当前位置:文档之家› 教育最新K122018版高中数学第三章导数及其应用章末复习课学案苏教版选修1_1

教育最新K122018版高中数学第三章导数及其应用章末复习课学案苏教版选修1_1

教育最新K122018版高中数学第三章导数及其应用章末复习课学案苏教版选修1_1
教育最新K122018版高中数学第三章导数及其应用章末复习课学案苏教版选修1_1

第三章导数及其应用

学习目标 1.理解导数的几何意义并能解决有关斜率、切线方程等的问题.2.掌握初等函数的求导公式,并能够综合运用求导法则求函数的导数.3.掌握利用导数判断函数单调性的方法,会用导数求函数的极值和最值.4.会用导数解决一些简单的实际应用问题.

知识点一在x=x0处的导数

1.定义:函数y=f(x)在x=x0处的瞬时变化率,若Δx无限趋于0时,比值Δy Δx

_______________无限趋近于一个常数A,称函数y=f(x)在x=x0处可导.________为f(x)在x=x0处的导数.

2.几何意义:函数y=f(x)在x=x0处的导数是函数图象在点(x0,f(x0))处的切线________.3.物理意义:瞬时速度、瞬时加速度.

知识点二基本初等函数的求导公式

知识点三 导数的运算法则

????

??f x g x ′=________________(g (x )≠0)

知识点四 函数的单调性、极值与导数 1.函数的单调性与导数

在某个区间(a ,b )内,如果________,那么函数y =f (x )在这个区间内单调递增;如果________,那么函数y =f (x )在这个区间内单调递减. 2.函数的极值与导数

(1)极大值:在x =a 附近,满足f (a )≥f (x ),当x a 时,________,则点a 叫做函数的极大值点,f (a )叫做函数的极大值;

(2)极小值:在x =a 附近,满足f (a )≤f (x ),当x a 时,________,则点a 叫做函数的极小值点,f (a )叫做函数的极小值.

知识点五 求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤 1.求函数y =f (x )在(a ,b )内的________.

2.将函数y =f (x )的各极值与________________________比较,其中最大的一个为最大值,最小的一个为最小值.

特别提醒 (1)关注导数的概念、几何意义

利用导数的概念、几何意义时要特别注意切点是否已知,若切点未知,则设出切点,用切点坐标表示切线斜率.

(2)正确理解单调性与导数、极值与导数的关系 ①当函数在区间(a ,b )上为增函数时,f (x )≥0; ②f ′(x 0)=0是函数y =f (x )在x 0处取极值的必要条件.

类型一 导数几何意义的应用

例1 设函数f (x )=13x 3+ax 2

-9x -1(a >0),直线l 是曲线y =f (x )的一条切线,当l 的斜率

最小时,直线l 与直线10x +y =6平行. (1)求a 的值;

(2)求f (x )在x =3处的切线方程.

反思与感悟 利用导数求切线方程时关键是找到切点,若切点未知需设出.常见的类型有两种,一类是求“在某点处的切线方程”,则此点一定为切点,易求斜率进而写出直线方程即可得;另一类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q (x 1,

y 1),由y 0-y 1x 0-x 1

=f ′(x 1)和y 1=f (x 1)求出x 1,y 1的值,转化为第一种类型.

跟踪训练1 求垂直于直线2x -6y +1=0并且与曲线y =x 3

+3x 2

-5相切的直线方程.

类型二 函数的单调性与导数

例2 已知函数f (x )=x 3

+ax 2

+x +1,x ∈R . (1)讨论函数f (x )的单调性;

(2)设函数f (x )在区间(-23,-1

3)内是减函数,求a 的取值范围.

反思与感悟 (1)关注函数的定义域,单调区间应为定义域的子区间.

(2)已知函数在某个区间上的单调性时转化要等价. (3)分类讨论求函数的单调区间实质是讨论不等式的解集. (4)求参数的范围时常用到分离参数法.

跟踪训练2 设函数f (x )=13x 3-a 2x 2

+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y

=1.

(1)求b ,c 的值;

(2)若a >0,求函数f (x )的单调区间;

(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.

类型三 函数的极值、最值与导数 例3 已知f (x )=x -1+a

e

x , (1)若f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求f (x )的极值;

(3)当a =1时,直线l :y =kx -1与曲线y =f (x )没有公共点,求实数k 的取值范围.

反思与感悟 (1)已知极值点求参数的值后,要代回验证参数值是否满足极值的定义. (2)讨论极值点的实质是讨论函数的单调性,即f ′(x )的正负.

(3)求最大值要在极大值与端点值中取最大者,求最小值要在极小值与端点值中取最小者. 跟踪训练3 已知a ,b 为常数且a >0,f (x )=x 3+32(1-a )x 2

-3ax +b .

(1)函数f (x )的极大值为2,求a 、b 间的关系式;

(2)函数f (x )的极大值为2,且在区间[0,3]上的最小值为-23

2,求a 、b 的值.

类型四 导数与函数、不等式的综合应用

例4 设函数f (x )=-13x 3+2ax 2-3a 2

x +b (0

(1)求函数f (x )的单调区间和极值;

(2)若当x ∈[a +1,a +2]时,恒有|f ′(x )|≤a ,试确定a 的取值范围;

(3)当a =2

3时,关于x 的方程f (x )=0在区间[1,3]上恒有两个相异的实根,求实数b 的取值

范围.

反思与感悟 不等式恒成立问题,关键是确定函数在给定区间的最值,这时往往需要分类讨论,函数的零点与方程根的问题,注意数形结合思想的应用. 跟踪训练4 已知函数f (x )=12x 2

-a ln x (a ∈R ).

(1)求f (x )的单调区间;

(2)当x >1时,12x 2+ln x <23x 3

是否恒成立,并说明理由.

1.一个物体的运动方程为s =1-t +t 2

,其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是________米/秒.

2.若函数f (x )=x 3

+bx 2

+cx 的图象与x 轴相切于点(1,0),则函数f (x )的单调递减区间为________.

3.已知函数f (x )=x 3

+ax 2

+bx +27在x =-1处有极大值,在x =3处有极小值,则a =

________,b=________.

4.若函数y=x3-ax2+4在(0,2)上单调递减,则实数a的取值范围为________.

5.设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).

(1)确定a的值;

(2)求函数f(x)的单调区间与极值.

1.利用导数的几何意义可以求出曲线上任意一点处的切线方程y-y0=f′(x0)(x-x0).明确“过点P(x0,y0)的曲线y=f(x)的切线方程”与“在点P(x0,y0)处的曲线y=f(x)的切线方程”的异同点.

2.借助导数研究函数的单调性,经常同三次函数,一元二次不等式结合,融分类讨论、数形结合于一体.

3.利用导数求解优化问题,注意自变量中的定义域,找出函数关系式,转化为求最值问题.

提醒:完成作业第3章章末复习课

答案精析

知识梳理 知识点一

1.

f x 0+Δx -f x 0

Δx

常数A

2.斜率 知识点二 0 αx α-1

cos x -sin x a x

ln a

e x

1x ln a 1

x

知识点三

f ′(x )±

g ′(x ) f ′(x )g (x )+f (x )g ′(x ) f

x g x -f x g

x

g 2x

知识点四

1.f ′(x )>0 f ′(x )<0 2.(1)f ′(x )>0 f ′(x )<0 (2)f ′(x )<0 f ′(x )>0 知识点五 1.极值

2.端点处函数值f (a ),f (b ) 题型探究

例1 解 (1)∵f ′(x )=x 2

+2ax -9 =(x +a )2

-a 2

-9, ∴f ′(x )min =-a 2

-9, 由题意知,-a 2-9=-10, ∴a =1或-1(舍去). 故a =1. (2)由(1)得a =1. ∴f ′(x )=x 2

+2x -9, 则k =f ′(3)=6,f (3)=-10.

∴f (x )在x =3处的切线方程为y +10=6(x -3), 即6x -y -28=0.

跟踪训练1 解 设切点坐标为P (x 0,y 0),函数y =x 3

+3x 2

-5的导数为y ′=3x 2

+6x ,则切线的斜率为k =y ′|0x x ==3x 2

+6x |0x x ==3x 2

0+6x 0. 又∵直线2x -6y +1=0的斜率为k ′=1

3,

∴k ·k ′=(3x 2

0+6x 0)×13=-1,

解得x 0=-1,

∴y 0=-3,即P (-1,-3). 又k =-3,

∴切线方程为y +3=-3(x +1), 即3x +y +6=0.

例2 解 (1)因为f (x )=x 3

+ax 2+x +1, 所以f ′(x )=3x 2

+2ax +1.

当Δ≤0,即a 2≤3时,f ′(x )≥0,f (x )在R 上单调递增. 当a 2

>3时,令f ′(x )=0,求得两根为x =-a ±a 2

-3

3

.

即f (x )在(-∞,-a -a 2

-3

3)内是增函数,

在(-a -a 2

-33,-a +a 2

-33)内是减函数,

在(-a +a 2-3

3

,+∞)内是增函数.

所以函数f (x )在(-∞,-a -a 2

-33)和(-a +a 2

-3

3,+∞)内是增函数;

在(-a -a 2

-33,-a +a 2

-3

3)内是减函数.

(2)若函数在区间(-23,-1

3

)内是减函数,

则f ′(x )=3x 2

+2ax +1的两根在区间(-23,-13

)外,

即????

?

f

-2

3,f

-13

解得a ≥2,

故a 的取值范围是[2,+∞).

跟踪训练2 解 (1)f ′(x )=x 2

-ax +b ,

由题意得?

??

??

f

=1,

f =0,

即?

??

??

c =1,

b =0.

(2)由(1)得f ′(x )=x 2

-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.

所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞), 单调递减区间为(0,a ).

(3)g ′(x )=x 2

-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2

-ax +2<0成立, 即当x ∈(-2,-1)时,a <(x +2

x

)max =-22,

当且仅当x =2

x

即x =-2时等号成立.

所以满足要求的a 的取值范围是(-∞,-22). 例3 解 f ′(x )=1-a

e

x .

(1)∵f (x )在点(1,f (1))处的切线平行于x 轴, ∴由f ′(1)=0,得a =e.

(2)①当a ≤0时,f ′(x )>0,y =f (x )为(-∞,+∞)上的增函数, 所以y =f (x )无极值;

②当a >0时,令f ′(x )=0,得x =ln a .

当x ∈(-∞,ln a )时,f ′(x )<0,y =f (x )在(-∞,ln a )上递减; 当x ∈(ln a ,+∞)时,f ′(x )>0,y =f (x )在(ln a ,+∞)上递增, 故f (x )在x =ln a 处取得极小值f (ln a )=ln a ,无极大值. 综上,当a ≤0时,y =f (x )无极值;

当a >0时,y =f (x )在x =ln a 处取得极小值ln a ,无极大值. (3)当a =1时,f (x )=x -1+1

e

x .

直线l :y =kx -1与曲线y =f (x )没有公共点等价于关于x 的方程kx -1=x -1+1

e x 在R 上没

有实数解,

即关于x 的方程(k -1)x =1

e x (*)在R 上没有实数解.

①当k =1时,方程(*)为1

e x =0,在R 上没有实数解;

②当k ≠1时,方程(*)为

1k -1

=x e x

. 令g (x )=x e x

,则有g ′(x )=(1+x )e x

, 令g ′(x )=0,得x =-1.

当x 变化时,g ′(x ),g (x )的变化情况如下表:

当x =-1时,g (x )min =-e ,

从而g (x )∈[-1

e ,+∞).

所以当

1k -1∈(-∞,-1

e

)时,方程(*)没有实数解, 解得k ∈(1-e,1).

综上,k 的取值范围为(1-e,1].

跟踪训练3 解 (1)f ′(x )=3x 2

+3(1-a )x -3a =3(x -a )(x +1), 令f ′(x )=0,解得x 1=-1,x 2=a , 因为a >0,所以x 1

当x 变化时,f ′(x ),f (x )的变化情况见下表:

所以当x =-1时,f (x )有极大值2, 即3a +2b =3.

(2)当0

f (a )=-1

2a 3-32

a 2+

b .

即-12a 3-32a 2+b =-232

又b =3-3a 2

.

于是有a 3

+3a 2

+3a -26=0, 即(a +1)3

=27,a =2,b =-32

当a >3时,由(1)知,f (x )在[0,3]上为减函数,即f (3)为最小值,f (3)=-23

2,从而求得a

107

48

,不合题意,舍去. 综上a =2,b =-3

2

.

例4 解 (1)f ′(x )=-x 2

+4ax -3a 2

=-(x -a )(x -3a ).

令f ′(x )=0,得x =a 或x =3a .

当x 变化时,f ′(x )、f (x )的变化情况如下表:

所以f (x )在(-∞,a )和(3a ,+∞)上是减函数;在(a,3a )上是增函数. 当x =a 时,f (x )取得极小值,

f (x )极小值=f (a )=b -43

a 3;

当x =3a 时,f (x )取得极大值,f (x )极大值=f (3a )=b . (2)f ′(x )=-x 2

+4ax -3a 2

,其对称轴为x =2a . 因为0

所以f ′(x )在区间[a +1,a +2]上是减函数. 当x =a +1时,f ′(x )取得最大值,

f ′(a +1)=2a -1;

当x =a +2时,f ′(x )取得最小值,

f ′(a +2)=4a -4.

于是有?

??

??

2a -1≤a ,4a -4≥-a ,即4

5

≤a ≤1. 又因为0

5

≤a <1.

(3)当a =23时,f (x )=-13x 3+43x 2-4

3

x +b .

f ′(x )=-x 2+83x -43

,由f ′(x )=0,

即-x 2

+83x -43=0,

解得x 1=2

3

,x 2=2,

即f (x )在?

????-∞,23上是减函数, 在? ??

??23,2上是增函数,在(2,+∞)上是减函数. 要使f (x )=0在[1,3]上恒有两个相异实根, 即f (x )在[1,2),(2,3]上各有一个实根,

于是有?????

f

,f

,f

即????

?

-1

3

+b ≤0,b >0,-1+b ≤0,

解得0

??0,13. 跟踪训练4 解 (1)当a ≤0时,f (x )的单调递增区间为(0,+∞).

当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ). (2)设g (x )=23x 3-12x 2

-ln x (x >1),

则g ′(x )=2x 2

-x -1x

.

因为当x >1时,

g ′(x )=

x -

x 2+x +

x

>0,

所以g (x )在(1,+∞)上是增函数. 所以g (x )>g (1)=1

6>0,

即23x 3-12x 2

-ln x >0, 所以12x 2+ln x <23

x 3

故当x >1时,12x 2+ln x <23x 3

恒成立.

当堂训练

1.5 2.(1

3,1) 3.-3 -9

4.[3,+∞)

5.解 (1)因为f (x )=a (x -5)2

+6ln x , 所以f ′(x )=2a (x -5)+6

x

.

令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为

y -16a =(6-8a )(x -1),

由点(0,6)在切线上, 可得6-16a =8a -6,故a =1

2

.

(2)由(1)知,f (x )=12

(x -5)2

+6ln x (x >0),

f ′(x )=x -5+6x

x -

x -

x

.

令f ′(x )=0,解得x =2或3. 当03时,f ′(x )>0,

故f (x )在(0,2),(3,+∞)上为增函数;

当2

由此可知f (x )在x =2处取得极大值f (2)=9

2+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.

综上,f (x )的单调增区间为(0,2),(3,+∞),单调减区间为(2,3),f (x )的极大值为9

2+6ln

2,极小值为2+6ln 3.

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义 黑龙江 依兰高中 刘 岩 A 组基础达标 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( ) A. 3x +x B. 3x C. 3x +c (c 为常数) D. 3x+c (c 为常数) 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f / (x)的图象是( ) 4.下列求导数运算错误.. 的是( ) A. 20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线23ln 4x y x =-的一条切线的斜率为12 ,则切点的横坐标为( ) A . 2 B . 3 C . 12 D .1 填空题: 1.若2012)1(/ =f ,则x f x f x ?-?+→?)1()1(lim 0= ,x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e 的导数为 A x D C x B

高中数学导数经典100题

题401:省峨山彝族自治县第一中学2018届高三2月份月考理科 已知函数()ln f x ax x =+,其中a 为常数,e 为自然对数的底数. (1)若()f x 在区间(0,]e 上的最大值为3-,求a 的值; (2)当1a =-时,判断方程ln 1|()|2x f x x = +是否有实根?若无实根请说明理由,若有实根请给出根的个数. 题402:2018年普通高等学校招生全国统一考试仿真卷-(理六) 已知()ln()f x x m mx =+- (1)求()f x 的单调区间; (2)设1m >,12,x x 为函数()f x 的两个零点,求证:120x x +< 题403:省实验中学2018届高三上学期第六次月考数学(文) 已知函数2()ln (0)f x x a x a =-> (1)讨论函数()f x 在(,)a +∞上的单调性; (2)证明:322ln x x x x -≥且322ln 16200x x x x --+> 题404:西北师大附中2017届高三校第二次诊断考试试题数学(理科) 已知函数21()ln (1)..2 f x a x x a x a R =+-+∈ (1)求函数()f x 的单调区间; (2)若()0f x ≥对定义域的任意x 恒成立,数a 的取值围; (3)证明:对于任意正整数,,m n 不等式 111...ln(1)ln(2)ln()() n m m m n m m n +++>++++恒成立.

题405:一中2017-2018学年度高三年级第五次月考 数学(理)试 已知函数3()ln(1)ln(1)(3)()f x x x k x x k R =++---∈ (1)当3k =时,求曲线()y f x =在原点处的切线方程; (2)若()0f x >对(0,1)x ∈恒成立,求k 的取值围. 题406:第一中学2018届高三上学期期末考试数学(理) 已知函数()ln 1,a f x x a R x =+-∈ (1)若函数()f x 的最小值为0,求a 的值; (2)证明:(ln 1)sin 0x e x x +-> 题407:2017—2018学年度衡中七调理科数学 已知函数1()x f x e a -=+,函数()ln ,g x ax x a R =+∈ (1)求函数()y g x =的单调区间; (2)若不等式()()1f x g x ≥+在区间[1,)+∞恒成立,数a 的取值围 (3)若(1,)x ∈+∞,求证不等式12ln 1x e x x -->-+

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

高中数学导数练习题(有答案)

导数练习题(含答案) 【编著】黄勇权 一、求下函数的导数 (1)f (x )=2x 2+3x+2 (2)f (x )=3sinx+7x 2 (3)f (x )=lnx+2x (4)f (x )=2x +6x (5)f (x )=4cosx -7 (6)f (x )=7e x +9x (7)f (x )=x 3+4x 2+6 (8)f (x )=2sinx -4cosx (9)f (x )=log2x (10)f (x )= x 1 (11)f (x )=lnx+3e x (12)f (x )=2x x (13)f (x )=sinx 2 (14)f (x )=ln (2x 2+6x ) (15)f (x )=x 1x 3x 2++ (16)f (x )=xlnx+9x (17)f (x )= x sinx lnx + (18)f (x )=tanx (19)f (x )=x x e 1e 1-+ (20) f (x )=(x 2-x )3 【答案】 一、求下函数的导数 (1)f /=4x+3 (2)f /=3cos+14x (3)f /=x 1+2 (4)f /=2x ln2+6 (5)f /= -4sinx (6)f /=7e x (7)f /=3x 2+8x (8)f /=2cosx+4sinx

(9)因为f (x )=log2x =2ln lnx =lnx 2 ln 1? 所以:f /=(lnx 2ln 1?)/ =(2ln 1)?(lnx )/ =2ln 1?x 1 =ln2 x 1? (10)因为:f (x )=x 1 f /=2x x 1x 1) ()()('?-?'= x x 1210?- = x x 21- = 2x 2x - (11)f /= x e 3x 1+ (12)f (x )= 2x x =23x - f /=(2 3-)25x -= 3 x 2x 3- (13)f /=(sinx 2)/?(x 2)/=cosx 2?(2x )=2x ?cosx 2 (14)f /=[ln (2x 2+6x )]/?(2x 2+6x)/ = x 6x 212+? (4x+6) = x 3x 3x 22++ (15)f (x )=x 1x 3x 2++ = x+3+x 1 f /=(x+3+x 1)/= 1+0 -2x 1 =22x 1-x (16)f /=(x )/(lnx )+(x )(lnx )/+9 =lnx+x 1x ?+9 =lnx+10

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

(完整版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

高中数学导数及微积分练习题

1.求导:(1)函数y= 2cos x x 的导数为-------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x ) 2 ------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3)---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A). 54 (B).52 (C).51 (D).5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1 ()1()()0()1 2f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22 =与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3 x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1 ,则=a _________ 。 8.已知抛物线2y x b x c =++在点(1 2),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.

高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版) 1.若f (x )=sin π 3 -cos x ,则f ′(α)等于( ) A .Sin α B .Cos α C .sin π3+cos α D .cos π 3+sin α [答案] A [解析] ∵f (x )=sin π 3 -cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A. 2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1 f (n ) }(n ∈N *)的前n 项和是( ) A.n n +1B .n +2n +1C.n n -1 D .n +1n [答案] A [解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1 f (n ) }(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1 n (n +1)=????1-12+????12-13+…+????1n -1n +1 =1-1n +1=n n +1 ,故选A. 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( ) [答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B. 4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e - 1B .-1C .-e - 1 D .-e [答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1 e , 解得f ′(e)=-1 e ,故选C.

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

(完整版)高二数学选修2-2导数单元测试题(有答案)

导数复习 一.选择题 (1) 函数13)(23+-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (3) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (4) 函数,93)(2 3-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4 π 的点中,坐标为整数的点的 个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x =+在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 .10设函数()1 x a f x x -= -,集合M={|()0}x f x <,P=' {|()0}x f x >,若 M P,则实数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) 11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个D . 4个 13. y =e sin x cos(sin x ),则y ′(0)等于( ) A.0 B.1 C.-1 D.2 14.经过原点且与曲线y =5 9++x x 相切的方程是( ) A.x +y =0或25 x +y =0 B.x -y =0或25 x +y =0 C.x +y =0或 25 x -y =0 D.x -y =0或 25 x -y =0 15.设f (x )可导,且f ′(0)=0,又x x f x )(lim 0 '→=-1,则 f (0)( ) A.可能不是f (x )的极值 B.一定是f (x )的极值 C.一定是f (x )的极小值 D.等于0 16.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0 B.1 C.n n )221(+- D.1)2 ( 4++n n n 17、函数y=(x 2-1)3+1在x=-1处( ) A 、 有极大值 B 、无极值 C 、有极小值 D 、无法确定极值情况 18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( ) A 、3 10 B 、3 13 C 、3 16 D 、3 19 19.过抛物线y=x 2 上的点M (4 1,21)的切线的倾斜角是( ) A 、300 B 、450 C 、600 D 、900 20.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( ) a b x y ) (x f y ?=O

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

高中数学导数及其应用电子教案

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量;

②求平均变化率; ③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项是符合要求的) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1 '(1)3 f D .以上都不对 2.已知物体的运动方程是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0的时刻是( ). A .0秒、2秒或4秒 B .0秒、2秒或16秒 C .2秒、8秒或16秒 D .0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( ). A B . C .23 D .23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( ). A .[0,]π B .2[0,)[,)23 ππ π C .2[,)3ππ D .2[0,)(,)223πππ 5.设'()f x 是函数()f x 的导数,'()y f x =的图像如图 所示,则()y f x =的图像最有可能的是( ). 6.函数3 ( )2f x x ax =+-在区间[1,) +∞内是增函数,则实数a 的取值范围是( ). A .[3,)+∞ B .[3,)-+∞ C .(3,)-+∞ D .(,3)-∞- 7.已知函数3 2 ()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小值分别为( ). '()f x

A . 427 ,0 B .0,427 C .427- ,0 D .0,4 27 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形的面积是( ). A. 415 B. 4 17 C. 2ln 21 D. 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A .01b << B .1b < C .0b > D .12 b < 10.21y ax =+的图像与直线y x =相切,则a 的值为( ). A .18 B .14 C .1 2 D .1 11. 已知函数()x x x f cos sin +=,则=)4 ('π f ( ) A. 2 B.0 C. 22 D. 2- 12.函数3 ()128f x x x =-+在区间[3,3]-上的最大值是( ) A. 32 B. 16 C. 24 D. 17 13.已知 (m 为常数)在 上有最大值3,那么此函数在 上的最小值为 ( ) A . B . C . D . 14.dx e e x x ? -+1 0)(= ( ) A .e e 1 + B .2e C . e 2 D .e e 1- 二、填空题(每小题5分,共30分) 15.由定积分的几何意义可知? --2 22 4x =_________. 16.函数 )0(ln )(>=x x x x f 的单调递增区间是 . 17.已知函数()ln f x ax x =-,若()1f x >在区间(1,)+∞内恒成立,则实数a 的范围为______________. 18.设 是偶函数,若曲线 在点 处的切线的斜率为1,则该曲线在 处的切线的斜率为_________.

高中数学导数的几何意义测试题含答案

高中数学导数的几何意义测试题(含答案) 选修2-21.1第3课时导数的几何意义 一、选择题 1.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么() A.f(x0)>0 B.f(x0)<0 C.f(x0)=0 D.f(x0)不存在 [答案] B [解析] 切线x+2y-3=0的斜率k=-12,即f(x0)=-12<0.故应选B. 2.曲线y=12x2-2在点1,-32处切线的倾斜角为() A.1 B.4 C.54 D.-4 [答案] B [解析] ∵y=limx0[12(x+x)2-2]-(12x2-2)x =limx0(x+12x)=x 切线的斜率k=y|x=1=1. 切线的倾斜角为4,故应选B. 3.在曲线y=x2上切线的倾斜角为4的点是() A.(0,0) B.(2,4) C.14,116 D.12,14

[答案] D 页 1 第 [解析] 易求y=2x,设在点P(x0,x20)处切线的倾斜角为4,则2x0=1,x0=12,P12,14. 4.曲线y=x3-3x2+1在点(1,-1)处的切线方程为() A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5 [答案] B [解析] y=3x2-6x,y|x=1=-3. 由点斜式有y+1=-3(x-1).即y=-3x+2. 5.设f(x)为可导函数,且满足limx0f(1)-f(1-2x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为() A.2 B.-1 C.1 D.-2 [答案] B [解析] limx0f(1)-f(1-2x)2x=limx0f(1-2x)-f(1)-2x =-1,即y|x=1=-1, 则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B. 6.设f(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线() A.不存在 B.与x轴平行或重合

相关主题
文本预览
相关文档 最新文档