当前位置:文档之家› 示波器的基本测试技术

示波器的基本测试技术

示波器的基本测试技术
示波器的基本测试技术

示波器在频谱测试中的作用

示波器在频谱测试中的作用 对于大量新型设计来说,频域分析是一种关键的调试功能。但是,频域分析必须与时域、数字信号或逻辑通道保持严密的同步。频谱分析对调试工作的价值通常取决于分析速度(更新速度),因此信号的捕捉和发现极富挑战性。此外,仪器还必须具备足够高的频域和时域灵敏度,以便能够捕捉到信号,如因电磁干扰或其它干扰所产生的频域杂散信号等微小信号。为了获得可以用来调试支持多种信号类型的复杂系统的有价值信息,必须基于时间事件、频率事件或数字码型实现精确触发。 在复杂的嵌入式系统中,通常需要同时监测时域和频域中的多个信号。尽管基带数字信号、射频信号和模拟信号是相互关联和依存的,但是基于传统的调试方法,人们常常无法描述或捕捉它们之间的关系。采用微控制器实现的RF 信号反馈控制、低速串行总线、严格的时序关系,以及RF和数字信号之间电磁干扰等都是原型设计阶段令人头痛的问题。 通常可以使用数字示波器分析这些信号所产生的问题,但是大多数开发人员却试图寻找其它的仪器。虽然最终可能完成了工作,但是却花费了大量时间,还需要非常丰富经验。将模拟信号、数字信号和RF信号的测试功能整合在一台仪器中,可以降低对不同设计项目所需要的时间和专家经验。 任何信号都是关于时间和幅值的函数。因此,不仅需要捕捉信号幅值,而且还要捕捉信号如何随时间而变化。傅立叶变换是将时域函数变换成频域频谱的主要技术。该变换可以为从某个时域波形中采样的信号给出某个时间点的频谱快照。它使得瞬时频谱可以测量,从而可以测量某个信号在任何时刻的频率分量。据此,可以观察频谱随时间而发生的变化,了解什么时候存在以及什么时候不存在干扰,时域事件和频域事件之间是如何关联的。

音频测试-示波器-使用方法

★目的:介绍示波器的使用方法,使相关人员能正确操作示波器。 ★示波器的概述 示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观察和测量电信号。下图1为我厂常用的20MHz的双踪示波器。 ★示波器的操作方法 第一步骤:示波器的连接 1)连接电源线 用220V AC线把示波器连上220V市电。(如上图2) 2)连接信号线 将探头插入到示波器左边的CH1接口并顺时针扭动半圈(如上图3)。当探头接在示波器的CH1通道上时,模式开关须打在CH1上(如下图4)。当探头接在示波器的CH2通道上时,模式开关须打在CH2上。(如下图5) 图 1 图 2 图 3 探头接在 CH1通道上

3) 信号耦合开关的选择(AC GND DC ) 信号耦合开关一般紧挨着输入通道,CH1通道和CH2通道各有1个。当只用来观察被测信号中的交流成分时,将开关拔至AC 档(本厂一般选择此档);当信号的直流成份和交流成分都要观察或信号的频率较低时,将开关拔至DC 档;当开关拔至GND 档时,输入端处于接地状态,用以确定输入端为零时光迹所在位置。(如下图6) 第二步骤:开机与光迹调节 上述步骤完成后,接下来需要开机预热和调节光迹。(如下图7和图8) 1) 开机(POWER ) 按电源键开机,开机后电源指示灯会亮。电源按键旁一般标有英文单词power 。 2) 亮度调节(INTENSITY ) 如果光迹的亮度正常,就不需要调节。当亮度不正常时,我们就左右调节亮度旋纽,顺时针旋转为增亮,逆时针为调暗。亮度调节旋纽旁一般会标有“INTE ”的字样。亮度的英文单词为 intensity 。注意亮度不宜太高,以免影响示波器的使用寿命。 3) 聚焦调节(FOCUS ) 用以调节示波管电子束的焦点,使显示的光点成为细而清晰的圆点。当光束正常时,我们也不需要调节,只有在光束太粗或不清晰时,我们左右调节聚焦旋纽,使光束处于细而清晰的状态。聚焦调节旋纽旁一般会标有“FOCUS ”的字样。聚焦的英文单词为focus 。 4) 光迹平行度调节(TRACE ROTATION ) 图 5 电源开关 电源指示灯 亮度调节 聚焦调节 图 7 光迹平行度调节 光 迹 图 8 正弦波信号光迹 模式开关选择 CH1通道 图 6 图 4 模式开关选择 CH2通道 探头接在 CH2通道上 信号耦合 选择开关

示波器测试数据

_uc66267884c5de5517764cd4f5c (2016, May 11, Wednesday, 06:45:44) | Instrument Analysis:_uc477ac600152066790 | | Plot title: | | Analysis settings | | | Initial Conditions:_uc881ea52a84ea7751f521d59cb67614ef6 | | | Starting time (TSTART):0 | | | Stop time (TSTOP):1e+030 | | | Plotting increment (TSTEP):1e-005 | | | Maximum time step (TMAX):1e-005 | | _uc76267884c4e0081f4602768c067e5 | | _uc45206679053d891cf | | | _ucc57284eff771f7ed3675f65f6663e793a8bbe590753c26570 | | Representation as SPICE commands | | | begin-scope page | | | checknodes 3 | | | save all | | | iplot all | | | set trtol = 7 | | | set itl4 = 100 | | | set convlimit | | | set rshunt = 1e+012 | | | -param hrange 0 1e+030 | | | save | | | tran -env-options 1e-005 1e+030 0 1e-005 auto_ic | | | if-error end-scope audit-log-show | | | show all | | | showmod all | | | end-scope | | Multisim_uc69ed88ba45206679090099879 | | | _uca622a65ad95198bef4f308ba18fc75ea656e07d20: 7 | | | _uc84e0a90e877ac60018fed4ee396505236: 100 | | | _ucb4e3a4ee378016a21578b542f752896c64e2d534f52a9 | | | _ucc52066d417535963b4ece6a2162df828270b9523057309762: 1e+012 | _uc65de55177520667908f9351fa | | TRAN: _uc665f695f495f49694592a5c0f; time = 0.000420402, timestep = 1.25e-015:_uc46545969c828270b9b1:xu1#branch | | doAnalyses: timestep too small | | | | | | tran simulation(s) aborted _uc66267884c5de5517764cd4f5c (2016, May 11, Wednesday, 06:51:08) | Instrument Analysis:_uc477ac600152066790 | | Plot title: | | Analysis settings

示波器检测全电视视频信号的波形图解

示波器检测全电视视频信号的波形图解 彩电维修更是示波器用武之地,图①②③是全电视视频信号的波形,这种波形贯穿图像通道的全过程。对有光栅有伴音而无图像的故障此波形的有无处就是故障所在点。图④是场输出波形,当光栅出现异常是此波形将有明显变形。最下边是三幅波形图和对应的电视屏幕图像场畸形⑤是行输出变形,一般情况下不要测行管集电极,以免击穿探头。可测低压绕组的输出端,也可在1比10衰减探头后再接一个9M的电阻去测试。图⑩是行振荡电路输出的行激励波形。当行输出波形变成图11波形时多是行激励不足,行管发热温升快,易烧坏。图12是高压包局部短路的波形。图⑥是晶体振动器的波形,在示波器频率指标不够时看到的是一条亮带。它是判断CPU是否工作的主要依据。图⑦是开关电源开关管集电极的波形,是判断电源是否振荡的基本条件。如波形上沿有毛刺将导致开关变压器支支响和开关管损坏。图⑧是沙堡脉冲波形,它是由三个作用不同的脉冲组合而成,在场频时将观察不到它的全貌。它的有无将影响视频信号的色彩和亮度处理。图⑨是视放尾板上三个电子枪阴极的波形,与一些图纸上所标波形不一样,因图纸所 标是彩条信号的波形,这是电视图像的信号波形。

笔者最近将ET521A及健伍CS-4035模拟(40M)示波器进行了实际波形测试,并拍下了一些彩电波形供大 家参考。 健伍CS-4035为带宽40MHz的实时模拟示波器,属典型的手动调节(无CRT读出功能)测试示波器,其所有测试均需手动调节,需对水平扫描速度、垂直灵敏度、同步电平等控制功能进行适当调节方能获得稳定合适的波形显示,由于其采用屏幕为8*10cm内刻度高亮度示波管进行波形显示,故而扫描线亮度清晰度高,内设有电视行场同步触发滤波通道,能方便观察到稳定的行场同步电视信号波形,是比较适合的常 用模拟示波器。 ET521A波形测量采用数字取样、液晶显示,显示采用几秒刷新一次,方便人眼观察,当波形变化较多时,其显示的波形在显示一种波形后,下一次显示的波形又会有所不同,初次接触到的该类显示方式的朋友会不习惯,感觉到波形老是一跳一跳的,实际上是示波表在捕捉动态波形,进行静态显示,此时更能观察到波形的各个细节;当测量的波形为稳定而变化很小的信号时,则显示波形的稳定性与CRT模拟示波器显示无多大差别的,以上是笔者对数字示波表测量显示的粗浅理解,请大家多多指教。 被测彩电为21吋海信OM8370超级芯片彩电比较关键的波形,工作信号是A V信号(卫星接收机实时视频信号)输入;其中标有第“2(或其它)”脚是指OM8370的引脚序号,请大家注意,其它的一些波形都注明了电路功能位置的。下面的图形中标有图a的是CS-4035测得的波形,而标有图b波形为ET521A测 得的波形; 由于CS-4035为手动调节的模拟示波器,故而测量波形时须得适当调节水平扫描、垂直灵敏度、触发同步模式及同步电平等才能获得合适的波形显示,由于其档位难以完整记录,故而未列出其波形的周期、频率、Vp-p值等,只是为取得适当观察的波形进行拍摄,并不说明测量时不用调节其测量旋钮,其各项参数可参考ET521A的读数,ET521A全面的数据显示,可极其方便读取波形的频率、周期、Vp-p值,供参 考分析。 一、OM8370第②、③脚时钟、数据线波形图: 此主题相关图片如下:2脚波形.jpg 此主题相关图片如下:第2脚scl串行时钟信号波形图b.jpg

音频测试-示波器-使用方法

音频测试-示波器-使用方法

类别音频设备版本R1文件编号C304-OSCILL- 制定部门品保部制定日期2011年11月30日页次2/7 ★目的:介绍示波器的使用方法,使相关人员能正确操作示波器。 ★示波器的概述 示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观察和测量电信号。下图1为我厂常用的20MHz的双踪示波器。 ★示波器的操作方法 第一步骤:示波器的连接 图 1 图 2 图 3 探头接在 CH1通道上

类 别 音频设备 版 本 R1 文件编号 C304-OSCILL- 制定部门 品保部 制定日期 2011年11月30日 页 次 3/7 1) 连接电源线 用220V AC 线把示波器连上220V 市电。(如上图2) 2) 连接信号线 将探头插入到示波器左边的CH1接口并顺时针扭动半圈(如上图3)。当探头接在示波器的CH1通道上时,模式开关须打在CH1上(如下图4)。当探头接在示波器的CH2通道上时,模式开关须打在CH2上。(如下图5) 3) 信号耦合开关的选择(AC GND DC ) 信号耦合开关一般紧挨着输入通道,CH1通道和CH2通道各有1个。当只用来观察被测信号中的交流成分时,将开关拔至AC 档(本厂一般选择此档);当信号的直流成份和交流成分都要观察或信号的频率较低时,将开关拔至DC 档;当开关拔至GND 档时,输入端处于接地状态,用以确定输入端为零时光迹所在位置。(如下图6) 第二步骤:开机与光迹调节 上述步骤完成后,接下来需要开机预热和调节光迹。(如下图7和图8) 图 5 电源开关 电源指示灯 亮度调节 聚焦调节 光迹平行度调节 光 迹 正弦波信号光迹 模式开关选择 CH1通道 图 6 图 4 模式开关选 择 探头接在 CH2通道上 信号耦合 选择开关

示波器测试的问题

最近一位工程师来问,说对电路板上的波形进行测试时,一接上示波器就烧板子上的器件,问是怎么回事。初以为是电路板设计问题,看原理图也没发现明显错误,百思不得其解中。后借出差机会面看,方醒悟之。 前几日,一协作单位投诉我公司所提供板卡有问题,说测试起来如何如何,一查与此问题类似,遂深以为有必要在此说明一下,以免出现同案犯。 示波器的探头上有两根线,一根在硬表笔上,一根是软线甩出来,头上接个小夹子,以便夹住接地点。在我们通常的认识中,这两根线在测量的时候,就是测的两点之间的压差,照此理解,此探头其实可以随便接了。其实不然。很多示波器表笔上的那根软线是接地线,而且这根接地线与示波器的大地相接的。如果贸然将此二线接到了两个测试点上,而该二测试点均有对地的电压的话,则被测板上的测试点的电平会通过示波器上的这根测试线接到地上去,而示波器与被测对象的地之间导通的话,则相当于通过示波器的测试地线将被测板上的信号电平短路到了地,出现何样的后果就得看电路的设计思路了。轻则信号不对,重则烧东西也不为过。 示意如图。未测之前,电流I流过A和B,不会超标。但接上测试仪器后,形成如图的电流路径L,B两端都对接地了,A器件则可能电流过载,即使不过载,测量的结果也不会准了。(本图仅为说明道理之用,不代表所有电路均为此结构,实际情况要复杂得多) 若必须做这种测试的话,解决之道有二: 1. 确认测试表笔为差分探头,这种表笔内部电路及测量接线均有考虑,可避免 此类问题; 2. 或者用双踪示波器,将二表笔的地接在一起,接到板子的基准零电平的地上 去,用二表笔的两个测试端分别接被测的两点。

测试有风险,启动需谨慎。不然则会出现本为治聋,聋没治好,却给致哑了。

测试仪器示波器使用技巧经验总结

测试仪器示波器使用技巧经验总结 姓名:施三保部门:BMP开发部 工号:91248 日期:2006-9-5 摘要:通过实际项目模块测试过程,探讨和总结了公司Agilent示波器的一些使用技巧和方法,结合公司的测试规范,介绍了一些常用性能指标的测试。 关键词:示波器;技巧;性能;总结;模块 Abstract: According to the process of practical test of the model, and in order to share my test experience, some skills and methods of how to use the oscillograph well are presented. In term of the test criterion of our company, test way of common performances is introduced as well. Keywords: Oscillograph; Skill;Performance; Conclusion; Module 前言 示波器是电源开发工程师必要的工具,几乎每天都要使用。公司一般使用安捷伦示波器,功能十分强大,许多开发人员都是第一次使用这样的示波器,对于其繁琐的操作和复杂的功能往往不知所措,许多人也只了解其一般的基本功能,这些都会一定程度的影响工作效率和开发进度甚至测试错误的数据。我自入职以来,没有参加很多的调试和设计工作,但做过很多模块的测试,对于安捷伦示波器54624A的使用有了一些自己的心得,鉴于公司没有示波器使用的教程、培训和使用手册等,现写下我的一点体会,希望能对其他同事有一点点帮助。 一,示波器使用注意事项 1,测量时不要超过模拟探头的最高电压: ①类为300Vrms,400Vpk;②类为100Vrms,400Vpk,否则可能损坏示波器。 2,注意测量时的接地,如果需要把接地线连到不能用电源线接地的电路中某一点,就应该使用差分探头。 3,开始测量时,进行探头补偿,使其特性与示波器相匹配。方法是将探头连到Probe Comp 上,按下autoscale(自动定标),然后使用非金属工具调整探头上的电容器,获得较为平坦的脉冲。 4,选择示波器输入阻抗;按Inped软键选择,50欧模式使用50欧配套电缆,用于高频测量,可使得信号通道中反射最小,得到最准确的测量结果;1M欧模式用于普通测量,需要使用探头,阻抗越高,示波器对被测电路的负载影响越小。 5.调节显示亮度;按下Display软键,旋转输入旋钮可以改变显示亮度,可在0到100%之间调节,Grid软键中显示了其亮度级,网络中的每个主格对应于显示屏顶部状态行中示出的扫描速度时间;为了改变显示波形的亮度,可以通过旋转前面板左下角的Intensity(亮度)旋钮。 6.开始和停止数据采集。通过按Run/Stop键来进行波形采集与停止采集的切换,当其为绿色时,为采集信号状态,为红色时为停止采集状态,当触发模式为stop时,可以旋转水平与垂直按钮,对显示的波形进行缩放与测量。

示波器的测试波形

示波器的测试波形 摘要:示波器是电子技术基础实验中和电子设备的检修中最常用的仪器之一,而在使用示波器之时,被测信号测试波形的不稳定常常会造成无法读取波形数据或测量不精确。经过在教学中和示波器的使用中不断地摸索和总结,要稳定示波器的测试波形,应注意易困惑使用者的几个问题,如触发及触发源的选择,电源触发的方法,触发电平自动锁定,输入耦合开关使用,常态触发(NOR)和自动触发(AUTO)转换,探头合理使用等。只要合理的使用和调节,选择正确的档位和测量方法就可以使得示波器的测试波形稳定,以达到精确测量。 关键词:示波器?被测信号?触发脉冲?波形稳定 正文: 一、触发及触发源的选择。 在使用示波器时,一个最基本的问题就是如何使得被显示的波形稳定下来。这就涉及到触发操作,触发操作是示波器使用中较难掌握的操作技能。因为它涉及到示波器的触发原理。 示波器中是通过扫描来显示被测信号的,每次扫描都显示被测信号的一部分。要使得被显示的波形是稳定不变的,就必须做到每次所显示的波形是完全一样的,即重叠的。对于周期信号来说,只要每次扫描所显示的波形起始相位是相同的,那么每次所显示的波形就是相同的,从而所显示的波形就是稳定的。为了做到这一点,示波器中除了将被测信号送到示波管去以外,还从中分出一路,用电压比较器来形成触发脉冲,用触发脉冲去控制水平方向的扫描,以保证水平方向的每次扫描起始点都正好对准被测信号的相同相位点。故而,当由于操作不当而无法形成触发脉冲时,所显示的波形就不可能被稳定下来。 例如,图所示正弦波是从被测信号在送往示波管的途中所分出来的一部分,则所形成的触发脉冲及水平方向的扫描锯齿波均如图1所示: 图 触发脉冲是这样形成的:将被测信号取出一部分送到一个电压比较器,而电压比较器的另一端则是其电压被触发电平旋钮(Trigger LEVEL)所调节的直流电压。当被测信号的瞬时电压高于触发电平时电压比较器就输出高电平,而被测信号的瞬时电压低于触发电平时电压比较器就输出低电平。故电压比较器输出矩形波形式的触发脉冲。 扫描锯齿波是这样形成的:当触发脉冲的前沿到来时,锯齿波的正程开始,但是正程的长短则由扫描开关(TIME/DIV)来决定,扫描的逆程时间是固定的。若逆程时期结束后尚未有触发脉冲的前沿到来,则扫描锯齿波维持低电平,一直要到某个触发脉冲的前沿到来则第二个扫描锯波的正程期才开始。 当触发模式开关(Trigger MODE)置于NORM位置时,示波器就按以上的方式来进行扫描。显然,如果没有被测信号,或有被测信号但无法形成触发脉冲时,就没有扫描锯齿波,这时屏幕上就没有扫描线。当触发模式开关置于AUTO位置时,示波器将自动形成扫描,故无

如何稳定示波器的测试波形

如何稳定示波器的测试波形 如何稳定示波器的测试波形广东华立高级技工学校? 作者:陈伏华摘要:示波器是电子技术基础实验中和电子设备的检修中最常用的仪器之一,而在使用示波器之时,被测信号测试波形的不稳定常常会造成无法读取波形数据或测量不精确。经过在教学中和示波器的使用中不断地摸索和总结,要稳定示波器的测试波形,应注意易困惑使用者的几个问题,如触发及触发源的选择,电源触发的方法,触发电平自动锁定,输入耦合开关使用,常态触发(NOR )和自动触发(AUTO )转换,探头合理使用等。只要合理的使用和调节,选择正确的档位和测量方法就可以使得示波器的测试波形稳定,以达到精确测量。关键词:示波器? 被测信号? 触发脉冲? 波形稳定正文:一、触发及触发源的选择。在使用示波器时,一个最基本的问题就是如何使得被显示的波形稳定下来。这就涉及到触发操作,触发操作是示波器使用中较难掌握的操作技能。因为它涉及到示波器的触发原理。示波器中是通过扫描来显示被测信号的,每次扫描都显示被测信号的一部分。要使得被显示的波形是稳定不变的,就必须做到每次所显示的波形是完全一样的,即重叠的。对于周期信号来说,只要每次扫描所显示的波形起始相位是相同的,那么每次所显示的波形就是相同的,从而所显示的波形就是稳定的。为了做到这一点,示波器中除了将被测信号送到示波管去以外,还从中分出一路,用电压比较器来形成触发脉冲,用触发脉冲去控制水平方向的扫描,以保证水平方向的每次扫描起始点都正好对准被测信号的相同相位点。故而,当由于操作不当而无法形成触发脉冲时,所显示的波形就不可能被稳定下来。例如,图所示正弦波是从被测信号在送往示波管的途中所分出来的一部分,则所形成的触发脉冲及水平方向的扫描锯齿波均如图 1 所示:图触发脉冲是这样形成的:将被测信号取出一部分送到一个电压比较器,而电压比较器的另一端则是其电压被触发电平旋钮(Trigger LEVEL )所调节的直流电压。当被测信号的瞬时电压高于触发电平时电压比较器就输出高电平,而被测信号的瞬时电压低于触发电平时电压比较器就输出低电平。故电压比较器输出矩形波形式的触发脉冲。扫描锯齿波是这样形成的:当触发脉冲的前沿到来时,锯齿波的正程开始,但是正程的长短则由扫描开关(TIME/DIV) 来决定,扫描的逆程时间是固定的。若逆程时期结束后尚未有触发脉冲的前沿到来,则扫描锯齿波维持低电平,一直要到某个触发脉冲的前沿到来则第二个扫描锯波的正程期才开始。当触发模式开关(Trigger MODE) 置于NORM 位置时,示波器就按以上的方式来进行扫描。显然,如果没有被测信号,或有被测信号但无法形成触发脉冲时,就没有扫描锯齿波,这时屏幕上就没有扫描线。当触发模式开关置于AUTO 位置时,示波器将自动形成扫描,故无论有无被测信号,扫描线总是会出现。但是,当有被测信号时,示波器就立刻转换到上面所说的工作方式上来。有没有触发脉冲的形成是示波器能否稳定波形的关键。那么,如果触发电平自动锁定开关(AUTO LEVEL) 没有按下,在下面几种情况下将不会形成触发脉冲,因而就不可能稳定所显示波形:第一,触发电平旋钮(Trigger LEVEL) 调节不当。当触发电平调节得高于被测信号的正峰值或低于被测信号的负峰值时,从上面的图中可以看到,此时就不可能形成触发脉冲。第二,触发源开关(Trigger SOURCE) 设置错误。例如被测信号从CH1 馈入,而触发源开关置于CH2 或EXT 等,此时被测信号就不可能送到用于形成触发脉冲的电压比较器上,从而就不可能形成触发脉冲。第三,Y 轴偏转因数开关(VOLTS/DIV) 设置不当。如果原来所显示的波形是稳定的,又将Y 轴偏转因数开关向左旋动了,此时,由于将被测信号的幅度衰减得更小了,就可能使得触发电平高于被测信号的正峰值或低于被测信号的负峰值,也就不能形成触发脉冲。第四,触发耦合开关(Trigger CPLG) 设置不当。该键被按下时,被测信号将被经过用于从被测的电视信号中取出同步信号的同步分离电路,如果被测信号不是电视信号,遇不可能通过该同步分离电路,、

如何稳定示波器的测试波形

如何稳定示波器的测试波形 摘要:示波器是电子技术基础实验中和电子设备的检修中最常用的仪器之一,而在使用示波器之时,被测信号测试波形的不稳定常常会造成无法读取波形数据或测量不精确。经过在教学中和示波器的使用中不断地摸索和总结,要稳定示波器的测试波形,应注意易困惑使用者的几个问题,如触发及触发源的选择,电源触发的方法,触发电平自动锁定,输入耦合开关使用,常态触发(NOR)和自动触发(AUTO)转换,探头合理使用等。只要合理的使用和调节,选择正确的档位和测量方法就可以使得示波器的测试波形稳定,以达到精确测量。 关键词:示波器?被测信号?触发脉冲?波形稳定 正文: 一、触发及触发源的选择。 在使用示波器时,一个最基本的问题就是如何使得被显示的波形稳定下来。这就涉及到触发操作,触发操作是示波器使用中较难掌握的操作技能。因为它涉及到示波器的触发原理。 示波器中是通过扫描来显示被测信号的,每次扫描都显示被测信号的一部分。要使得被显示的波形是稳定不变的,就必须做到每次所显示的波形是完全一样的,即重叠的。对于周期信号来说,只要每次扫描所显示的波形起始相位是相同的,那么每次所显示的波形就是相同的,从而所显示的波形就是稳定的。为了做到这一点,示波器中除了将被测信号送到示波管去以外,还从中分出一路,用电压比较器来形成触发脉冲,用触发脉冲去控制水平方向的扫描,以保证水平方向的每次扫描起始点都正好对准被测信号的相同相位点。故而,当由于操作不当而无法形成触发脉冲时,所显示的波形就不可能被稳定下来。 例如,图所示正弦波是从被测信号在送往示波管的途中所分出来的一部分,则所形成的触发脉冲及水平方向的扫描锯齿波均如图1所示: 图 触发脉冲是这样形成的:将被测信号取出一部分送到一个电压比较器,而电压比较器的另一端则是其电压被触发电平旋钮(Trigger LEVEL)所调节的直流电压。当被测信号的瞬时电压高于触发电平时电压比较器就输出高电平,而被测信号的瞬时电压低于触发电平时电压比较器就输出低电平。故电压比较器输出矩形波形式的触发脉冲。 扫描锯齿波是这样形成的:当触发脉冲的前沿到来时,锯齿波的正程开始,但是正程的长短则由扫描开关(TIME/DIV)来决定,扫描的逆程时间是固定的。若逆程时期结束后尚未有触发脉冲的前沿到来,则扫描锯齿波维持低电平,一直要到某个触发脉冲的前沿到来则第二个扫描锯波的正程期才开始。 当触发模式开关(Trigger MODE)置于NORM位置时,示波器就按以上的方式来进行扫描。显然,如果没有被测信号,或有被测信号但无法形成触发脉冲时,就没有扫描锯齿波,这时屏幕上就没有扫描线。当触发模式开关置于AUTO位置时,示波器将自动形成扫描,故无

音频测试-示波器-使用方法

使用方法-示波器-音频测试. 深圳市某某某实业有限公司 LTDE-CORE TECHNOLOGY(CHINA)CO., 示波器操作方法 音频设备版本R1类别文件编号C304-OSCILL- 页日次制定日期2/7 2011年11月制定部门品保部30 ★目的:介绍示波器的使用方法,使相关人员能正确操作示波器。 ★示波器的概述 示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观察和测量电信号。下图1为我厂常用的20MHz的双踪示波器。

1 示波器的操作方 第一步骤:示波器的连

探头接在 CH1通道上 图 2 图 3 2 深圳市某某某实业有限公司 LTD)CO.,E-CORE TECHNOLOGY(CHINA 示波器操作方法 C304-OSCILL-文件编号本R1 别音频设备版类 页日制定日期次3/7 2011年11制定部门月品保部30 1)连接电源线 用220V AC线把示波器连上220V市电。(如上图2) 2)连接信号线 将探头插入到示波器左边的CH1接口并顺时针扭动半圈(如上图3)。当探头接在示波器的CH1通道上时,模式开关须打在CH1上(如下图4)。当探头接在示波器的CH2通道上时,模式开关须打在CH2上。(如下图5) 3)信号耦合开关的选择(AC GND DC) 信号耦合开关一般紧挨着输入通道,CH1通道和CH2通道各有1个。当只用来观察被测信号中的交流成分时,将开关拔至AC档(本厂一般选择此档);当信号的

直流成份和交流成分都要观察或信号的频率较低时,将开关拔至DC档;当开关拔至GND档时,输入端处于接地状态,用以确定输入端为零时光迹所在位置。(如 下图6) 信号耦 选择开 模式开关探头接模式开关选CH通道CH通 5 6 4 第二步骤:开机与光迹调节上述步骤完成后,接下来需要开机预热和调节光迹。 (如下图7和图8)

示波器在电源测试环节的典型应用

示波器在电源测试环节的典型应用 随着电子技术的不断创新,开关电源设计趋于高频、高可靠、高效率、低噪声等方向发展,因此,电源的测试分析越来越重要,本文针对电源工程师常碰到的六个测试小问题,给出一些推荐的解决方案,供您参考。 问题一:参数较多,需要分多组才能全部测量? 测试电源主要是针对MOSFET做测试,具体的测量项目多种多样。常规VGS、VDS的幅度测量包含幅度、高、低、最大值、最小值、RMS、峰峰值、正/ 负过冲、平均值、周期平均值、周期RMS测量,时间测量也有周期、频率、上升/ 下降时间、正/ 负占空比、正/ 负脉宽、突发宽度、延迟、相位等多种参数、有时还需同时监控开关损耗、漏电流等测试项…… 如果只能同时测量4-8个参数则局限太强,此时的参数应该越多越好,这也是我们起初设计示波器时考虑让24项参数可以同屏显示的初衷。 图1 VGS、VDS测量参数 问题二:在MOSFET调试中,如何捕获偶发的毛刺信号? MOSFET的测试开关瞬间偶尔会碰到毛刺信号,无论是小概率的猝发还是边沿的抖动,都可能对电路造成误动作,下面介绍两种捕获小概率异常的方法。 1.无限余辉+模板触发 如果事先无法判断周期性信号内偶发异常的概率和特征,可以先用示波器的余辉功能查看毛刺轨迹,然后利用模板触发将异常信号隔离出来。

图2 余辉+模板触发捕获异常信号 2.测量统计+异常搜索 对于占空比随机MOS驱动信号,小概率的边沿抖动让人非常头疼。此时可以基于信号特征,在大数据内搜索上升/下降时间异常的信号,如下图,基于当前屏较长时间的波形做测量统计,从测量结果上升沿时间可知---当前值20ns,最大值130ns,通过搜索标注功能,将上升沿130ns的异常波形搜索出来(MOSFET开关转换时,上升/下降沿会出现偶发性抖动)。 图3 测量统计+搜索标注捕获上升沿异常波形 注意:这里的难点并不在于功能的有无,而在于示波器存储深度的大小。如果存储深度不够,针对这么长时间的波形捕获早已完全失真,异常搜索也无从谈起。 问题三:如何快速分析MOSFET导通关断时的波形细节? MOSFET的工作原理如图4,栅源之间加正电压VGS及在漏源之间加正电压VDS,则产生正向工作电流ID。改变VGS的电压可控制工作电流ID。

示波器测试一些常见电路的方法

示波器测试?些常?电路的?法 电池或直流电压测量 测量直流电压要先保证通道的耦合?式处于直流状态,像电池电压的话因为?较低,探头衰减??般1X即可,垂直档位设置1V或者500mv 然后确保示波器的触发模式处于?动状态 确保电池有电或者直流电压有电压输出,讲探针接到电池或者直流电正极,探头的夹?(也就是接地端)接到电池或者直流负极。当然接反也没有影响,就是波形显示的时候,会在示波器零电平的下?。打开示波器测量项的平均值,就可以看到直流电压值。

如上图我们测试的是?节电压1.6V的电池。要注意直流信号没有曲线波形,可以看到示波器上是?条直线。 晶振测量 晶振对电容负载较敏感,当使?×1挡时,探头电容相对较?,相当于?个很重的负载并联在晶振电路中,很容易使其停?振荡,因此我们使?10X 档的探头更佳。 我们将示波器通道设置为交流耦合,10X档位。确保晶振主板上电运?后,拔掉探头的套?,露出探针。将探头夹?接到主板地线即供电负极 端,探针针尖接触到晶振的其中?个引脚。

如下图所示此晶振频率为25MHz 另外,晶振的输出边沿?般?较陡,上升时间较短,因为晶振的输出中包含了较多的?频分量,因此应该将其当作?频信号来看待。探头×1挡的带宽有限制,?探头×10挡是全带宽开启的,因此必须选?×10挡进?测量。 信号发?器输出信号测量

测量信号发?器发出的波形,?般输出电压在20V峰峰值以内,需要将示波器通道档位调节?1X档,垂直档位?般1V/div即可。 确保示波器通道耦合?式为直流耦合,触发模式处于?动。将信号发?器信号输出?连接?示波器对应通道?,保证信号发?器正常?作输出信号。 然后按?下示波器的AUTO键,让示波器?动调整波形?合理位置即可。如果?动调节后不满意,可??调节垂直档位和时基调整波形形状。 电源纹波测量 首先探头一般情况下建议使用1X档,避免不必要的噪声衰减影响纹波的测量。同时,记得要将示波器通道的衰减比也调成1X。 纹波属于是交流成分,所以“通道耦合”方式应该使用交流耦合方式,从而限制直流信号的输入。 一般开关电源输出的纹波频率在0~20MHz范围。而高频同步开关噪声和信号反射等引起的噪声在0~1GHz范围。所以应当开启20MHz带宽限制,可将不必要的高频噪声滤除。

利用数字示波器测试开关电源的方法

利用数字示波器测试开关电源的方法 从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。 过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。 电源设计问题及其测量需求 理想情况下,每部电源都应该像为它设计的数学模型那样地工作。但在现实世界中,元器件是有缺陷的,负载会变化,供电电源可能失真,环境变化会改变性能。而且,不断变化的性能和成本要求也使电源设计更加复杂。考虑这些问题: 电源在额定功率之外能维持多少瓦的功率?能持续多长时间?电源散发多少热量?过热时会怎样?它需要多少冷却气流?负载电流大幅增加时会怎样?设备能保持额定输出电压吗?电源如何应对输出端的完全短路?电源的输入电压变化时会怎样? 设计人员需要研制占用空间更少、降低热量、缩减制造成本、满足更严格的EMI/EMC标准的电源。只有一套严格的测量体系才能让工程师达到这些目标。 示波器和电源测量 对那些习惯于用示波器进行高带宽测量的人来说,电源测量可能很简单,因为其频率相对较低。实际上,电源测量中也有很多高速电路设计师从来不必面对的挑战。 整个开关设备的电压可能很高,而且是“浮动的”,也就是说,不接地。信号的脉冲宽度、周期、频率和占空比都会变化。必须如实捕获并分析波形,发现波形的异常。这对示波器的要求是苛刻的。多种探头——同时需要单端探头、差分探头以及电流探头。仪器必须有较大的存储器,以提供长时间低频采集结果的记录空间。并且可能要求在一次采集中捕获幅度相差很大的不同信号。 开关电源基础 大多数现代系统中主流的直流电源体系结构是开关电源(SMPS),它因为能够有效地应对变化负载而众所周知。典型SMPS的电能信号路径包括无源器件、有源器件和磁性元件。SMPS尽可能少地使用损耗性元器

如何用数字示波器测试开关电源

如何用数字示波器测试开关电源? 从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。 电源设计问题及其测量需求 理想情况下,每部电源都应该像为它设计的数学模型那样地工作。但在现实世界中,元器件是有缺陷的,负载会变化,供电电源可能失真,环境变化会改变性能。而且,不断变化的性能和成本要求也使电源设计更加复杂。考虑这些问题: 电源在额定功率之外能维持多少瓦的功率?能持续多长时间?电源散发多少热量?过热时会怎样?它需要多少冷却气流?负载电流大幅增加时会怎样?设备能保持额定输出电压吗?电源如何应对输出端的完全短路?电源的输入电压变化时会怎样? 设计人员需要研制占用空间更少、降低热量、缩减制造成本、满足更严格的EMI/EMC标准的电源。只有一套严格的测量体系才能让工程师达到这些目标。 示波器和电源测量 对那些习惯于用示波器进行高带宽测量的人来说,电源测量可能很简单,因为其频率相对较低。实际上,电源测量中也有很多高速电路设计师从来不必面对的挑战。 整个开关设备的电压可能很高,而且是“浮动的”,也就是说,不接地。信号的脉冲宽度、周期、频率和占空比都会变化。必须如实捕获并分析波形,发现波形的异常。这对示波器的要求是苛刻的。多种探头——同时需要单端探头、差分探头以及电流探头。仪器必须有较大的存储器,以提供长时间低频采集结果的记录空间。并且可能要求在一次采集中捕获幅度相差很大的不同信号。 开关电源基础 大多数现代系统中主流的直流电源体系结构是开关电源(SMPS),它因为能够有效地应对变化负载而众所周知。典型SMPS的电能信号路径包括无源器件、有源器件和磁性元件。SMPS尽可能少地使用损耗性元器件(如电阻和线性晶体管),而主要使用(理想情况下)无损耗的元器件:开关晶体管、电容和磁性元件。 SMPS设备还有一个控制部分,其中包括脉宽调制调节器脉频调制调节器以及反馈环路1等组成部分。控制部分可能有自己的电源。图1是简化的SMPS示意图,图中显示了电能转换部分,包括有源器件、无源器件以及磁性元件。 SMPS技术使用了金属氧化物场效应晶体管(MOSFET)与绝缘栅双极晶体管(IGBT)等功率半导体开关器件。这些器件开关时间短,能承受不稳定的电压尖峰。同样重要的是,它们不论在开通还是断开状态,消耗的能量都极少,效率高而发热低。开关器件在很大程度上决定了SMPS的总体性能。对开关器件的主要测量包括:开关损耗、平均功率损耗、安全工作区及其他。

示波器测电压的基本原理

示波器实现电压测量的基本原理 课程:电子测量技术 班级:电技11-1 成员: 示波器实现电压测量的基本原理 电子技术在我们的生活中无所不在。每天都有上百万人使用

电子产品,例如手机、电视机和计算机。随着电子技术的进步,这些产品的工作速度也变得越来越快。如今,大多数电子产品都采用了高速数字技术。工程师需要可以精确设计和测试他们在高速数字产品中所使用的元器件的能力。他们在设计和测试元器件时所使用的仪器必须特别适合处理高速和高频的特性才行,而示波器正好是这样的一种仪器。 示波器是一种功能强大的工具,在设计和测试电子器件方面很有用。它们在您判定系统器件是否正常方面扮演极为重要的角色,而且还能帮助您确定新设计的元器件是否按照预想的方式进行工作。示波器的功能远比万用表更强大,因为它们可以让您观察电子信号的实际情况。 示波器的使用范围非常广泛,从汽车业到大学的研究实验室以及航空航天/ 国防产业等。许多公司都依赖示波器来发现瑕疵,以便制造出质量合格的产品。示波器在满足客户对更新颖和更优质的电子产品的需求方面,是绝对不可或缺的工具。 示波器的主要用途在于显示电子信号。通过观察示波器上显示的信号,您可以确定电子系统的某个元器件是否在正常工作。因此,要想了解示波器的工作方式,必须先要了解信号的基本原理。 示波器是一种综合性的电子图示测量仪器。它不但能测量电信号的幅度,而且能测量电信号的频率、周期和相位以及脉冲信号的上升时间、下降时间和脉宽等参数。通过各种传感器,示波

器还可用于测量温度、压力、光和声等方面的参数。示波器的种类很多,如通用示波器、取样示波器和逻辑示波器等。 1.示波管 通用模拟式示波器采用阴极射线示波管显示波形,示波管由电子枪、偏转系统和荧光屏三部分组成。 1.1电子枪。电子枪的作用是产生和发射高速电子并形成很细的电子束,电子枪一般由灯丝F、阴极K、控制栅极G、第一阳极A1、第二阳极A2和后加速阳极A3等组成。阴极是一个表面涂有氧化物的金属圆筒,在灯丝的加热下,一部分电子脱离金属表面,变成自由电子,它在阳极电场的作用下形成电子流;控制栅极是顶端有孔的圆筒,套装在阴极外面,其电位比阴极电位低,调节栅极与阴极之间的电位差,可改变阴极射向荧光屏的电子密度,以控制荧光屏上光点的亮度。示波器面板上的辉度旋钮就是用来调节光点亮度的。 1.2X与Y偏转系统。为了显示出被测信号的波形,扫描电压和被测信号电压分别加在示波管X和Y偏转板上。扫描电压是与时间成正比的鋸齿波,即电子束在水平方向的偏转距离与时间成正比,它是示波器测量时间、周期等参数的原理依据。改变扫描电压的大小,可以调整显示波形的宽度。被测信号衰减后加在Y偏转板上,使电子束产生与信号电压成正比的偏移,这是示波器测量电压等参数的原理依据。改变Y偏转板上的信号电压大小,可以调整显示波形的幅度。电子束移过垂直方向上每个

音频测试示波器使用方法

音频测试示波器使用方法 The Standardization Office was revised on the afternoon of December 13, 2020

★目的:介绍示波器的使用方法,使相关人员能正确操作示波器。 ★示波器的概述 示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观察和测量电信号。下图1为我厂常用的20MHz的双踪示波器。 ★示波器的操作方法 第一步骤:示波器的连接 图 1 图 2 图 3 探头接在 CH1通道上

1) 连接电源线 用220V AC 线把示波器连上220V 市电。(如上图2) 2) 连接信号线 将探头插入到示波器左边的CH1接口并顺时针扭动半圈(如上图3)。当探头接在示波器的CH1通道上时,模式开关须打在CH1上(如下图4)。当探头接在示波器的CH2通道上时,模式开关须打在CH2上。(如下图5) 3) 信号耦合开关的选择(AC GND DC ) 信号耦合开关一般紧挨着输入通道,CH1通道和CH2通道各有1个。当只用来观察被测信号中的交流成分时,将开关拔至AC 档(本厂一般选择此档);当信号的直流成份和交流成分都要观察或信号的频率较低时,将开关拔至DC 档;当开关拔至GND 档时,输入端处于接地状态,用以确定输入端为零时光迹所在位置。(如下图6) 第二步骤:开机与光迹调节 上述步骤完成后,接下来需要开机预热和调节光迹。(如下图7和图8) 图 5 电源开关 电源指示灯 亮度调节 聚焦调节 光迹平行度调节 光 迹 正弦波信号光迹 模式开关选择 CH1通道 图 6 图 4 模式开关选择 CH2通道 探头接在 CH2通道上 信号耦合 选择开关

相关主题
文本预览
相关文档 最新文档