当前位置:文档之家› 常用概率分布间简介

常用概率分布间简介

常用概率分布间简介
常用概率分布间简介

常用的概率分布类型其特征

常用的概率分布类型及其特征 3.1 二点分布和均匀分布 1、两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取0和1。它服从的分布称两点分布。 其概率分布为: 其中 Pk=P(X=Xk),表示X取Xk值的概率: 0≤P≤1。 X的期望 E(X)=P X的方差 D(X)=P(1—P) 2、均匀分布 如果连续随机变量X的概率密度函数f(x)在有限的区间[a,b]上等于一

个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E(X)=(a+b)/2 X的方差 D(X)=(b-a)2/12 3.2 抽样检验中应用的分布 3.2.1 超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0,1,…… X的期望 E(X)=nd/N

X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2)3.2.2 二项分布 超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: 0

概率论中几种具有可加性的分布及其关系

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 几种常见的具有可加性的分布 (1) 1.1 二项分布 (2) 1.2 泊松分布(Possion分布) (3) 1.3 正态分布 (4) 1.4 伽玛分布 (6) 1.5 柯西分布 (7) 1.6 卡方分布 (7) 2 具有可加性的概率分布间的关系 (8) 2.1 二项分布的泊松近似 (8) 2.2 二项分布的正态近似 (9) 2.3 正态分布与泊松分布间的关系 (10) 2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3 小结 (12) 参考文献 (12) 致谢 (13)

概率论中几种具有可加性的分布及其关系 概率论中几种具有可加性的分布及其关系 摘要 概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词 概率分布 可加性 相互独立 特征函数 Several Kinds of Probability Dstribution and its Relationship with Additive Abstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of https://www.doczj.com/doc/828512171.html,bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on, has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function 引言 概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1 几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示

几种常见的概率分布复习过程

几种常见的概率分布 一、 离散型概率分布 1. 二项分布 n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数: (Y)np X E μ== 方差与标准差:2(1)X np P σ=- ;X σ=特例:(0-1)分布 若随机变量X 的分布律为 1(x k)p (1p)k k p -==- k=0,1;0

复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票 二、 连续型概率分布 1. 均匀分布 若随机变量X 具有概率密度函数 (x)f = 则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b) 在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为 0F(x),1 x a x a a x b b a b x ? 是常数, 则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为 1,0(x)0,0 x e x F x λ-?-≥=?

第四章常用概率分布学习指导(定)详解

第四章 常用概率分布 [教学要求] 了解:质量控制的意义、原理和方法 熟悉:三个常用概率分布的特征。 掌握:掌握三个常用概率分布的概念;二项分布及Poisson 分布的概率 函数与累计概率、正态分布的分布函数的计算方法;医学参考值的计算。 [重点难点] 第一节 二项分布 一、二项分布的概念与特征 基本概念:如果每个观察对象阳性结果的发生概率均为 ,阴性结果的发生概率 均为(1-π);而且各个观察对象的结果是相互独立的,那么,重复观察n 个人,发生阳性结果的人数X 的概率分布为二项分布,记作B (n ,π)。 二项分布的概率函数: X n X X n C X P --=)1()(ππ 二项分布的特征: 二项分布图的形态取决于与n ,高峰在=n 处。当接近0.5时,图形是对称的;离0.5愈远,对称性愈差,但随着n 的增大,分布趋于对称。 二项分布的总体均数为 πμn = 方差为 )1(2ππσ-=n 标准差为 )1(ππσ-=n 如果将出现阳性结果的频率记为 n X p = 则p 的总体均数为 πμ=p 标准差为 二、二项分布的应用 二项分布出现阳性的次数至多为k 次的概率为 n p ) 1(ππσ-=

∑∑==-== ≤k X k X X X e X P k X P 0 ! )()(λλ 出现阳性的次数至少为k 次的概率为 第二节 Poisson 分布的概念与特征 一、Poisson 分布的概念与特征 基本概念:Poisson 分布可以看作是每个观察对象阳性结果的发生概率 很小, 而观察例数n 很大时的二项分布。除二项分布的三个基本条件以外,Poisson 分布还要求 接近于0。有些情况 和n 都难以确定,只能以观察单位(时间、 空间、面积等)内某种稀有事件的发生数X 来近似。 Poisson 分布的概率函数: 式中,πλn =为Poisson 分布的总体均数,X 为观察单位内某稀有事件的发生次数,e 为自然对数的底,λ为常数,约等于2.71828。 Poisson 分布的特征 Poisson 分布当总体均数λ值小于5时为偏峰,λ愈小分布愈偏,随着λ增大,分布趋向对称。 Poisson 分布的总体均数与总体方差相等, 均为λ,且Poisson 分布的观察结果具有可加性。 特点:凡个体有传染性、聚集性,均不能视为二项分布或Poisson 分布。 三、Poisson 分布的应用 如果某稀有事件发生次数的总体均数为λ,那么发生次数至多为k 次的概率为 发生次数至少为k 次的概率为 ! )(X e X P X λλ -= ∑∑==---= = ≤k X k X X n X X n X n X P k X P 0 0)1()! (!! )()(ππ∑∑ ==---== ≥n k X n k X X n X X n X n X P k X P )1()! (!! )()(ππ

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

考试练习题常用概率分布教学提纲

考试练习题常用概率 分布

第四章 选择题: 1.二项分布的概率分布图在 条件下为对称图形。 A .n > 50 B .π=0.5 C .n π=1 D .π=1 E .n π> 5 2.满足 时,二项分布B (n,π)近似正态分布。 A .n π和n (1-π)均大于等于5 B .n π或n (1-π)大于等于5 C .n π足够大 D .n > 50 E .π足够大 3. 的均数等于方差。 A .正态分布 B .二项分布 C .对称分布 D .Poisson 分布 E .以上均不对 4.标准正态典线下,中间95%的面积所对应的横轴范围是 。 A .-∞到+1.96 B .-1.96到+1.96 C .-∞到+2.58 D .-2.58到+2.58 E .-1.64到+1.64 5.服从二项分布的随机变量的总体均数为 。 A .n (1-π) B .(n -1)π C .n π(1-π) D .n π 6.服从二项分布的随机变量的总体标准差为 。 A . B . (1-π)(1-π)( -)π1 C . D . π(1-π)(π 7.设X 1,X 2分别服从以λ1,λ2为均数的Poisson 分布,且X 1与X 2独立,则X 1+X 2服从以 为方差的Poisson 分布。 A . B .λ2λ12+2λ 2λ1+ C . D . 2λ2λ1+() 2λ2λ1+() E .λ2λ12+2 8.满足 时,Poisson 分布Ⅱ(λ)近似正态分布。

A.λ无限大 B.λ>20 C.λ=1 D.λ=0 E.λ=0.5 9.满足时,二项分布B(n,π)近似Poisson分布。 A.n很大且π接近0 B.n→∞ C.nπ或n(1-π)大于等于5 D.n很大且π接近0.5 E.π接近0.5 10.关于泊松分布,错误的是。 A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布 B.泊松分布均数λ唯一确定 C.泊松分布的均数越大,越接近正态分布 D.泊松分布的均数与标准差相等 E.如果X1和X2分别服从均数为λ1和λ2的泊松分布,且相互独立。则 X1+X2服从均数为λ1+λ2的泊松分布。 11.以下分布中,均数等于方差的分布是。 A.正态分布 B.标准正态分布 C.二项分布 D.Poisson分布 E.t 分布 12.随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ 2),X与Y独立,则X-Y服从。 2 A.N(μ1+μ2,σ12-σ22) B.N(μ1-μ2,σ12-σ22) C.N(μ1-μ2,σ12+σ22) D.N(0,σ12+σ22) E.以上均不对 13.下列叙述中,错误的是。 A.二项分布中两个可能结果出现的概率之和为1 B.泊松分布只有1个参数λ C.正态曲线下的面积之和为1

常用分布概率计算的Excel应用

上机实习常用分布概率计算的Excel应用利用Excel中的统计函数工具,可以计算二项分布、泊松分布、正态分布等常用概率分布的概率值、累积(分布)概率等。这里我们主要介绍如何用Excel来计算二项分布的概率值与累积概率,其他常用分布的概率计算等处理与此类似。 §3.1 二项分布的概率计算 一、二项分布的(累积)概率值计算 用Excel来计算二项分布的概率值P n(k)、累积概率F n(k),需要用BINOMDIST函数,其格式为: BINOMDIST (number_s,trials, probability_s, cumulative) 其中 number_s:试验成功的次数k; trials:独立试验的总次数n; probability_s:一次试验中成功的概率p; cumulative:为一逻辑值,若取0或FALSE时,计算概率值P n(k);若取1 或TRUE时,则计算累积概率F n(k),。 即对二项分布B(n,p)的概率值P n(k)和累积概率F n(k),有 P n(k)=BINOMDIST(k,n,p,0);F n(k)= BINOMDIST(k,n,p,1) 现结合下列机床维修问题的概率计算来稀疏现象(小概率事件)发生次数说明计算二项分布概率的具体步骤。 例3.1某车间有各自独立运行的机床若干台,设每台机床发生故障的概率为0.01,每台机床的故障需要一名维修工来排除,试求在下列两种情形下机床发生故障而得不到及时维修的概率: (1)一人负责15台机床的维修; (2)3人共同负责80台机床的维修。 原解:(1)依题意,维修人员是否能及时维修机床,取决于同一时刻发生故障的机床数。 设X表示15台机床中同一时刻发生故障的台数,则X服从n=15,p=0.01的二项分布: X~B(15,0.01), 而 P(X= k)= C15k(0.01)k(0.99)15-k,k = 0, 1, …, 15 故所求概率为 P(X≥2)=1-P(X≤1)=1-P(X=0)-P(X=1) =1-(0.99)15-15×0.01×(0.99)14 =1-0.8600-0.1303=0.0097 (2)当3人共同负责80台机床的维修时,设Y表示80台机床中同一时刻发生故障的台数,则Y服从n=80、p=0.01的二项分布,即 Y~B(80,0.01) 此时因为 n=80≥30, p=0.01≤0.2 所以可以利用泊松近似公式:当n很大,p较小时(一般只要n≥30,p≤0.2时),对任一确定的k,有(其中 =np)

第5、6章习题常用的概率分布

常用的概率分布 一、正态分布 概率密度函数:22 2)(21)(σμπσ--=x e x f 正态分布曲线的特点:在μ=x 处最高,两个参数(σμ,),曲线下面积等于1。 正态分布的应用:确定正常值范围 二、二项分布 概念:服从伯努力试验序列的试验,在n 次实验中发生阳性结果的次数为x 次的概率为二项分布,x n x x n c x P --=) 1()(ππ。 二项分布的特点:图形的形态取决于n 和?。 阳性率:n x p =, 标准差 :n p ) 1(ππσ-= 二项分布的应用:计算二项分布中出现阳性次数最多为k 次或者是至少为k 次的概率。 三.Poisson 分布 概念:Poisson 分布看作二项分布的特例,单位空间、单位面积或单位时间内某稀有事件发生次数的概率分布. μμ-=e x x P x !)( Poisson 分布的特点:图形的形态取决于 ? , 总体均数

等于方差, 具有可加性。 注意: 凡个体间有传染性、聚集性,均不能视为二项分布或Poisson 分布。 应用:计算Poisson 分布中某稀有事件出现次数最多为k 次或者是至少为k 次的概率。 ∑ ∑-+----=-+-222)2()2)(1(2)1())2()1((μμμμμμy y x x y x 案例分析: (一)观察某地100名12岁男孩身高,均数为138.00cm ,标准差为 4.12cm ,12 .400.13800.128-=u ,则9925.0)(1=-u φ,结论正确是_____________。 A .理论上身高低于138.00cm 的12岁男孩占%。 B .理论上身高高于138.00cm 的12岁男孩占% C .理论上身高在128.00cm 和138.00cm 之间的12岁男孩占%。 D .理论上身高高于128.00cm 的12岁男孩占% (二)研究人员为了解该地居民发汞(?mol/kg )的基础水平,为汞污染的环境监测积累资料,调查了居住该市1年以上,无明显肝、肾疾病,无汞作业接触史的居民230人,数据如下:

第四章 常概率分布

第四章常用概率分布 为了便于读者理解统计分析的基本原理,正确掌握和应用以后各章所介绍的统计分析方法,本章在介绍概率论中最基本的两个概念——事件、概率的基础上,重点介绍生物科学研究中常用的几种随机变量的概率分布——正态分布、二项分布、波松分布以及样本平均数的抽样分布和t分布。 第一节事件与概率 一、事件 (一)必然现象与随机现象在自然界与生产实践和科学试验中,人们会观察到各种各样的现象,把它们归纳起来,大体上分为两大类:一类是可预言其结果的,即在保持条件不变的情况下,重复进行试验,其结果总是确定的,必然发生(或必然不发生)。例如,在标准大气压下,水加热到100℃必然沸腾;步行条件下必然不可能到达月球等。这类现象称为必然现象(inevitable phenomena)或确定性现象(definite phenomena)。另一类是事前不可预言其结果的,即在保持条件不变的情况下,重复进行试验,其结果未必相同。例如,掷一枚质地均匀对称的硬币,其结果可能是出现正面,也可能出现反面;孵化6枚种蛋,可能“孵化出0只雏”,也可能“孵化出1只雏”,…,也可能“孵化出6 只雏”,事前不可能断言其孵化结果。这类在个别试验中其结果呈现偶然性、不确定性现象,称为随机现象(random phenomena)或不确定性现象(indefinite phenomena)。 人们通过长期的观察和实践并深入研究之后,发现随机现象或不确定性现象,有如下特点:在一定的条件实现时,有多种可能的结果发生,事前人们不能预言将出现哪种结果;对一次或少数几次观察或试验而言,其结果呈现偶然性、不确定性;但在相同条件下进行大量重复试验时,其试验结果却呈现出某种固有的特定的规律性——频率的稳定性,通常称之为随机现象的统计规律性。例如,对于一头临产的妊娠母牛产公犊还是产母犊是事前不能确定的,但随着妊娠母牛头数的增加,其产公犊、母犊的比例逐渐接近1:1的性别比例规律。概率论与数理统计就是研究和揭示随机现象统计规律的一门科学。 (二)随机试验与随机事件 1、随机试验通常我们把根据某一研究目的,在一定条件下对自然现象所进行的观察或试验统称为试验(trial)。而一个试验如果满足下述三个特性,则称其为一个随机试验(random trial),简称试验: (1)试验可以在相同条件下多次重复进行; (2)每次试验的可能结果不止一个,并且事先知道会有哪些可能的结果; (3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果。 如在一定孵化条件下,孵化6枚种蛋,观察其出雏情况;又如观察两头临产妊娠母牛所

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

第4章 常见概率分布.

第四章常用概率分布 一、二项分布的概念和特征 概念 分布:随机变量的取值规律分布函数:描述分布的规律 变量类型 连续型变量 离散型变量如:正态分布 如:二项分布,泊松分布 思考 例1.假设有5只实验小白鼠,要求它们同种属、同性别、体重相近,且给小白鼠注射一定剂量的毒物时,他们有相同的死亡率80%,存活率为20%。那么这5只小白鼠实验后全部死亡的概率是多少?有一只白小鼠存活的概率是多少?2只小白鼠存活的概率是多少? 例1.假设有5只实验小白鼠,要求它们同种属、同性别、体重相近, 且给小白鼠注射一定剂量的毒物时,他们有相同的死亡率80%, 存活率为20%。那么这5只小白鼠实验后全部死亡的概率是多少? 有一只白小鼠存活的概率是多少?2只小白鼠存活的概率是多少? P 死 =0.8 P 活 =0.2 P 1 =0.8×0.8×0.8×0.8×0.8 P 2 = P 3 = 1 5 C 2 5

C 0.2×0.8 4 =0.082 0.2 2 ×0.8 3 =0.020 =0.8 5 =0.328 该实验有三个特点: 1.各次实验是彼此独立的; 2.每次实验只有二种可能的结果,或死亡或生存; 3.每次实验小白鼠死亡和生存的概率是固定的。 具备以上三点,即从阳性率为π的总体中随机抽取大小为n的样本, 则出现“阳性”数为X的概率分布即呈现二项分布,记作B(n,p。 概率分布函数 二项分布的概率函数P (X 可用公式 X n X X n C X P - - = 1 ( ( p p 其中 ! ( ! ! X n X n C X n - = 对于任何二项分布,总有 ( 1 = ? = n X X P 例2.临床上用针灸治疗某型头疼,有效的概率为60%,现以该疗法治疗3例,其中2例有效的概率是多大? 分析:治疗结果为有限和无效两类,每个患者是否有效不受其他病例的影响,有效概率均为0.6,符合二项分布的条件。

各种概率分布介绍

一、引言 Bayes统计起源于英国学者托马斯.贝叶斯(Thomas Bayes,1702~1761)死后发表的一篇论文“论有关机遇问题的求解”。在此论文中他提出了著名的贝叶斯公式和一些归纳推理方法,随后拉普拉斯(Laplace,P.C.1749~1827)不仅重新发现了贝叶斯定理,阐述的远比贝叶斯更为清晰,而且还用它来解决天体力学、医学统计以及法学问题。之后虽有一些研究和应用但由于其理论尚不完整,应用中出现一些问题,致使贝叶斯方法长期未被接受。直到二战后,瓦尔德(Wald,A.1902~1950)提出统计决策函数论后又引起很多人对贝叶斯研究方法的兴趣。因为在这个理论中,贝叶斯解被认为是一种最优决策函数。在Savage,L.J.(1954)、Jeffreys,H.(1961)、Good,I.J(1950)、Lindley,D.V(1961)、Box,G.E.P.&Tiao,G.C.(1973)、Berger,J.O.(1985)等贝叶斯学者的努力下,对贝叶斯方法在观点、方法和理论上不断的完善。另外在这段时期贝叶斯方法在工业、经济、管理等领域内获得一批无可非议的成功应用。贝叶斯统计的研究论文与著作愈来愈多,贝叶斯统计的国际会议经常举行。如今贝叶斯统计已趋成熟,贝叶斯学派已发展成为一个有影响的学派,开始打破了经典统计学一统天下的局面。 贝叶斯统计是在与经典统计的争论中发展起来的,现已成为统计学中不可缺少的一部分.贝叶斯统计与经典统计的主要区别就是是否利用先验信息。贝叶斯统计重视已出现的样本观测值,对尚未发生的样本观测值不予考虑。近几年来对贝叶斯统计的广泛应用,使得贝叶斯统计在可靠性问题中起到越来越重要的作用。尤其是对产品的失效率以及产品寿命的检验中,更是离不开贝叶斯统计。本文主要是探索串联系统和并联系统的可靠性,以及可靠性增长模型的Bayes估计,这些都表现出了Bayes统计在可靠性中的广泛应用。 二、绪论 (一)统计学及其发展历程 人类的统计活动源远流长,自从有了数的概念,有了计数活动,就有了统计。但作为一门学科的统计学,它的出现却晚得多。英国学者配第(W.Petty)《政治算术》一书的问世,标志着统计学的开端。 概率论是统计学的重要起源之一。14世纪时,在工商业比较繁荣的意大利以及地中海岸其他地区,由于赌博游戏盛行和保险活动的萌起。人们

第四章 常用概率分布

第四章常用概率分布 为了便于理解统计分析的基本原理,正确掌握和应用以后各章所介绍的统计分析方法,本章在介绍概率论中最基本的两个概念——事件、概率的基础上,重点介绍生物科学研究中常用的几种随机变量的概率分布——正态分布、二项分布、波松分布以及样本平均数的抽样分布和t分布。 第一节排列与组合 一、乘法原理 如果一个过程分两个阶段进行,第一阶段有m种做法,第二阶段有n种做法,且第一阶段与第二阶段的任一种做法配成整个事件的一种做法,那么整个过程应该有mn种做法。 二、排列 从n个不同的元素中,任意取出r个不同的元素(0<r≤n)按一定顺序排成一列,这样的一列元素,叫做从n个不同的元素中取r个不同的元素组成的一种排列。记做Pn r P n r=n(n-1)---(n-r+1)=n!/(n-r)! 例1:从1、2、3、4、5、6、7任取3个不同的数字组成3位数中,有几个是偶数? 3×6×5=90 如果容许重复,则P n r =n r 例2:体育彩票6位数的排列数有106,加上特征数共有106C51 例3 用0、1、2---9组成3位数 (1)如考虑数字可重复,可以组成多少不同的3位数? (2)3位数中数字没有重复的有几个? (3)3个数字相同的有几个? (4)只有2个相同的有几个? 解 1)百位9种,十位10种,个位10种 9×10×10 (2)百位9种,十位9种,个位8种 9×9×8 (3)百位9种,9×1×1 (4)百位与十位相同9×9,百位与个位相同9×9,十位与个位相同9×9 9×9+9×9+9×9=243 三、组合 设有n个不同的元素,从它们中间任取r个构成一组,不考虑r元素的次序,记做C n r C n r=P n r/r!= n!/(n-r)!r! 例:5本不同的数学书,8本不同的物理书,任取2 本数学书,4本物理书的取法C52C84=700 第二节事件与概率 一、事件 (一)必然现象与随机现象 在自然界与生产实践和科学试验中,观察到各种现象,归纳起来,大体上分为两大类:必然现象(inevitable phenomena)或确定性现象(definite phenomena):可预言其结果的,即在保持条件不变的情况下,重复进行试验,其结果总是确定的,必然发生(或必然

考试练习题常用概率分布

第四章 选择题: 1.二项分布的概率分布图在条件下为对称图形。 A.n > 50 B.π=0.5 C.nπ=1 D.π=1 E.nπ> 5 2.满足时,二项分布B(n,π)近似正态分布。 A.nπ和n(1-π)均大于等于5 B.nπ或n(1-π)大于等于5 C.nπ足够大D.n > 50 E.π足够大 3. 的均数等于方差。 A.正态分布B.二项分布C.对称分布D.Poisson分布E.以上均不对4.标准正态典线下,中间95%的面积所对应的横轴范围是。 A.-∞到+1.96 B.-1.96到+1.96 C.-∞到+2.58 D.-2.58到+2.58 E.-1.64到+1.64 5.服从二项分布的随机变量的总体均数为。 A.n(1-π)B.(n-1)πC.nπ(1-π)D.nπ 6.服从二项分布的随机变量的总体标准差为。 7.设X1,X2分别服从以λ1,λ2为均数的Poisson分布,且X1与X2独立,则X1+X2服从以 为方差的Poisson分布。 8.满足时,Poisson分布Ⅱ(λ)近似正态分布。 A.λ无限大B.λ>20 C.λ=1 D.λ=0 E.λ=0.5 9.满足时,二项分布B(n,π)近似Poisson分布。 A.n很大且π接近0 B.n→∞C.nπ或n(1-π)大于等于5 D.n很大且π接近0.5 E.π接近0.5 10.关于泊松分布,错误的是。 A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布 B.泊松分布均数λ唯一确定 C.泊松分布的均数越大,越接近正态分布 D.泊松分布的均数与标准差相等 E.如果X1和X2分别服从均数为λ1和λ2的泊松分布,且相互独立。则X1+X2服从均数为λ1+λ2的泊松分布。 11.以下分布中,均数等于方差的分布是。 A.正态分布B.标准正态分布C.二项分布D.Poisson分布E.t分布12.随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ22),X与Y 独立,则X-Y服从。 A.N(μ1+μ2,σ12-σ22)B.N(μ1-μ2,σ12-σ22) C.N(μ1-μ2,σ12+σ22)D.N(0,σ12+σ22)E.以上均不对 13.下列叙述中,错误的是。 A.二项分布中两个可能结果出现的概率之和为1 B.泊松分布只有1个参数λ C.正态曲线下的面积之和为1 D.服从泊松分布的随机变量,其取值为0到n的概率之和为1 E.标准正态分布的标准差为1 14.据既往经验,注射破伤风抗毒素异常发生率为5‰,某医院一年接种600人次,无1例发生异常,该情况发生的可能性P(X=0)应等于。

概率论中几种常用的重要的分布

1 概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞+∞p p p . 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

16种常见概率分布概率密度函数、意义及其应用

均匀分布 .................................... 1 .... 正态分布(高斯分布) ....................... 2 ... 指数分布 .................................... 2 .... Beta 分布( 分布) .......................... 2 ... Gamma 分布 .................................. 3 .... 倒 Gamma 分布 威布尔分布 (Weibull 分布、韦伯分布、韦布尔分布 ) .............................................. 5.. Pareto 分布 ................................ 6 .... Cauchy 分布(柯西分布、柯西 .................. - 洛伦 兹分布) 7.. 2 分布(卡方分布) ......................... 7. t 分布 ......................................................................................................... 8.. F 分布 ......................................................................................................... 9.. 二项分布 ....................................................................................................... 1..0. 泊松分布( Poisson 分布) .............................................................................................. 1..0. 对数正态分布 ..................................................................................................... 1..1.. 均匀分布 均匀分布 X ~U (a,b ) 是无信息的,可作为无信息变量的先验分布 1 f (x ) 目 录 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 1. .4.

相关主题
文本预览
相关文档 最新文档