当前位置:文档之家› 手把手教你天线设计——用MA AB仿真天线方向图

手把手教你天线设计——用MA AB仿真天线方向图

手把手教你天线设计——用MA AB仿真天线方向图
手把手教你天线设计——用MA AB仿真天线方向图

手把手教你天线设计——

用MATLAB仿真天线方向图

吴正琳

天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。天线的基本单元就是单元天线。

1、单元天线

对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图

主要是说明一下以下几点:

1、在Matlab中的极坐标画图的方法:

polar(theta,rho,LineSpec);

theta:极坐标坐标系0-2*pi

rho:满足极坐标的方程

LineSpec:画出线的颜色

2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。也就是说这时的方向图只剩下一半。

3、半波振子天线方向图归一化方程:

Matlab程序:

clear all

lam=1000;%波长

k=2*pi./lam;

L=lam/4;%天线臂长

theta=0:pi/100:2*pi;

f1=1./(1-cos(k*L));

f2=(cos(k*L*cos(theta))-cos(k*L))./sin(theta);

rho=f1*f2;

polar(theta,abs(rho),'b');%极坐标系画图

2、线性阵列天线

2.1方向图乘积定理

阵中第i 个天线单元在远区产生的电场强度为:

2(,)i

j i i i i i

e E K I

f r π

λθ?-=式中,i K 为第i 个天线单元辐射场强的比例常数,i r 为第i 个天线单元至观察点的距离,(,)i f θ?为第i 个天线单元的方向图函数,i I 为第i 个天线单元的激励电流,可以表示成为:

B

ji i i I a e φ-?=式中,i a 为幅度加权系数,B φ?为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。

在线性传播媒质中,电磁场方程是线性方程,满足叠加定理的条件。因此,在远区观察点P 处的总场强E 可以认为是线阵中N 个辐射单元在P 处辐射场强之和,因此有:

21100(,)i j r N N i i i i i i i

e E E K I

f r πλθ?---====?

∑∑若各单元比例常数=1i K ,各天线单元方向图(,)i f θ?

相同,则总场

强表示为:

210(,)i B j r N ji i i i

e E

f a e r πλφθ?---?==?

∑假设观察点P 距离天线阵足够远,则可认为各天线单元到该点的射线互相平行。根据远场近似:

00cos i i y

r r r r id α=???=-??对幅度:对相位:因为cos cos sin y αθ?

=将(2.5)、(2.6)式带入(2.4)式,总场强可进一步简化为:21i(dcos sin )0(,)B N j i i E f a e

πθ?φλ

θ?--?==∑定义式(2.7)中21i(dcos sin )0(,)B N j i i F a e

πθ?φλθ?--?==∑为阵列因子,则该式说

明了天线方向图的一个重要定理——乘法定理。即阵列天线方向图函数(,)E θ?等于天线单元方向图函数(,)f θ?与阵列因子

21i(dcos sin )0(,)B N j i i F a e

πθ?φλθ?--?==∑的乘积。

2.2、MATLAB 仿真阵列天线方向图

本文对单元间距19mm,频率为8.5GHz 的20单元的线阵方向图进行了仿真分析具体分析如下:

根据仿真需求,完成天线仿真MATLAB 程序如下:

此程序能够完成各种线阵天线收发、和差方向图,应用此软件我们做了如下试验:

2.2.1、和方向图对相位误差的敏感性分析

A、理想条件

下图方向图参数如下:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:0°

引入误差:理想条件,未引入相位误差。

程序设置和方向图如下图:

B、20°相位误差

下图方向图参数如下:频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB 波束指向:0°

引入误差:引入20°随机相位误差。程序设置和方向图如下图:

B、10°相位误差

下图方向图参数如下:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:0°

引入误差:引入10°随机相位误差。

程序设置和方向图如下图:

结论:相位随机误差会对天线负瓣影响较大。在天线负瓣要求≤-25dB的情况下,用Taylor-30dB加权理想情况下能达到-30dB负瓣,但实际使用中一般会引入系统随机误差,股很难达到-30dB负瓣,从仿真来看,20°以内的随机相位误差会对负瓣产生影响,但仍能满足

指标要求。由此可见,工程应用时,最好根据实际情况保证天线相位随机误差在一定的范围内。

2.2.2、阵列天线出现栅瓣的情况仿真分析

下图方向图参数如下:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:-20°

引入误差:理想条件,未引入相位误差。

运行结果和方向图如下图:

下图方向图参数如下:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:-40°

引入误差:理想条件,未引入相位误差。运行结果和方向图如下图:

下图方向图参数如下:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:-60°

引入误差:理想条件,未引入相位误差。

运行结果和方向图如下图:

结论:由此可见,在间距19mm的情况下,此天线扫描到-20°、-40°时方向图、增益、负瓣均只有小幅变化;当扫描到-60°出现下明显栅瓣,波束宽度剧烈展宽(未考虑单元方向图),增益大幅下降(从13.5dB(-40°)下降到7.8dB(-60°))。

2.2.3、阵列天线差方向图、不加权方向图等的情况仿真

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:-40°

引入误差:理想条件,未引入相位误差。

是否为差方向图:是

方向图如下图:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:0°

引入误差:理想条件,未引入相位误差。是否为差方向图:是

方向图如下图:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:0°

引入误差:引入20°随机相位误差。是否为差方向图:是

方向图如下图:

频率:8.5GHz

间距:19mm

加权:不加权

波束指向:0°

引入误差:理想条件,未引入相位误差。是否为差方向图:是

方向图如下图:

频率:8.5GHz

间距:19mm

加权:泰勒加权-30dB

波束指向:-40°

引入误差:引入20°随机相位误差是否为差方向图:是

方向图如下图:

3、MATLAB程序获取

此软件为本文作者设计,已上传作者百度文库,版权归作者所有,如需使用搜索百度文库:手把手_方向图_matlab。

手把手教你结构设计(入门到熟练)

手把手教你结构设计(入门到熟练) 1.结构设计的过程(了解) 本文是送给刚接触结构设计及希望从事结构设计的新手的,其目的是使新手们对结构设计的过程以及结构设计所包括的内容有一个大致的了解,请前辈们不要见笑了,新人们有什么问题也可以在贴中提出来,大家共同讨论,共同进步。 1,看懂建筑图 结构设计,就是对建筑物的结构构造进行设计,首先当然要有建筑施工图,还要能真正看懂建筑施工图,了解建筑师的设计意图以及建筑各部分的功能及做法,建筑物是一个复杂物体,所涉及的面也很广,所以在看建筑图的同时,作为一个结构师,需要和建筑,水电,暖通空调,勘察等各专业进行咨询了解各专业的各项指标。在看懂建筑图后,作为一个结构师,这个时候心里应该对整个结构的选型及基本框架有了一个大致的思路了. 2,建模(以框架结构为例)(关键) 当结构师对整个建筑有了一定的了解后,可以考虑建模了,建模就是利用软件,把心中对建筑物的构思在电脑上再现出来,然后再利用软件的计算功能进行适当的调整,使之符合现行规范以及满足各方面的需要.现在进行结构设计的软件很多,常用的有PKPM,广厦,TBSA等,大致都差不多。这里不对软件的具体操作做过多的描述,有兴趣的可以看看,每个软件的操作说明书(好厚好厚的,买起来会破产)。每个软件都差不多,首先要建轴网,这个简单,反正建筑已经把轴网定好了,输进去就行了,然后就是定柱截面及布置柱子。柱截面的大小的确定需要一定的经验,作为新手,刚开始无法确定也没什么,随便定一个,慢慢再调整也行。柱子布置也需要结构师对整个建筑的受力合理性有一定的结构理念,柱子布置的合理性对整个建筑的安全与否以及造价的高低起决定性作用...不过建筑师在建筑图中基本已经布好了柱网,作为结构师只需要对布好的柱网进行研究其是否合理.适当的时候需要建议建筑更改柱网.当布好了柱网以后就是梁截面以及主次梁的布置.梁截面相对容易确定一点,主梁按1/8~1/12跨度考虑,次梁可以相对取大一点主次梁的高度要有一定的差别,这个规范上都有要求。而主次梁的布置就是一门学问,这也是一个涉及安全及造价的一个大的方面.总的原则的要求传力明确,次梁传到主梁,主梁传到柱.力求使各部分受力均匀。还有,根据建筑物各部分功能的不同,考虑梁布置及梁高的确定(比如住宅,在房中间做一道梁,本来层就只有3米,一道梁去掉几十公分,那业主不骂人才怪...)。梁布完后,基本上板也就被划分出来了,当然悬挑板什么的现在还没有,需要以后再加上...,梁板柱布置完后就要输入基本的参数啦,比如混凝土强度啊,每一标准层的层高啊,板厚啊,保护层啊,这个每个软件设置的都不同,但输入原则是严格按规范执行.当整个三维线框构架完成,就需要加入荷载及设置各种参数了,比如板厚啊,板的受力方式啊,悬挑板的位置及荷载啊什么的,这时候模形也可以讲基本完成了,生成三维线框看看效果吧,可以很形象的表现出原来在结构师脑中那个虚构的框架. 2.计算 计算过程就是软件对结构师所建模型进行导荷及配筋的过程,在计算的时候我们需要根据实际情况调整软件的各种参数,以符合实际情况及安全保证,如果先前所建模型不满足要求,就可以通过计算出的各种图形看出,结构师可以通过对计算出的受力图,内力图,弯矩图等等对电算结果进行分析,找出模型中的不足并加以调整,反复至电算结果满足要求为止,这时模型也就完全的确定了.然后再根据电算结果生成施工图,导出到CAD中修改就行了,通常电算的只是上部结构,也就是梁板柱的施工图,基础通常需要手算,手工画图,现在通常采用平面法出图了,也大大简化了图纸有利于施工. 3.绘图 当然,软件导出的图纸是不能够指导施工的,需要结构师根据现行制图标准进行修改,这就看每个人的绘图功底了,施工图是工程师的语言,要想让别人了解自己的设计,就需要更为详细的说明,出图前结构师要确定,别人根据施工图能够完整的将整个建筑物再现于实际中,这是个复杂的过程,需要仔细再仔细,认真再认真。结构师在绘图时还需要针对电算的配筋及截面大小进一步的确定,适当加强薄弱环节,使施工图更符合实际情况,毕竟模型不能完完全全与实际相符.最后还需要根据现行各种规范对施工图的每一个细节进行核对,宗旨就是完全符合规范,结构设计本就是一个规范化的事情.我们的设计依据就是那几十本规范,如果施工图中有不符合规范要求的地方,那发生事故,设计者要负完全责任的......总的来讲,结构施工图包括设计总说明,基础平面布置及基础大样图,如果是桩基础就还有桩位图,柱网布置及柱平面法大样图,每层的梁平法配筋图,每层板配筋图,层面梁板的配筋图,楼梯大样图等,其中根据建筑复杂程度,有几个到几十个结点大样图. 4.校对审核出图 当然,一个人做如此复杂的事情往往还是会出错,也对安全不利,所以结构师在完成施工图后,需要一个校对人对整个施工图进行仔细的校对工作,校对通常比较仔细资格也比较老,水平也比较高,设计中的问题多是校对发现的,校对出了问题后返回设计者修改。修改完毕交总工审

天线设计指南

天线设计指南?........................................................................................................................... 2 简介?...........................................................................................................................................?2 天线原理?...................................................................................................................................?3 天线类型?...................................................................................................................................?5 天线的选择?............................................................................................................................... 7 天线馈电的考量?..................................................................................................................... 13 芯片天线?.................................................................................................................................?21 各种天线的比较?..................................................................................................................... 25 环境对天线性能的影响?......................................................................................................... 25 塑料外壳的影响?..................................................................................................................... 27 调试 PCB 空板?......................................................................................................................... 32 使用塑料和人体接触来调整调试?......................................................................................... 38?

天线线列阵方向图

阵列方向图及MATLAB 仿真 1、线阵的方向图 2 ()22cos(cos )R φψπφ=+- MATLAB 程序如下(2元): clear; a=0:0.1:2*pi; y=sqrt(2+2*cos(pi-pi*cos(a))); polar(a,y); 图形如下: 若阵元间距为半波长的M 个阵元的输出用方向向量权重11(,,)M j j M g e g e φφ???加以组合的话,阵列的方向图为 [(1)cos()]1()m M j m m m R g e ψπφφ--==∑ MATLAB 程序如下(10个阵元): clear; f=3e10; lamda=(3e8)/f;

beta=2.*pi/lamda; n=10; t=0:0.01:2*pi; d=lamda/4; W=beta.*d.*cos(t); z1=((n/2).*W)-n/2*beta* d; z2=((1/2).*W)-1/2*beta* d; F1=sin(z1)./(n.*sin(z2));i K1=abs(F1) ; polar(t,K1); 方向图如下: 2、圆阵方向图程序如下: clc; clear all; close all; M = 16; % 行阵元数 k = 0.8090; % k = r/lambda DOA_theta = 90; % 方位角 DOA_fi = 0; % 俯仰角 % 形成方位角为theta,俯仰角位fi的波束的权值m = [0 : M-1];

w = exp(-j*2*pi*k*cos(2*pi*m'/M-DOA_theta*pi/180)*cos(DOA_fi*pi/180)); % w = exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)+sin(2*pi*m'/M)*si n(DOA_fi*pi/180))); % 竖直放置 % w = chebwin(M, 20) .* w; % 行加切比雪夫权 % 绘制水平面放置的均匀圆阵的方向图 theta = linspace(0,180,360); fi = linspace(0,90,180); for i_theta = 1 : length(theta) for i_fi = 1 : length(fi) a = exp(-j*2*pi*k*cos(2*pi*m'/M-theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); %a=exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)+sin(2*pi*m'/ M)*sin(fi(i_fi)*pi/180))); % 竖直放置 Y(i_theta,i_fi) = w'*a; end end Y= abs(Y); Y = Y/max(max(Y)); Y = 20*log10(Y); % Y = (Y+20) .* ((Y+20)>0) - 20; % 切图 Z = Y + 20; Z = Z .* (Z > 0); Y = Z - 20; figure; mesh(fi, theta, Y); view([66, 33]); title('水平放置时的均匀圆阵方向图'); % title('竖面放置时的均匀圆阵方向图'); % 竖直放置 axis([0 90 0 180 -20 0]); xlabel('俯仰角/(\circ)'); ylabel('方位角/(\circ)'); zlabel('P/dB'); figure; contour(fi, theta, Y); 方向图如下:

手把手教你做 无线奶粉罐天线

二、奶粉罐天线: DIY精神就是利用手头的资源,发挥最大的作用,我们身边很多的金属罐子,奶粉罐是最常见的了。 下面介绍下DIY 奶粉罐天线的过程: 根据测试,首先确定自己DIY的数据: 各数据如下: 中心频点=2.445G 圆筒直径=127mm 圆筒长度=111mm 振子长度=31mm 振子距圆筒底部边距=37mm 你一定会问这个数值是哪里来的?微波天线的制作精度相当高,起码要达到毫米级,否则很容易导致天线不可用,由于每个人得到的圆筒不同,这里有一个圆筒天线的通用计算器,可以精确的计算各参数,从而使这款天正在制作上达到实用化! 通用计算器:http://www.saunalahti.fi/elepa l/antenna2calc.php

从图片可以看出,馈线的屏蔽网连接金属圆筒,信号通过圆筒反射到振子上,当然振子就是馈线的芯线了,芯线与金属筒是绝缘的,这点必须注意! 很多爱好者都喜欢在圆筒加装N座或BNC 座,然后在馈线的连接处做对应的N头或B NC头,用于连接。但mr7觉得虽然该方法对使用十分方便,但同时也对信号造成了损耗(估计1-2DBI),尤其在2.4G的频段更加明显!因此,mr7决定把屏蔽网直接焊在圆筒上(焊接前先把外壳打磨光滑),而作为振子的芯线则保留其原来的泡沫绝缘。这样一来把损耗减到最低。有点专线专用的

味道了! 建议大家最好在焊接前找根直径稍比馈线粗一点的小铜管和热缩套管,先把铜管套在馈线上,然后跟屏蔽网一起焊牢在金属圆筒的外壳上,然后用热风筒把热缩套管来回吹多次,把馈线固定在铜管上,这样一来可以很好的减低由于调节天线时给馈线和振子带来的影响! 是选用双屏蔽的RG-58电缆,接头是SMA

天线方向图的理论分析及测量原理分析

实验四、电波天线特性测试 一、实验原理 天线的概念 无线电发射机输出的射频信号功率,通过馈线输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等; 按工作频段分类,可分为短波天线、超短波天线、微波天线等; 按方向性分类,可分为全向天线、定向天线等; 按外形分类,可分为线状天线、面状天线等;等等分类。 选择合适的天线 天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。 天线的方向性 发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天

线称为定向天线。全向天线由于其无方向性,所以多用在点对多点通信的中心台。定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。 垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图。立体方向图虽然立体感强,但绘制困难,平面方向图描述天线在某指定平面上的方向性。 天线的增益 增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。 增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。半波对称振子的增益为G = 2.15dBi;4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G = 8.15dBi(dBi,这个单位表示比较对象是各向均匀辐射的理想点源)。如果以半波对称振子作比较对象,则增益的单位是dBd。 天线的波瓣宽度 方向图通常都有两个或多个瓣,其中辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣。在主瓣最大辐射方向两侧,辐射强度降低 3 dB(功率密度降低一半)的两点间的夹角定义为波瓣宽度(又称波束宽度或主瓣宽度或半功率角)。波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能力越强。还有一种波瓣宽度,即 10dB波瓣宽度,顾名思义它是方向图中辐射强度降低 10dB

试验四天线方向图测量试验

实验四 天线方向图测量实验 一、预习要求 1、什么是天线的方向性? 2、什么是天线的方向图,描述方向图有哪些主要参数? 二、实验目的 1、通过天线方向图的测量,理解天线方向性的含义; 2、了解天线方向图形成和控制的方法; 3、掌握描述方向图的主要参数。 三、实验原理 天线的方向图是表征天线的辐射特性(场强振幅、相位、极化)与空间角度关系的图形。完整的方向图是一个空间立体图形,如图7所示。 它是以天线相位中心为球心(坐标原点),在半径足够大的球面上,逐点测定其辐射特性绘制而成的。测量场强振幅,就得到场强方向图;测量功率,就得到功率方向图;测量极化就得到极化方向图;测量相位就得到相位方向图。若不另加说明,我们所述的方向图均指场强振幅方向图。空间方向图的测绘十分麻烦,实际工作中,一般只需测得水平面和垂直面的方 向图就行了。 图7 立体方向图 天线的方向图可以用极坐标绘制,也可以用直角坐标绘制。极坐标方向图的特点是直观、简单,从方向图可以直接看出天线辐射场强的空间分布特性。但当天线方向图的主瓣窄而副瓣电平低时,直角坐标绘制法显示出更大的优点。因为表示角度的横坐标和表示辐射强度的纵坐标均可任意选取,例如即使不到1o的主瓣宽度也能清晰地表示出来,而极坐标却无法绘制。一般绘制方向图时都是经过归一化的,即径向长度(极坐标)或纵坐标值(直角坐标)是以相对场强max `)(E E ?θ表示。这里,)(`?θE 是任一方向的场强值,max E 是最大辐射方向的场强值。因此,归一化最大值是1。对于极低副瓣电平天线的方向图,大多采用分贝值表示,归一化最大值取为零分贝。图8所示为同一天线方向图的两种坐标表示法。

手把手教你学FPGA 设计思想篇

泽屹电子 手把手教你学FPGA 设计思想篇 阿东团队编著

手把手教你学FPGA 设计思想篇

目录 写在前面...................................................................................................................................... - 4 - 1 什么是设计思想.................................................................................................................... - 6 - 2 概述........................................................................................................................................ - 6 - 3 代码简单化............................................................................................................................ - 6 - 4 注释层次化............................................................................................................................ - 7 - 5 交互界面清晰化.................................................................................................................... - 7 - 6 模块划分最优化.................................................................................................................... - 7 - 7 代码工具化............................................................................................................................ - 8 - 8 方案精细化............................................................................................................................ - 8 - 9 资源合理化............................................................................................................................ - 9 - 10 时序流水化.......................................................................................................................... - 9 - 11 资源优化方法.................................................................................................................... - 10 - 12 代码自检............................................................................................................................ - 10 - 13 通用电路BB化.................................................................................................................. - 10 -

天线设计

5. 2.4G PCB 天线设计 本节主要讨论的是2.4G PCB 天线,如果不考虑成本及体积,可以选用其它天线,如贴片天 线(小尺寸、中性能、中成本)或外置的鞭状天线(大尺寸、高性能、高成本),而PCB 天线是最低成本、中等尺寸,只要设计得当又能获得足够性能的天线。 本节中包括三种天线: ◆ 超小型PIFA 天线:用于Nano Dongle 的PCB 天线,由于PCB 空间受限,最大增益会 比其它几种天线小6dB 左右,即工作距离会短一半。由此天线及MCU 做成的完整板子大小为11mm*18mm 左右。 ◆ 正常PIFA 天线:用于Normal Module 的PCB 天线,所占PCB 空间最大,最大增益可 以达到1.5dB ,如PCB 面积足够,建议用此天线。由此天线做成的RF Module 板子大小为15mm*18mm 左右。 ◆ 正常Wiggle 天线:用于Normal Module 的PCB 天线,所占PCB 空间比第二种稍小, 增益也稍差1dB ,可以用于对体积稍有要求的无线终端,如对于空间比较紧凑的无线鼠标等设备。由此天线做成的RF Module 板子大小为13mm*18mm 左右。 5.1. 小尺寸Nano Dongle 用PIFA 天线设计 天线具体尺寸如下图(板材为两层FR4,板厚0.6mm ): 其中天线线宽A :0.15mm ;B :0.25mm ;C : 0.4mm 图表11 Nano Dongle PIFA 天线

天线性能S11如下,工作频段覆盖整个2.4G ISM 频段 : 图表12 Nano Dongle PIFA 天线S11 2D 和3D 增益如下,该天线最大增益只有-5dB 左右:

阵列天线方向图函数实验

阵列天线方向图函数实验 一、 实验目的 1. 设计一个均匀线阵,给定d N d ,,,λθ画出方向图)(θF 函数图; 2. 改变参数后,画出方向图)(θF 函数图,观察方向图)(θF 的变化并加以分析; 3. 分析方向图)(θF 主瓣的衰减情况以及主瓣对第一旁瓣的衰减情况,确定dB 3衰减对应的θ; 二、 实验原理 阵列输出的绝对值与来波方向之间的关系称为天线的方向图。方向图一般有两类:一类是阵列输出的直接相加(不考虑信号及其来向),即静态方向图;另一类是带指向的方向图(考虑信号指向),当然信号的指向是通过控制加权的相位来实现的。对于某一确定的M 元空间阵列,在忽略噪声的条件下,第k 个阵元的复振幅为 ),2,1(0M k e g x k j k ==-ωτ (2.1) 式中:0g 为来波的复振幅,k τ为第k 个阵元与参考点之间的延迟。设第k 个阵元的权值为k w ,那么所有阵元加权的输出得到的阵列的输出为 ) ,2,1(010M k e g w Y k j M k k ==-=∑ωτ (2.2) 对上式取绝对值并归一化后可得到空间阵列的方向图 {}00max )(Y Y F =θ (2.3) 如果),2,1(1M k w k ==式(2.3)即为静态方向图)(θF 。下面考虑均匀线阵方向图。假设均匀线阵的间距为d ,且以最左边的阵元为参考点(最左边的阵元位于原点),另假设信号入射方位角为θ,其中方位角表示与线阵法线方向的夹角,与参考点的波程差为 θθτsin )1(1)sin (1 1d k c x c k -== (2.4) 则阵列的输出为

βθλπ ωτ)1(10sin )1(210100--=--=-=∑∑∑===k j M k k d k j M k k j M k k e g w e g w e g w Y k (2.5) 式中:λθπβ/sin 2d =,λ为入射信号的波长。当式(2.5)中),2,1(1M k w k ==时,式(2.5)可以进一步简化为 ) 2/sin()2/sin(2)(00βββM M e Mg Y k M j == (2.6) 可得均匀线阵的静态方向图,即 ) 2/sin()2/sin()(0ββθM M F = (2.7) 当式(2.5)中),2,1(,/sin 2,)1(M k d e w d d k j k d ===-λθπββ时,式(2.6)可简化为 ] 2/)sin[(]2/)(sin[2)()1(00d d M j M M e Mg Y d ββββββ--=-= (2.7) 于是可得到指向为d θ的阵列方向图,即 ] 2/)sin[(]2/)(sin[)(d d M M F ββββθ--= (2.8) 三、 实验过程 1. 指向0=d θ静态方向图函数的实验 1.1均匀线阵阵元个数N 对方向图函数)(θF 的影响 sita=-pi/2:0.01:pi/2; lamda=0.03; d=lamda/2; n1=10; sita_d=0 beta=2*pi*d*sin(sita)/lamda; beta_d=2*pi*d*sin(sita_d)/lamda; z11=(n1/2)*(beta-beta_d); z21=(1/2)*(beta-beta_d); f1=sin(z11)./(n1*sin(z21)); F1=abs(f1); figure(1); plot(sita,F1,'b'); hold on ; n2=20;

阵列天线方向图的初步研究

通信信号处理实验报告 ——阵列天线方向图的初步研究 11级通信(研) 刘晓娟 113128301 一、实验原理: 1、智能天线的基本概念:智能天线是一种阵列天线,它通过调节各阵元信号的加权幅度和相位来改变阵列的方向图形状,即自适应或以预制方式控制波束幅度、指向和零点位置,使波束总是指向期望方向,而零点指向干扰方向,实现波束随着用户走,从而提高天线的增益,节省发射功率。智能天线系统主要由①天线阵列部分;②模/数或数/模转换部分;③波束形成网络部分组成。本次实验着重讨论天线阵列部分。 2、智能天线的工作原理:智能天线的基本思想是:天线以多个高增益的动态窄波束分别跟踪多个期望信号,来自窄波束以外的信号被抑制。 3、方向图的概念:以入射角为横坐标,对应的智能天线输出增益为纵坐标所作的图称为方向图,智能天线的方向图有主瓣、副瓣等,相比其他天线的方向图,智能天线通常有较窄的主瓣,较灵活的主、副瓣大小、位置关系,和较大的天线增益。与固定天线相比最大的区别是:不同的全职通常对应不同的方向图,我们可以通过改变权值来选择合适的方向图,即天线模式。方向图一般分为两类:一类是静态方向图,即不考虑信号的方向,由阵列的输出直接相加得到;另一类是带指向的方向,这类方向图需要考虑信号的指向,通过控制加权相位来实现。 二、实验目的: 1、设计一个均匀线阵,给出λ(波长),N (天线个数),d (阵元间距),画出方向图曲线,计算3dB 带宽。 2、通过控制变量法讨论λ,N ,d 对方向图曲线的影响。 3、分析旁瓣相对主瓣衰减的程度(即幅度比)。 三、实验内容: 1、公式推导与整理: 权矢量12(,,......) T N ω ωωω=,本实验旨在讨论静态方向图,所以此处选择 ω =(1,1,......1)T 。 信号源矢量(1)() [1,,...]j j N T a e e β β θ---=,2s in d πβθλ = , 幅度方向图函数()()H F a θωθ== (1)1 s in 2 s in 2 N j n n N e β ββ --== ∑ = sin (sin /)sin (sin /) n d n d πθλπθλ。

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计—— 用MATLAB仿真天线方向图 吴正琳 天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。天线的基本单元就是单元天线。 1、单元天线 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图 主要是说明一下以下几点: 1、在Matlab中的极坐标画图的方法: polar(theta,rho,LineSpec); theta:极坐标坐标系0-2*pi rho:满足极坐标的方程 LineSpec:画出线的颜色 2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。也就是说这时的方向图只剩下一半。 3、半波振子天线方向图归一化方程: Matlab程序: clear all lam=1000;%波长 k=2*pi./lam;

知识:手把手教你计算光电参数,设计高光效产品

知识:手把手教你计算光电参数,设计高光效产品 作为一个光学设计师,在工作中经常遇到关于光电参数计算的问题,以前100lm/W灯管就是好产品,但随着LED的发展,要求也水涨船高,现在很多工程案例为了节能,光效从120涨到150、甚至180lm/W,让人非常头疼。 下面结合实例,谈一谈怎么设计一款光电满足要求的灯具。 标称值一般指产品稳定后的测试数据。 你首先必须知道灯具测试的标准,大部分灯具可以直接通过积分球完成光电测试,依据IESLM79提供的方法,需要待灯具稳定后来测试,至于一些参数虚标的产品可以无视。

图1.IES LM79中对灯具稳定的要求 为什么一定是稳定后的数据,大部分LED产品从瞬态到稳态都有一个衰减,而这些衰减很大,不能够忽视。 通过测试这些衰减大小,可以等到一个相对的热衰减系数,可以参看红字部分。 表2市场上8-9W球泡灯的测试参数 LED灯珠选型与测试 设计的时候,首先是LED选型,LED规格书好多页,让你眼花缭乱。主要有额定功率、光通量、电压、色温、显色指数、色容差等等。如果继续深究下去,支架有ppa、pct、emc 几种,芯片尺寸有好多种,荧光粉、硅胶、金线、支架金属都有很大的猫腻,这些对光源寿命都有着很大影响。 对LED而言,最重要的就是额定电流下光通量,比如现在最常用2835颗粒,额定60mA 的光通量24-26lm。那是不是我将100pcs该LED焊在灯条上,60mA测试时光通量就是240-260lm?

答案是否定的,以下是一些误差的来源,最后测试报告一定是以自己仪器测试为准,所以就需要弄清楚这些系数。 表3 一些误差汇总 然而这些系数有时候推算比较麻烦,也少不了很多一对一测试。所以我的思路是,直接将厂商的标准LED灯珠焊在灯板上,用大积分球测试,直流供电,测试多个电流下的数据。 如果你设计一款常规的产品,对光效没有要求,额定电流下测试就可以了。但如果你需要更高光效的产品,那些方法就不适用了,要么选择更亮的灯珠,要么就是降低电流使用,更多的时候两者需要结合来使用。 表4 一款颗粒的测试数据 LED灯珠数量计算 做好以上一些工作后了,你还缺少两个重要的参数,一个是灯具电源转换效率,另外一个就是灯具的光学效率,可以通过如下公式计算,有时候面对全新的灯具无从入手,可以根据经验进行一些估算。

天线方向图测量

电磁场与电磁波实验报告实验内容:天线方向图的测量 学院:电子工程学院 班级:2010211207 姓名:林铭雯 学号:10210880(21)

一、实验目的 1.了解天线的基本工作原理。 2.绘制并理解天线方向图。 3.根据方向图研究天线的辐射特性。 4、通过对不同材质的天线的方向图的研究,探究其中的练习与规律。 二、实验原理 1、天线的原理 天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能用来作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波。但是任意一个高频电路并不一定能用作天线,因为它 的辐射或接收效率可能很低。要能够有 效地辐射或者接收电磁波,天线在结构 和形式上必须满足一定的要求。图B1-1 给出由高频开路平行双导线传输线演变 为天线的过程。开始时,平行双导线传 输线之间的电场呈现驻波分布,如图 B3-1a 。在两根互相平行的导线上,电流 方向相反,线间距离又远远小于波长, 它们所激发的电磁场在两线外部的大部 分空间由于相位相反而互相抵消。如果 将两线末端逐渐张开,如图B3-1b 所示, 那么在某些方向上,两导线产生的电磁 场就不能抵消,辐射将会逐渐增强。当 两线完全张开时,如图B3-1c 所示,张开 的两臂上电流方向相同,它们在周围空 间激发的电磁场只在一定方向由于相位关系而互相抵消,在大部分方向则互相叠加,使辐射显著增强。这样的结构被称为开放式结构。由末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线,是最简单的一种天线。 天线辐射的是无线电波,接收的也是无线电波,然而发射机通过馈线送入天线的并不是无线电波,接收天线也不能把无线电波直接经馈线送入接收机,其中必须进行能量的转换。图B3-2是进行无线电通信时,从发射机到接收机信号通 图1 传输线演变为天线 a.发射机c. b.

天线的方向图测量(设计性试验)

中国石油大学近代物理实验报告 班级:材料物理10-2 姓名:同组者:教师: 设计性实验不同材质天线的方向图测量【实验目的】 1.了解天线的基本工作原理。 2.绘制并理解天线方向图。 3.根据方向图研究天线的辐射特性。 4、通过对不同材质的天线的方向图的研究,探究其中的练习与规律。 【预习问题】 1.什么是天线? 2.AT3200天线实训系统有那几部分组成,分别都有什么作用? 3.与AT3200天线实训系统配套的软件有几个,分别有什么作用? 【实验原理】 一.天线的原理 天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能用来作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波。但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低。要能够有效地辐射或者接收电磁波,天线在 结构和形式上必须满足一定的要求。图B1-1给出 由高频开路平行双导线传输线演变为天线的过程。 开始时,平行双导线传输线之间的电场呈现驻波分 布,如图B3-1a。在两根互相平行的导线上,电流 方向相反,线间距离又远远小于波长,它们所激发 的电磁场在两线外部的大部分空间由于相位相反 而互相抵消。如果将两线末端逐渐张开,如图B3-1b 所示,那么在某些方向上,两导线产生的电磁场就 不能抵消,辐射将会逐渐增强。当两线完全张开时, 如图B3-1c所示,张开的两臂上电流方向相同,它 们在周围空间激发的电磁场只在一定方向由于相 位关系而互相抵消,在大部分方向则互相叠加,使 辐射显著增强。这样的结构被称为开放式结构。由 末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线,是最简单的一种天线。 图B3-1 传输线演变为天线a. 发射机 c. b.

手把手教你设计限制性股票和股票期权方案

手把手教你设计限制性股票和股票期权方案2018-08-08 11:38 限制性股票和股票期权是国内上市公司应用最广泛的两种股权激励方式,也是有明确政策规范的两种股权激励方式,本文将讲述如何设计限制性股票和股票期权方案。 一、基本原则 由于非上市公司并无股票,因此上市公司和非上市公司在方案的设计和应用层面会有如下不同之处: 二、政策要求 上市公司在设计限制性股票和股票期权计划的时候,会有明确的政策规范,最主要的规范如下表:

上表中,虽然对限制性股票和股票期权的授予价和行权价有明确规定,但并不绝对,只要给出证监会充分合理解释也能获批。例如,2017年苏泊尔限制性股票激励案例,股票来源是通过二级市场回购,公告草案前一日收盘价是37.07元/股,但是公司授予价格是1元/股,远远低于规定的价格,公司在公告中披露,该定价目的为考虑激励对象整体薪酬水平的竞争力。 非上市公司在方案设计中,可以不受上述政策约束,根据公司实际情况自行设计。

三、方案设计 股权激励方案设计需遵守四步法原则,方能保证方案的切实有效,四步分别是激励分析、激励基础、激励保障和激励实施。 1)激励分析 对公司的人员情况、业务发展和资本现状进行分析。而对于限制性股票和股票期权两种方案,大致可以总结出以下几种情况: ?人员较稳定,能力较确定的,可采取限制性股票的方式;人员还有待观察的,但又确实十分重要的,可采取股票期权的方式; ?初创公司一般倾向于股票期权;上市公司一般倾向于限制性股票; ?未来企业估值明显提升的、或者上市公司股价肯定上涨的,采用股票期权的较多; 股价平缓甚至略微不稳定导致可能下降的,采用限制性股票的较多。 当然,限制性股票和股票期权各有特色,企业到底采取哪种方式还有很多影响因素,需要全盘考虑才能更加周详。 2)激励基础 激励基础是一些基本的股权激励规则,包括选人机制、分配机制、发放机制、定价机制和收益机制。

天线设计的经典笔记

HF Antenna Design Notes Technical Application Report 11-08-26-003 Sept 2003 Radio Frequency Identification Systems

Contents Edition 3 – September 2003 (i) About this Manual (ii) 1Reader Requirements (2) 2Tools Required (2) 2.1VSWR Meter (2) 2.2Antenna Analyzer (3) 2.3Oscilloscope (3) 2.4Charge Level Indicator (4) 2.5Software Tools (5) 3Antenna Design Considerations (5) 3.1What is the Read Distance Required? (5) 3.2What is the Inlay Orientation? (5) 3.3At What Speed is the Inlay Traveling? (6) 3.4What is the Inlay Separation? (6) 3.5How Much Data is Required? (6) 4Environmental issues (7) 4.1What are the Governmental (PTT/FCC) limits? (7) 4.2Is there Electrical Noise? (7) 4.3Is there Metal in the Environment? (7) 4.4Proximity of other Antennas (7) 5Materials (8) 6Loop Antennas (9) 6.1Loop Antenna Resonant Theory (10) 6.2Inductance Measurement (11) 6.2.1Calculation (11) 6.2.2Measurement at 1 kHz (LCR Meter) (11) 6.2.3Accurate measurement of LCR parameters (11) 6.2.4Resonance Capacitance (12) 6.3Determining the Q (12) 6.4Measuring the Quality Factor (14) 7Antenna Matching (16) 7.1Gamma Matching (16) 7.2T-Matching (20) 7.3Transformer Matching (22) 7.4Matching Transformer (22) 7.5Baluns (23) 7.6Capacitance Matching (27) 8Coupling between Antennas (31) 8.1Nulling Adjacent Antennas (31) 8.2Reflective Antennas (31) 8.3Two Antennas on a Splitter (in Phase) (31) 8.4Two Antennas on a Splitter (Out-of-Phase) (32) 8.5Rotating Field Antennas (32) 8.6Complementary Antennas (33) 8.7All Orientations (360o) Detection (36) Appendix A Return Loss (38) Appendix B Reactance & Resonance Chart (39) Appendix C Coax-cable Splitter (40) Appendix D Component Suppliers (41)

相关主题
文本预览
相关文档 最新文档