当前位置:文档之家› 1 溅射压力对制备a-GaAs1-xNx+薄膜光学常数的影响-半导体学报2012

1 溅射压力对制备a-GaAs1-xNx+薄膜光学常数的影响-半导体学报2012

1 溅射压力对制备a-GaAs1-xNx+薄膜光学常数的影响-半导体学报2012
1 溅射压力对制备a-GaAs1-xNx+薄膜光学常数的影响-半导体学报2012

Vol.33,No.8Journal of Semiconductors August2012 Influence of sputtering pressure on optical constants of a-GaAs1 x N x thin films Jia Baoshan(贾宝山),Wang Yunhua(王云华),Zhou Lu(周路),Bai Duanyuan(白端元),

Qiao Zhongliang(乔忠良),Gao Xin(高欣),

and Bo Baoxue(薄报学)

State Key Laboratory on High Power Semiconductor Lasers,Changchun University of Science and Technology,

Changchun130022,China

Abstract:Amorphous GaAs1 x N x(a-GaAs1 x N x/thin films have been deposited at room temperature by a reac-

tive magnetron sputtering technique on glass substrates with different sputtering pressures.The thickness,nitrogen

content,carrier concentration and transmittance of the as-deposited films were determined experimentally.The

influence of sputtering pressure on the optical band gap,refractive index and dispersion parameters(E o,E d/has

been investigated.An analysis of the absorption coefficient revealed a direct optical transition characterizing the as-

deposited films.The refractive index dispersions of the as-deposited a-GaAs1 x N x films fitted well to the Cauchy

dispersion relation and the Wemple model.

Key words:a-GaAs1 x N x thin films;sputtering deposition;optical constants

DOI:10.1088/1674-4926/33/8/083002PACC:7820D;7820P;7840

1.Introduction

Amorphous GaAs1 x N x(a-GaAs1 x N x/has received much attention in recent years?1 because of its special mate-rial properties such as lattice matching with Si?2;3 and very few phase separations at an appreciable nitrogen content?4 .In addition,a-GaAs1 x N x is expected to have varying character-istics according to the N content,from a GaAs-like film to a GaN-like film?5;6 .Therefore,studies on optical,electrical and structural properties of a-GaAs1 x N x are of essential impor-tance.Knowledge of optical constants such as the absorption coefficient,optical band gap and refractive index of the semi-conductor is indispensable for the design and analysis of var-ious optical and optoelectronic devices?7;8 .The experimental data of transmittance can be analyzed to obtain material optical constants?9 ;less work,however,has been devoted previously to an a-GaAs1 x N x alloy system?1;6 .

On the other hand,the direct-current magnetron sputtering technique is particularly attractive because of its overwhelming advantages in comparison with other deposition methods.It is low cost,easy-to-use,safe and very suitable for the fabrication of amorphous thin film?10;11 .

In the present work,a-GaAs1 x N x thin films were sputtering-deposited on glass substrates by different sputtering pressures at room temperature.The thickness,nitrogen content, carrier concentration and transmittance of the as-deposited films were measured.A systematic investigation of the optical constants of a-GaAs1 x N x thin films depending on sputtering pressure has been carried out.

2.Experiment

a-GaAs1 x N x films were prepared on Corning7059glass substrates by the radio frequency(RF,13.56Hz)reactive mag-netron sputtering technique using a conventional sputtering

setup(JCP-350,Beijing Technol Science Co.Ltd).Glass sub-

strates were ultrasonically cleaned in acetone,rinsed in alcohol,

and subsequently dried in flowing nitrogen gas.The substrate

temperatures were maintained at about20?C by cooling wa-ter in order to obtain the amorphous phase of the GaAs1 x N x

films.Two non-doped GaAs crystal wafers with a diameter of

50mm were used as the sputtering targets with a high de-

position rate.A mixture of N2and Ar gas was used as the

working gas.The target-substrate distance was110mm.Be-

fore film deposition,the targets were sputtering-etched in Ar

plasma for30min to maintain a clean target surface.The

sputtering chamber was evacuated with a background pres-

sure well below1 10 4Pa by a turbo-molecular pump coupled with a rotary pump.High purity(99.999%)N2and Ar gases were let into the chamber through the individual mass flow controller.Flow rates of N2and Ar gas were fixed at3and30sccm respectively.The sputtering time was60 min and the RF power of every target was kept at50W for every run.The total chamber pressure was varied from 0.5to3Pa for different samples using a throttle valve.Sub-strate holder rotated with a speed of10–15round/min by a step motor during the deposition in order to obtain a uniform film.

The film thickness d was determined by a surface profiler

(Tencor Alpha-Step200Instrument).For the atomic concen-

tration of elements in the films,the energy-dispersive spec-

troscopy(EDS)measurement was done in a Noran Instrument

EDS System.The carrier concentration was determined by the

hall measurement using the Van Der Pauw method.The op-

tical transmittance spectra were measured by a spectropho-

tometer(UV-3100,Shimadzu)over the wavelength range of

300–2600nm.

*Project supported by the National Natural Science Foundation of China(Nos.61177019,61176048).

Corresponding author.Email:bbx@https://www.doczj.com/doc/833522049.html,

Received24January2012,revised manuscript received7March2012c 2012Chinese Institute of Electronics

Table 1.Thickness,N content and carrier concentration of a-GaAs1 x N x thin films deposited at different sputtering pressures.

Sputtering pressure(Pa)Thickness

(nm)

x value

(%)

Carrier concentration

(1017cm 2/

0.5 1 2 3934

905

718

522

11.3

11.5

14.8

32.3

1.52

3.07

4.09

6.89

3.Results and discussion

The thicknesses of the deposited films,determined by a

surface profiler were listed in Table1.A reduction in thickness

indicates that the deposition rates decrease with the increase of

sputtering pressure.At low pressure,the ion energy distribu-

tion in the plasma is sharper and the average energy is larger

than that at high pressure.Therefore the effect of ion bombard-

ment is more significant.On the other hand,a low sputtering

pressure leads to a long mean free path of Ar C with high kinetic energy,and consequently the atoms sputtered from the target

have higher kinetic energies?12 .It is believed that there is an

increased probability of a sputtered atom being returned to the

target by gas collision at a high pressure,thereby reducing the

deposition rate.

The nitrogen incorporation of the as-deposited films was

controlled by the variation of sputtering https://www.doczj.com/doc/833522049.html,ing the

EDS analysis,x values of as-deposited a-GaAs1 x N x films

were obtained as shown in Table1.It is found that the films

with high N content were deposited by high sputtering pres-

sures.The fact can be explained in terms of the impurity in-

corporation model?13 which states that the fraction of a gas

trapped during film deposition is inversely proportional to the

deposition rate.It has been experimentally and theoretically

verified that the deposition rate decreases with increased sput-

tering pressure.So the N content increases as the sputtering

pressures increase in the present cases.

The n-type-carrier concentrations determined by the Hall

measurement,for each sputtering pressure of a-GaAs1 x N x

thin films were summarized in Table1.The free carrier concen-

tration is increased as the sputtering pressure increases.Some

of the incorporated N atoms are inserted in the a-GaAs matrix

at the expense of As produced a-GaAs1 x N x.Other N atoms

generate point defects as vacancies and interstitials which lead

to N-related doping levels?2;14 .Consequently,we now suggest

that the high concentrations of N in a-GaAs1 x N x thin films

under a high sputtering pressure are responsible for the high

carrier concentrations.

The absorption spectrum is a simple method for analyz-

ing the band structure of semiconductors.Figure1shows the

transmittance of as-deposited a-GaAs1 x N x thin films at dif-

ferent sputtering pressures.Interference maxima and minima

due to multiple reflections on the film surface can be observed.

The well oscillating spectra indicate that the as-deposited films

have a high uniformity in thickness and composition and have

little scattering loss on the surface of films.Furthermore,it is

found that the absorption edge has a blue shift(towards the

energy band with a shorter wavelength)and the transmittance

increases with increasing sputtering pressure.This agrees with

the theory that the change of carrier concentration is

induced Fig.1.Transmittance spectra of the as-deposited a-GaAs1 x N x thin films.

by the N content.

In order to determine the optical band gap,the absorption coefficient?was estimated as a function of transmittance using the well-known relation:

?D

1

d

ln

1

T

;(1) where d and T are the film thickness and transmittance,respec-tively.The obtained value of?for an a-GaAs1 x N x thin film in the region of strong absorption is in the order of104cm 1. This strong absorption is attributed to the interband transitions. The optical absorption edge is analyzed by the following equa-tion according to Tauc?15

?h D A.h E g/p;(2) where A is a constant,which is almost independent of the chemical composition of investigated materials.E g is the op-tical band gap and p is a number related to transition process. In amorphous semiconductors,the exponent p takes values of 1/2and2for the direct and indirect transitions respectively. The curves of ln(?h /versus ln(h –E g/were plotted using the E g value to determine the value of p,and it was found about 1/2from the slope of these curves.Therefore,the as-deposited films appear to have a direct band gap.Plots of(?h /2as func-tions of h yield good linear relations over a wide range of pho-ton energy(Fig.2),indicating the presence of direct transitions. The extrapolations of these lines on the energy axis can give the optical band gaps of the prepared films as shown in Table2. Similar results have also been obtained by Zantta?8 .The ex-perimental results of E g are inconsistent with the values of the optical band gaps of GaAs1 x N x alloys following the dielec-tric theory of Van Vechen?16 .It can be seen from Table2that the optical band gap widens(blueshift)with increasing sputter-ing pressures.The noticeable blueshift can be explained on the basis of the Burstein effect?17 ,which attributed the blueshift of E g to the increase of carrier concentration as shown in Ta-ble1.This result is very important because it reveals that the optical band gap of a-GaAs1 x N x can be controlled by varying the sputtering pressure.

The refractive index n of as-deposited a-GaAs1 x N x thin films at different sputtering pressures are obtained using

Table 2.Optical band-gap (E g /,Cauchy dispersion constant (a/,Wemple–DiDomenico parameters (E d ,E o /and refractive index (n 1/for the as-deposited a-GaAs 1 x N x thin films.

Sputtering pressure (Pa)E g (eV)a b (104/E d (eV)E o (eV)n 1E g D E o /1.77(eV)0.5123

1.95

2.252.472.83

2.592.152.081.88

16.689.297.846.81

20.0314.6314.1811.83

3.49

4.024.264.6

2.602.152.081.89

1.97

2.272.402.59

Fig.2.Plots of (?h /as a function of h for the as-deposited a-GaAs 1 x N x films.Fig.3.Spectral distributions of refractive

index for the as-deposited a-GaAs 1 x N x films.

the well-known envelope technique ?18;19 with transmittance spectra measurements as shown in Fig.3.The value of n can be fitted to a reasonable function such as the two-term Cauchy dispersion relation ?20 :

n. /D a C

b 2

;(3)

where a and b are Cauchy parameters and is the wavelength of incident light.For !1,the significance of the parameter a appears immediately as n 1.Equation (3)can be used for ex-trapolating the refractive index at a short wavelength ?21 .The obtained values of a and b from Eq.(3)are also given in Ta-ble 2.It is observed from Fig.3that the refractive index tends to decrease with increasing wavelength exhibiting normal dis-

Fig.4.Plots of .n 2–1) 1for the as-deposited a-GaAs 1 x N x films versus (h )2.

persion.Additionally,the change in the n value is strongly re-lated to the change in N content induced by different sputtering pressures,i.e.the refractive index decreases with increasing N concentration.This result can be explained on the basis of the Kramers-Kronig relation which states that the change of the refractive index is the inverse of the variation of carrier con-centration ?22 .

The refractive index dispersion is extremely relevant to communication and spectral analysis device design.Wemple and DiDomenico ?23 have developed a refractive index disper-sion model below the optical band gap (in the optical trans-parent region)using the single oscillator approximation.The model plays an important role in analyzing the behavior of the film refractive index.Defining two parameters,the oscillator energy E o denoting the average excitation energy for electronic transitions and the dispersion energy E d which represents the strength of interband optical transitions,this model concludes that:

n 2D 1C E o E d

E o .h /:(4)

A plot .n 2–1) 1versus (h /2is shown in Fig.4.Both Wemple parameters of E o and E d can be obtained from the slope .E o E d / 1and intercept (E o =E d /respectively.The val-ues of E o ,E d and the refractive index (n 1/at long wavelengths are summarized in Table https://www.doczj.com/doc/833522049.html,parison of n 1between the third and seventh column in the table shows a good agreement of the two optical models.As can be seen,E d decreases with increasing sputtering pressure which corresponds to the optical band gap widening in the deposited samples.Moreover,it has been verified that E o was an average energy gap which was related to the value of the optical band gap by an empirical for-mula:E o D 1.77E g ?24;25 .The values of E g derived from E o

are reasonably consistent with those obtained from the Tauc relation as tabulated in Table2.

4.Conclusion

The optical constants and optical band gaps of the amor-phous GaAs1 x N x films prepared by a reactive sputtering method on glass substrates at different sputtering pressures have been investigated by the optical characterization method. It has been found that as the film deposition rate decreases,N and carrier concentrations in the deposited films increase as the sputtering pressure increases.The blueshift of E g,dependent on the sputtering pressure,can be interpreted as the Burstein effect.The refractive index n of as-deposited a-GaAs1 x N x thin films can be fitted well to the two-term Cauchy disper-sion relation;the refractive index decreases monotonously with increasing wavelength and increases with decreasing sputter-ing pressure.The refractive index dispersion curves of the pre-pared films fit well to a single-oscillator model.The experi-mental data of the optical constants and optical band gaps of a-GaAs1 x N x thin films can provide a reference for the appli-cation of a-GaAs1 x N x materials in the future. References

[1]Yu K M,Novikov S V,Broesler R,et al.Highly mismatched crys-

talline and amorphous GaN1 x As x alloys in the whole compo-sition range.J Appl Phys,2009,106(10):103709

[2]Bandet J,Aguir K,Lollman D,et al.Raman and electrical char-

acterizations of a-GaAs1 x N x thin films grown on c-Si(p)sub-strates by N2reactive sputtering.Jpn J Appl Phys,1997,36(1): 11

[3]Kondow M,Uomi K,Kitatani T,et al.Extremely large N con-

tent(up to10%)in GaNAs grown by gas-source molecular beam epitaxy.J Cryst Growth,1996,164(1–4):175

[4]Canales-Pozos S A,Rios-Jara D,Alvarez-Fregoso O,et al.

Morphological,optical,and photoluminescent characteristics of GaAs1 x N x nanowhiskered thin films.Appl Phys Lett,2001, 79(16):2555

[5]Cardona-Bedoya J A,Gordillo-Delgado F,Zelaya-Angel O,

et al.Growth and characterization of GaInN x As1 x thin films with band-gap energies in the red-blue portion of the visible spec-trum.Appl Phys Lett,2002,80(11):1900

[6]Lollman D,Aguir K,Bander J,et al.III–V nitride materials:an

approach through amorphous GaAs1 x N x thin films.Mater Sci Eng B,1997,43(1–3):283

[7]Aguir K,Lollman D B B,Carchano H.The evolution of a-

GaAs1 x N x/c-GaAs interface states as a function of Ar–NH3 plasma.Mater Sci Eng B,1997,50(1–3):157

[8]Zanatta A R,Ribeiro C T M,Freire F L.Optoelectronic

and structural properties of Er-doped sputter-deposited gal-lium–arsenic–nitrogen films.J Appl Phys,2001,90(5):2321 [9]Rodr{guez J,G′o mez M,Ederth J.Thickness dependence of the

optical properties of sputter deposited Ti oxide films.Thin Solid Films,2000,265(1/2):119

[10]Li Ting,Yan Jinliang,Ding Xingwei,et al.Effect of substrate

temperature on the properties of deep ultraviolet transparent con-ductive ITO/Ga2O3films.Journal of Semiconductors,2012, 33(1):013002

[11]Liu Wei,Cheng Shuying.Photoelectric properties of ITO thin

films deposited by DC magnetron sputtering.Journal of Semi-conductors,2011,32(1):013002

[12]Chawla V,Jayaganthan R,Chandra R.Influence of sputtering

pressure on the structure and mechanical properties of nanocom-posite Ti–Si–N thin films.J Mater Sci Technol,2010,26(8):673 [13]Maissel L I.Handbook of thin films technology.New York:

McGraw-Hill,1970

[14]Zanatta A R,Hammer P,Alvarez F.Photoelectron spectroscopoc

study of amorphous GaAsN films.Appl Phys Lett,2000,7(16): 2211

[15]Tauc J.Amorphous and liquid semiconductors.New York:

Plenum,1974

[16]Sakai S,Ueta Y,Teraughi Y.Band gap energy and band lineup

of III–V alloy semiconductors incorporating nitrogen and boron.

Jpn J Appl Phys,1993,32(10):4413

[17]Burstein E.Anoma1ous optical absorptionlimit in InSb.Phys

Rev,1954,93(3):632

[18]Manifacier J C,Gasiot J,Fillard J P.A simple method for the

determination of the optical constants n;k and the thickness of a weakly absorbing thin film.J Phys E,1976,9(11):1002 [19]Swanepoel R.Determination of the thickness and optical con-

stants of amorphous silicon.J Phys E,1983,16(12):1214 [20]Tompkins H G,McGahan W A.Spectroscopic ellipsometry and

reflectometry.New York:John Wiley&Sons,1999

[21]Mott T S.Optical properties of semiconductors.London:Butter-

worths,1959

[22]Mergel D,Qiao Z.Correlation of lattice distortion with optical

and electrical properties of In2O3:Sn films.J Appl Phys,2004, 95(10):5608

[23]Wemple S H,DiDomenico M.Optical dispersion and the struc-

ture of solids.Phys Rev Lett,1969,23(20):1156

[24]Cody G D.Semiconductors and semimetals,part B:optical prop-

erties.New York:Academic,1984

[25]Solomon I,Schmidt M P,Senemaud C,et al.Behavior of the elec-

tronic dielectric constant in covalent and ionic materials.Phys Rev B,1988,38(18):13263

半导体物理器件期末考试试题(全)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 2015半导体物理器件期末考试试题(全) 半导体物理器件原理(期末试题大纲)指导老师:陈建萍一、简答题(共 6 题,每题 4 分)。 代表试卷已出的题目1、耗尽区:半导体内部净正电荷与净负电荷区域,因为它不存在任何可动的电荷,为耗尽区(空间电荷区的另一种称呼)。 2、势垒电容:由于耗尽区内的正负电荷在空间上分离而具有的电容充放电效应,即反偏 Fpn 结的电容。 3、Pn 结击穿:在特定的反偏电压下,反偏电流迅速增大的现象。 4、欧姆接触:金属半导体接触电阻很低,且在结两边都能形成电流的接触。 5、饱和电压:栅结耗尽层在漏端刚好夹断时所加的漏源电压。 6、阈值电压:达到阈值反型点所需的栅压。 7、基区宽度调制效应:随 C-E 结电压或 C-B 结电压的变化,中性基区宽度的变化。 8、截止频率:共发射极电流增益的幅值为 1 时的频率。 9、厄利效应:基带宽度调制的另一种称呼(晶体管有效基区宽度随集电结偏置电压的变化而变化的一种现象) 10、隧道效应:粒子穿透薄层势垒的量子力学现象。 11、爱因斯坦关系:扩散系数和迁移率的关系: 12、扩散电容:正偏 pn 结内由于少子的存储效应而形成的电容。 1/ 11

13、空间电荷区:冶金结两侧由于 n 区内施主电离和 p 区内受主电离

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 而形成的带净正电荷与净负电荷的区域。 14、单边突变结:冶金结的一侧的掺杂浓度远大于另一侧的掺杂浓度的 pn 结。 15、界面态:氧化层--半导体界面处禁带宽度中允许的电子能态。 16、平带电压:平带条件发生时所加的栅压,此时在氧化层下面的半导体中没有空间电荷区。 17、阈值反型点:反型电荷密度等于掺杂浓度时的情形。 18、表面散射:当载流子在源极和源漏极漂移时,氧化层--半导体界面处载流子的电场吸引作用和库伦排斥作用。 19、雪崩击穿:由雪崩倍增效应引起的反向电流的急剧增大,称为雪崩击穿。 20、内建电场:n 区和 p 区的净正电荷和负电荷在冶金结附近感生出的电场叫内建电场,方向由正电荷区指向负电荷区,就是由 n 区指向 p 区。 21、齐纳击穿:在重掺杂 pn 结内,反偏条件下结两侧的导带与价带离得非常近,以至于电子可以由 p 区的价带直接隧穿到 n 区的导带的现象。 22、大注入效应:大注入下,晶体管内产生三种物理现象,既三个效应,分别称为:(1)基区电导调制效应;(2)有效基区扩展效应; (3)发射结电流集边效应。 它们都将造成晶体管电流放大系数的下降。 3/ 11

薄膜物理与技术A卷答案

《薄膜物理与技术》A卷试题参考答案及评分细则 一、名词解释:(本题满分20分,每小题5分) 1、饱和蒸汽压 在一定温度下(1分),真空室内蒸发物质的蒸气与固体或液体平衡过程中(2分)所表现出的压力称为该物质的饱和蒸气压。(2分) 2、溅射 是指荷能粒子轰击固体物质表面(靶),(1分)并在碰撞过程中发生动能与动量的转移,(2分)从而将物质表面原子或分子激发出来的过程。(2分) 3、化学气相沉积 把含有构成薄膜元素的一种或几种化合物的单质气体供给基片(2分),利用热、等离子体、紫外线、激光、微波等各种能源(2分),使气态物质经化学反应形成固态薄膜。(1分)。 4、外延生长 外延生长技术就是在一块半导体单晶片上(2分)沿着单晶片的结晶轴方向生长(2分)一层所需要的薄单晶层。(1分) 二、简答题:(本题满分80分) 1、什么叫真空?写出真空区域的划分及对应的真空度(10分) 答:真空是指低于一个大气压的气体空间。(2分) 对真空的划分: 1)粗真空:105-102Pa;(2分) 2)低真空:102-10-1Pa;(2分) 3)高真空:10-1-10-6Pa;(2分) 4)超高真空:<10-6Pa。(2分) 2、什么是真空蒸发镀膜法?其基本过程有哪些?(10分) 答:真空蒸发镀膜法(简称真空蒸镀)是在真空室中,加热蒸发容器中待形成薄膜的原材料,使其原子或分子从表面气化逸出(2分),形成蒸气流,入射到基片表面,凝结形成固态薄膜的方法。(2分)其基本过程包括: (1)加热蒸发过程。包括凝聚相转变为气相的相变过程。(2分) (2)输运过程,气化原子或分子在蒸发源与基片之间的输运。(2分) (3)蒸发原子或分子在基片表面的淀积过程,即使蒸气凝聚、成核、核生长、形成连续薄膜。(2分) 3、简述磁控溅射的工作原理。(10分) 答:磁控溅射的工作原理是:电子e在电场E作用下,在飞向基板过程中与氩原子发生碰撞,使其电离出Ar+和一个新的电子e,电子飞向基片,Ar+在电场作用下加速飞向阴极靶,(2分)并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子则淀积在基片上形成薄膜。(2分) 二次电子e1一旦离开靶面,就同时受到电场和磁场的作用。一般可近似认为:二次电子在阴极暗区时,只受电场作用;一旦进入负辉区就只受磁场作用。(2分)

华工半导体物理期末总结

一、p-n结 1.PN结的杂质分布、空间电荷区,电场分布 (1)按照杂质浓度分布,PN 结分为突变结和线性缓变结 突变结--- P区与N区的杂质浓度都是均匀的,杂质浓度在冶金结面处(x = 0)发生突变。 单边突变结---一侧的浓度远大于另一侧,分别记为PN+ 单边突变结和P+N 单边突变结。后面的分析主要是建立在突变结(单边突变结)的基础上 突变结近似的杂质分布。

线性缓变结--- 冶金结面两侧的杂质浓度均随距离作线性变化,杂质浓度梯 a 为常数。在线性区 () N x ax =- () 常数 = - = dx N N d a a d 线性缓变结近似的杂质分布。

空间电荷区:PN结中,电子由N区转移至P区,空穴由P区转移至N区。电子和空穴的转移分别在N区和P区留下了未被补偿的施主离子和受主离子。它们是荷电的、固定不动的,称为空间电荷。空间电荷存在的区域称为空间电荷区。 (2)电场分布 2.平衡载流子和非平衡载流子 (1)平衡载流子--处于非平衡状态的半导体,其载流子浓度为n0和p0。 (2)非平衡载流子--处于非平衡状态的半导体,其载流子浓度也不再是n0和p0(此处0是下标),可以比他们多出一部分。比平衡状态多出来的这部分载流子称为非平衡载流子 3. Fermi 能级,准Fermi 能级,平衡PN结能带图,非平衡PN结能带图 (1)Fermi 能级:平衡PN结有统一的费米能级。 (2)当pn结加上外加电压V后,在扩散区和势垒区范围内,电子和空穴没有统一的费米能级,分别用准费米能级。 (3)平衡PN结能带图

(4)非平衡PN结能带图

半导体薄膜材料分析

半導體薄膜材料分析 李文鴻 化學工程系 黎明技術學院 摘要 使用電子迴旋共振電漿化學氣相沉積法(electron cyclotron resonance plasma chemical vapor deposition, ECRCVD)以CH4/SiH4/Ar混合氣體於低溫下成長碳化矽薄膜為例,藉由穿透式電子顯微鏡(TEM)、X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)、傅立葉轉換紅外線光譜儀(FTIR)、X射線光電子能譜儀(XPS; ESCA)、歐傑電子能譜儀(AES)、拉塞福背向散射儀(RBS)、低能量電子繞射(LEED)、反射式高能量電子繞射(RHEED)、拉曼光譜儀(Raman)來研究碳化矽薄膜的微結構、表面型態及化學組成與沉積參數之間的關係,藉由二次離子質譜儀(SIMS)來研究沉積膜的雜質濃度分佈,利用光子激發光(PL)來量測發光波長範圍。 關鍵字:材料分析、電子迴旋共振電漿化學氣相沉積法、碳化矽薄膜 一、前言光電半導體產業的發展非常迅速,其中

積體電路製程技術的發展朝向尺寸微小化,目前已邁入0.13μm以下製程及邁向奈米的範疇,並朝多層薄膜的趨勢。然而新材料和製程的開發及其分析更是必須掌握的。本文將以跨世紀的接班材料-碳化矽(silicon carbide)為例,介紹材料之薄膜成長及其分析。 碳化矽為具有許多優異特性的電子材料,如寬能隙、高電子遷移率、高飽和飄移速度、高崩潰電壓、高操作溫度、高熱傳導度、化學惰性、高融點及高硬度【1】,並具耐熱震(thermal shock resistance)、抗高溫氧化、比矽低的介電常數等優點。由Johnson 之優值指標(評估元件在高功率及高頻下運作的指標)碳化矽(β-SiC)為矽之1137.8倍,及Keyes 之優值指標(評估元件在高速下運作的指標) 碳化矽(β-SiC)為矽之5.8倍【2】,故碳化矽元件能在高功率、高頻及高速下操作的特性,在光電元件的製造上,具極大之應用價值,且可用於微機電系統(microelectromechanical system;MEMS)元件之薄膜【3】、封裝材料及濾材之分離膜等【4】。在商業應用發展方面,Cree Research、日本三洋公司及信越半導體等的碳化矽藍光LED已商品化,Motorola將碳化矽應用於RF 及微波的高頻高功率元件,General Electric 應用於高功率及高溫元件之感測器,Westinghouse 應用於高頻MESFET元件等。可見碳化矽具多用途且具發展潛力,因此被諭為跨世紀的接班材料。 由於材料之製程會影響材料結構及性質進而影響其應用,因此本文將介紹碳化矽材

半导体物理期末试卷含部分答案

一、填空题 1.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子运动难易程度的物理量,联系两者的关系式是 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

电子科技大学半导体物理期末考试试卷试题答案

电子科技大学二零一零至二零一一学年第一学期期末考试 1.对于大注入下的直接辐射复合,非平衡载流子的寿命与(D ) A. 平衡载流子浓度成正比 B. 非平衡载流子浓度成正比 C. 平衡载流子浓度成反比 D. 非平衡载流子浓度成反比 2.有3个硅样品,其掺杂情况分别是: 甲.含铝1×10-15cm-3乙.含硼和磷各1×10-17cm-3丙.含镓1×10-17cm-3 室温下,这些样品的电阻率由高到低的顺序是(C ) A.甲乙丙 B. 甲丙乙 C. 乙甲丙 D. 丙甲乙 3.题2中样品的电子迁移率由高到低的顺序是( B ) 4.题2中费米能级由高到低的顺序是( C ) 5. 欧姆接触是指( D )的金属一半导体接触 A. W ms = 0 B. W ms < 0 C. W ms > 0 D. 阻值较小且具有对称而线性的伏安特性 6.有效复合中心的能级必靠近( A ) A.禁带中部 B.导带 C.价带 D.费米能级 7.当一种n型半导体的少子寿命由直接辐射复合决定时,其小注入下的少子寿命正比于(C ) A.1/n0 B.1/△n C.1/p0 D.1/△p 8.半导体中载流子的扩散系数决定于其中的( A ) A.散射机构 B. 复合机构 C.杂质浓变梯度 D.表面复合速度 9.MOS 器件绝缘层中的可动电荷是( C ) A. 电子 B. 空穴 C. 钠离子 D. 硅离子 10.以下4种半导体中最适合于制作高温器件的是( D ) A. Si B. Ge C. GaAs D. GaN 二、解释并区别下列术语的物理意义(30 分,7+7+8+8,共4 题) 1. 有效质量、纵向有效质量与横向有效质量(7 分) 答:有效质量:由于半导体中载流子既受到外场力作用,又受到半导体内部周期性势场作用。有效概括了半导体内部周期性势场的作用,使外场力和载流子加速度直接联系起来。在直接由实验测得的有效质量后,可以很方便的解决电子的运动规律。(3分) 纵向有效质量、横向有效质量:由于k空间等能面是椭球面,有效质量各向异性,在回旋共振实验中,当磁感应强度相对晶轴有不同取向时,可以得到为数不等的吸收峰。我们引入纵向有效质量跟横向有效质量表示旋转椭球等能面纵向有效质量和横向有效质量。(4分) 2. 扩散长度、牵引长度与德拜长度(7 分) 答:扩散长度:指的是非平衡载流子在复合前所能扩散深入样品的平均距离。由扩散系数

半导体物理学期末复习试题及答案一

一、选择题 1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费 米能级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.· 6.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 7.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 8.砷化稼的能带结构是( A )能隙结构。

A. 直接 B. 间接 9. 将Si 掺杂入GaAs 中,若Si 取代Ga 则起( A )杂质作 用,若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 10. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的量子态被电子占据的概率为( A )。 · A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 11. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 12. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??= i D S n N q T k V ln 0 D. ???? ??≥i D S n N q T k V ln 20 13. - 14. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触

半导体物理期末试卷(含部分答案

一、填空题 1.纯净半导体Si 中掺错误!未找到引用源。族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

薄膜物理与技术

第一章真空技术基础 1、膜的定义及分类。 答:当固体或液体的一维线性尺度远远小于它的其他二维尺度时,我们将这样的固体或液体称为膜。通常,膜可分为两类: (1)厚度大于1mm的膜,称为厚膜; (2)厚度小于1mm的膜,称为薄膜。 2、人类所接触的真空大体上可分为哪两种? 答:(1)宇宙空间所存在的真空,称之为“自然真空”;(2)人们用真空泵抽调容器中的气体所获得的真空,称之为“人为真空”。 3、何为真空、绝对真空及相对真空? 答:不论哪一种类型上的真空,只要在给定空间内,气体压强低于一个大气压的气体状态,均称之为真空。完全没有气体的空间状态称为绝对真空。目前,即使采用最先进的真空制备手段所能达到的最低压强下,每立方厘米体积中仍有几百个气体分子。因此,平时我们所说的真空均指相对真空状态。 4、毫米汞柱和托? 答:“毫米汞柱(mmHg)”是人类使用最早、最广泛的压强单位,它是通过直接度量长度来获得真空的大小。1958 年,为了纪念托里拆利,用“托(Torr)”,代替了毫米汞柱。1 托就是指在标准状态下,1 毫米汞柱对单位面积上的压力,表示为1Torr=1mmHg。 5、真空区域是如何划分的? 答:为了研究真空和实际使用方便,常常根据各压强范围内不同的物理特点,把真空划分为以下几个区域:(1)粗真空:l′105 ~ l′102 Pa,(2)低真空:l′102 ~ 1′10-1Pa,(3)高真空:l′10-1 ~ 1′10-6Pa和(4)超高真空:< 1′10-6Pa。 6、真空各区域的气体分子运动规律。 答:(1)粗真空下,气态空间近似为大气状态,分子仍以热运动为主,分子之间碰撞十分频繁;(2)低真空是气体分子的流动逐渐从黏滞流状态向分子状态过渡,气体分子间和分子和器壁间的碰撞次数差不多;(3)高真空时,气体分子的流动已为分子流,气体分子和容器壁之间的碰撞为主,而且碰撞次数大大减少,在高真空下蒸发的材料,其粒子将沿直线飞行;(4)在超高真空时,气体的分子数目更少,几乎不存在分子间的碰撞,分子和器壁的碰撞机会也更少了。 7、何为气体的吸附现象?可分几类、各有何特点? 答:气体吸附就是固体表面捕获气体分子的现象,吸附分为物理吸附和化学吸附。 (1)物理吸附没有选择性,任何气体在固体表面均可发生,主要靠分子间的相互吸引力引起的。物理吸附的气体容易发生脱附,而且这种吸附只在低温下有效;(2)化学吸附则发生在较高的温度下,和化学反应相似,气体不易脱附,但只有当气体中的原子和固体表面原子接触并形成化合键时才能产生吸附作用。 8、何为气体的脱附现象? 答:气体的脱附是气体吸附的逆过程。通常把吸附在固体表面的气体分子从固体表面被释放出来的过程叫做气体的脱附。 9、何为电吸收和化学清除现象? 答:电吸收是指气体分子经电离后形成正离子,正离子具有比中性气体分子更强的化学活泼性,因此常常和固体分子形成物理或化学吸附;化学清除现象常在活泼金属(如钡、铁等)固体材料的真空蒸发时出现,这些蒸发的固体材料将和非惰性气体分子生成化合物,从而产生化学吸附。 10、影响气体在固体表面吸附和脱附的主要因素

半导体物理期末考试试卷A参考答案与评分标准

电子科技大学二零零 七 至二零零 八 学年第 一 学期期 末 考试 一、选择填空(22分) 1、在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带( B ), 对应的有效质量( C ),称该能带中的空穴为( E )。 A. 曲率大; B. 曲率小; C. 大; D. 小; E. 重空穴; F. 轻空穴 2、如果杂质既有施主的作用又有受主的作用,则这种杂质称为( F )。 A. 施主 B. 受主 C.复合中心 D.陷阱 F. 两性杂质 3、在通常情况下,GaN 呈( A )型结构,具有( C ),它是( F )半导体材料。 A. 纤锌矿型; B. 闪锌矿型; C. 六方对称性; D. 立方对称性; E.间接带隙; F. 直接带隙。 4、同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr 是乙的3/4, m n */m 0值是乙的2倍,那么用类氢模型计算结果是( D )。 A.甲的施主杂质电离能是乙的8/3,弱束缚电子基态轨道半径为乙的3/4 B.甲的施主杂质电离能是乙的3/2,弱束缚电子基态轨道半径为乙的32/9 C.甲的施主杂质电离能是乙的16/3,弱束缚电子基态轨道半径为乙的8/3 D.甲的施主杂质电离能是乙的32/9,的弱束缚电子基态轨道半径为乙的3/8 5、.一块半导体寿命τ=15μs ,光照在材料中会产生非平衡载流子,光照突然停止30μs 后,其中非平衡载流子将衰减到原来的( C )。 A.1/4 ; B.1/e ; C.1/e 2 ; D.1/2 6、对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够高、n i >> /N D -N A / 时,半导体具有 ( B ) 半导体的导电特性。 A. 非本征 B.本征 7、在室温下,非简并Si 中电子扩散系数D n与ND有如下图 (C ) 所示的最恰当的依赖关系: Dn Dn Dn Dn A B C D 8、在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向( A )移动;当掺 ND ND ND ND

北工大 10年 半导体物理 期末试卷

半导体物理2010-2011学年(2011.1.5) 一、简答题(8*6’=48’) 1.请填写下表中的数据: 解理面 材料晶格结构布拉伐格子直接/间接 带隙 Si GaAs 2.什么是本征半导体?什么是杂质半导体?示意画出掺杂浓度为Nd的N型半导体样品电子浓度n和本征载流子浓度ni随T变化曲线。 3.“纯净的半导体中,掺入百万分之一的杂质,可以减小电阻率达1百万倍,”是估算说明之。 4.一块杂志补偿的半导体,受主杂质和施主杂质浓度相等。设杂质全部电离,判断当杂质浓度分别为 (a) Na=Nd=1014cm-3(b) Na=Nd=1018cm-3 时,哪种情况的电导率大?简述分析理由。 5.什么是载流子的平均自由时间τ?有两块Si半导体材料1和2,其中τ1>τ2,迁移率哪个大? 如果同一块半导体中,有两种机理的平均自由时间τ1和τ2,其总迁移率如何确定? 6.写出以n型样品为例少子空穴的连续性方程。 由连续性方程写出:不考虑电场的作用、无产生、稳态载流子扩散方程; 7.什么是PN结的势垒电容?定性说明掺杂浓度对势垒电容有何影响。 8.一个p-N异质结接触前能带图见图1。画出平衡状态下能带图。

电阻率为7Ω·cm的p型硅,T=300K。 ⑴试计算室温时多数载流子和少子浓度(可查图)。 ⑵计算该半导体的功函数。 ⑶不考虑界面态,在金属铝(功函数W Al=4.20eV)和金属铂(功函数W Pi=5.3eV)中选择制备肖特基二极管的金属,给出选择理由。 ⑷求金属一侧势垒高度的理论值qΦms和半导体一侧势垒高度qV D 。 三、(16’) 室温下,一个Si的N-P结,N区一侧掺杂浓度为1017cm-3,P区为1015cm-3 ⑴求该N-P结的接触电势差。 ⑵画出平衡PN结、正向偏置PN结、反向偏置PN结空间电荷区中及边界处的载流子分布示意图。 ⑶根据正向和反向少子分布情况,解释PN结正向导通,反向截止的饱和特性。 ⑷写出理想PN结电流-电压关系公式,在对数坐标下,定性画出理想和实际I-V特性示意图。 四、(15’) 一理想的MOS结构的高频测量的C-V曲线如图2. (1)判断该结构中,半导体的导电类型。 (2)说明图中1,2,3,4,5点的半导体一侧的状态,并示意画出每点半导体一侧的能带形状,以及金属和半导体一侧的电荷分布。

薄膜材料与技术

薄膜技术在能源材料中的应用——薄膜太 阳能电池 一概述 能源和环境是二十一世纪面临的两个重大问题,据专家估算,以现在的能源消耗速度,可开采的石油资源将在几十年后耗尽,煤炭资源也只能供应人类使用约200年。太阳能电池作为可再生无污染能源,能很好地同时解决能源和环境两大难题,具有很广阔的发展前景。照射到地球上的太阳能非常巨大,大约40 min照射到地球上的太阳能就足以满足全球人类一年的能量需求。因此,制备低成本高光电转换效率的太阳能电池不仅具有广阔的前景,而且也是时代所需。 太阳能电池行业是21世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。 太阳能电池种类繁多,主要有硅太阳能电池、聚光太阳能电池、无机化合物薄膜太阳能电池、有机薄膜太阳能电池、纳米晶薄膜太阳能电池和叠层太阳能电池等几大类[1]。 二薄膜太阳能电池。 1、薄膜硅太阳能电池 薄膜硅太阳能电池(硅膜厚约50μm)的出现,相对晶体硅太阳能电池,所用的硅材料大幅度减少,很大程度上降低了晶体硅太阳能电池的成本。薄膜硅太阳能电池主要有非晶硅(a—Si)、微晶硅(μc—Si)和多晶硅(p-Si)薄膜太阳能电池,前两者有光致衰退效应,其中μc—Si薄膜太阳能电池光致衰退效应相对较弱但μc-Si薄膜沉积速率低(仅1.2 nm/s) ,光致衰退效应致使其性能不稳定,发展受到一定的限制,而后者则无光致衰退效应问题,因此是硅系太阳能电池

的发展方向[1]。 太阳能电池是制约太阳能发电产业发展的瓶颈技术之一。目前主要的研究工作集中在新材料、新工艺、新设计等方面,其目的是为了提高电池转换效率和降低电池制造成本。制造太阳能电池的材料主要有单晶硅、多晶硅、非晶硅以及其他新型化合物半导体材料,其中非晶硅属直接转换型半导体,光吸收率大,易于制成厚度0.5微米以下、面积l平方米以上的薄膜,并且容易与其他 原子结合制成对近红外高吸收的非晶硅锗集层光电池,这是目前的主攻方向之一;另一种是非晶硅和多晶硅混合薄膜材料,它转换率高、用材省,是新世纪最有前途的薄膜电池之一。 2、无机化合物薄膜太阳能电池 选用的无机化合物主要有CdTe,CdS,GaAs,CulnSe2(CIS)等,其中CdTe的禁带宽度为1.45 eV(最佳产生光伏响应的禁带宽度为1.5 eV),是一个理想的半导体材料,截止2004年,CdTe电池光电转化效率最高为16.5%;CdS的禁带宽度约为2.42 eV,是一种良好的太阳能电池窗口层材料,可与CdTe、SnS和CIS等形成异质结太阳能电池;GaAs的禁带宽度为1.43 eV,光吸收系数很高,GaAs单结太阳电池的理论光电转化效率为27%,目前GaA/Ge单结太阳电池最高光电转换效率超过20%,生产水平的光电转换效率已经达到19~20%,其与GalnP组成的双节、三节和多节太阳能电池有很大的发展前景;CIS薄膜太阳能电池实验室最高光电转化效率已达19.5%,在聚光条件下(14个太阳光强),光电转化效率达到21.5%,组件产品的光电转化效率已经超过13%;CIS 薄膜用Ga部分取代In,就形成Culn1-x Ga x Se2 (简称CIGS)四元化合物,其薄膜的禁带宽度在1.04~1.7 eV范围内可调,这为太阳能电池最佳禁带宽度的优化提供了机会,同时开发了两种新的材料,用Ga完全取代In形成CuGaSe2,用S完全取代Se形成CulnS2,以备In、Se资源不足时可以采用。但是,Cd和As是有毒元素,In和Se是稀有元素,严重地制约着无机化合物薄膜太阳能电池的大规模生

薄膜物理与技术课程教学大纲

薄膜物理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:薄膜物理与技术 所属专业:电子器件与材料工程 课程性质:必修课 学分:3 (二)课程简介、目标与任务; 本课程讲授薄膜的形成机制和原理、薄膜结构和缺陷、薄膜各项物理性能和分析方法等物理内容;讲授薄膜各种制备技术。通过本课程学习,使学生具备从事电子薄膜、光学薄膜、以及各种功能薄膜研究与开发的能力 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 《量子力学》、《热力学与统计物理》、《固体物理》、《电子技术》、《电路分析》等。 (四)教材与主要参考书。 教材:杨邦朝,王文生. 《薄膜物理与技术》,成都:电子科技大学出版社,1994 主要参考书:1.陈国平.《薄膜物理与技术》,东南大学出版社,1993 2.田民波,薄膜技术与薄膜材料,清华大学出版社,2006-8 二、课程内容与安排 本课程全部为课堂讲授。重点:真空的获得和真空测量的工作原理;物理气相沉积和化学气相沉积的原理及方法;薄膜生长的机理。 难点:磁控溅射的机理及控制;MOCVD技术;薄膜形成过程的机理 (一)绪论2学时 1、薄膜的概念和历史 2、薄膜材料与薄膜技术的发展 3、薄膜科学是边缘交叉学科 4、薄膜产业是腾飞的高科技产业

(二)真空技术基础2学时 1、真空的基本知识 2、真空的获得 3、真空的测量 (三)真空蒸发镀膜4学时 1、真空蒸发原理 2、蒸发源的蒸发特性及膜厚分布 3、蒸发源的类型 4、合金及化合物的蒸发 5、膜厚和淀积速率的测量与控制 (四)溅射镀膜4学时 1、溅射镀膜的特点 2、溅射的基本原理 3、溅射镀膜类型 4、溅射镀膜的厚度均匀性 (五)离子镀膜2学时 1、离子镀原理 2、离子镀的特点 3、离子轰击的作用 4、离子镀的类型 (六)化学气相沉积镀膜4学时 1、化学气相沉积的基本原理 2、化学气相沉积的特点 3、化学气相沉积方法简介 4、低压化学气相沉积 5、等离子体化学气相沉积 6、其他化学气相沉积 (七)溶液镀膜法2学时 1、化学反应沉积 2、阳极氧化法

半导体物理期末考试试卷a-参考答案与评分标准

电子科技大学二零零七至二零零八学年第一学期期末考试 一、选择填空(22分) 1、在硅和锗的能带结构中,在布里渊中心存在两个极大值重合的价带,外面的能带( B ), 对应的有效质量( C ),称该能带中的空穴为( E )。 A. 曲率大; B. 曲率小; C. 大; D. 小; E. 重空穴; F. 轻空穴 2、如果杂质既有施主的作用又有受主的作用,则这种杂质称为(F )。 A. 施主 B. 受主 C.复合中心 D.陷阱 F. 两性杂质 3、在通常情况下,GaN呈( A )型结构,具有( C ),它是(F )半导体材料。 A. 纤锌矿型; B. 闪锌矿型; C. 六方对称性; D. 立方对称性; E.间接带隙; F. 直接带隙。 4、同一种施主杂质掺入甲、乙两种半导体,如果甲的相对介电常数εr是乙的3/4,m n*/m0值是乙的2 倍,那么用类氢模型计算结果是( D )。 A.甲的施主杂质电离能是乙的8/3,弱束缚电子基态轨道半径为乙的3/4 B.甲的施主杂质电离能是乙的3/2,弱束缚电子基态轨道半径为乙的32/9 C.甲的施主杂质电离能是乙的16/3,弱束缚电子基态轨道半径为乙的8/3 D.甲的施主杂质电离能是乙的32/9,的弱束缚电子基态轨道半径为乙的3/8 5、.一块半导体寿命τ=15μs,光照在材料中会产生非平衡载流子,光照突然停止30μs后,其中非平衡载 流子将衰减到原来的(C )。 A.1/4 ; B.1/e ; C.1/e2; D.1/2 6、对于同时存在一种施主杂质和一种受主杂质的均匀掺杂的非简并半导体,在温度足够高、n i>> /N D-N A/ 时,半导体具有( B )半导体的导电特性。 A. 非本征 B.本征 7、在室温下,非简并Si中电子扩散系数Dn与ND有如下图(C )所示的最恰当的依赖关系: DnDnDnDn 8、在纯的半导体硅中掺入硼,在一定的温度下,当掺入的浓度增加时,费米能级向(A )移动;当掺

薄膜物理与技术复习资料

第一章 最可几速率:根据麦克斯韦速率分布规律,可以从理论上推得分子速率在m v 处有极大值,m v 称为最可几速率 M RT M RT m kT 41.122==,Vm 速度分布 平均速度: M RT m RT m kT 59.188==ππ,分子运动平均距离 均方根速度:M RT M RT m kT 73.133==平均动能 真空的划分:粗真空、低真空、高真空、超高真空。 真空计:利用低压强气体的热传导和压强有关; (热偶真空计) 利用气体分子电离;(电离真空计) 真空泵:机械泵、扩散泵、分子泵、罗茨泵 机械泵:利用机械力压缩和排除气体 扩散泵:利用被抽气体向蒸气流扩散的想象来实现排气作用 分子泵:前级泵利用动量传输把排气口的气体分子带走获得真空。 平均自由程:每个分子在连续两次碰撞之间的路程称为自由程;其统计平均值成为平均自由程。 常用压强单位的换算 1Torr=133.322 Pa 1 Pa=7.5×10-3 Torr 1 mba=100Pa 1atm=1.013*100000Pa 真空区域的划分、真空计、各种真空泵 粗真空 1×105 to 1×102 Pa 低真空 1×102 to 1×10-1 Pa 高真空 1×10-1 to 1×10-6 Pa 超高真空 <1×10-6 Pa 旋转式机械真空泵 油扩散泵 复合分子泵 属于气体传输泵,即通过气体吸入并排出真空泵从而达到排气的目的 分子筛吸附泵 钛升华泵 溅射离子泵 低温泵 属于气体捕获泵,即通过各种吸气材料特有的吸气作用将被抽气体吸除,以达到所需真空。 不需要油作为介质,又称为无油泵 绝对真空计: U 型压力计、压缩式真空计 相对真空计:

最新电子科技大学半导体物理期末考试试卷a试题答案

电子科技大学二零 九 至二零 一零 学年第 一 学期期 末 考试 半导体物理 课程考试题 A 卷 ( 120分钟) 考试形式: 闭卷 考试日期 2010年 元月 18日 课程成绩构成:平时 10 分, 期中 5 分, 实验 15 分, 期末 70 分 一、选择题(共25分,共 25题,每题1 分) A )的半导体。 A. 不含杂质和缺陷 B. 电阻率最高 C. 电子密度和空穴密度相等 D. 电子密度与本征载流子密度相等 2、如果一半导体的导带中发现电子的几率为零,那么该半导体必定( D )。 A. 不含施主杂质 B. 不含受主杂质 C. 不含任何杂质 D. 处于绝对零度 3、对于只含一种杂质的非简并n 型半导体,费米能级E F 随温度上升而( D )。 A. 单调上升 B. 单调下降 C. 经过一个极小值趋近Ei D. 经过一个极大值趋近Ei 4、如某材料电阻率随温度上升而先下降后上升,该材料为( C )。 A. 金属 B. 本征半导体 C. 掺杂半导体 D. 高纯化合物半导体 5、公式*/m q τμ=中的τ是半导体载流子的( C )。 A. 迁移时间 B. 寿命 C. 平均自由时间 D. 扩散时间 6、下面情况下的材料中,室温时功函数最大的是( A ) A. 含硼1×1015cm -3的硅 B. 含磷1×1016cm -3的硅 C. 含硼1×1015cm -3,磷1×1016cm -3的硅 D. 纯净的硅

7、室温下,如在半导体Si 中,同时掺有1×1014cm -3的硼和1.1×1015cm -3的磷,则电子浓度约为( B ),空穴浓度为( D ),费米能级为( G )。将该半导体由室温度升至570K ,则多子浓度约为( F ),少子浓度为( F ),费米能级为( I )。(已知:室温下,n i ≈1.5×1010cm -3;570K 时,n i ≈2×1017cm -3) A 、1×1014cm -3 B 、1×1015cm -3 C 、1.1×1015cm -3 D 、2.25×105cm -3 E 、1.2×1015cm -3 F 、2×1017cm -3 G 、高于Ei H 、低于Ei I 、等于Ei 8、最有效的复合中心能级位置在( D )附近;最有利陷阱作用的能级位置在( C )附近,常见的是( E )陷阱。 A 、E A B 、E D C 、E F D 、Ei E 、少子 F 、多子 9、MIS 结构的表面发生强反型时,其表面的导电类型与体材料的( B ),若增加掺杂浓度,其开启电压将( C )。 A 、相同 B 、不同 C 、增加 D 、减少 10、对大注入条件下,在一定的温度下,非平衡载流子的寿命与( D )。 A 、平衡载流子浓度成正比 B 、非平衡载流子浓度成正比 C 、平衡载流子浓度成反比 D 、非平衡载流子浓度成反比 11、可以由霍尔系数的值判断半导体材料的特性,如一种半导体材料的霍尔系数为负值,该材料通常是( A ) A 、n 型 B 、p 型 C 、本征型 D 、高度补偿型 12、如在半导体中以长声学波为主要散射机构是,电子的迁移率n 与温度的( B )。 A 、平方成正比 B 、 23 次方成反比 C 、平方成反比 D 、2 3 次方成正比 13、为减少固定电荷密度和快界面态的影响,在制备MOS 器件时通常选择硅单晶的方向为( A )。 A 、【100】 B 、【111】 C 、【110】 D 、【111】或【110】 14、简并半导体是指( A )的半导体。

薄膜材料与薄膜技术复习资料

1.为了研究真空和实际使用方便,根据各压强范围内不同的物理特点,把真空划分为 粗真空,低真空,高真空,超高真空四个区域。 2.在高真空真空条件下,分子的平均自由程可以与容器尺寸相比拟。 3.列举三种气体传输泵旋转式机械真空泵,油扩散泵和复合分子泵。 4.真空计种类很多,通常按测量原理可分为绝对真空计和相对真空计。 5.气体的吸附现象可分为物理吸附和化学吸附。 6.化学气相反应沉积的反应器的设计类型可分为常压式,低压式,热壁 式和冷壁式。 7.电镀方法只适用于在导电的基片上沉积金属和合金,薄膜材料在电解液中是以 正离子的形式存在。制备有序单分子膜的方法是LB技术。 8.不加任何电场,直接通过化学反应而实现薄膜沉积的方法叫化学镀。 9.物理气相沉积过程的三个阶段:从材料源中发射出粒子,粒子运输到基片和粒子 在基片上凝聚、成核、长大、成膜。 10.溅射过程中所选择的工作区域是异常辉光放电,基板常处于负辉光区,阴极 和基板之间的距离至少应是克鲁克斯暗区宽度的3-4倍。 11.磁控溅射具有两大特点是可以在较低压强下得到较高的沉积率和可以在较低 基片温度下获得高质量薄膜。 12.在离子镀成膜过程中,同时存在吸附和脱附作用,只有当前者超 过后者时,才能发生薄膜的沉积。 13.薄膜的形成过程一般分为:凝结过程、核形成与生长过程、岛形成与 结合生长过程。 14.原子聚集理论中最小稳定核的结合能是以原子对结合能为最小单位不连续变化 的。 15.薄膜成核生长阶段的高聚集来源于:高的沉积温度、气相原子的高的动能、 气相入射的角度增加。这些结论假设凝聚系数为常数,基片具有原子级别的平滑度。 16.薄膜生长的三种模式有岛状、层状、层状-岛状。 17.在薄膜中存在的四种典型的缺陷为:点缺陷、位错、晶界和 层错。 18.列举四种薄膜组分分析的方法:X射线衍射法、电子衍射法、扫描电子 显微镜分析法和俄歇电子能谱法。 19.红外吸收是由引起偶极矩变化的分子振动产生的,而拉曼散射则是由引起极化率 变化的分子振动产生的。由于作用的方式不同,对于具有对称中心的分子振动,红外吸收不敏感,拉曼散射敏感;相反,对于具有反对称中心的分子振动,红外吸收敏感而拉曼散射不敏感。对于对称性高的分子振动,拉曼散射敏感。 20.拉曼光谱和红外吸收光谱是测量薄膜样品中分子振动的振动谱,前者 是散射光谱,而后者是吸收光谱。 21.表征溅射特性的主要参数有溅射阈值、溅射产额、溅射粒子的速度和能 量等。 什么叫真空?写出真空区域的划分及对应的真空度。 真空,一种不存在任何物质的空间状态,是一种物理现象。粗真空 105~102Pa 粘滞流,分子间碰撞为主低真空 102~10-1 Pa 过渡流高真空 102~10-1 Pa分子流,气体分子与器壁碰撞为主超高真空 10-5~10-8 Pa气体在固体表面吸附滞留为主极高真空 10-8 Pa 以下

相关主题
文本预览
相关文档 最新文档