当前位置:文档之家› 结构力学实验报告

结构力学实验报告

结构力学实验报告
结构力学实验报告

广西大学土木建筑工程学院

结构力学II(上机)实验分析报告

专业:土木工程(建工)

班级:

学号:

姓名:

成绩评定:

批阅日期:

教师签名:

目录

实验报告一平面刚架内力计算

①平面刚架在荷载作用下的位移计算

②平面刚架由于温度作用下的内力计算

实验报告二平面桁架内力计算程序

③平面桁架的内力计算

实验报告三平面任意杆系内力计算程序

④铰接排架的剪力计算

实验报告四⑤多层框架结构的内力、动力、稳定计算

说明:

㈠以上四个实验属综合性实验,涉及到有关《结构力学》课程的多个知识点,其要求和主要目的如下:

1.掌握杆系结构计算的《结构力学求解器》的使用方法。

包括:⑴建立数据文件;

⑵运行;

⑶会利用结果文件查错;

⑷能对输出结果判断对错。

2.通过实验加深对静定、超静定结构特性的认识。如各杆刚度改变对内力分布的影响、温度和沉

陷变形因数的影响等。

3.掌握对杆件结构内力及变形、动力特性、稳定临界荷载、塑性极限荷载的计算。

㈡“结构力学II课程上机实验”采用的软件清华大学研制的《结构力学求解器》,使用方法参照教材。㈢要求每个学生提交一份实验报告。

实验报告一 平面刚架内力计算程序APF

日期: 2015.5.20 实验地点: 综合楼 实验目的:

(1)分析构件刚度与外界温度对结构位移的影响,如各杆刚度改变对内力分布的影响、温度因数对内力分布的影响。

(2)观察并分析刚架在静力荷载及温度作用下的内力和变形规律,包括刚度的变化,结构形式的改变,荷载的作用位置变化等因素对内力及变形的影响。对结构静力分析的矩阵位移法的计算机应用有直观的了解

(3)掌握杆系结构计算的《结构力学求解器》的使用方法。通过实验加深对静定、超静定结构特性的认识。

实验设计1: 计算图示刚架当梁柱刚度

12I I 分别为15、1

1

、15、110时结构的内力和位移,由此分析当刚架在水平荷载作用下横梁的水平位移与刚架梁柱比(

1

2

I I )之间的关系。(计算时忽略轴向变形)。

一、 数据文件:

(1)变量定义,EI1=1,EI2=0.2(1,5,10)

结点,1,0,0 结点,2,0,4 结点,3,6,4 结点,4,6,0

单元,1,2,1,1,1,1,1,1 单元,2,3,1,1,1,1,1,1 单元,3,4,1,1,1,1,1,1 结点支承,1,6,0,0,0,0 结点支承,4,6,0,0,0,0 结点荷载,2,1,100,0

单元材料性质,1,1,-1,EI1,0,0,-1 单元材料性质,2,2,-1,EI2,0,0,-1 单元材料性

质,3,3,-1,EI1,0,0,-1

(2)变量定义,EI1=5(1,0.2,0.1),EI2=1

结点,1,0,0 结点,2,0,4 结点,3,6,4 结点,4,6,0

单元,1,2,1,1,1,1,1,1 单元,2,3,1,1,1,1,1,1 单元,3,4,1,1,1,1,1,1

结点支承,1,6,0,0,0,0 结点支承,4,6,0,0,0,0 结点荷载,2,1,100,0

单元材料性质,1,1,-1,EI1,0,0,-1 单元材料性质,2,2,-1,EI2,0,0,-1 单元材料性质,3,3,-1,EI1,0,0,-1

二、主要计算结果:

位移:

弯矩:

(1) 令I1=1时,I2=0.2,1,5,10

①梁柱刚度比I2:I1为1:5时的刚架弯矩图如下②梁柱刚度比I2:I1为1:1时的刚架弯矩图如下:

M图(单位:KN·m)M图(单位:KN·m)

③梁柱刚度比I2:I1为5:1时的刚架弯矩图如下④梁柱刚度比I2:I1为10:1时的刚架弯矩图如下:

M图(单位:KN·m)M图(单位:KN·m)

(2)令I2=1时,I1=5,1,0.2,0.1

①梁柱刚度比I2:I1为1:5时的刚架弯矩图如下:②梁柱刚度比I2:I1为1:1时的刚架弯矩图如下:

M图(单位:KN·m)M图(单位:KN·m)

③梁柱刚度比I2:I1为5:1时的刚架弯矩图如下:④梁柱刚度比I2:I1为10:1时的刚架弯矩图下:

M图(单位:KN·m)M图(单位:KN·m)

三、结果分析及结论:

①无论EI1和EI2的值如何改变,只要EI2:EI1的值不改变,那么刚架的弯矩图都是相同的;且随着

梁柱刚度比EI2:EI1的增大,两柱的弯矩的反弯点向下移动;横梁的弯矩的反弯点保持在中点不变;

②当I1=1,I2=0.2,1,5,10时,随着梁柱刚度比EI2:EI1的增大,刚架在水平荷载作用下的横梁的水平位移变小[711.11/EI1(m)→426.67/EI1(m) →304.76/EI1(m) →286.18/EI1(m)];

③当I2=1,I1=5,1,0.2,0.1时,随着梁柱刚度比EI2:EI1的增大,刚架在水平荷载作用下的横梁的水平位移变大[142.22/EI1(m) →426.67/EI1(m) →1523.81/EI1(m) →2861.78/EI1(m)],且其变化的幅度远远大于当I1=1,I2=0.2,1,5,10时的幅度(因为I1=5,1,0.2,0.1是慢慢变小的);

④当I1=1,I2=0.2,1,5,10或当I2=1,I1=5,1,0.2,0.1时,随着梁柱刚度比EI2:EI1的增大,梁柱交点处的梁端与柱端的弯矩逐渐变大(44.44→80.00→95.24→97.56)(单位:KN·m);柱底端弯矩逐渐变小(155.56→120.00→104.76→102.44)(单位:KN·m)。

结论:

单元,1,2,1,1,1,1,1,1 单元,2,4,1,1,1,1,1,1 单元,4,6,1,1,1,1,1,1

单元,6,8,1,1,1,1,1,1 单元,8,10,1,1,1,1,1,1 单元,9,10,1,1,1,1,1,1

单元,3,4,1,1,1,1,1,1 单元,5,6,1,1,1,1,1,1 单元,7,8,1,1,1,1,1,1

结点支承,1,6,0,0,0,0 结点支承,3,6,0,0,0,0结点支承,5,6,0,0,0,0

结点支承,7,6,0,0,0,0 结点支承,9,6,0,0,0,0

单元材料性质,1,9,EA,EI,0,0,-1 单元温度改变,1,5,-10,-40,0.00001,H

单元温度改变,6,6,-10,40,0.00001,H 单元温度改变,7,9,10,0,0.00001,H (2)第二问的数据文件:

变量定义,E=1.5e7,B=0.5,H=0.4,EI=E*B*H*H*H/12,EA=E*B*H

结点,1,0,0 结点,2,0,8 结点,3,6,0 结点,4,6,8 结点,5,12,0

结点,6,12,8 结点,7,18,0 结点,8,18,8 结点,9,24,0 结点,10,24,8

单元,1,2,1,1,1,1,1,1 单元,2,4,1,1,1,1,1,1 单元,4,6,1,1,1,1,1,1

单元,6,8,1,1,1,1,1,1 单元,8,10,1,1,1,1,1,1 单元,9,10,1,1,1,1,1,1 单元,3,4,1,1,1,1,1,1 单元,5,6,1,1,1,1,1,1 单元,7,8,1,1,1,1,1,1

结点支承,1,6,0,0,0,0 结点支承,3,6,0,0,0,0 结点支承,5,6,0,0,0,0 结点支承,7,6,0,0,0,0 结点支承,9,6,0,0,0,0

单元材料性质,1,9,EA,EI,0,0,-1

单元温度改变,1,5,-10,40,0.00001,H

单元温度改变,6,6,-10,-40,0.00001,H

单元温度改变,7,9,-30,0,0.00001,H

二、计算结果(弯矩和轴力):

⑴第一问的弯矩和轴力图如下:

①当H=0.4, B=0.5时刚架的弯矩图和轴力图:

M图(单位:KN·m)

N图(单位:KN)

②当H=0.6, B=0.5时刚架的弯矩图和轴力图:

M图(单位:KN·m)

N图(单位:KN)

③当H=0.8, B=0.5时刚架的弯矩图和轴力图:

M图(单位:KN·m)

N图(单位:KN)

(2)第二问的弯矩和轴力图如下:

当H=0.4, B=0.5内侧降温300C,外侧升温100C时刚架的弯矩图和轴力图:

M图(单位:KN·m)

N图(单位:KN)

三、结果分析及结论:

(定义:对称柱——与刚架对称轴重合的柱子;中柱——对称柱与边柱之间的柱子)

由第一问的结果可知,当刚架外侧降温300C,内侧升温100C时:

①在刚架截面的宽度不变(50cm),随着高度增大(分别为40cm、60cm、80c),有

弯矩的杆件的弯矩值都增大,所有杆件的轴力都增大;

②对于上下表面温差不为零的杆件(即边柱和梁),温度降低的一侧,杆件受拉;温

度升高的一侧,杆件受压;

③而刚架内部上下表面温差为零的杆件(即两根中柱和对称柱),两中柱底端外侧受

拉,顶端里侧受拉,对称柱没有弯矩;

④从轴力图可知,两中柱受压,其它杆件受拉。

由第二问的结果可知,当刚架的外侧升温100C,内侧降温300C时,在刚架的宽度为50cm,高度为40cm的情况下:

①上下表面温差不为零的杆件(即边柱和梁),降温的一侧,杆件受拉;升温的一侧,

杆件受压;

②而刚架内部上下表面温差不变的杆件(即两根中柱和对称柱),两中柱底端外侧受

拉,顶端里侧受拉,对称柱没有弯矩;

③从轴力图可知,两根边柱和对称柱受压,中柱和梁受拉。

由此可得出结论:

①当杆件有温差时,弯矩图的竖矩出现在降温面的一侧,升温面产生压应力,降温面

产生拉应力;

②随着杆件截面高度的增大(宽度不变,即刚度增大),各有弯矩的杆件的弯矩值增

大,有轴力的杆件轴力也增大,即刚度变化影响内力的变化,刚度越大,内力越大,反之,内力越小;

③两端约束作用下,杆件轴心降温轴力为正,升温为负。

实验报告二平面桁架内力计算

日期:2015.5.20

实验地点:综合楼

实验目的:

(1)考察并分析桁架的结构形式、刚度、荷载作用位置等因素对桁架内力及变形的影响及规律。

(2)对比平行桁架和三角桁架的受力特点及杆件内力的变化规律;平行弦桁架和三角形桁架在相同荷载作用下内力的不同;荷载上承(荷载作用在上弦杆上)和下承(荷载作用在相应的下弦杆上)时各杆内力的变化。

(3)掌握杆系结构计算的《结构力学求解器》的使用方法和对矩阵位移法计算位移的了解。通过实验加深对静定、超静定结构特性的认识。

实验设计:计算图示桁架的内力和位移。分析:1. 刚度对内力和位移(跨中竖向位移)的影响;2.平行弦桁架和三角形桁架在相同荷载作用下内力的不同;3.荷载上承(荷载作用在上弦杆上,如图)和下承(荷载作用在相应的下弦杆上)时各杆内力的变化。

(a)

(b)

四、数据文件:

(1)图(a)所示的桁架的数据文件如下:

(荷载上承)

变量定义,EA=1(2,5,10)结点,1,0,0

结点,2,0,2

结点,3,2,0

结点,4,2,2

结点,5,4,0

结点,6,4,2

结点,7,6,0

结点,8,6,2

结点,9,8,0

结点,10,8,2

结点,11,10,0

结点,12,10,2

结点,13,12,0

结点,14,12,2

单元,1,2,1,1,0,1,1,0 单元,2,3,1,1,0,1,1,0 单元,3,4,1,1,0,1,1,0

单元,4,5,1,1,0,1,1,0

单元,5,6,1,1,0,1,1,0

单元,6,7,1,1,0,1,1,0

单元,7,8,1,1,0,1,1,0

单元,7,10,1,1,0,1,1,0

单元,9,10,1,1,0,1,1,0

单元,9,12,1,1,0,1,1,0

单元,11,12,1,1,0,1,1,0

单元,11,14,1,1,0,1,1,0

单元,13,14,1,1,0,1,1,0

单元,1,3,1,1,0,1,1,0

单元,2,4,1,1,0,1,1,0

单元,3,5,1,1,0,1,1,0

单元,4,6,1,1,0,1,1,0

单元,5,7,1,1,0,1,1,0

单元,6,8,1,1,0,1,1,0

单元,7,9,1,1,0,1,1,0

单元,8,10,1,1,0,1,1,0

单元,9,11,1,1,0,1,1,0

单元,10,12,1,1,0,1,1,0

单元,11,13,1,1,0,1,1,0

单元,12,14,1,1,0,1,1,0

结点支承,1,3,0,0,0

结点支承,13,1,0,0

单元材料性,

1,25,EA,0.00000001,0,0,-1

结点荷载,2,1,0.5,-90

结点荷载,4,1,1,-90

结点荷载,6,1,1,-90

结点荷载,8,1,1,-90

结点荷载,10,1,1,-90

结点荷载,12,1,1,-90

结点荷载,14,1,0.5,-90

(荷载下承)

变量定义,EA=1

结点,1,0,0

结点,2,0,2

结点,3,2,0

结点,4,2,2

结点,5,4,0

结点,6,4,2

结点,7,6,0

结点,8,6,2

结点,9,8,0

结点,10,8,2

结点,11,10,0

结点,12,10,2

结点,13,12,0

结点,14,12,2

单元,1,2,1,1,0,1,1,0 单元,2,3,1,1,0,1,1,0 单元,3,4,1,1,0,1,1,0

单元,4,5,1,1,0,1,1,0

单元,5,6,1,1,0,1,1,0

单元,6,7,1,1,0,1,1,0

单元,7,8,1,1,0,1,1,0

单元,7,10,1,1,0,1,1,0

单元,9,10,1,1,0,1,1,0

单元,9,12,1,1,0,1,1,0

单元,11,12,1,1,0,1,1,0

单元,11,14,1,1,0,1,1,0

单元,13,14,1,1,0,1,1,0

单元,1,3,1,1,0,1,1,0

单元,2,4,1,1,0,1,1,0

单元,3,5,1,1,0,1,1,0

单元,4,6,1,1,0,1,1,0

单元,5,7,1,1,0,1,1,0

单元,6,8,1,1,0,1,1,0

单元,7,9,1,1,0,1,1,0

单元,8,10,1,1,0,1,1,0

单元,9,11,1,1,0,1,1,0

单元,10,12,1,1,0,1,1,0

单元,11,13,1,1,0,1,1,0

单元,12,14,1,1,0,1,1,0

结点支承,1,3,0,0,0

结点支承,13,1,0,0

单元材料性

质,1,25,EA,1,0,0,-1

结点荷载,1,1,0.5,-90

结点荷载,3,1,1,-90

结点荷载,5,1,1,-90

结点荷载,7,1,1,-90

结点荷载,9,1,1,-90

结点荷载,11,1,1,-90

结点荷载,13,1,0.5,-90

(2)图(b)所示的桁架的数据文件如下:

(荷载上承)

变量定义,EA=1

结点,1,0,0

结点,2,2,0

结点,3,2,2/3

结点,4,4,0

结点,5,4,4/3

结点,6,6,0

结点,7,6,2

结点,8,8,0

结点,9,8,4/3

结点,10,10,0

结点,11,10,2/3

结点,12,12,0

单元,1,2,1,1,0,1,1,0 单元,2,3,1,1,0,1,1,0 单元,3,4,1,1,0,1,1,0

单元,4,5,1,1,0,1,1,0

单元,5,6,1,1,0,1,1,0

单元,6,7,1,1,0,1,1,0

单元,6,9,1,1,0,1,1,0

单元,8,9,1,1,0,1,1,0

单元,8,11,1,1,0,1,1,0

单元,10,11,1,1,0,1,1,0

单元,10,12,1,1,0,1,1,0

单元,1,3,1,1,0,1,1,0

单元,3,5,1,1,0,1,1,0

单元,5,7,1,1,0,1,1,0

单元,7,9,1,1,0,1,1,0

单元,9,11,1,1,0,1,1,0

单元,11,12,1,1,0,1,1,0

单元,2,4,1,1,0,1,1,0

单元,4,6,1,1,0,1,1,0

单元,6,8,1,1,0,1,1,0

单元,8,10,1,1,0,1,1,0

结点支承,1,3,0,0,0

结点支承,12,1,0,0

结点荷载,1,1,0.5,-90

结点荷载,3,1,1,-90

结点荷载,5,1,1,-90

结点荷载,7,1,1,-90

结点荷载,9,1,1,-90

结点荷载,11,1,1,-90

结点荷载,12,1,0.5,-90

单元材料性

质,1,21,EA,0.00000001,0,0,-

1

(荷载上承)

变量定义,EA=1

结点,1,0,0

结点,2,2,0

结点,3,2,2/3

结点,4,4,0

结点,5,4,4/3

结点,6,6,0

结点,7,6,2

结点,8,8,0

结点,9,8,4/3

结点,10,10,0

结点,11,10,2/3

结点,12,12,0

单元,1,2,1,1,0,1,1,0 单元,2,3,1,1,0,1,1,0 单元,3,4,1,1,0,1,1,0

单元,4,5,1,1,0,1,1,0

单元,5,6,1,1,0,1,1,0

单元,6,7,1,1,0,1,1,0

单元,6,9,1,1,0,1,1,0

单元,8,9,1,1,0,1,1,0

单元,8,11,1,1,0,1,1,0

单元,10,11,1,1,0,1,1,0

单元,10,12,1,1,0,1,1,0

单元,1,3,1,1,0,1,1,0

单元,3,5,1,1,0,1,1,0

单元,5,7,1,1,0,1,1,0

单元,7,9,1,1,0,1,1,0

单元,9,11,1,1,0,1,1,0

单元,11,12,1,1,0,1,1,0

单元,2,4,1,1,0,1,1,0

单元,4,6,1,1,0,1,1,0

单元,6,8,1,1,0,1,1,0

单元,8,10,1,1,0,1,1,0

结点支承,1,3,0,0,0

结点支承,12,1,0,0

结点荷载,1,1,0.5,-90

结点荷载,2,1,1,-90

结点荷载,4,1,1,-90

结点荷载,6,1,1,-90

结点荷载,8,1,1,-90

结点荷载,10,1,1,-90

结点荷载,12,1,0.5,-90

单元材料性质

1,21,EA,1,0,0,-1

二、计算结果:

1. 结构各单元内力图:

(1)图(a)所示桁架在图中力的作用下产生的单元内力图如下:

N图(荷载上承)

N图(荷载下承)

(2) 图(b)所示桁架在图中力的作用下产生的单元内力图如下:

N图(荷载上承)

N图(荷载下承)

2.不同刚度时,图(a)跨中的竖向位移。

五、结果分析:

刚度对内力和位移(跨中竖向位移)的影响:

在相同荷载的作用下,平行弦桁架随着杆件刚度的增大,桁架内力不变,跨中的竖向位移变小;

平行弦桁架和三角形桁架在相同荷载作用下内力的不同:

①在相同荷载的作用下,平行弦桁架的上弦杆受压,且由外向里(由边直腹杆往对称轴的方向)杆件受力是逐渐变大的,三角形桁杆的上弦杆也受压,但由外向里杆件受力是逐渐变小的;

②在相同荷载的作用下,平行弦桁架的下弦杆受拉(其中下弦边杆受力为零),且由外向里杆件受力是逐渐变大的,三角形桁杆的下弦杆也受拉,但由外向里杆件受力情况是:下弦边杆与第二边杆受力相同,且比中杆受力大;

③在相同荷载的作用下,平行弦桁架的直腹杆受压,且由外向里受力是逐渐变小的,三角形桁杆的直腹杆受拉,且由外向里受力是逐渐变大的(三角形桁杆的边直腹杆受力为零);

④在相同荷载的作用下,平行弦桁架的斜腹杆受拉,且由外向里受力是逐渐变小的,三角形桁杆的斜腹杆受压,且由外向里受力是逐渐变大的。

荷载上承和下承时各杆内力的变化:

①对于平行弦桁架而言,荷载上承与荷载下承作用下,上弦杆、下弦杆和斜腹杆的受力情况是相同的;

②对于平行弦桁架而言,荷载上承作用下的直腹杆的受力大小比在相同位置荷载下承作用下的直腹杆

的受力大小大1。

③对于三角形桁杆而言,荷载上承与荷载下承作用下,上弦杆、下弦杆和斜腹杆的受力情况是相同的;

④对于三角形桁杆而言,荷载上承作用下的直腹杆的受力大小比在相同位置荷载下承作用下的直腹杆

的受力大小小1。

实验报告三平面任意杆系内力计算

日期:2015.5.20

实验地点:

实验目的:

(1)求解平面任意杆系内力,铰接排架的剪力计算,多层框架结构的内力、动力、稳定计算。

(2) 通过试验,计算当铰接排架各柱刚度比值不同时,各排架柱的柱底弯矩和剪力,从而分析刚度比对铰接排架柱内力的影响。通过计算内力,分析各柱剪力及弯矩分配、横梁水平位移的规律;学会运用结构力学求解器求解结构动力问题。

实验设计1:图示铰接排架,设各杆弹性模量为一常数,并且忽略轴向变形,计算当I1∶I2∶I3∶I4分别为1∶0.5∶0.5∶1、1∶1∶1∶1、1∶2∶3∶4时各排架柱的柱底弯矩和剪力。试分析各柱剪力及弯矩分配、横梁水平位移的规律。

变量定义,I1=1,I2=0.5(1,2),I3=0.5(1,3),I4=1(1,4) 结点,1,0,0 结点,2,2,0 结点,3,4,0 结点,4,6,0 结点,5,0,h 结点,6,2,h 结点,7,4,h 结点,8,6,h 单元,1,5,1,1,1,1,1,0 单元,2,6,1,1,1,1,1,0 单元,3,7,1,1,1,1,1,0 单元,4,8,1,1,1,1,1,0 单元,5,6,1,1,0,1,1,0 单元,6,7,1,1,0,1,1,0 单元,7,8,1,1,0,1,1,0 结点支承,1,6,0,0,0,0 结点支承,2,6,0,0,0,0

结点支承,3,6,0,0,0,0 结点支承,4,6,0,0,0,0 结点荷载,5,1,1,0 变量定义,EI1=E*I1 变量定义,EI2=E*I2 变量定义,EI3=E*I3 变量定义,EI4=E*I4 单元材料性质

1,1,-1,EI1,0,0,-1

单元材料性质

2,2,-1,EI2,0,0,-1 单元材料性质

3,3,-1,EI3,0,0,-1 单元材料性质

4,4,-1,EI4,0,0,-1 单元材料性质5,7,-1,1,0,0,-1

三、 有关计算结果摘录:

内力图

① 当排架柱刚度比为1:0.5:0.5:1时的内力图如下:

N图 Q图

M图

②排架柱刚度比为1:1:1:1时的内力图如下:

N图 Q图

M图

③当排架柱刚度比为1:2:3:4时的内力图如下:

N图 Q图

M 图

四、 结果分析及结论: 分析:

① 在相同荷载作用下,横梁的产生的轴力与柱的抗弯刚度比有关; ② 在相同荷载作用下,柱产生的剪力的比值与柱的抗弯刚度比值相等; ③ 在相同荷载作用下,柱底的弯矩比值与抗弯刚度比值相等; ④

在相同荷载作用下,柱刚度越大,横梁的水平位移越小;

结论: ①

在相同荷载作用下及相同柱刚度比条件下,高为h 的柱的横梁产生的水平位移是高为1的柱的横梁产生的水平位移的h 的三次方倍;

在相同荷载作用下及相同柱刚度比条件下,高为h 的柱所产生柱底弯矩是高为1的柱所产生的柱底弯矩的h 倍;

通过结构力学求解器计算得出如上内力图。由计算结果可以看出,排架水平位移随着柱子刚度比的不断增大,水平位移呈减小趋势。在水平荷载的作用下,各柱子柱顶剪力按刚度比例分配,剪力综合与外荷载相等。由于各柱子高度相同,故各柱顶弯矩也按刚度比例分配。

实验报告四 杆件结构的综合计算

日期: 2015.5.20 实验地点: 实验目的:

实验设计2: 分析图示五层钢架的内力、动力特性、稳定临界荷载、塑性极限荷载系数。已知梁截面尺寸150300?mm ,柱截面尺寸250250?mm ,材料弹性模量112.110Pa ?,

235s MPa σ=。

一、计算结果:

数据文件:

变量定义,EI1=68359375

变量定义,EI2=70875000

变量定义,EA1=1.3125*10000000000 变量定义,EA2=9.45*1000000000

结点,1,0,0

结点,2,0,4

结点,3,0,8

结点,4,0,12

结点,5,0,16

结点,6,0,20

结点,7,6,0

结点,8,6,4

结点,9,6,8

结点,10,6,12

结点,11,6,16

结点,12,6,20

结点,13,12,0

结点,14,12,4

结点,15,12,8

结点,16,12,12

结点,17,12,16

结点,18,12,20 单元,1,2,1,1,1,1,1,1

单元,7,8,1,1,1,1,1,1

单元,13,14,1,1,1,1,1,1

单元,2,8,1,1,1,1,1,1

单元,8,14,1,1,1,1,1,1

单元,2,3,1,1,1,1,1,1

单元,8,9,1,1,1,1,1,1

单元,14,15,1,1,1,1,1,1

单元,3,9,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,9,15,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,3,4,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,9,10,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,15,16,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,4,10,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,10,16,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,4,5,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,10,11,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,16,17,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,5,11,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,11,17,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,5,6,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,11,12,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,17,18,1,1,1,1,1,1,1,1,1,1,1,1,0 单元,6,12,1,1,1,1,1,1,1,1,1,1,1,1,0

单元,12,18,1,1,1,1,1,1,1,1,1,1,1,1,0 结点支承,1,6,0,1,0

结点支承,7,6,0,1,0

结点支承,13,6,0,1,0

单元荷载2,4,5,3,5000,0,1,90

单元荷载2,9,10,3,5000,0,1,90

单元荷载2,14,15,3,5000,0,1,90

单元荷载2,19,20,3,5000,0,1,90

单元荷载2,24,25,3,5000,0,1,90

单元荷载,1,5,0,2000,0,1,90

单元荷载,6,5,2000,4000,0,1,90

单元荷载,11,5,4000,6000,0,1,90

单元荷载,16,5,6000,8000,0,1,90

单元荷载,21,5,8000,10000,0,1,90

单元材料性质,

1,3,EA1,EI1,487.5,235*1000000000,-1 单元材料性质,

6,8,EA1,EI1,487.5,235*1000000000,-1 单元材料性质, 11,13,EA1,EI1,487.5,235*1000000000,-1 单元材料性质,

16,18,EA1,EI1,487.5,235*1000000000,-1 单元材料性质,

21,23,EA1,EI1,487.5,235*1000000000,-1 单元材料性质,

4,5,EA2,EI2,351,235*1000000000,-1

单元材料性质,

9,10,EA2,EI2,351,235*1000000000,-1

单元材料性质,

14,15,EA2,EI2,351,235*1000000000,-1 单元材料性质,

19,20,EA2,EI2,351,235*1000000000,-1 单元材料性质,

24,25,EA2,EI2,351,235*1000000000,-1 自振频率参数,5,1,0.0005

屈曲荷载参数,5,1,0.0005

内力图、动力特性图、稳定分析:

N图(单位:KN) Q图(单位:KN)M图(单位:KN·m)

第一阶频率为11.35/s的第二阶频率为36.10/s的第三阶频率为65.76/s的自由振动图自由振动图自由振动图

第四阶频率为99.81/s的第五阶频率为132.04/s的

自由振动图自由振动图

结构力学求解器求解示例

结构力学(二)上机试验结构力学求解器的使用 上机报告 班级: 姓名: 学号: 日期:

实验三、计算结构的影响线 1.实验任务 (1)作以下图示梁中截面D 的内力D M 、QD F 的影响线。 观览器:D M 的影响线 观览器:QD F 的影响线 D |F=1 3 365

编辑器: 结点,1,0,0 结点,2,3,0 结点,3,6,0 结点,4,12,0 结点,6,6,1 结点,5,17,1 单元,1,2,1,1,0,1,1,1 单元,2,3,1,1,1,1,1,1 单元,3,4,1,1,1,1,1,0 单元,3,6,1,1,0,1,1,0 单元,6,5,1,1,0,1,1,0 结点支承,1,3,0,0,0 结点支承,4,1,0,0 结点支承,5,3,0,0,0 影响线参数,-2,1,1,3 影响线参数,-2,1,1,2 End

作以下图示梁中截面D 的内力D M 、QD F 的影响线。 观览器: D M 的影响线 QD F 的影响线

编辑器: 结点,1,0,0 结点,2,2,0 结点,3,4,0 结点,4,6,0 结点,5,8,0 结点,6,0,1 结点,7,8,1 结点,8,2,1 结点,9,4,1 结点,10,6,1 单元,1,2,1,1,0,1,1,1 单元,2,3,1,1,1,1,1,1 单元,3,4,1,1,1,1,1,1 单元,4,5,1,1,1,1,1,0 单元,1,6,1,1,1,1,1,0 单元,6,8,1,1,0,1,1,0 单元,8,9,1,1,0,1,1,0 单元,9,10,1,1,0,1,1,0 单元,10,7,1,1,0,1,1,0 单元,7,5,1,1,0,1,1,0

结构力学实验报告模板1

结构力学实验报告 班级12土木2班 姓名 学号

实验报告一 实验名称 在求解器中输入平面结构体系 一实验目的 1、了解如何在求解器中输入结构体系 2、学习并掌握计算模型的交互式输入方法; 3、建立任意体系的计算模型并做几何组成分析; 4、计算平面静定结构的内力。 二实验仪器 计算机,软件:结构力学求解器 三实验步骤 图2-4-3 是刚结点的连接示例,其中图2-4-3a 中定义了一个虚拟刚结点和杆端的连接码;各个杆端与虚拟刚结点连接后成为图2-4-3b 的形式,去除虚拟刚结点后的效果为图2-4-3c 所示的刚结点;求解器中显示的是最后的图2-4-3c。图2-4-4 是组合结点的连接示例,同理,无需重复。铰结点是最常见的结点之一,其连接示例在图2-4-5 中给出。这里,共有四种连接方式,都等效于图2-4-5e 中的铰结点,通常采用图2-4-5a 所示方式即可。值得一提的是,如果将三个杆件固定住,图2-4-5b~d 中的虚拟刚结点也随之被固定不动,而图2-4-5a 中的虚拟刚结点仍然存在一个转动自由度,可以绕结点自由转动。这是一种结点转动机构,在求解器中会自动将其排除不计①。结点机构实际上也潜存于经典的结构力学之中,如将一个集中力矩加在铰结点上,便可以理解为加在了结点机构上(犹如加在可自由转动的销钉上),是无意义的。 综上所述,求解器中单元对话框中的“连接方式”是指各杆端与虚拟刚结点的连接方式,而不是杆件之间的连接方式。这样,各杆件通过虚拟刚结点这一中介再和其他杆件间接地连接。这种处理的好处是可以避免结点的重复编码(如本书中矩阵位移法中所介绍的),同时可以方便地构造各种

结构力学2期末考试复习题

一、判断题: 1、力矩分配法中的分配系数、传递系数与外来因素(荷载、温度变化等)有关。( ) 2、若图示各杆件线刚度i 相同,则各杆A 端的转动刚度S 分别为:4 i , 3 i , i 。(√ ) A A A 3、图示结构EI =常数,用力矩分配法计算时分配系数4 A μ= 4 / 11。( ) 1 2 3 4 A l l l l 4、图示结构用力矩分配法计算时分配系数μAB =12/,μAD =18/。(√ ) B C A D E =1i =1 i =1i =1 i 5、用力矩分配法计算图示结构,各杆l 相同,EI =常数。其分配系数μBA =0.8,μBC =0.2, μBD =0。(√ ) A B C D 6、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。(√ ) 7、单元刚度矩阵均具有对称性和奇异性。( X ) 8、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。(√ ) 9、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。( X ) 10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。(√ )

二.选择题 (1)欲使图2-1所示体系的自振频率增大,在下述办法中可采用:( D ) A.增大质量 m; B.将质量 m 移至梁的跨中位置;C.减小梁的 EI; D.将铰支座改为固定支座。 图2-1 (2)平面杆件结构一般情况下的单元刚度矩阵[]66? k,就其性质而言,是:( B ) A.非对称、奇异矩阵; B.对称、奇异矩阵; C.对称、非奇异矩阵; D.非对称、非奇异矩阵。 (3)已知图2-3所示刚架各杆 EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(A ) 图2-3

结构力学求解器学习报告

结构力学求解器学习报告 一、实习目的 结构力学上机实习使训练学生使用计算机进行结构计算的重要环节。通过实习,学生可以掌握如何使用计算机程序进行杆系结构的分析计算,进一步掌握结构力学课程的基本理论和基本概念。在此基础上,通过阅读有关程序设计框图,编写、调试结构力学程序,学生进一步提高运用计算机进行计算的能力,为后续课程的学习、毕业设计及今后工作中使用计算机进行计算打下良好的基础。 二、实习时间 大三上学期第19周星期一至星期五。 三、实习内容 本次实习以自学为主,学习如何使用结构力学求解器进行结构力学问题的求解,包括:二维平面结构(体系)的几何组成、静定、超静定、位移、内力、影响线、自由振动、弹性稳定、极限荷载等。对所有这些问题,求解器全部采用精确算法给出精确解答。 四、心得体会 第一天上机时,张老师对结构力学求解器的使用方法进行了简单的介绍,然后就是学生自己自学的时间了。每个学生都有自己对应的题目要完成,在完成这些题目的同时,我也逐渐对结构力学求解器的运用更加自如。 从刚开始的生疏到最后的熟练运用,我遇到了不少问题:①第一次使用在有些问题上拿不定注意,例如,在材料性质那一栏,我不知

道是EA和EI的取值②第一次接触这个软件,在使用过程中不知道该如何下手,题目条件的输入顺序也很模糊。③经常会忘记添加荷载的单位,导致计算结果出现问题。④对于有些命令不能很明确的知道其用法,致使在使用时经常出错。在面对这些问题时,我一般都会向同学和老师寻求帮助,直到最终将问题解决。 通过这几天的上机实习,不仅让我进一步掌握了结构力学的知识,同时,还使我对结构力学求解器有了更深入的了解: 1. 结构力学求解器首先是一个计算求解的强有效的工具。对于任意平面的结构,只要将参数输进求解器,就可以得到变形图和内力图,甚至还可以求得临界荷载等问题。 2.即便是结构力学的初学者,只要会用求解器,也可以用求解器来方便地求解许多结构的各类问题,以增强对结构受力特性的直观感受和切实体验。 3.书本中的方法并非所有类型的问题都可以解决,例如,不规则分布的荷载以及超静定结构用传统方法比较困难,但用求解器就较为简单。而且,用求解器求解问题时可以不忽略轴向变形等书本中忽略的条件,与实际更加相符。 4.求解器可以用静态图形显示结构简图、变形图、内力图,还可以用动画显示机构模态、振型等动态图形。利用复制到剪贴板的功能,可以将结构简图、变形图、内力图以点阵图或矢量图的形式粘贴到word文档中,并可以方便地进行再编辑。

结构力学 上机实验报告

实验报告一 平面刚架内力计算程序APF 实验目的:(1)分析构件刚度与外界温度对结构位移的影响,如各杆刚度改变对内力分布的影响、温度因数对内力分布的影响。 (2)观察并分析刚架在静力荷载及温度作用下的内力和变形规律,包括刚度的变化,结构形式的改变,荷载的作用位置变化等因素对内力及变形的影响。对结构静力分析的矩阵位移法的计算机应用有直观的了解 (3)掌握杆系结构计算的《结构力学求解器》的使用方法。通过实验加深对静定、超静定结构特性的认识。 实验设计1: 计算图示刚架当梁柱刚度12I I 分别为15、11、15、1 10时结构的内力和位移,由此分析当刚架在水平荷 载作用下横梁的水平位移与刚架梁柱 比(1 2I I )之间的关系。(计算时忽略轴向变形)。 数据文件: (1)变量定义,EI1=1,EI2=0.2(1,5,10) 结点,1,0,0 结点,2,0,4 结点,3,6,4 结点,4,6,0 单元,1,2,1,1,1,1,1,1 单元,2,3,1,1,1,1,1,1 单元,3,4,1,1,1,1,1,1 结点支承,1,6,0,0,0,0 结点支承,4,6,0,0,0,0 结点荷载,2,1,100,0 单元材料性质,1,1,-1,EI1,0,0,-1 单元材料性质,2,2,-1,EI2,0,0,-1 单元材料性质,3,3,-1,EI1,0,0,-1 (2)变量定义,EI1=5(1,0.2,0.1),EI2=1 结点,1,0,0 结点,2,0,4 结点,3,6,4 结点,4,6,0 单元,1,2,1,1,1,1,1,1 单元,2,3,1,1,1,1,1,1 单元,3,4,1,1,1,1,1,1 结点支承,1,6,0,0,0,0 结点支承,4,6,0,0,0,0 结点荷载,2,1,100,0 单元材料性质,1,1,-1,EI1,0,0,-1 单元材料性质,2,2,-1,EI2,0,0,-1 单元材料性质,3,3,-1,EI1,0,0,-1 主要计算结果: 位移:

结构力学期末考试题库

一、判断题(共223小题) 1。结构的类型若按几何特征可分为平面结构和空间结构。(A) 2、狭义结构力学的研究对象是板、壳结构(B)。 3 单铰相当于两个约束。(A) 4、单刚节点相当于三个约束。(A) 5、静定结构可由静力平衡方程确定全部约束力和内力。A 6、超静定结构可由静力平衡方程确定全部约束力和内力B。 7 无多余约束的几何不变体系是静定结构。A 8 三刚片规则中三铰共线为可变体系。B 9 两刚片用一个单铰和一个不通过该铰的链杆组成的体系为静定结构。A 10 两刚片用一个单铰和一个不通过该铰的链杆组成的体系为超静定结构B。 11链杆相当于两个约束。B 12 平面上的自由点的自由度为2 A 13 平面上的自由刚体的自由度为3 A 14 铰结点的特征是所联结各杆可以绕结点中心自由转动。A 15 有多余约束的几何不变体系是超静定结构。A 16 无多余约束的几何可变体系是超静定结构。B 17、无多余约束的几何可变体系是静定结构。B 18刚结点的特征是当结构发生变形时汇交于该点的各杆端间相对转角为零。A 19 三刚片规则中三铰共线为瞬变体系。A 20三个本身无多余约束的刚片用三个不共线的单铰两两相连,则组成的体系为静定结构。A 21 一个刚结点相当于3个约束。 22 一个连接3个刚片的复铰相当于2个单铰。A 23 一个铰结三角形可以作为一个刚片。A 24 一个铰结平行四边形可以作为一个刚片。B 25 一根曲杆可以作为一个刚片。A 26 一个连接4个刚片的复铰相当于2个单铰.B 27 任意体系加上或减去二元体,改变体系原有几何组成性质。B 28 平面几何不变体系的计算自由度一定等于零。B 29 平面几何可变体系的计算自由度一定等于零。B 30 三刚片体系中若有1对平行链杆,其他2铰的连线与该对链杆不平行,则该体系为几何不变体系。A 31 三刚片体系中,若有三对平行链杆,那么该体系仍有可能是几何不变的。B 32 三刚片体系中,若有2对平行链杆,那么该体系仍有可能是几何不变的。A 33 一个单铰相当于一个约束。B 34 进行体系的几何组成分析时,若体系通过三根支座链杆与基础相连,可以只分析体系内部。B 35 三刚片体系中,若有两个虚铰在无穷远处,则该体系一定为几何可变。B 36 有多余约束的体系为静定结构。B 37 静定结构一定几何不变。A 38 超静定结构一定几何不变.A 39 几何不变体系一定是静定结构。B 40几何不变体系一定是超静定结构。B 41力是物体间相互的机械作用。A 42 力的合成遵循平行四边形法则。A 43 力的合成遵循三角形法则。A 44 力偶没有合力。A 45 力偶只能用力偶来平衡。A 46 力偶可以和一个力平衡。B 47 力偶对物体既有转动效应,又有移动效应。B 48 固定铰支座使结构在支承处不能移动也不能转动。B 49 可动铰支座使结构在支承处能够转动,但不能沿链杆方向移动。A 50 结点法求解桁架内力应按照结构几何组成相反顺序来求解。A 51 将一个已知力分解为两个力可得到无数解答。A 52 作用力和反作用力是作用在同一物体上的两个力。B 53 作用力和反作用力是作用在不同物体上的两个力。A 54 两个力在同一轴上的投影相等,此两力必相等 B 55 力偶对平面内任一点的矩等于力偶矩A 56 力偶在坐标轴上的投影的代数和等于零A 57 一个固定铰支座相当于两个约束。A 58三个本身无多余约束的刚片用三个不共线的单铰两两相连,则组成的体系为超静定结构B 59 桁架是“只受结点荷载作用的直杆、铰结体系”。A 60桁架结构的内力有轴力。A 61 拱的合理拱轴线均为二次抛物线。B 62无铰拱属于超静定结构。A 63 三铰刚架和三铰拱都属于推力结构。A 64 简支刚架属于推力结构。B 65 三铰拱属于静定结构。A 66 相同竖向载荷作用下,同跨度拱的弯矩比代梁的弯矩大得多。B 67 桁架结构中,杆的内力有轴力和剪力。B 68 竖向载荷作用下,简支梁不会产生水平支反力.A 69 竖向载荷作用下,拱不会产生水平支反力。B 70 竖向载荷作用下,拱的水平推力与拱高成正比。B

【完整版】浅谈结构力学在结构设计中的体现+

浅谈结构力学在结构设计中的体现 摘要:随着计算在工程上应用的日益广泛,结构设计是把数学上最优化理论结合计算机技术应用于结构设计。结构计算简图的选择经历一个复杂的过程,需要各种力学知识并结合工程实践经验,经过科学抽象、实验论证,根据实际受力、变形规律等主要因素,对结构进行合理简化。 关键词:结构力学结构设计应用 1 前言 结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如桥梁、屋架和承重墙等。 随着现代经济的发展,高层建筑及各种地下复杂结构也逐步增多,结构力学的在工程上应用也越来越广泛,当然这也促进了结构理论的发展。特别是20世纪中叶,随着电子计算机和有限元法的问世使得大型结构的复杂计算成为可能,从而将结构力学的研究和应用水平提到了一个新的高度。结构力学是一门古老的学科,又是一门迅速发展的学科。随着新型工程材料和新型工程结构的大量出现,向结构力学提供了新的研究内容并提出新的要求。计算机的发展,为结构力学提供了有力的计算工具,另一方面,结构力学对数学及其他学科的发展也起了推动作用。有限元法这一数学方法的出现和发展就与结构力学的研究有密切关系。 2 结构力学的重要性 实际结构是很复杂的,在对实际结构(如高层建筑、大跨度桥梁、大型水工结构)进行力学分析和计算之前必须加以简化,用一个简化图形(结构计算简图)来代替实际结构,略其次要细节,显示其基本特点,作为力学计算的基础,这一过程通常称为力学建模,用于结构计算的称为计算简图。 计算简图由实际结构简化抽象而成,取杆件轴线,或板壳中面,或块体轮廓加上结构内部的结点、结线联系,或外部的支杆、支座等边界约束,并考虑简化或分配的荷载,构成力学计算模型。 结构计算简图的选择经历一个复杂的过程,需要力学知识、结构知识、工程实践经验和洞察力,经过科学抽象、实验论证,根据实际受力、变形规律等主要因素,对结构进行合理简化。它不仅与结构的种类、功能有关,而且与作用在结构上的荷载、计算精度要求、结构构件的刚度比、安装顺序、实际运营状态及其它指标有关。计算简图的选择可能因计算状态(是考虑强度或刚度,计算稳定或振动,还是钢筋混凝土抗裂验算)而异,也依赖于所要采用的计算理论和计算方法,方能完成结构构件线性或非线性的应力和应变状态分析。实用上可以参考同类工程实例。 结构设计是先有“设想”后有“计算”,“设想”是建立在定性分析的基础上。力学始于定性分析,

结构力学求解器使用范例

2.19分析如图所示体系的几何组成。 解: 结点,1,0,0 结点,2,10,0 结点,3,20,0 结点,4,5,-5 结点,5,15,-5 结点,6,10,-10 单元,1,2,1,1,0,1,1,0 单元,2,3,1,1,0,1,1,0 单元,3,5,1,1,0,1,1,0 单元,5,6,1,1,0,1,1,0 单元,6,4,1,1,0,1,1,0 单元,4,1,1,1,0,1,1,0 单元,4,2,1,1,0,1,1,0 单元,2,5,1,1,0,1,1,0 结点支承,1,2,-90,0,0 结点支承,6,2,0,0,0 结点支承,3,1,0,0 位移模型:静态显示 解答:有2个多余约束,体系自由度为1,的几何瞬变体系。

3.25计算静定多跨梁的支座反力,并画出梁的内力图。 解: 结点,1,0,0 结点,2,6,0 结点,3,7.5,0 结点,4,12,0 结点,5,14,0 结点,6,18,0 单元,1,2,1,1,0,1,1,1 单元,2,3,1,1,1,1,1,0 单元,3,4,1,1,0,1,1,1 单元,4,5,1,1,1,1,1,0 单元,5,6,1,1,0,1,1,0 结点支承,1,2,-90,0,0 结点支承,2,1,0,0 结点支承,4,1,0,0 结点支承,6,1,0,0 单元荷载,1,1,20,1/2,90 单元荷载,3,1,10,1/2,90 单元荷载,4,3,2,0,1,90 单元荷载,5,3,2,0,1,90 尺寸线,1,0.5,0.5,7.8,1.0,0.5,0,-3,3m,3,-3,3m,6,-3 尺寸线,1,0.5,0.5,7.8,0.5,0.5,6,-3,1.5m,7.5,-3,2m,9.5,-3,2.5m,12,-3,2m,14,-3 尺寸线,1,0.5,0.5,7.8,1,0.5,14,-3,4m,18,-3 解答: 弯矩图 剪力图 轴力图

结构力学实验

结构力学 桁架结构受力性能实验报告 学号:1153377 姓名:周璇 专业:土木工程 实验时间:2016年05月04日周三,中午12:30-13:30 实验指导教师:陈涛 理论课任课教师:陈涛

一、实验目的 (1)参加并完成规定的实验项目内容,理解和掌握结构的实验方法和实验结果,通过 实践掌握试件的设计、实验结果整理的方法。 (2)进行静定、超静定结构受力的测定和影响线的绘制。 二、结构实验 (一)空间桁架受力性能概述 桁架在受结点荷载时,两边支座处产生反力,桁架中各杆件产生轴力,如图1.1为在抛物线桁架结点分别加载时结构示意图。用Q235钢材,桁架跨度6?260=1560mm ,最大高度260mm 。杆件之间为铰接相连。杆件直径为8mm 。 图1.1 (二)实验装置 图1.2为框架结构侧向受力实验采用的加载装置,25kg 挂钩和25kg 砝码。采用单结点集中力加载,由砝码、挂钩施加拉力,应变片测算待测杆件应变。结构尺寸如图1.2所示。 图1.2 (三)加载方式 简单多次加载,将挂钩和砝码依次施加在各个结点,待应变片返回数据稳定后,进行采集。采集结束后卸下重物,等待应变片数值降回初始值后再向下一节点施加荷载,重复采集操作。 (四)量测内容 需要量测桁架待测杆件的应变值在前后四对桁架杆布置单向应变片,具体布置位置如图 1.2 所示,即加粗杆件上黏贴应变片。 三、实验原理 对桁架上的5个位置分别施加相同荷载,记录不同条件下各杆件的应变值。 由公式 2 4 F A E d A σσεπ? ?=? =???=?

可以得到 24 d E F πε = 其中: F ——杆件轴力 E ——Q235钢弹性模量 d ——杆件直径 ε ——杆件应变值 σ ——杆件应力 A ——杆件横截面积 因而可以求得各杆件轴力,进而得到不同杆件的轴力影响线。 四、实验步骤 (1)将载荷挂在加载位置1,待应变片返回数据稳定后,采集相应应变数据。 (2)待应变片数值降回初始值后,重复(1)中操作,将荷载分别挂在加载位置2,3,4,5,分别采集记录各自对应的各杆件应变数据。 五、实验结果与整理 将对应位置杆件应变值取平均值,得到所示一榀桁架四根杆件的应变值如表2.2所示。

结构力学(1)模拟试题1及答案

《结构力学(1)》模拟试题一 一判断题(10×1.5分=15分) 1 具有基本部分和附属部分的结构,进行受力分析的次序是:先计算基本部分,后计算附 属部分。() 2 当梁和刚架的铰支端和自由端上无外力偶作用时,该端弯矩等于零。 () 3 桁架中的零杆是不需要的、可以撤除的杆件。() 4 在一组移动荷载作用下,简支梁的绝对最大弯矩发生在跨中截面上。 () 5 图示结构(a)、(b)两种受力状态中,仅AB、AC、BC三杆受力不同。 () 6 图示结构截断三根链杆,可以变成一简支梁,故它是三次超静定结构。 () 7 图(a)所示两次超静定结构,可选图(b)为基本结构进行力法计算。() (a) (b) 8 作用在对称结构上的任何荷载都可分解为对称荷载和反对称荷载两部分。 () 9 超静定结构的内力分布随杆件相对刚度比变化而改变。() 10 超静定结构的位移与其力法基本体系的相应位移相同。() 二填空题(10小题,共计30分) 1 工程结构从几何角度可分为____结构、板壳结构和实体结构三类,结构力学是以____结 构为主要研究对象。(2分) 2 图示刚架D截面的剪力F QDB =____、弯矩M DB =____ (内侧受拉为正)。(6分)

3 由于____力的存在,三铰拱截面上的弯矩比相应简支梁的弯矩小。(2分) 4 图示桁架中零杆总数=____。(2分) 5图示桁架中杆a、b的轴力分别为F Na=____,F Nb=____。(6分) 6 用图乘法求位移时,竖距y 应从____弯矩图上取。(2分) 7 图示简支梁在均布荷载q作用下,中点C竖向位移的图乘计算式为________(只列计算 式,不计算),EI为常数。(4分) 8 位移法方程实质上是____方程。(2分) 9 对称结构在反对称荷载作用下,如果所取的基本未知量都是对称或反对称力,则____未 知力必等于零。(2分) 10 图示结构用位移法计算时,基本未知量数目为:结点角位移=____,独立结点线位移=____。 (2分) 三分析计算题(4小题,共计55分) 1 分析图示体系的几何组成,说明分析过程并作出结论。 (5分) 2 简支梁上作用有移动的吊车如图,要求: (1) 计算吊车轮压F P1、F P2 ; (2) 求截面C弯矩、剪力最大值。(作M C 、F QC 影响线5分) (15分) 1m 1m 3m

结构力学上机考试答案

中国矿业大学力学与建筑工程学院 2013~2014学年度第二学期 《结构力学A1》上机实验报告 学号 班级 姓名 2014年5月26日

一、单跨超静定梁计算(50分) 1. 计算并绘制下面单跨超静定梁的弯矩图和剪力图。(20分) q =12N/m q =8N/m q =8N/m q=?8m 1 2 3 2. 如果按照梁跨中弯矩相等的原则,将梁上的荷载换算成均布荷载,则均布荷载应为多少?(10分) 2m 1m 1m 1m 1m 1m q=? 8m 3. 如果按照梁端部弯矩相等的原则,将梁上的荷载换算成均布荷载,则均布荷载应为多少?(10分) 4. 如果按照梁端部剪力相等的原则,将梁上的荷载换算成均布荷载,则均布荷载应为多少?(10分) 二、超静定刚架计算(50分) 1.刚架各杆EI 如图所示,计算刚架的弯矩图,剪力图和轴力图。(30分)

2. 若EI=106 (Nm 2 ),计算刚架一层梁和二层梁的水平位移。(20分)

弯矩图: y x 12345678 ( 1 )( 2 )( 3 )( 4 )( 5 )( 6 )( 7 ) -40.96 -16.29 3.04 19.04 25.04 19.04 3.04 -16.29 -40.96 剪力图: y x 12345678 ( 1 )( 2 )( 3 )( 4 )( 5 )( 6 )( 7 ) 26.00 22.00 18.00 12.00 -12.00 -18.00 -22.00 -26.00

解:跨中弯矩M1=25.04Nm(下部受拉)均布荷载q作用在梁上时,跨中弯矩为 M2=1/24*q*(l^2)(下部受拉) ∵M1=M2, ∴q=9.39N/m 如图所示: y x 12 ( 1 ) -50.08-50.08

结构力学实验报告

实验报告一 平面刚架内力计算程序APF 日期: 2013.4.19 实验地点: 综合楼503 实验目的: 1、通过实验加深对静定、超静定结构特性的认识。如各杆刚度改变对内力分布的影响、温度和沉陷变形因数的影响等。 2、观察并分析刚架在静力荷载及温度作用下的内力和变形规律,包括刚度的变化,结构形式的改变,荷载的作用位置变化等因素对内力及变形的影响。对结构静力分析的矩阵位移法的计算机应用有直观的了解。 3、掌握杆系结构计算的《求解器》的使用方法。 实验设计1: 别为15 、11、15、110 时结构的内力和位移,由此 分析当刚架在水平荷载作用下横梁的水平位移与刚架梁柱比(1 2I I )之间的关系。(计算时忽略轴 向变形)。 一、 数据文件: (1)TITLE, 实验一 变量定义,EI1=1 变量定义,EI2=0.2(1, 5, 10) 结点,1,0,0 结点,2,0,4 结点,3,6,0 结点,4,6,4 单元,1,2,1,1,1,1,1,1 单元,3,4,1,1,1,1,1,1 单元,2,4,1,1,1,1,1,1 结点支承,1,6,0,0,0,0 结点支承,3,6,0,0,0,0 结点荷载,2,1,100,0 单元材料性质,1,2,-1,EI1,0,0,-1 单元材料性质,3,3,-1,EI2,0,0,-1 END

二、主要计算结果: 位移: (2)令I2=1时,I1=5,1,0.2,0.1 弯矩: (1) 令I1=1时,I2=0.2,1,5,10 ①梁柱刚度比I2:I1为1:5时的刚架弯矩图如下②梁柱刚度比I2:I1为1:1时的刚架弯矩图如下

③梁柱刚度比I2:I1为5:1时的刚架弯矩图如下④梁柱刚度比I2:I1为10:1时的刚架弯矩图如下

结构力学期末考试试题及答案

第1题第2题2.图示外伸梁,跨中截面C的弯矩为( ? m D.17kN m

题7图图(a)图(b)图(c)图(d)位移法典型方程中系数k ij=k ji反映了() A.位移互等定理 B.反力互等定理 第9题第10题 10.FP=1在图示梁AE上移动,K截面弯矩影响线上竖标等于零的部分为().DE、AB段B.、DE段C.AB、BC段D.BC、CD段 二、填空题:(共10题,每题2分,共20分) 两刚片用一个铰和_________________相联,组成无多余约束的几何不变体系。 所示三铰拱的水平推力

第3题机动法作静定结构内力影响线依据的是_____________。 .静定结构在荷截作用下,当杆件截面增大时,其内力____________。 D处的纵标值y D为_________。 第6题第7题 7.图示结构,各杆EI=常数,用位移法计算,基本未知量最少是_________个。 8.图示结构用力法计算时,不能选作基本结构的是______。

3.用力法计算图示刚架,并绘其M 图,EI D 4m N/m EI 10kN/m A B C D 2EI EI 4m 2m 4m G F EI 10k N /m C F l ql 12 2 G A

一、选择题:(共10题,每小题2分,共20分) 1.A 2.D 3. A 4.D 5.A 6.C 7.D 8.B 9.C 10.C 二、填空题(共10空,每空2分,共20分) 1.不通过此铰的链杆 2. FP/2(→) 3.l θ(↓) 4. 刚体体系虚功原理 5.不变 6.-1/2 7.6 8.(c ) 9.反对称 10.无侧移的超静定结构 三、问答题:(共2题,每小题5分,共10分) 1.图乘法的应用条件是什么?求变截面梁和拱的位移时可否用图乘法? 答.图乘法的应用条件:1)杆轴线为直线,2)杆端的EI 为常数3)MP 和M 图中至少有一个为直线图形。否。(7分) 2.超静定结构的内力只与各杆件的刚度相对值有关,而与它们的刚度绝对值无关,对吗?为什么? 答:不对。仅受荷载作用的超静定结构,其内力分布与该结构中的各杆刚度相对值有关;而受非荷载因素作用的超静定结构,其内力则与各杆刚度的绝对值有关。(7分) 四、计算题. (1、2题8分,3题10分,4、5题12分,4题共计50分) 1.图示桁架,求1、2杆的轴力。 解:F N1=75KN ,F N2=2 13 5 KN 2.图示刚架,求支座反力,并绘弯矩图。 解:F Ay =22KN (↓)F Ax =48KN (←)F By =42KN (↑) 最终的弯矩图为: 3.用力法计算图示刚架,并绘其M 图,EI 为常数。

结构力学读书笔记

竭诚为您提供优质文档/双击可除 结构力学读书笔记 篇一:结构力学感想 感悟结构力学 这学期开设土木工程专业基础课结构力学,给我第一印象是:难并且复杂,但是实用。结构力学(structuralmechanics)是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科,它是土木工程专业和机械类专业学生必修的学科。我以后专业方向可能选择结构方向,那么未来的工作和学习很可能一直需要学习结构力学并且研究它。下面谈谈对结构力学初步的感悟。 结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩

阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。这三种分析方法实用而且能把复杂的问题简单化,也就是简化实际工程中的问题。在实际生活中,结构无处不在,结构体系是整个工程核心,结构一旦出问题,那么整个工程体系将会出现问题。土建、水利等建筑工程首先考虑的就是建筑工程的结构,结构就是组成工程的灵魂。任何复杂的工程体系都可以简化成一个个简单的结构体系来 分析,进而强化改进整个建筑,使它们能够更安全、更经济、更耐久,满足工程需要。 结构力学在当前的实际中要靠建筑设计作为基础,在满足该设计的前提下进行结构分析与设计,单纯的从结构方面进行的建筑必定难以满足美观的要求,而在现在的建筑中,没有好的外观,纵使你的结构固若金汤也很难被接受。多数情况下,结构设计在建筑设计之后支持那些设计师设计出的外观。结构力学的学习就是为了这一目标,为建筑设计师设计出的建筑图纸设计满足要求的结构,最实用的东西,往往在幕后下功夫,不可否认,结构是关键性作用。以后我如果学习结构的话,那么我将是一个幕后英雄了。 这学期的结构力学,算是初次接触,好多内容都不好理解,理论的东西都很抽象,我只能说我思维跟不上,也不可否认用的功课不够。在结构力学学习的过程中,培养了一个简化问题的能力吧,结构力学的核心思想就是简化,把复杂

结构力学期末复习题及答案

二、判断改错题。 1. 位移法仅适用于超静定结构,不能用于分析静定结构。( × ) 2位移法未知量的数目与结构的超静定次数有关。( × ) .3 位移法的基本结构为超静定结构。( × ) 4. 位移法中角位移未知量的数目恒等于刚结点数。(×) 提示:与刚度无穷大的杆件相连的结点不取为角位移未知量。 1. 瞬变体系的计算自由度一定等零。 2. 有多余约束的体系一定是几何不变体系。 1、三刚片用三个铰两两相联不一定成为几何不变体系。(×) 2、对静定结构,支座移动或温度改变不会产生内力。(×) 3、力法的基本体系不一定是静定的。(×) 4、任何三铰拱的合理拱轴不一定是二次抛物线。(×) 5、图乘法不可以用来计算曲杆。(×) 6、静定结构的影响线全部都由直线段组成。(√) 7、多跨静定梁若附属部分受力,则只有附属部分产生内力。(×) 8、功的互等定理成立的条件是小变形和线弹性。(√) 9、力法方程中,主系数恒为正,副系数可为正、负或零。(√) 10.三个刚片用不在同一条直线上的三个虚铰两两相连,则组成的体系是无多余约束的几何不变体系。( √) 三、选择题。 1. 体系的计算自由度W≤0是保证体系为几何不变的 A 条件。 A.必要 B.充分 C.非必要 D. 必要和充分 1、图示结构中当改变B点链杆方向(不能通过A铰)时,对该梁的影响是( d ) A、全部内力没有变化 B、弯矩有变化 C、剪力有变化 D、轴力有变化

2、图示桁架中的零杆为( b ) A 、DC, EC, DE, DF, EF B 、DE, DF, EF C 、AF, BF, DE, DF, EF D 、DC, EC, AF, BF 4、右图所示桁架中的零杆为( b A 、CH BI DG ,, B 、DG DE ,, C 、AJ BI BG ,, D 、BI BG CF ,, 5、静定结构因支座移动,( b ) A 、会产生内力,但无位移 B 、会产生位移,但无内力 C 、内力和位移均不会产生 D 、内力和位移均会产生 7、下图所示平面杆件体系为( b ) A 、几何不变,无多余联系 B 、几何不变,有多余联系 C 、瞬变体系 D 、常变体系

浅谈结构力学在结构设计中的体现

浅谈结构力学在结构设计中的体现 摘要: 随着计算在工程上应用的日益广泛,结构设计是把数学上最优化理论结合计算机技术应用于结构设计。结构计算简图的选择经历一个复杂的过程,需要各种力学知识并结合工程实践经验,经过科学抽象、实验论证,根据实际受力、变形规律等主要因素,对结构进行合理简化。 关键词: 结构力学结构设计应用 1前言 结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如桥梁、屋架和承重墙等。 随着现代经济的发展,高层建筑及各种地下复杂结构也逐步增多,结构力学的在工程上应用也越来越广泛,当然这也促进了结构理论的发展。特别是20世纪中叶,随着电子计算机和有限元法的问世使得大型结构的复杂计算成为可能,从而将结构力学的研究和应用水平提到了一个新的高度。结构力学是一门古老的学科,又是一门迅速发展的学科。随着新型工程材料和新型工程结构的大量出现,向结构力学提供了新的研究内容并提出新的要求。计算机的发展,为结构力学提供了有力的计算工具,另一方面,结构力学对数学及其他学科的发展也起了推动作用。有限元法这一数学方法的出现和发展就与结构力学的研究有密切关系。 2结构力学的重要性 实际结构是很复杂的,在对实际结构(如高层建筑、大跨度桥梁、大型水工结构)进行力学分析和计算之前必须加以简化,用一个简化图形(结构计算简图)来代替实际结构,略其次要细节,显示其基本特点,作为力学计算的基础,这一过程通常称为力学建模,用于结构计算的称为计算简图。

计算简图由实际结构简化抽象而成,取杆件轴线,或板壳中面,或块体轮廓加上结构内部的结点、结线联系,或外部的支杆、支座等边界约束,并考虑简化或分配的荷载,构成力学计算模型。 结构计算简图的选择经历一个复杂的过程,需要力学知识、结构知识、工程实践经验和洞察力,经过科学抽象、实验论证,根据实际受力、变形规律等主要因素,对结构进行合理简化。它不仅与结构的种类、功能有关,而且与作用在结构上的荷载、计算精度要求、结构构件的刚度比、安装顺序、实际运营状态及其它指标有关。计算简图的选择可能因计算状态(是考虑强度或刚度,计算稳定或振动,还是钢筋混凝土抗裂验算)而异,也依赖于所要采用的计算理论和计算方法,方能完成结构构件线性或非线性的应力和应变状态分析。实用上可以参考同类工程实例。 结构设计是先有“设想”后有“计算”,“设想”是建立在定性分析的基础上。力学始于定性分析,终于定性分析;定性分析在先,定量分析在后;定性失准,定量准偏。在进行工程设计和处理工程实际问题时,需要设计人员对结构的合理形式以及相应的结构变形和内力等具有总体概念和定性分析能力,还需要具有对工程中计算的数据、发生的现象和出现的问题能够做出迅速科学判断的能力,这就是所谓概念设计和概念分析理念。 结构力学是一切工程进行设计的基础。实际工程中都是将工程实践中的实际问题抽象为相应的力学计算公式进行求解;作为工程技术设计人员应该掌握工程结构的基本理论和实用设计方法,具备根据建筑工程项目的特点、性质、功能和业主的要求正确、合理地进行工程结构设计的基本能力。 2在xx中的应用 中国以木结构为主体的古建筑,在世界建筑之林中独树一帜。木结构它以木构为骨、砖石为体、结瓦为盖、油饰彩绘为衣,经历代能工巧匠精心设计,巧妙施工,潜心装饰,付诸心血和智慧建造而成,体现出东方古典建筑独有的艺术魅力和中国古建筑木结构的历史性、艺术性和科学性。 巧妙而科学的框架式结构是中国古代建筑在建筑结构上最重要的一个特征。因为中国古代建筑主要是木构架结构,即采用木柱、木梁构成房屋的框

结构力学求解器实验报告

结构力学上机实验报告 专业建筑工程 班级一班 学号xxx 姓名xx 20 年月日

一、用求解器进行平面体系几何构造分析 (桁架或组合结构) 报告中应包括以下内容: 求解过程 命令文档 分析结果 命令文档: 结点,1,0,0 结点,2,0,2.4 结点,3,1,1 结点,4,2,2.4 结点,5,2.8,0 结点,6,2.8,1 结点,7,3.6,2.4 结点,8,4.6,1 结点,9,5.6,2.4 单元,1,2,1,1,0,1,1,0 单元,2,3,1,1,0,1,1,0 单元,3,4,1,1,0,1,1,0 单元,2,4,1,1,0,1,1,0 单元,1,5,1,1,0,1,1,0 单元,5,6,1,1,0,1,1,0

单元,6,4,1,1,0,1,1,0 单元,1,3,1,1,0,1,1,0 单元,6,7,1,1,0,1,1,0 单元,7,9,1,1,0,1,1,0 单元,4,7,1,1,0,1,1,0 单元,7,8,1,1,0,1,1,0 单元,8,9,1,1,0,1,1,0 结点,10,5.6,0 单元,9,10,1,1,0,1,1,0 单元,10,8,1,1,0,1,1,0 单元,5,10,1,1,0,1,1,0 结点支承,10,1,0,0 结点支承,2,1,-90,0 结点支承,1,2,-90,0,0 分析结果:

二、用求解器确定截面单杆 插图 报告中应包括以下内容: 求解过程 命令文档: 结点,1,0,0 结点,2,0,6 结点,3,5,6 结点,4,10,6 结点,5,10,0 单元,1,2,1,1,1,1,1,1 单元,2,3,1,1,1,1,1,0 单元,3,4,1,1,0,1,1,1 单元,4,5,1,1,1,1,1,1 结点支承,1,2,-90,0,0 结点支承,5,2,0,0,0 单元荷载,3,3,1,0,1,90

结构力学-龙驭球

第一章绪论 一、教学内容 结构力学的基本概念和基本学习方法。 二、学习目标 ?了解结构力学的基本研究对象、方法和学科内容。 ?明确结构计算简图的概念及几种简化方法,进一步理解结构体系、结点、支座的形式和内涵。 ?理解荷载和结构的分类形式。 在认真学习方法论——学习方法的基础上,对学习结构力学有一个正确的认识,逐步形成一个行之有效的学习方法,提高学习效率和效果。 三、本章目录 §1-1 结构力学的学科内容和教学要求 §1-2 结构的计算简图及简化要点 §1-3 杆件结构的分类 §1-4 荷载的分类 §1-5 方法论(1)——学习方法(1) §1-6 方法论(1)——学习方法(2) §1-7 方法论(1)——学习方法(3) §1-1 结构力学的学科内容和教学要求 1. 结构 建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称结构。例如房屋中的梁柱体系,水工建筑物中的闸门和水坝,公路和铁路上的桥梁和隧洞等。 从几何的角度,结构分为如表1.1.1所示的三类: 表1.1.1 结构的分类

2. 结构力学的研究内容和方法 结构力学与理论力学、材料力学、弹塑性力学有着密切的关系。 理论力学着重讨论物体机械运动的基本规律,而其他三门力学着重讨论结构及其构件的强度、刚度、稳定性和动力反应等问题。 其中材料力学以单个杆件为主要研究对象,结构力学以杆件结构为主要研究对象,弹塑性力学以实体结构和板壳结构为主要研究对象。学习好理论力学和材料力学是学习结构力学的基础和前提。 结构力学的任务是根据力学原理研究外力和其他外界因素作用下结构的内力和变形,结构的强度、刚度、稳定性和动力反应,以及结构的几何组成规律。包括以下三方面内容: (1) 讨论结构的组成规律和合理形式,以及结构计算简图的合理选择; (2) 讨论结构内力和变形的计算方法,进行结构的强度和刚度的验算; (3) 讨论结构的稳定性以及在动力荷载作用下的结构反应。 结构力学问题的研究手段包含理论分析、实验研究和数值计算,本课程只进行理论分析和数值计算。结构力学的计算方法很多,但都要考虑以下三方面的条件: (1) 力系的平衡条件或运动条件。 (2) 变形的几何连续条件。 (3) 应力与变形间的物理条件(本构方程)。 利用以上三方面进行计算的,又称为“平衡-几何”解法。 采用虚功和能量形式来表述时候,则称为“虚功-能量”解法。 随着计算机的进一步发展和应用,结构力学的计算由过去的手算正逐步由计算机所代替,本课程的特点是将结构力学求解器集成到网络中,主要利用求解器进行计算和画图。

(完整word版)结构力学习题答案绪论

第一章绪论 ???本章问题: A.什么是结构? B.结构力学的研究对象? C.结构力学的研究任务? D.什么是结构的计算简图? E.杆件间连接方式有哪几种? F.结构与基础之间的连接方式有哪几种? G.杆件结构的分类有哪些? H.荷载的分类有哪些? §1-1结构力学的学科内容和教学要求 一、研究对象:杆件结构 1、什么是结构:由若干杆件用各种结点连接而成的杆件体系,当能承担一定范围内任意荷载作用时,称为杆件结构,简称结构。即建筑物和工程设施中承受荷载而起骨架作用的部分。 如:①房屋中梁、柱②公路、铁路、桥梁、遂洞等 结构从几何角度分: 杆件结构-其横截面尺寸要比长度小得多; 板壳结构(薄壁结构)-其厚度尺寸要比长度和宽度小得多; 实体结构-长宽高尺寸相当。 2、什么是机构:不能承担任意荷载的系统称机构。它是机械工程等的研究对象。 结论:在土木等工程中应用的都是结构,但结构的组成方式不同将影响其力学性能(静定和超静定)和分析方法。因此,分析结构受力、变形之前,必须首先了解结构的组成。 实际结构中的构件在外界因素作用下都是可变形的,但在小变形的情形下,分析结 构组成时,其变形可以忽略不计,因而所有构件均将视为刚体。 二、研究任务 是根据力学原理研究在外力和其它外界因素作用下结构的内力和变形,结构的强度、刚度、稳定性和动力反应,以及结构的组成规律。包括: 1、讨论结构的组成规律和合理形式,以及结构的计算简图的合理选择。 2、讨论结构的内力和变形的计算方法,进行结构的强度和刚度的验算。 3、讨论结构的稳定性以及在动力荷载作用下的结构反应。 三、能力培养 1、分析能力:选择结构计算简图;力系平衡分析和变形几何分析;选择计算方法的能力。 2、计算能力:确定计算步骤;校核或定性判断;初步使用结构计算程序的能力。 3、自学能力:消化已学知识;摄取新知识的能力。 4、表达能力:作业要整洁、清晰、严谨。

相关主题
文本预览
相关文档 最新文档