的准线方程为( ) A .14y =- B .18y =- C .12x = D .1 4 x =- 3.已知椭圆 22 1102 x y m m +=--,长轴在y 轴上.若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 4.抛物线21 4 x y = 的焦点到准线的距离为( ) A .2 B .4 C .18 D .1 2 5.已知椭圆()222104x y a a + =>与双曲线22 193 x y -=有相同的焦点,则a 的值为( ) C.4 D.10 6.若双曲线()22 22103 x y a a -=>的离心率为2,则实数a 等于( ) A.2 C. 3 2 D.1 7.曲线221259x y + =与曲线()22 19259x y k k k +=<--的( ) A.长轴长相等 B.短轴长相等 C.焦距相等 D.离心率相等 8.已知抛物线2:4C y x =的焦点为F ,点,A B 在C 上且关于x 轴对称,点,M N 分别为,AF BF 的中点,且AN BM ⊥,则AB =( ) A . B .

C . 8或8 D .12+或12 9.已知双曲线22 221x y a b -=(0,0)a b >>的一条渐近线过点,且双曲线的一个焦点在抛物 线2y =的准线上,则双曲线的方程是( ) A .22 12128x y -= B .2212821x y - = C .22134x y -= D .22 143x y - = 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点A (0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ) B.3 D.92 11.已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线:340 l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于4 5 ,则椭圆E 的离心率的取值围是( ) A . B .3(0,]4 C . D .3[,1)4 12.已知直线1y x =-与双曲线221ax by +=(0a >,0b <)的渐近线交于A ,B 两点,且过 原点和线段AB 中点的直线的斜率为a b 的值为( ) A .27- B .2- C .2- D .3 - 第Ⅱ卷(非选择题共90分) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横一上. 13.若双曲线1162 2=-m x y 的离心率2=e ,则=m ________.

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

圆锥曲线单元检测题及答案

圆锥曲线单元检测题 一、选择题(5分×12) 1.椭圆12 132 2y x + =1上一点P 到两个焦点的距离的和为( ) A.26 B.24 C.2 D.213 2.在双曲线标准方程中,已知a =6,b =8,则其方程是( ) A.643622y x -=1 B.366422y x -=1 C.643622x y -=1 D.643622y x -=1或64 3622x y -=1 3.已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( ) A.x 2=-12y B.x 2=12y C.y 2=-12x D.y 2=12x 4.已知椭圆的方程为2 22 16m y x + =1,焦点在x 轴上,则m 的范围是( ) A.-4≤m ≤4 B.-4<m <4 C.m >4或m <-4 D.0<m <4 5.已知定点F 1(-2,0),F 2(2,0)在满足下列条件的平面内动点P 的轨迹中,为双曲线的是( ) A.|PF 1|-|PF 2|=±3 B.|PF 1|-|PF 2|=±4 C.|PF 1|-|PF 2|=±5 D.|PF 1|2-|PF 2|2=±4 6.过点(-3,2)且与4 92 2y x + =1有相同焦点的椭圆的方程是( ) A.101522y x +=1 B.10022522y x +=1 C.151022y x +=1 D.225 10022 y x +=1 7.经过点P (4,-2)的抛物线标准方程为( ) A.y 2=x 或x 2=-8y B.y 2=x 或y 2=8x C.y 2=-8x D.x 2=-8y 8.已知点(3,2)在椭圆22 a x +22b y =1上,则( ) A.点(-3,-2)不在椭圆上 B.点(3,-2)不在椭圆上 C.点(-3,2)在椭圆上 D.无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上 9.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( ) A.4 422y x -=1 B.4 42 2x y -=1 C.8 42 2x y -=1 D.4 82 2y x -=1 10.过抛物线y 2=2px (p >0)的焦点作一条直线交抛物线于A (x 1,y 1),B (x 2,y 2),则 2 12 1x x y y 为( ) A.4 B.-4 C.p 2 D.-p 2 11.如果双曲线36 642 2y x - =1上一点P 到它的右焦点的距离为8,那么P 到它的右准线距离是( ) A.10 B.7732 C.27 D.5 32 12.若AB 为过椭圆错误!未找到引用源。+错误!未找到引用源。=1的中心的弦,F 1为椭圆的左焦点,则△F 1AB

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

圆锥曲线单元测试题

圆锥曲线单元测试题Last revision on 21 December 2020

《圆锥曲线》单元测试题 班级姓名学号分数 第Ⅰ卷(选择题共60分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选 项中,只有一项是符合题目要求的.) 1、若双曲线x2 a2- y2 b2=1的焦点到其渐近线的距离等于实轴长,则该双曲线的离心 率为() B.5 D.2 2、圆锥曲线y2 9+ x2 a+8 =1的离心率e= 1 2,则a的值为() A.4 B.-5 4C.4或- 5 4 D.以上均不正确 3、以椭圆的右焦点F2为圆心的圆恰好过椭圆的中心,交椭圆于点M、N,椭圆的左焦点为 F1,且直线MF1与此圆相切,则椭圆的离心率e为() -1 B.2-3 4、已知双曲线x2 a21- y2 b2=1与椭圆 x2 a22+ y2 b2=1的离心率互为倒数,其中a1>0, a2>b>0,那么以 a1、a2、b为边长的三角形是() A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 5、设椭圆x2 m2+ y2 n2=1(m>0,n>0)的右焦点与抛物线y 2=8x的焦点相同,离心率为 1 2,则此椭 圆的方程为() +y2 16=1 +y2 12=1 + y2 64=1 + y2 48=1 6、已知椭圆E:x2 m+ y2 4=1,对于任意实数k,下列直线被椭圆E截得的弦长与

l:y=kx+1 被椭圆E截得的弦长不可能相等的是() A.kx+y+k=0 B.kx-y-1=0 C.kx+y-k=0 D.kx+y-2=0 7、过双曲线M:x2-y2 b2=1的左顶点A作斜率为1的直线l,若l与双曲线M的 两条渐近线 分别相交于点B、C,且|AB|=|BC|,则双曲线M的离心率是() 8、设直线l:2x+y+2=0关于原点对称的直线为l′,若l′与椭圆x2+y2 4=1的 交点为A、 B,点P为椭圆上的动点,则使△P AB的面积为1 2的点P的个数为() A.1B.2 C.3 D.4 9、设F1、F2分别是椭圆x2 a2+ y2 b2=1(a>b>0)的左、右焦点,与直线y=b相切的⊙ F2交椭圆于 点E,且E是直线EF1与⊙F2的切点,则椭圆的离心率为() -1 10、如图所示,从双曲线x2 a2- y2 b2=1(a>0,b>0)的左焦点 F引 圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于 P点,若M为线段FP的中点,O为坐标原点,则 |MO|- |MT|与b-a的大小关系为() A.|MO|-|MT|>b-a B.|MO|-|MT|=b-a C.|MO|-|MT|

高中二年级数学 第二章 圆锥曲线与方程(A)

第二章 圆锥曲线与方程(A) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12 ,则此椭圆的方程为( ) A.x 212+y 216=1 B.x 216+y 212 =1 C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( ) A.x 236-y 2108=1 B.x 29-y 227 =1 C.x 2108-y 236=1 D.x 227-y 29 =1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b 2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( ) A .1 B .a 2 C .b 2 D .c 2 5.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( ) A.x 24-y 24=1 B.y 24-x 24 =1 C.y 24-x 28=1 D.x 28-y 24 =1 6.设a >1,则双曲线x 2a 2-y 2(a +1)2 =1的离心率e 的取值范围是( ) A .(2,2) B .(2,5) C .(2,5) D .(2,5) 7. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( ) A .直线 B .圆 C .双曲线 D .抛物线 8.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FA +FB +FC =0,则|FA |+|FB |+|FC |等于( )

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

圆锥曲线与方程复习资料

高中数学选修2-1 第二章 圆锥曲线与方程 知识点: 一、曲线的方程 求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化 ①建立适当的直角坐标系; (),M x y 及其他的点; ③找出满足限制条件的等式; ④将点的坐标代入等式; ⑤化简方程,并验证(查漏除杂)。 二、椭圆 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12 F F )的点的轨迹称为椭圆。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。()12222MF MF a a c +=> 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 第一定义 到两定点21F F 、 的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >) 第二定义 到一定点的距离和到一定直线的距离之比为常数e ,即 (01)MF e e d =<< 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c

3、设M 是椭圆上任一点,点M 到F 对应准线的距离为1d ,点M 到F 对应准线的距离为2d ,则121 2 F F e d d M M ==。 常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标和离心率. 【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离=________ 【变式2】椭圆 125 162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. 【变式3】已知椭圆的方程为11622 2=+m y x ,焦点在x 轴上,则m 的取值范围是( )。

高二圆锥曲线单元测试题及答案

《圆锥曲线》单元测试题 一、选择题 1.已知椭圆方程 19 252 2=+y x ,椭圆上点M 到该椭圆一个焦点的距离是2,N 是MF 1的中点,O 是椭圆的中心,那么线段ON 的长是( ) A .2 B .4 C .8 D . 2 3 2.从椭圆的短轴的一个端点看长轴的两个端点的视角为120o,那么此椭圆的离心率为( ) A . 2 2 B . 33 C .2 1 D . 3 6 3.设1>k ,则关于x 、y 的方程1)1(222-=+-k y x k 所表示的曲线是( ) A .长轴在y 轴上的椭圆 B .长轴在x 轴上的椭圆 C .实轴在y 轴上的双曲线 D .实轴在x 轴上的双曲线 4.到定点(7, 0)和定直线x = 77 16 的距离之比为47的动点轨迹方程是( )。 A . 116922=+y x B .19 1622=+y x C .1822=+y x D .1822 =+y x 5.若抛物线顶点为(0,0),对称轴为x 轴,焦点在01243=--y x 上那么抛物线的方程为( ) A .x y 162= B .x y 162-=; C .x y 122=; D .x y 122-=; 6.过椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B , 且点B 在x 轴上的射影恰好为右焦点F ,若13<k <1 2 ,则椭圆离心率的取值范围是( ) A .????14,94 B .????23,1 C .????12,23 D .??? ?0,1 2 7.若椭圆)1(12 2>=+m y m x 与双曲线)0(122>=-n y n x 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ?的面积是( ) A .4 B .2 C .1 D .1 2 8.双曲线 22 1(0)x y mn m n -=≠的离心率为2, 有一个焦点与抛物线24y x =的焦点重合,则mn 的值为( ) A . 316 B .38 C .163 D .83 9.设双曲线以椭圆 22 1259 x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A .2± B .43± C .12± D .34 ± 10.已知椭圆2 2 2(0)2 y x a a +=>与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( ) A .02a << B .02a << 或a > C .103a << D .2a <<第Ⅱ卷(非选择题,共90分) 二、填空题(本大题共5小题,每小题5分,共25分) 11.双曲线8822=-ky kx 的一个焦点是(0,3),那么k 的值为 。 12.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x 轴上,且a -c =3, 那么椭圆的方程是 。 13.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为_________ 14.双曲线的实轴长为2a ,F 1, F 2是它的左、右两个焦点,左支上的弦AB 经过点F 1,且|AF 2|、|AB |、|BF 2|成等差数列,则|AB |= 15.关于曲线0992 2 3 3 =++-xy y x y x ,有下列命题:①曲线关于原点对称; ②曲线关于x 轴对称;③曲线关于y 轴对称;④曲线关于直线x y =对称;其中正确命题的序号是________。

高考数学圆锥曲线与方程知识点梳理

高考数学圆锥曲线与方程知识点梳理 一、方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。 点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上?f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上?f(x 0,y 0)≠0。 两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点?{ ),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没 有实数解,曲线就没有交点。 二、圆 1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 2、方程: (1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2 圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2 (2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2 ,2(E D --半径是2 422F E D -+。配方,将方程x 2+y 2 +Dx+Ey+F=0化为 (x+ 2D )2+(y+2 E )2=4 4F -E D 22+ ②当D 2+E 2-4F=0时,方程表示一个点(- 2D ,-2 E ); ③当D 2+E 2-4 F <0时,方程不表示任何图形.

高二数学圆锥曲线与导数单元测试题

高二数学试题(圆锥曲线与导数) 一、选择题 1.若点12,F F 为椭圆2 214 x y +=的焦点,P 为椭圆上的点,当12F PF ?的面积为1时,12PF PF ?u u u r u u u u r 的值是( ) A .0 B .1 C .3 D .6 2.设23)(23++=x ax x f ,若4)1(=-'f ,则a 的值等于()A .319 B.316 C .313 D .3 10 3.已知直线)2(+=x k y (k >0)与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若 ||2||FA FB =,则k 的值为( ) A .13 B .3 C .3 D .23 4.已知抛物线22y px =(p >0)的准线与圆22450x y y +--=相切,则p 的值为( ) A .10 B .6 C . 18 D .124 5.若曲线21:20C y px p =>()的焦点F 恰好是曲线22 222:100x y C a b a b -=>>(,)的右焦点,且1C 与2C 交点的连线过点F ,则曲线2C 的离心率为( ) A 1 B 1 C D 6.已知点P 在曲线y = 41x e +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围( ) A.[0,4π) B.[,)42ππ C. 3(,]24ππ D. 3[,)4 ππ 7.双曲线22221(0,0)x y a b a b -=>>的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线 离心率的取值范围是( )A.1] B.)+∞ C. D.1,)+∞ 8.如果22 1||21x y k k +=---表示焦点在y 轴上的双曲线,那么它的半焦距C 的取值范围是( )A .(1,+∞) B .(0,2) C .(2,+∞) D .(1,2) 9.设斜率为1的直线l 与椭圆12 4:2 2=+y x C 相交于不同的两点A 、B ,则使||AB 为整数的直线l 共有( ) A .4条 B .5条 C .6条 D .7条 10.已知定义域为R 的奇函数f(x)的导函数为)(x f ',当0≠x 时,0)()(>+'x x f x f ,若)2(ln 21ln ),2(2),21(21f c f b f a =--==,则下列关于a ,b ,c 的大小关系正确的是( ) A. a >b >c B . a >c >b C . c >b >a D . b >a >c 二、填空题 11.在平面直角坐标系xOy 中,直线y x b =+是曲线ln y a x =的切线,则当a >0时,实数b 的最

专题-圆锥曲线与方程(教师)

专题-圆锥曲线与方程 抓住3个高考重点 重点1 椭圆及其性质 1.椭圆的定义:椭圆的第一定义:对椭圆上任意一点M 都有1212||||2||2MF MF a F F c +=>= 椭圆的第二定义:对椭圆上任意一点M 都有 || ,(01)MF e e d =<< 2.求椭圆的标准方程的方法 (1)定义法:根据椭圆定义,确定2 2 ,a b 的值,再结合焦点位置,直接写出椭圆的标准方程. (2)待定系数法:根据椭圆焦点是在x 轴还是在y 轴上,设出相应形式的标准方程,然后根据条件确定关于,,a b c 的方程组,解出2 2 ,a b ,从而写出椭圆的标准方程. 3.求椭圆的标准方程需要注意以下几点? (1)如果椭圆的焦点位置不能确定,可设方程为2 2 1(0,0,)Ax By A B A B +=>>≠或22 221x y m n += (2)与椭圆2222 221()x y m n m n +=≠共焦点的椭圆方程可设为22222 21(,)x y k m k n m k n k +=>->-++ (3)与椭圆22221(0)x y a b a b +=>>有相同离心率的椭圆方程可设为22 122x y k a b +=(10k >,焦点在x 轴上)或 22 222 y x k a b +=(20k >,焦点在y 轴上) 4.椭圆的几何性质的应用策略 (1)与几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形:若涉及顶点、焦点、长轴、短轴等椭圆的基本量,则要理清它们之间的关系,挖掘出它们之间的联系,求解自然就不难了. (2)椭圆的离心率2 21c b e a a ==-当e 越接近于1时,椭圆越扁,当e 越接近于0时, 椭圆越接近于圆, 求椭圆的标准方程需要两个条件,而求椭圆的离心率只需要根据一个条件得到关于,,a b c 的齐次方程,再结合2 2 2 a b c =+即可求出椭圆的离心率 [高考常考角度] 角度1若椭圆12222=+b y a x 的焦点在x 轴上,过点)2 1,1(作圆12 2=+y x 的切线,切点分别为A ,B ,直线AB 恰好 经过椭圆的右焦点和上顶点,则椭圆方程是 14 52 2=+y x . 解析:方法一:设过点)21,1(的直线方程为:当斜率存在时,1 (1)2 y k x =-+,即22120kx y k -+-=

相关主题
文本预览
相关文档 最新文档