当前位置:文档之家› 带极大项的具有连续变量的高阶非线性中立型时滞差分方程振动性

带极大项的具有连续变量的高阶非线性中立型时滞差分方程振动性

带极大项的具有连续变量的高阶非线性中立型时滞差分方程振动性
带极大项的具有连续变量的高阶非线性中立型时滞差分方程振动性

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

线性时滞系统稳定性综述

线性时滞系统稳定性分析综述 摘要:时滞在工程领域广泛存在,对此综述了线性时滞系统的稳定性研究方法。从频域和时域两个角度详细介绍了各种方法的特点,着重讨论基于线性矩阵不等式(LMI)的分析方法,指出保守性是分析的重点。对现有结果的保守性进行比较 和评述,并提出了改进的思路。 关键词:时滞系统;稳定性;保守性,线性矩阵不等式;时滞依赖 Survey on the stability analysis of linear time—delay systems Abstract:As time-delays are extensively encounted in many fields of engineering,the stability analysis method of linear time-delay systems is outlined.The characters of frequency domain method and time domain method are illustrated in detail.The linear matrix inequality(LMI)-based stability analysis approach is mainly discussed.It is pointed out that the conservatism is important for the stability https://www.doczj.com/doc/8314008537.html,parison and discussion are given on some existing results.FinalIy,some improvement directions are discussed. Key words:Time-delay systems;Stability;Conservatism;Linear matrix inequality;Delay-dependent l引言 从系统理论的观点看,任何实际系统的过去状态不可避免地要对当前的状态产生影响,即系统的演化趋势不仅依赖于系统当前的状态,也依赖于过去某一时刻或若干时刻的状态,这类系统称为时滞系统。时滞产生的原因有很多,如:系统变量的测量(复杂的在线分析仪)、长管道进料或皮带传输、缓慢的化学反应过程等都会产生时滞。时滞常见于电路、光学、神经网络、生物环境及医学、建筑结构、机械等领域,由于应用背景广泛,受到很多学者的关注。从理论分析的角度来看,在连续域中,时滞系统是一个无穷维的系统,特征方程是超越方程,有无穷多个特征根,而在离散域中,时滞系统的维数随时滞的增加按几何规律增长,这给系统的稳定性分析和控制器设计带来了很大的困难。因此,对于时滞系统的控制问题,无论在理论还是在工程实践方面都具有极大的挑战性。 常见的时滞系统包括奇异时滞微分系统、脉冲时滞微分系统、Lurie时滞系统、中立型时滞系统和随机时滞系统等。其基本理论建立于20世纪五、六十年代,迄今为止,研究的成果相当丰富,本文作者限于水平及阅读范围,提到的只是极其有限的一部分结果。 2 时滞系统稳定性分析基本方法 从工程实践的角度来看,时滞的存在往往导致系统的性能指标下降,甚至使系统失去稳定性。例如系统 ()0.5() x t x t =- (1)

相关主题
文本预览
相关文档 最新文档