圆周角定理及推论
- 格式:doc
- 大小:17.50 KB
- 文档页数:3
一、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半已知在⊙O中,∠BOC与圆周角∠BAC对同弧BC,求证:∠BOC=2∠BAC。
以下分五种情况证明【证明】情况1:当圆心O在∠BAC的内部时:图1连接AO,并延长AO交⊙O于D解:OA=OB=OC(OA、OB、OC是半径)∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角和)∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC【证明】情况2:当圆心O在∠BAC的外部时:图2连接AO,并延长AO交⊙O于D,连接OB、OC。
解:OA=OB=OC(OA、OB、OC是半径)∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角和)∴∠BOC=∠COD-∠BOD=2(∠CAD-∠BAD)=2∠BAC【证明】情况3:当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:图3∵OA、OC是半径解:∴OA=OC∴∠BAC=∠OCA()∴∠BOC=∠BAC+∠OCA=2∠BAC(三角形的一个外角等于与它不相邻的两个内角和,由AB为平角180°、三角形△AOC内角和为180°得到。
)【证明】情况4:圆心角等于180°:圆心角∠AOB=180°,圆周角是∠ACB,∵∠OCA=∠OAC=21∠BOC(BC弧)∠OCB=∠OBC=21∠AOC(AC弧)∴∠OCA+∠OCB=(∠BOC+∠A OC)/2=90度∴∠AO B2=∠ACB【证明】情况5:圆心角大于180°:图5圆心角是(360°-∠AOB),圆周角是∠ACB,延长CO交园于点E,∠CAE=∠CBE=90°(圆心角等于180°)∴∠ACB+∠AEB=180°,即∠ACB=180°-∠AEB ∵∠AOB=2∠AEB∴360°-∠AOB=2(180°-∠AEB)=2∠ACB二、圆周角定理的推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
圆周角定理及其推论圆周角定理是一个重要的几何定理,它规定了三角形内角之和与圆周角之间的关系,从而形成一种经典的几何定理,被广泛应用于几何学和数学中。
关于圆周角定理的历史有很多,就其本身的来源来说,圆周角定理的最早证明可以追溯到古希腊数学家阿基米德,而后经过不同数学家的发展、研究和思考,使得圆周角定理的结构更加完善。
一般来说,圆周角定理讲的是三角形内角之和与圆周角之间的关系,而所指的圆周角是指由三角形所在的圆上某点到另一点之间的弧度,它可以用角度来表示。
圆周角定理用数学语言记述就是,如果把圆上的任一点当作三角形的顶点,将其余两点当作边的端点,此时此三角形的内角之和为180°,这就是圆周角定理的本质。
从实际几何中得出的圆周角定理,有利于我们更深入地理解几何中涉及到的三角形,有助于推理类题目的解答,这种推理关系也被称作三角恒等式,表示两等腰三角形两个内角之和等于三角形外角之和,即内角和=外角,这是圆周角定理的推论之一。
圆周角定理的另一个推论就是全等三角形恒等式,即三角形内角两两等边的三角形,它的三个角的大小相等,即相等的三角形的三个内角之和也等于180°,这是圆周角定理的另一个推论,又称为“全等三角形定理”。
圆周角定理的发现和研究对几何学的发展有重要意义,它为几何学到达发展的新高度和完善提供了重要的理论基础,同时也为数学建立了一种经典的定理模型,并且广泛应用于几何学和数学中。
因此,圆周角定理被广泛应用于几何学和数学中,它影响着我们对几何定理的理解,以及在几何学里面的推理思维,它也是我们几何学课本里面比较重要的定理,引用它可以使我们更好的理解几何形式和推理思维的重要性。
圆周角定理的发现,让我们更好地理解几何,使得更多的几何问题得到解决,从而为我们几何学的发展提供更多有利的条件。
它也为数学研究提供了一种经典的定理结构,从而推动了数学自身的发展和提高,使得数学越来越完善。
归纳总结,圆周角定理的本质是三角形内角之和为180°,它有两个推论:三角形恒等式和全等三角形恒等式,它是几何学和数学中经典的定理,并且对几何学的发展和完善有重要的意义,对数学也起到了推动作用。
圆周角定理及其推论的证明和应用圆周角定理是数学中一个最重要的定理。
它解释了多边形与圆的关系,是众多大学数学课程中的重要内容之一。
圆周角定理的证明和应用在不同的领域都有广泛的使用。
本文将讨论圆周角定理本身的证明,以及它的推论在数学和物理领域的应用。
一、圆周角定理圆周角定理告诉我们,对于任意多边形,其顶点和圆心之间的夹角之和等于$360^{circ}$。
它用数学语言来表达就是:若多边形$ABC…N$的顶点在圆心O的同一侧,则有$A + B + C + + N =360^{circ}$。
也就是说,当多边形的顶点位于同一侧的O时,其顶点到圆心O的角度之和等于$360^{circ}$。
二、证明圆周角定理圆周角定理通常用几何证明。
以正多边形为例,证明其顶点到圆心O的角度之和等于$360^{circ}$。
首先,画出多边形然后证明相邻边之间的夹角等于$180^{circ}$。
其次,当多边形向内折叠时,所有相邻边夹角之和等于其内角之和,因此折叠完成后,所有内角的和为$180^{circ} times n$,其中$n$是正多边形的边数。
此时,由于所有内角之和为$180^{circ} times n$,而多边形上的所有角之和为$360^{circ}$,因此所有顶点夹角之和等于$360^{circ}$。
三、圆周角定理的应用1、数学领域:圆周角定理在数学中的应用很广泛。
它可以用来求正n边形的面积,平均线长,内接圆半径,外接圆半径等。
此外,它还可以用来解决给定多边形的顶点或边,求其它顶点和边的问题。
2、物理领域:在物理领域,圆周角定理也有一些应用。
圆周角定理可以用来研究多体系统,如物体在圆周上运动时,其加速度可以根据圆周角定理求得。
圆周角定理也可以用来计算静电场,求出电荷的等值压力等。
四、总结本文讨论了圆周角定理的证明与应用。
圆周角定理表明正多边形的顶点到圆心O的角度之和等于$360^{circ}$。
圆周角定理在数学和物理领域都有广泛的应用,可以用来求正n边形的面积,平均线长,内接圆半径,外接圆半径,研究多体系统,求出电荷的等值压力等。
圆周角的定理及推论的应用圆周角是数学中的一个重要概念,掌握圆周角的定理及其推论,对于解决许多几何问题非常有帮助。
本文将围绕圆周角的定理及推论的应用展开阐述。
一、圆周角的定义圆周角是指落在圆周上的两条弧所对的角,即两个弧之间的角度量。
一般用大写字母表示圆周角,如∠ABC。
二、圆周角的定理1、相等圆周角定理:在同一个圆周上,所对的圆周角相等。
证明:作弦AB、CD相交于点E,则∠AEB=∠CED。
由于AE、BE、CE、DE均是从一个圆心O引出的弦,故∠AEB=∠CEB,∠CED=∠BED,又因为OE=OE,故OEB≌OED,由此可得∠OEB=∠OED,即∠AEB=∠CED。
2、圆心角的定理:在同一个圆中,所对的圆心角相等。
证明:连接圆心O到AB的中垂线OH,H为AB的中点。
则OH垂直于AB,因此∠AOH、∠BOH均为直角,所以∠AOB=2∠AOH=2∠BOH。
3、正弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:sinA=a/2R,sinB=b/2R,sinC=c/2R证明:如下图所示,以AB、BC、CA为边作三角形ABC的外接圆,设圆心为O。
连接AO、BO、CO,过O点作弦AD、BE、CF,则OD=OE=OF=R,所以AOD、BOE、COF都是等边三角形。
因此,∠OAB=∠CFO、∠OBA=∠CEO、∠OBC=∠AEO、∠OCB=∠AFO。
设∠BAC=x,∠ABC=y,∠ACB=z,由三角形内角和公式得:x+y+z=180又由圆周角定理得:∠BOC=2y,∠AOC=2z,∠AOB=2x于是:∠AOB+∠BOC+∠AOC=3602x+2y+2z=360,即x+y+z=180。
将sinA、sinB、sinC带入上述公式中,可得:sinA/BC=sinB/CA=sinC/AB=1/2R即sinA=a/2R,sinB=b/2R,sinC=c/2R。
4、余弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:cosA=(b²+c²-a²)/2bc,cosB=(a²+c²-b²)/2ac,cosC=(a²+b²-c²)/2ab证明:将ABC的外接圆的半径延长到BC、AC和AB上分别交于点D、E、F。
圆周角定理及其推论一、圆周角定理圆周角定理是几何学的重要定理,它源于古希腊数学家弥尔顿(Archimedes)的研究。
圆周角定理规定:任何两个正夹角的正弦之积等于它们之间的乘积,也就是学术上说的“正夹角全乘积等于余弦。
”以上是圆周角定理的文字表示,而在数学上,圆周角定理又有如下式子体现:Sin(α+β)= Sinα×Cosβ+Cosα×Sinβ二、圆周角定理的推论1、正弦定理:一个三角形角α,β,γ的正弦值分别为Sinα,Sinβ,Sinγ,那么有Sinα:Sinβ:Sinγ=a:b:c;2、余弦定理:每个三角形角α,β,γ的余弦值分别为Cosα,Cosβ,Cosγ,那么有a2+b2=c2-2abCosγ;3、正切定理:任一三角形角α,β,γ的正切值分别为tanα,tanβ,tanγ,那么有tanα×tanβ=tanγ/1-tanαtanβ;4、正割定理:一个三角形角α,β,γ的正割值分别为cotα,cotβ,cotγ,那么有cotα+cotβ=cotγ/1+cotα cotβ;5、互补定理:任一角α,它的余角β满足Cosα=Sinβ;Cosβ=Sinα;6、倒数定理:对一角α,其余角β均有Secα=1/Cosα;Secβ=1/Cosβ;7、士角定理:一角α,其余角β乘积等于正弦定理,那么Sinα×Sinβ=Cos角γ/2;8、三边定理:任一三角形角α,β,γ的边长分别为a,b,c,那么有a/(Sinα)=b/(Sinβ)=c/(Sinγ);9、兰勃托定理:一个等腰三角形,其底边和对边相较于当前对角之正弦的比值之和等于1,也就是说:Sinα/(a/2)+Sinβ/(a/2)=1;10、马克斯定理:一个三角形边长abc,那么有cosA+cosB+cosC=4cosA/2cosB/2cosC/2=3/2。
圆周角定理的推论
圆周角定理指出了封闭图形中两个角的平行边之间的角的大小,可以用公式表示如下:
内角和 = 封闭图形中真实角的总和 - 360°
圆周角定理可以根据某些假设推出许多有用的结论。
一般来讲,由某一条边把图形分
割成两部分,图形中所有的角构成的闭合图形的内角和等于上面的定理中的表达式。
另外,如果一个图形有m条边,那么它的总角度数等于180(m - 2)。
例如,考虑一个六边形。
由定理可以推出,六边形的内角和等于720°,显然,它的
每一个角等于120°,证明了定理的准确性。
另外,如果在一个多边形中用一条边将其分
割为两个三边形,那么两个三边形内角和应该等于360°,三角形每一个内角应该等于180°/3 = 60°。
此外,如果一个图形中每个内角都相等,该图形是正多边形;正多边形中每个内角等
于(180•(n-2))/ n,其中n是多边形边数。
同样,如果图形中有两个内角是等腰三角形,那么其余一个内角的角度就是90°;若有四个等腰三角形,那么其他两个内角角度分别等于120°和30°。
由圆周角定理也可以推出,当一个图形三边框围时,其内角和等于180°;两个角等
于120°和60°;多边形三边框围时,其内角和等于270°;其余的内角等于80°和110°。
总而言之,圆周角定理为图形的绘制和多边形的构造提供了有用的信息。
圆周角定理
从几何学的角度给出了许多有用的结果和信息,并可以用于各种形状的几何图案的绘制。
2.1 圆周角定理对应学生用书P12]1.圆周角定理(1)文字语言:一条弧所对的圆周角等于它所对的圆心角的一半;圆周角的度数等于它所对的弧的度数的一半.(2)符号语言:在⊙O BAC,∠BOC,则有∠BAC=∠BOC=(3)图形语言:如图所示.2.圆周角定理的推论(1)推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.(2)推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弧是半圆.1.圆周角定理中圆周角与圆心角所对的弧是同一段弧吗?提示:一定对着同一条弧才能有定理中的数量关系.2.推论1中若把“同弧或等弧”改为“同弦或等弦”结论还成立吗?提示:不成立.因为一条弦所对的圆周角有两种可能,在一般情况下是不相等的.对应学生用书P13]利用圆周角定理解决计算问题[例1][思路点拨] 本题主要考查圆周角定理.顶点A的位置不确定,所以点A和圆心O可能在BC的同侧,也可能在BC的异侧.[精解详析] (1)当点A和圆心O在BC的同侧时,如图①所示.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BAC=∠BOC=55°.(2)当点A和圆心O在BC的异侧时,如图②所示.设P为圆上与圆心O在BC的同侧一点,连接PB,PC.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BPC=∠BOC=55°.∴∠BAC=180°-∠BPC=180°-55°=125°.综上所得,∠A的度数是55°或125°.使用圆周角定理时,一定要注意“同一条弧”所对的圆周角与圆心角这一条件.1.如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是( )A.40° B.25°C.50° D.60°解析:选A 连接OB.因为∠A=50°,所以BC弦所对的圆心角∠BOC=100°,∠COD=∠BOC=50°,∠OCD=90°-∠COD=90°-50°=40°.所以∠OCD=40°.[例2] 如图,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4 cm.(1)试判断OD与AC的关系;(2)求OD的长;(3)若2sin A-1=0,求⊙O的直径.[思路点拨] 本题主要考查圆周角定理推论2的应用.解题时,可判断∠ACB=90°.利用OD∥BC可得OD⊥AC.用相似可得OD的长,由边角关系可求⊙O的直径.[精解详析] (1)∵AB为⊙O的直径,∴∠ACB=90°.∵OD∥BC,∴∠ADO=∠ACB=90°,∴OD⊥AC.(2)∵△AOD∽△ABC,∴==,∴OD=BC=×4=2(cm).(3)∵2sin A-1=0,∴sin A=.∵sin A=,∴=,∴AB=2BC=2×4=8(cm).“半圆(直径)所对的圆周角是直角,和直径能构成直角三角形”这一性质应用广泛,解题时注意直角三角形中有关定理的应用.本例的条件变为:“弦AC=4,BC=3,CD⊥AB于D”,求CD.解:由勾股定理知AB=5,∵S△ACB=AC·BC=AB·CD,∴3×4=5×CD,∴CD=.利用圆周角定理解决证明问题[例3]E,求证:AE =BE.[思路点拨] 本题主要考查利用圆周角定理证明问题.解题时只需在△ABE中证明∠ABE=∠EAB.而要证这两个角相等,只需借助∠ACB即可.[精解详析] ∵BC是⊙O的直径,∴∠BAC为直角,又AD⊥BC,∴Rt△BDA∽Rt△BAC.∴∠BAD=∠BCA.FBA=∠ACB.∴∠BAD=∠FBA.∴△ABE为等腰三角形.∴AE=BE.有关圆的题目中,圆周角与它所对的弧及弦可以相互转化.即欲证圆周角相等,可转化为证明它们所对的弧相等.要证线段相等可以转化为证明它们所对的弧相等.这是证明圆中线段相等的常用方法.2.如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.求证:(1)∠CAB=∠BOD.(2)△ABC≌△ODB.证明:(1)因为AB是⊙O的直径,所以∠ACB=90°,由∠ABC=30°,所以∠CAB=60°.又OB=OC,所以∠OCB=∠OBC=30°,所以∠BOD=60°,所以∠CAB=∠BOD.(2)在Rt△ABC中,∠ABC=30°,得AC=AB,又OB=AB,所以AC=OB.由BD切⊙O于点B,得∠OBD=90°.在△ABC和△ODB中,所以△ABC≌△ODB.本课时主要考查圆周角定理及推论的计算与证明问题,难度中档.[考题印证]如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.[命题立意]本题主要考查圆周角定理的推论及平行线的性质.[自主尝试] 连接OD,因为BD=DC,O为AB的中点,所以OD∥AC,于是∠ODB=∠C.因为OB=OD,所以∠ODB=∠B.于是∠B=∠C.因为点A,E,B,D都在圆O上,且D,E为圆O上位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周角,故∠E=∠B.所以∠E=∠C.对应学生用书P14]一、选择题1.如图,CD是⊙O的直径,弦AB⊥CD于E,∠BCD=25°,则下列结论错误的是( )A.AE=BE B.OE=DEC.∠AOD=50° D.D解析:选B 因为CD是⊙O的直径,弦AB⊥CD,AE=BE,因为∠BCD=25°,所以∠AOD=2∠BCD=50°,故A,C,D正确,B不能得证.2.如图所示,AB是⊙O的直径,C AC=8,BC=6,则⊙O的半径r等于( )A. B.5C.10 D.不确定解析:选B 由已知得∠ACB=90°,∴AB==10,即2r=10,r=5.3.如图,直径为10的⊙C经过点A(0,5)和点O(0,0),B是y轴右侧⊙C弧上一点,则cos∠ABO的值为( )A. B.C. D.解析:选B 法一:设⊙C与x轴另一个交点为D,连接AD,如图所示:因为∠AOD=90°,所以AD为⊙C的直径,又因为∠ABO与∠ADO为圆弧AO所对的圆周角,所以∠ABO=∠ADO,又因为A(0,5),所以OA=5,在Rt△ADO中,AD=10,AO=5,根据勾股定理得:OD==5.所以cos∠ABO=cos∠ADO===,故选B.法二:连接CO,因为OA=5,AC=CO=5,所以△ACO为等边三角形,∠ACO=60°,∠ABO=∠ACO=30°,所以cos∠ABO=cos 30°=.4.已知P R都在弦AB的同侧,且点P Q的圆内,点R(如图),则( )A.∠AQB<∠APB<∠ARBB.∠AQB<∠ARB<∠APBC.∠APB<∠AQB<∠ARBD.∠ARB<∠APB<∠AQB解析:选D 如图所示,延长AQ交圆O于点C,设AR与圆O相交于点D,连接BC,BD,则有∠AQB>∠ACB,∠ADB>∠ARB.因为∠ACB=∠APB=∠ADB,所以∠AQB>∠APB>∠ARB.二、填空题5.如图,点A,B,C在⊙O上,∠AOC=60°,则∠ABC的度数是.解析:因为∠AOC=60°,所以弧ABC的度数为60°,AC对的优弧的度数为360°-60°=300°,所以∠ABC=150°.答案:150°6.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为.解析:因为∠BOD=100°,所以∠A=∠BOD=50°.因为∠B=60°,所以∠C=180°-∠A-∠B=70°.答案:70°7.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O 上,∠ADC=68°,则∠BAC= .解析:因为AB是圆O的直径,所以弧ACB的度数为180°,它所对的圆周角为90°,所以∠BAC=90°-∠ABC=90°-∠ADC=90°-68°=22°.答案:22°8.如图,在半径为2 cm的⊙O内有长为2 cm的弦AB,则此弦所对的圆心角∠AOB为.解析:作OC⊥AB于C,则BC=,在Rt△BOC中,∵OC===1(cm),∴=,∴sin∠B=,∠B=30°,∴∠BOC=60°,∴∠AOB=120°.答案:120°三、解答题9.如图,在⊙O中,弦AB=16,点C在⊙O上,且sin C=.求⊙O的半径长.解:作直径AD,连接BD,则∠ABD=90°,∠D=∠C.因为sin C=,所以sin D=.在Rt△ABD中,sin D==,又因为AB=16,所以AD=16×=20,所以OA=AD=10,即⊙O的半径长为10.10.如图,已知在⊙O中,直径AB为10 cm,弦AC为6 cm,∠ACB的平分线交⊙O于D,求BC,AD和BD的长.解:因为AB为直径,所以∠ACB=∠ADB=90°.在Rt△ABC中,BC===8(cm).因为CD平分∠ACB,所以△ADB为等腰三角形.所以AD=BD=AB=×10=5(cm).11.如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C.(1)求证:CB∥MD.(2)若BC=4,sin M=,求⊙O的直径.解:(1)证明:因为∠C与∠M是同一弧所对的圆周角,所以∠C=∠M.又∠1=∠C,所以∠1=∠M,所以CB∥MD(内错角相等,两直线平行).(2)由sin M=知,sin C=,所以=,BN=×4=.由射影定理得:BC2=BN·AB,则AB=6.所以⊙O的直径为6.。
圆周角定理及其推论的证明1. 引言说到数学,大家的第一反应可能就是那些看起来复杂的公式,脑袋一团浆糊。
但其实,数学有时候就像一杯清爽的柠檬水,喝下去后让你清新无比!今天我们来聊聊一个非常经典而又简单易懂的知识点——圆周角定理。
想象一下,如果把数学比作一场派对,那么圆周角定理就是那位人人都想要和他搭讪的明星!那么,什么是圆周角定理呢?简单来说,就是在一个圆里,任何一个圆周角的度数等于它所对的弦所夹的中心角的一半。
这个定理可谓是数学界的小明星,闪耀着自己的光芒,吸引着无数人的目光。
2. 圆周角定理的证明2.1 先来个简单的图示好了,咱们先准备好纸和笔,来画个图。
想象一个圆,圆心叫 O,任意选两个点 A 和 B,连接起来形成一条弦。
然后,随便找个点 C,在圆的边上,形成一个圆周角∠ACB。
接下来,我们再从圆心O 向A 和B 连线,这样就形成了两个中心角:∠AOB。
接下来,我们就要通过一些小技巧来证明这个定理。
这里面可有趣了!2.2 把复杂变简单首先,我们知道,中心角∠AOB 的度数是与弦 AB 所对应的圆周角∠ACB 的两倍。
那为什么会这样呢?我们来试试从几何的角度分析一下。
当我们把 OA 和 OB 这两条线延长,就能把圆周角的顶点 C 和中心 O 连接起来。
这样,我们就能看到,∠ACB 是一个小角,而∠AOB 是个大角。
简单来说,∠AOB 就像是∠ACB 的“老大”,他可得分配个更大的份额,毕竟他是两条线夹起来的嘛!于是,大家就明白了:∠ACB = 1/2 ×∠AOB,这就是我们所说的圆周角定理啦!3. 推论与应用3.1 推论一:相等的圆周角现在我们说说这个定理的一个有趣推论。
你们知道吗?如果在同一个圆内,任意两条弦所对的圆周角相等,那么这两条弦必定相等。
这就像是“只要你有我有,大家都是好朋友”的道理!试想一下,假如你和朋友都穿着同样的衣服出门,别人会不会觉得你们很像?其实,圆周角也有这样的“搭档”,它们总是能通过弦的长度互相呼应。
24.1.4(2)圆周角---圆周角定理推论一.【知识要点】1.圆周角定理推论:(1)同弧或等弧所对的圆周角相等;(2)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
二.【经典例题】,D,E分别是半径OA,OB的中点,求证:CD=CE.1.如图,AC BC2.已知A,B,C,D是☉O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求☉O的半径.3.已知:如图,AC=BC=CD,过三点A,C,D的⊙O交AB于点F.求证:CF平分∠BCD.4.如图,AB 是⊙O 的直径,C ,P 是AB 上两点,AB=13,AC=5。
(1)如图(1),若点P 是AB 的中点,求PA 的长。
(2)如图(2),若点P 是BC 的中点,求PA 的长.5.如图,⊙O 的半径为1,A,P,B,C 是⊙O 上的四个点,∠APC=∠CPB=60°。
(1)试判断△ABC 的形状:_____ 。
(2)试探究线段PA 、PB 、PC 之间的数量关系,并证明你的结论。
(3)当点P 位于AB 的什么位置时,四边形APBC 的面积最大?求出最大面积。
6.如图,⊙C 经过原点O ,并与两坐标轴交于A 、D 两点,已知∠OBA =30°,点D 的坐标为(0,3),求点A 的坐标及圆心C 的坐标.7.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()A.7 B.C.D.98.(2020绵阳期末第24题)如图,圆的内接五边形ABCDE中,AD和BE交于点N,AB和EC 的延长线交于点M,CD∥BE,BC∥AD,BM=BC=1,点D是的中点.(1)求证:BC=DE;(2)求证:AE是圆的直径;(3)求圆的面积.三.【题库】【A】1.如图,若AB是☉O的直径,CD是☉O的弦,∠ABD=58°,则∠BCD= ( )A.116°B.32°C.58°D.64°2.小王想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是()A. B. C. D.【B 】1.如图,点O 是⊙O 的圆心,点A 、B 、C 在⊙O 上,∠ACB =30°,弦AB =3cm ,则△ABO 的周长是___________cm2.如图,AB 是⊙O 的一条弦,OD AB ⊥,垂足为C ,交⊙O 于点D ,点E 在⊙O 在上. (1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,,求AB 的长.5OA =3.(2020绵阳期末第9题)如图,AB 是⊙O 的直径,点C ,D 在直径AB 一侧的圆上(异于A ,B 两点),点E 在直径AB 另一侧的圆上,若∠E =42°,∠A =60°,则∠B =( ) A .62° B .70°C .72°D .74°OCAB【C】1.(绵阳2019年第25题本题满分14分)如图,在以点O为中心的正方形ABCD中,AD =4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.求证:△DEF是等腰直角三角形;2.已知,如图所示,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°。
一、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半已知在⊙O中,∠BOC与圆周角∠BAC对同弧BC,求证:∠BOC=2∠BAC。
以下分五种情况证明【证明】情况1:当圆心O在∠BAC的内部时:图1连接AO,并延长AO交⊙O于D解:OA=OB=OC(OA、OB、OC是半径)∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角和)∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC【证明】情况2:当圆心O在∠BAC的外部时:图2连接AO,并延长AO交⊙O于D,连接OB、OC。
解:OA=OB=OC(OA、OB、OC是半径)∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角和)∴∠BOC=∠COD-∠BOD=2(∠CAD-∠BAD)=2∠BAC【证明】情况3:当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:图3∵OA、OC是半径解:∴OA=OC∴∠BAC=∠OCA(等边对等角)∴∠BOC=∠BAC+∠OCA=2∠BAC(三角形的一个外角等于与它不相邻的两个内角和,由AB 为平角180°、三角形△AOC内角和为180°得到。
)【证明】情况4:圆心角等于180°:圆心角∠AOB=180°,圆周角是∠ACB,∵∠OCA=∠OAC=21∠BOC (BC弧)∠OCB=∠OBC=21∠AOC (AC弧)∴∠OCA+∠OCB=(∠BOC+∠AOC)/2=90度∴∠AOB2=∠ACB【证明】情况5:圆心角大于180°:图5圆心角是(360°-∠AOB),圆周角是∠ACB,延长CO交园于点E,∠CAE=∠CBE=90°(圆心角等于180°)∴∠ACB+∠AEB=180°,即∠ACB=180°-∠AEB∵∠AOB=2∠AEB∴360°-∠AOB=2(180°-∠AEB)=2∠ACB二、圆周角定理的推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
圆的圆周角定理及推论好啦,今天我们来聊聊圆的圆周角定理,说起来可能大家觉得“哎呀,数学又来了”,可其实呢,圆周角这东西并不神秘,反倒挺有趣的。
咱们不妨换个角度,想象一下你在和朋友们一起玩抛圈圈游戏,大家站成一圈,忽然之间有人跑到圆圈里头拿个棍子,一边转圈一边和你讨论“圆的圆周角定理”。
你可能会眨眨眼,觉得这不就是某种数学谜题?但仔细一想,你会发现,这个定理竟然和生活中的很多事儿有点儿相似。
圆周角定理就像你玩游戏时总能猜到最后那个“秘密”一样,既简单又有点“套路”。
圆周角定理说的是什么呢?其实很简单,就是圆上的一个角度——圆周角,它的大小是由圆心角来决定的。
而这个圆心角呢,指的是从圆心出发,连到圆上两个点的角度。
所以如果你在圆上随便选两个点,拉直线,假如你能测量一下这个角度,嘿,你就能发现,这个角的大小只和圆心角有关。
更好玩的事儿是,圆周角的大小,恰好是圆心角的一半!就这么简单。
举个例子吧,如果你在圆上找了两个点,这两个点连起来形成的圆心角是60度,那你会发现,跟它对应的圆周角只有30度。
这就像在和朋友聊着天,忽然某个话题比你想象的要简单,反倒让你松了口气。
那你可能会问了,这个圆周角定理到底有什么用呢?你肯定不想它只是个“纸上谈兵”的概念吧。
其实啊,生活中有很多地方都可以见到它的身影。
你想象一下,小时候你玩过很多那种圆形的游戏,比如用绳子跳大圈圈,或者玩那种圈套,能不能发现,每当你站在圆的一边,看到圆的另一边时,角度总是很相似?其实这就是圆周角定理在你生活中的“小小表现”了。
没错,数学不仅仅是死板的公式,它就像是生活中的一种暗号,随时都能让你意外地收获“惊喜”。
别急,我知道你可能还没完全get到,所以咱们再说一下圆的圆周角定理的几个小推论。
第一个就是圆周角相等的定理,意思是说,在同一圆上,若两个圆周角的“顶点”都在圆的同一条弧上,那么这两个圆周角的大小一定是一样的。
就像你和我站在同一个位置,看到的风景基本差不多,心情也是差不多的对吧?第二个推论就有点更酷了:任何一个圆上,连接圆心的直线都可以把圆分成两半,而这两半就像是你人生的两条路:无论你走哪条,结果都会是相同的。
24.1.4 圆周角
第1课时圆周角定理及推论
教学内容
1.圆周角的概念.
2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.
推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.
教学目标
1.了解圆周角的概念.
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.
重难点、关键
1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.
2.难点:运用数学分类思想证明圆周角的定理.
3.关键:探究圆周角的定理的存在.
教学过程
一、复习引入
(学生活动)请同学们口答下面两个问题.
1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢?
老师点评:(1)我们把顶点在圆心的角叫圆心角.
(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.
刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.
二、探索新知
问题:如图所示的⊙O,我们在射门游戏中,设E、F是球门,•设球员们只能在所在的⊙O 其它位置射门,如图所示的A、B、C点.通过观察,我们可以发现像∠EAF、∠EBF、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角.
现在通过圆周角的概念和度量的方法回答下面的问题.
1.一个弧上所对的圆周角的个数有多少个?
2.同弧所对的圆周角的度数是否发生变化?
3.同弧上的圆周角与圆心角有什么关系?
(学生分组讨论)提问二、三位同学代表发言.
老师点评:
1.一个弧上所对的圆周角的个数有无数多个.
2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的.
3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.
下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”
(1)设圆周角∠ABC的一边BC是⊙O的直径,如图所示
∵∠AOC是△ABO的外角
∴∠AOC=∠ABO+∠BAO
∵OA=OB
∴∠ABO=∠BAO
∴∠AOC=∠ABO
∴∠ABC=∠AOC
(2)如图,圆周角∠ABC的两边AB、AC在一条直径OD的两侧,那么∠ABC=∠AOC吗?请同学们独立完成这道题的说明过程.
老师点评:连结BO交⊙O于D同理∠AOD是△ABO的外角,∠COD是△BOC的外角,•那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠ABC.
(3)如图,圆周角∠ABC的两边AB、AC在一条直径OD的同侧,那么∠ABC=∠AOC吗?请同学们独立完成证明.
老师点评:连结OA、OC,连结BO并延长交⊙O于D,那么∠AOD=2∠ABD,∠COD=2∠CBO,而∠ABC=∠ABD-∠CBO=∠AOD-∠COD=∠AOC
现在,我如果在画一个任意的圆周角∠AB′C,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的.
从(1)、(2)、(3),我们可以总结归纳出圆周角定理:
在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.进一步,我们还可以得到下面的推导:
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
下面,我们通过这个定理和推论来解一些题目.
例1.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
分析:BD=CD,因为AB=AC,所以这个△ABC是等腰,要证明D是BC的中点,•只要连结AD证明AD是高或是∠BAC的平分线即可.
解:BD=CD
理由是:如图24-30,连接AD
∵AB是⊙O的直径
∴∠ADB=90°即AD⊥BC
又∵AC=AB
∴BD=CD
三、巩固练习
1.教材P92 思考题.
2.教材P93 练习.
四、应用拓展
例2.如图,已知△ABC内接于⊙O,∠A、∠B、∠C的对边分别设为a,b,c,⊙O半径为R,求证:===2R.
分析:要证明===2R,只要证明=2R,=2R,=2R,即sinA=,sinB=,sinC=,因此,十分明显要在直角三角形中进行.
证明:连接CO并延长交⊙O于D,连接DB
∵CD是直径
∴∠DBC=90°
又∵∠A=∠D
在Rt△DBC中,sinD=,即2R=
同理可证:=2R,=2R
∴===2R
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.圆周角的概念;
2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;
3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.。