当前位置:文档之家› 电阻炉的温度控制系统设计(课程设计)

电阻炉的温度控制系统设计(课程设计)

电阻炉的温度控制系统设计(课程设计)
电阻炉的温度控制系统设计(课程设计)

电阻炉的温度控制系统设计

摘要

电阻炉在冶金工业中的运用相当广泛,其温度参数在生产过程中的自动控制系统也随着微机单片机可控硅技术在工业控制领域的推广、应用,正朝着高精度、高稳定性、高智能化的方向发展。电阻加热炉是典型的工业过程控制对象。其温度控制具有升温单向性、大惯性、大滞后、时变性等特点,且其升温、保温是依靠电阻丝加热,降温则是依靠环境自然冷却。

温度是工业对象中主要的被控参数之一。尤其是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID控制或其他纯滞后补偿算法。但对于电阻加热炉来说,当其温度一旦超调就无法用控制手段使其降温,因而很难用数学方法建立精确模型和确定参数。而传统PID控制是一种建立在经典控制理论基础上的控制策略,其设计依赖于被控对象的数学模型,因此对于加热炉这类控制对象采用传统PID 的控制方案很难达到理想的控制效果。

为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。

因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。在电阻炉温度控制系统的设计中,应尽量考虑到如何有效地避免各种干扰因素而采用一个较好的控制方案,选择合适芯片及控制算法是非常有必要的本设计要用单片机设计一个电阻炉温度控制系统。

~

关键词:恒温;热处理;控温系统

Design for Temperature Control System of Resistance Furnace

Abstract

The resistance furnace in metallurgical industry is widely application, its temperature parameters in the production process of automatic control system with single-chip microcomputer control technology in the field of industrial silicon, the popularization and application in high precision, high stability, high intelligent direction. Resistance furnace is typical of industrial process control object. The temperature control with temperature mono-direction and large inertia, the lag and time-varying characteristics, such as temperature, heat preservation and heat resistance wire depend on environment, cooling is natural cooling.

Temperature is the main objects of accused of parameters. Especially in metallurgy, chemical, machinery, widely used in various industries of heating furnace, heat treatment furnace, reactors. Because of the different kinds of heating method is adopted, and the fuel is not identical also, such as coal gas, natural gas etc. But control system dynamic characteristics of itself, all belong to a first-order lagging pure, in the same basic control algorithm, PID control or other pure lag compensation algorithm. But for resistance furnace, when the temperature once overshoot cannot use control means that the cooling, so it is difficult to use mathematical method to establish precise model and parameters. While the traditional PID control is an established in classical control theory, the control strategy based on its design depend on mathematical model of the controlled objects, so this kind of control for furnace adopts the traditional PID control object to achieve the ideal control scheme.

In order to guarantee the normal production process, improve product safely quantity and quality and to reduce the labor intensity, energy saving, with all kinds of electric heating requirements under certain conditions, not with remains constant voltage fluctuations or furnace changes, or some objects according to the technical requirement of electric furnace temperature or a designated in accordance with the law and heat changes, etc.

Therefore, in industrial and agricultural production and scientific

experiments to constantly measuring temperature will not only, and to control System.In the resistance furnace temperature control system design, should try to consider how to effectively avoid distractions and USES a better control scheme, select the appropriate chip and control algorithm is necessary to the design with a single-chip microcomputer temperature control system of resistance furnace.

\

Keywords: temperature; Heat treatment; Temperature control system

目录

摘要 (1)

Abstract (2)

一、总体方案设计 (4)

1、设计内容及要求 (4)

2、工艺要求 (4)

3、要求实现的系统基本功能 (5)

4、对象分析 (5)

5、系统功能设计 (5)

二、硬件的设计和实现 (5)

1、计算机机型 (5)

2、设计支持计算机工作的外围电路 (5)

3、设计输入输出通道 (8)

4、元器件的选择 (10)

三、数字控制器的设计 (7)

1、控制算法 (10)

2、计算过程 (11)

四、软件设计 (12)

1、系统程序流程图 (12)

2、程序清单 (15)

五、完整的系统电路图 (27)

六、系统调试 (27)

七、设计总结 (27)

八、参考文献 (27)

附录 (28)

一、总体方案设计

!

设计任务:用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。

1、设计内容及要求

电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。

系统模型:

2、工艺要求

]

按照规定的曲线进行升温和降温,温度控制范围为50~350℃,升温和降温阶段的温度控制精度为±5℃,保温阶段温度控制精度为±2℃。

3、要求实现的系统基本功能

微机自动调节:正常工况下,系统投入自动。

模拟手动操作:当系统发生异常,投入手动控制。

微机监控功能:显示当前被控量的设定值、实际值,控制量的输出值,参数报警时有灯光报警。

4、对象分析

在此设计中,要求电阻炉炉内的温度,按照上图所示工艺要求的规律变化,首先从室温开始到50℃为自由升温阶段,当温度到达50℃,就进入系统调节,当温度上升到达350℃时进入保温段,要求始终在系统控制下,保证所需的炉内温度的精度。加工完毕,要进行降温控制。保温段的时间为600~1800s。过渡过程时间:即从开始控制到进入保温阶段的时间要小于600s。在保温段当温度高于352℃或低于348℃时要报警,在升温和降温阶段也要进行控制,使炉内温度按照曲线的斜率升或降。

|

采用MCS—51单片机作为控制器,ADC0809模数转换芯片为模拟量输入,DAC0832数模转换芯片为模拟量输出,铂电阻为温度检测元件,运算放大器和可控硅作为功率放大,电阻炉为被控对象,组成电阻炉炉温控制系统,另外,系统还配有数字显示,以便显示和记录生产过程中的温度和输出值。

5、系统功能设计

计算机定时对炉温进行测量和控制一次,炉内温度是由铂电阻温度计来进行测量,其信号经放大送到模数转换芯片,换算成相应的数字量后,再送入计算机中进行判别和

运算,得到应有的电功率数,经过数模转换芯片转换成模拟量信号,供给可控硅功率调节器进行调节,使其达到炉温变化曲线的要求。

二、硬件的设计和实现

1、计算机机型:MCS—51 8031(不包含ROM、EPROM)

系统总线:PC总线

2、设计支持计算机工作的外围电路

矩阵键盘技术:

图2-1用8255接口的4×8键盘矩阵

图2-1为4×8矩阵组成的32键盘与微机接口电路。图中8255端口C为行扫描口,工作于输出方式,端口A工作于输入方式,用来读入列值。图中I/O口地址必须满足___

CE=0,才能选中相应的寄存器。在每一行与列的交叉点接一个按键,故4×8共32个键。

温度输出显示技术:

LED静态显示接口技术,所谓静态显示,即CPU输出显示值后,由硬件保存输出值,保持显示结果.

图2-2用锁存器连接的6位静态显示电路

图2-2为6位BCD码静态显示电路原理图。图中74LS244为总线驱动器,6位数字显示共用同一组总线,每个LED显示器均配有一个锁存器(74LS377),用来锁存待显示的数据。当被显示的数据从数据总线经74LS244传送到各锁存器的输入端后,到底哪一个锁存器选通,取决于地址译码器74LS138各输出位的状态。总线驱动器74LS244由IOW和A9控制,当IOW和A9同时为低电平时,74LS244打开,将数据总线上的数据传送到各个显示器的锁存器74LS377上。

特点:占用机时少,显示可靠.但使用元件多,且线路复杂、成本高。

报警电路设计:

正常运行时绿灯亮,在保温阶段炉内温度超出系统允差范围,就要进行报警。报警时报警红灯亮,电笛响,同时发送中断信号至CPU进行处理。如图2-3

图2-3加热炉报警系统图

3、设计输入输出通道

输入通道:因为所控的实际温度在50 ~ 350℃,即(350-50)=300所以选用8位A/D转换器,其分辨率约为℃/字,再加放大器偏置措施实现。(通过调整放大器的零点来实现偏置)这里采用一般中速芯片ADC0809。ADC0809是带有8位A/D转换器,8路多路开关以及微型计算机兼容的控制逻辑的CMOS组件,其转换方法为逐次逼近型。8路的模拟开关由地址锁存器和译码器控制,可以在8个通道中任意访问一个通道的模拟信号。这种器件无需进行零位和满量程调整。由于多路开关的地址输入部分能够进行锁存和译码,而且其三态TTL输出也可以锁存,所以它易于与微型计算机接口。其具有较高的转换速度和精度,受温度影响较小,能较长时间保证精度,重现性好,功耗较低,故用于过程控制是比较理想的器件。

图2-4ADC0809应用接线图

输出通道:据其实际情况,D/A转换器的位数可低于A/D转换器的位数,因为一般控制系统对输出通道分辨率的要求比输入通道的低,所以这里采用常用的DAC0832芯片DAC0832是8位D/A转换器,与微处理器完全兼容。期间采用先进的CMOS工艺,因此功耗低,输出漏电流误差较小。它的内部具有两级输入数据缓冲器和一个R-2RT型电阻网络,因DAC0832电流输出型D/A转换芯片,为了取得电压输出,需在电流输出端接运算放大器,Rf为为运算放大器的反馈电阻端。

!

图2-5DAC0832双极性电压输出电路

双极性电压输出的D/A转换电路通常采用偏移二进制码、补码二进制码和符号一数值编码。只要在单极性电压输出的基础上再加一级电压放大器,并配以相关电阻网络就可以构成双极性电压输出。在上图中,运算放大器A2的作用是把运算放大器A1的单向输出电压转变为双向输出。

4、元器件的选择

传感器的选择:铂铑10—铂热电偶,S型,正极性,量程0—1300℃,使用温度小于等于600℃,允差±℃。

执行元件的选择:电阻加热炉采用晶闸管(SCR)来做规律控制,结合电阻炉的具体要求,为了减少炉温的纹波,对输出通道采用较高的分辨率的方案,因此采用移相触发方式,并且由模拟触发器实现移相触发。

变送器的选择:因为系统要求有偏置,又需要对热电偶进行冷端补偿,所以采用常规的DDZ系列温度变送器。

)

控制元件:采用双向可控硅进行控制,其功能相当于两个单向可控硅反向连接,具有双向导通功能,其通断状态有控制极G决定。在控制极加上脉冲可使其正向或反向导通。

三、数字控制器的设计

1、控制算法:

电阻加热炉温度控制系统框图:.

整个闭环系统可用一个带纯滞后的一阶惯性环节来近似,所以其控制算法采用大林

算法。电阻加热炉温度控制系统模型为

其广义的传递函数为: [

大林算法的设计目标是设计一个合适的数字控制器,使整个闭环系统的传递函数相

当于一个带有纯滞后的一阶惯性环节,即:

通常认为对象与一个零阶保持器相串联, 相对应的整个闭环系统的脉冲传递函数是:

11788.2)(40+=

-s e s G s

2、计算过程:

连同零阶保持器在内的系统广义被控对象的传递函数

]

11788.21[)(40+-=--s e s e Z z G s

Ts

]

)1178(1

[

)1(8.2401

+-=-

-s s Z z

z T

]11781781[)1(8.2401

+--=-

-s s Z z

z T

]1111

[)1(8.21178

1141-------

--=z e

z z z

15945.01154.0---=

z z

(

系统闭环传递函数

]

11[)()()(+-==Φ--s e s e Z z R z C z NTs

Ts τ

1

1

1)

1(---

----=

z e

e

z

T

T

N τ

τ

数字控制器:

)](1)[()

()(z z G z z D Φ-Φ=

'

)(])1(1[)

1(111

z G z e z e

e

z

N T

T

T

N ---

--

-

------=τ

τ

τ

5

1510

1

10

10

5

154.0945.01]

)1(1[)

1(------

-------=z z z e

z e

e

z τ

τ

τ

511933.0007.01)945.01(448.6------=

z z z

]933.0933.0933.0933.01)[1()

945.01(448.6)(432111------++++--=

z z z z z z z D 消除振铃现象后的数字控制器:

111)

945.01(448.6)(----=

z z z D

1

1

1945.0297.1297.1)()()(---?-=

=z z z E z U z D

将上式离散化:U (Z )—U (Z )Z —1=(Z )—(Z )Z —1

%

U (K )—U (K —1)=(K )—(K —1)

最终得:U (K )=U (K —1)+(K )—(K —1)

四、软件设计

1、系统程序流程图

a、系统主程序框图

b、A/D转换子程序流程图

~

c、LED显示流程图

d、报警程序流程图

|

e、数字控制算法子程序流程图

2、程序清单

ORG 0000H

AJMP MAIN

ORG 0003H

AJMP KEYS

@

ORG 000BH

AJMP PIT0

ORG 001BH

AJMP PIT1 ;中断入口及优先级MAIN: MOV SP,#00H

CLR 5FH :清上下限越限标志MOV A,#00H

MOV R7,#09H

MOV R0,#28H

LP1:MOV @R0,A

INC R0

DJNZ R7,LP1

MOV R7,#06H

MOV R0,#39H

LP2:MOV @R0,A

INC R0

!

DJNZ R7,LP2

MOV R7,#06H

MOV RO,#50H

LP3:MOV @R0,A

INC R0

DINZ R7,LP3 ;清显示缓冲区

MOV 33H,#00H

MOV 34H,#00H ;赋KP高低字节

.

MOV 35H,#00H

MOV 36H,#00H ;赋KI高低字节

MOV 37H,#00H

MOV 38H,#00H ;赋KD高低字节

MOV 42H,#00H

MOV 43H,#00H ;赋K高低字节

MOV TMOD,#56H ;T0方式2,T1方式1计数

MOV TLO,#06H

·

MOV THO,#06H

MOV 25H,#163H ;设定值默认值350

SETB TR0 ;键盘高优先级

SETB ET0

SETB EX0

SETB EA ;开键盘T0。T1中断LOOP: MOV R0,#56H

MOV R1,#55H

LCALL SCACOV ;标度转化

MOV R0,#53H

LCALL DIR

NOP

LCALL DLY10MS

NOP

LCALL DLY10MS

AJMP LOOP ;等中断

键盘子程序

KEYS: CLR EX0

CLR EA

PUSH PSW

PUSH ACC ;关中断

LCALL DLY10MS ;消抖

CC:JB AA

SETB 5DH ;置“显示设定值温度值标志”

MOV A,25H ;取运算位的值

MOV B,#10H ;BCD码转化

DIV A B

MOV 52H,A

MOV A, B

MOV 51H, A

MOV R0,#50H

LCALL DIR ;显示设定温度

:

NOP

LCALL DLY10MS

NOP

LCALL DLY10MS

JB ,BB

MOV R1,#25H

LCALL DAAD1

NOP

|

LCALL DLY10MS

AJMP CC

BB: JB CC

MOV R1,#25H

LCALL DEEC1

NOP

LCALL DLY10MS

AJMP CC

AA: POP ACC

POP PSW

SETB EX0

SETB EA ;出栈

RETI

显示子程序

DIR: MOV SCON ,#00H ;置串行口移位寄存器状态SETB ;开显示

!

JB 5DH,DL1 ;显示设定温度DL2: M OV DPTR,#SEGT

DL0: M OV A,@R0

MOVC A,@A+DPTR

MOV SBUF ,A

LOOP1: J NB TI, LOOP1

CLR TI

INC R0

"

MOV A,@R0

MOVC A,@A+DPTR

ANL A, #7FH ;使数带小数点

MOV SBUF ,A

LOOP2: JNB TI,LOOP2

CLR TI

INC R0

MOV A,@R0

|

MOVC A,@A+DPTR

MOV SBUF,A

LOOP3: JNB TI,LOOP3

CLR TI

CLR

CLR 5DH

RET

DL1: MOV 50H,#0AH ;小数位黑屏

-

AJMP DL2

SEGT: DB 0C0H ,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,0FFH 加一子程序

DAAD1: MOV A,#00H

ORL A,@R1

ADD A,#01H

CJNE A,#30H,DAAD2 ;超过48度了吗DAAD3: MOV @R1,A

DAA: RET

DAAD2: JC DAAD3

MOV @R1,#15EH ;超过48则转回到355

AJMP DAA

减一子程序

DEEC1: MOV A,@R1

DEC A

CJNE A,#15EH,DEEC2 ;低于355度了吗.

DEEC3: MOV @R1,A

DEE : RET

DEEC2: JNC DEEC3

MOV @R1,#30H ;低于355则转回到48

计算机控制课程设计电阻炉温度控制系统

计算机控制课程设计 报告 设计题目:电阻炉温度控制系统设计 年级专业:09级测控技术与仪器 化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产

生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1.1电阻炉组成及其加热方式 电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加

热方法也不同;由于工艺不同,所要求的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,对控温精度要求不同,因而控制系统的组成也不相同。电气控制系统包括主机与外围电路、仪表显示等。辅助系统通常指传动系统、真空系统、冷却系统等,因炉种的不同而各异。电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件, (4)电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性; (5)具有温度、曲线自动显示和打印功能,显示精度为±1℃; (6)具有报警、参数设定、温度曲线修改设置等功能。

箱式电阻炉设计

辽宁工业大学 热工过程与设备课程设计(说明书) 题目:热处理箱式电阻炉的设计 (生产率110kg/h,功率30kw,温度≤600℃) 院(系):材料科学与工程学院 专业班级:材料083 学号: 学生姓名: 指导教师: 起止时间:2011-12-26~2011-1-8

课程设计任务及评语

目录 一、炉型的选择.................................................................................................. - 4 - 二、确定炉体结构和尺寸.................................................................................. - 4 - 三、砌体平均表面积计算.................................................................................. - 5 - 四、计算炉子功率.............................................................................................. - 6 - 五、炉子热效率计算.......................................................................................... - 8 - 六、炉子空载功率计算...................................................................................... - 8 - 七、空炉升温时间计算...................................................................................... - 8 - 八、功率的分配与接线...................................................................................... - 9 - 九、电热元件材料选择及计算.......................................................................... - 9 - 十、电热体元件图............................................................................................ - 10 - 十一、电阻炉装配图........................................................................................ - 10 - 十二、电阻炉技术指标(标牌).................................................................... - 10 - 参考文献............................................................................................................. - 11 -

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

模电课设—温度控制系统的设计

目录 1.原理电路的设计 (1) 1.1总体方案设计 (1) 1.1.1简单原理叙述 (1) 1.1.2设计方案选择 (1) 1.2单元电路的设计 (3) 1.2.1温度信号的采集与转化单元——温度传感器 (3) 1.2.2电压信号的处理单元——运算放大器 (4) 1.2.3电压表征温度单元 (5) 1.2.4电压控制单元——迟滞比较器 (6) 1.2.5驱动单元——继电器 (7) 1.2.6 制冷部分——Tec半导体制冷片 (8) 1.3完整电路图 (10) 2.仿真结果分析 (11) 3 实物展示 (13) 3.1 实物焊接效果图 (13) 3.2 实物性能测试数据 (14) 3.2.1制冷测试 (14) 3.2.2制热测试 (18) 3.3.3性能测试数据分析 (20) 4总结、收获与体会 (21) 附录一元件清单 (22) 附录二参考文献. (23)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339N 为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741, NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

箱式电阻炉(材料热处理课程设计说明书)

化学与材料工程学院 材料热处理课程设计说明书 学生姓名: 专业:金属材料工程 学号: 班级:材料金属 指导老师:刘

目录 一、设计任务书 (3) 二、工艺设计 (3) 1.型的选择 (3) 2.炉膛尺寸的确定 (3) 3.炉子砌砖设计 (4) 4.中温箱式电阻炉功率的计算 (4) 5.电热元件 (5) 6.电热元件的设计计算 (5) 三、工艺流程图和设备装置图 (7) 四、进度安排 (9) 五、总结与体会 (9)

一、设计任务书 为某厂设计一台热处理电阻炉,其技术条件如下: 1)用途:中碳钢、低合金钢毛坯或零件的淬火、正火及退火处理,处理对象为 中小型零件,无定型产品,处理批量为多种,小批量。 2)生产率:160 kg/h 3)工作温度:最高使用温度950℃ 4)生产特点:周期式成批装料,长时间连续生产。 二、工艺设计 1.炉型的选择 根据设计的具体要求和生产特点,进行综合技术经济分析。决定选用箱式电阻炉,不通保护气体,炉子最高温度为950℃。属中温箱式电阻炉。 2.炉膛尺寸的确定 (1)查表,箱式电阻炉单位炉底面积生产率P 0 ,取P =100[kg/(m2·h)] (2)炉底面积采用加热能力指标法计算,F 效= P P0 =125 100 =1.25 m2 炉底有效面积炉底总面积=F 有效 F 总 = 0.75 - 0.85,取上限,0.85,炉底总面积: 1.25 F 总 = 0.85 F 总 = 1.5625 m2 炉底板宽度 B =1 2F 总 =1 2 ?1.5625 =0.88 m 炉底板长度 L =2F 总 =2?1.5625 =1.77 m (3).炉膛高度的确定炉膛高度H与宽度B之比H B =0.52– 0.9,取0.7 高度H = 0.628 m (4).炉膛有效尺寸(可装工件) L 效×B 效 ×H 效 =1.77m × 0.88m × 0.628m (5).炉膛尺寸 宽 B =B 效 +2×(0.1-0.15)取0.1 B=0.88+2×0.1=1.08 m

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

箱式电阻炉课程设计

一、设计任务书 题目:设计一台中温箱式热处理电阻炉; 炉子用途:中小型零件的热处理; 材料及热处理工艺:中碳钢毛坯或零件的淬火、正火及调制处理; 生产率:160kg/h; 生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产; 要求:完整的设计计算书一份和炉子总图一张。 二、炉型的选择 根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度950℃,不通保护气氛。 三、确定炉体结构及尺寸 1.炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。已知生产率p为160kg/h,按照教材表5-1选择箱式炉用于正火和淬火时的单位面积生产率p0为 120kg/(m2﹒h),故可求得炉底有效面积: F1=P = 160 =1.33 m2 由于有效面积与炉底总面积存在关系式F1F=0.75~0.85,取系数上限,得炉底实际面积: F= F1 0.85 = 1.33 0.85 =1.57 m2 2.炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑出料方便,取L B=2,因此,可求得: L===1.772 m B=L2=1.7722=0.886 m 根据标准砖尺寸,为便于砌砖,取L=1.741 m,B=0.869 m,如总图所示。 3.炉膛高度的确定 按照统计资料,炉膛高度H与宽度B之比H B通常在0.5~0.9之间,根据炉子工作条件,取H B=0.64Om。 因此,确定炉膛尺寸如下: 长L=230+2×7+230×1 2 +2=1741 m 宽B=120+2×4+65+2+40+2×2+113+2×2=869 mm 高H=65+2×9+37=640 mm 为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为: L 效 =1500 mm B 效 =700 mm H 效 =500 mm 4.炉衬材料及厚度的确定 由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN?0.8轻质粘土砖,+80 mm密度为250 kg m3的普通硅酸铝纤维毡,+113mm B级硅藻土砖。 炉顶采用113 mmQN?1.0轻质粘土砖,+80 mm密度为250 kg m3的普通硅酸铝纤维毡,

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

武汉理工大学模电课设温度控制系统设计

课程设计任务书 学生姓名:张亚男专业班级:通信1104班 指导教师:李政颖 工作单位:信息工程学院 题目: 温度控制系统的设计 初始条件:TEC半导体制冷器、UA741 运算放大器、LM339N电压比较器、稳压管、LM35温度传感器、继电器 要求完成的主要任务: 一、设计任务:利用温度传感器件、集成运算放大器和Tec(Thermoelectric Cooler, 即半导体致冷器)等设计一个温度控制器。 二、设计要求:(1)控制密闭容器内空气温度 (2)控制容器容积>5cm*5cm*5cm (3)测温和控温范围0℃~室温 (4)控温精度±1℃ 三、发挥部分:测温和控温范围:0℃~(室温+10℃) 时间安排:19周准备课设所需资料,弄清各元件的原理并设计电路。 20周在仿真软件multisim上画出电路图并进行仿真。 21周周五前进行电路的焊接与调试,周五答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

温度控制系统的设计 1.温度控制系统原理电路的设计 (3) 1.1 温度控制系统工作原理总述 (3) 1.2 方案设计 (3) 2.单元电路设计 (4) 2.1 温度信号的采集与转化单元——温度传感器 (4) 2.2 电压信号的处理单元——运算放大器 (5) 2.3 电压值表征温度单元——万用表 (7) 2.4 电压控制单元——迟滞比较器 (8) 2.5 驱动单元——继电器 (10) 2.6 TEC装置 (11) 2.7 整体电路图 (12) 3.电路仿真 (12) 3.1 multisim仿真 (12) 3.2 仿真分析 (14) 4.实物焊接 (15) 5.总结及体会 (16) 6.元件清单 (18) 7.参考文献 (19)

温度控制系统设计

温度控制系统设计 目录 第一章系统方案论证错误!未指定书签。 总体方案设计错误!未指定书签。 温度传感系统错误!未指定书签。 温度控制系统及系统电源错误!未指定书签。 单片机处理系统(包括数字部分)及温控箱设计错误!未指定书签。 算法原理错误!未指定书签。 第二章重要电路设计错误!未指定书签。 温度采集错误!未指定书签。 温度控制错误!未指定书签。 第三章软件流程错误!未指定书签。 基本控制错误!未指定书签。 控制错误!未指定书签。 时间最优的控制流程图错误!未指定书签。 第四章系统功能及使用方法错误!未指定书签。 温度控制系统的功能错误!未指定书签。 温度控制系统的使用方法错误!未指定书签。 第五章系统测试及结果分析错误!未指定书签。 硬件测试错误!未指定书签。 软件调试错误!未指定书签。 第六章进一步讨论错误!未指定书签。 参考文献错误!未指定书签。 致谢错误!未指定书签。 摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。 关键词:温度控制系统控制单片机 : . : 引言: 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本文设计了以单片机为检测控制中心的温度控制系统。温度控制采用改进的数字控制算法,显示采用静态显示。该系统设计结构简单,按要求有以下功能: ()温度控制范围为°; ()有加热和制冷两种功能 ()指标要求: 超调量小于°;过渡时间小于;静差小于℃;温控精度℃ ()实时显示当前温度值,设定温度值,二者差值和控制量的值。 第一章系统方案论证 总体方案设计 薄膜铂电阻将温度转换成电压,经温度采集电路放大、滤波后,送转换器采样、量化,量化后的数据送单片机做进一步处理;

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

电炉温度控制系统

引言 前言:电阻炉在国民经济中有着广泛的应用,而大功率的电阻炉则应用在各种工业生产过程中。然而,大多数电阻炉存在着各种干扰因素。一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。起先由于电阻炉的发热体为电阻丝,传统方法大多采用仪表测量温度,并通过控制交流接触器的通断时间比例来控制加热功率。电阻炉微机自动程序温度控制系统就是通过单片机对加热炉的升、降温速率和保温时间进行严格控制的装置,它将温度变送、显示和数字控制集于一体,以微机控制为基础,以A/D转换器为核心,并配以适当的外围接口电路,实现对电阻炉温度自动控制。 摘要:自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。 1.电加热炉温度控制系统的特性 温控系统主要由温度传感器、温度调节仪、执行装置、被控对象四个部分组成,其系统结构图如图1.1所示。 图1.1 被控制对象是大容量、大惯性的电热炉温度对象,是典型的多阶容积迟后特性,在工程上往往近似为包含有纯滞后的二阶容积迟后;由于被控对象电容量大,通常采用可控硅作调节器的执行器,其具体的电路图如图1.2所示。如图1.3

所示,设周期T c 内导通的周期的波数为n,每个周波的周期为T,则调功器的输 出功率为P=n×T×P n /T c ,P n 为设定周期T c 内电压全通过时候装置的输出功率。 图1.2 图1.3 执行器的特性:电炉的温度调节是通过调节剂(供电能源)的断续作用,改变 电炉丝闭合时间T b 与断开时间T k 的比值α,α=T b /T k 。 调节加热炉的温度,在工业上是通过在设定周期范围内,将电路接通几个周波,然后断开几个周波,改变晶闸管在设定周期内通断时间的比例,来调节负载两端交流平均电压即负载功率,这就是通常所说的调功器或周波控制器;调功器是在电源电压过零时触发晶闸管是导通的,所以负载上得到的是完整的正弦波,调节的只是设定周期T c 内导通的电压周波。 2.电炉的电加热原理及方式 当电流在导体中流过时,因为任何导体均存在电阻,电能即在导体中形成损耗,转换为热能,按焦耳楞次定律:Q=0.2412Rt,Q代表热能,单位卡;I代表电流,单位安9;R代表电阻,单位欧姆;t代表时间,单位秒。 按上式推算,当1千瓦小时的电能,全部转换为热能时Q=(0.24×1000×36000)/1000=864千卡。 在电热技术上按l千瓦小时=860千卡计算。电炉在结构上是使电能转换为热能的设备,它能有效地用来加热指定的工件,并保持高的效率。 电阻炉按热量产生的方法不同,可分为间接加热式和直接加热式二大类。间接加热式电阻炉、就是在炉子内部有专用的电阻材料做的发热元件。电流通过加热元件时产生热量,再通过热的传导、对流、辐射而使放置在炉中的炉料被加热。

基于单片机的温度控制系统设计

湖南科技大学潇湘学院 毕业设计(论文) 题目单片机温度控制系统 作者 系部信息与电气工程系 专业电气工程及其自动化 学号 指导教师 二〇一年月日

湖南科技大学学院 毕业设计(论文)任务书 信息与电气工程系电气工程及其自动化教研室 教研室主任:(签名)年月日 学生姓名: 学号: 专业: 电气工程及其自动化 1 设计(论文)题目及专题:单片机温度控制系统 2 学生设计(论文)时间:自年月日开始至年月日止 3 设计(论文)所用资源和参考资料: (1)单片机温度控制系统流程图(2)单片机程序设计基础 (3) protel se 99软件(4) 单片机使用接口技术 (5) 单片机程序设计基础(6)网上有关技术资料 4 设计(论文)应完成的主要内容: (1) 基于单片机温度控制系统的发展及应用 (2) 单片机温度控制系统设计包含的基本内容 (3) 单片机温度控制系统技术 (4) 单片机温度控制系统实现 (5) 全文总结 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求: (1) 程序。要求:编译通过,基本能运行。 (2) 毕业论文。要求:正确,规范,通顺。 (3) 可供发表的研究论文(可选)。要求:规范,新意 均需提交电子版和纸质版。 6 发题时间:年月日 指导教师:(签名) 学生:(签名)

湖南科技大学学院 毕业设计(论文)指导人评语 指导人:(签名) 年月日指导人评定成绩:

湖南科技大学学院 毕业设计(论文)评阅人评语 评阅人:(签名) 年月日评阅人评定成绩:

湖南科技大学学院 毕业设计(论文)答辩记录 日期: 学生:学号:班级: 题目: 提交毕业设计(论文)答辩委员会下列材料: 1 设计(论文)说明书共页 2 设计(论文)图纸共页 3 指导人、评阅人评语共页 毕业设计(论文)答辩委员会评语: 答辩委员会主任:(签名) 委员:(签名) (签名) (签名) (签名)答辩成绩: 总评成绩:

温度控制系统课程设计

前言 温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过AD 转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本较高。近年来,美国DALLAS公司生产的DSI18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。 随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中.其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等. 智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶.目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路.有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。 为了准确获取现场的温度和方便现场控制,本系统采用了软硬件结合的方式进行设计,利用LED数码管显示温度,利用DS18B20检测当前的温度值,通过和设定的参数进行比较,若实测温度高于设定温度,则通过555定时器产生频率可变的报警信号,若实测温度低于设定温度,则加热电路自动启动,到达设定温度后停止。在软件部分,主要是设计系统的控制流程和实现过程,以及各个芯片的底层驱动设计已达到所要求的功能。在近端与远端通信过程中,采用串行MAX232标准,实现PC机与单片机间的数据传输。

KSY-6D-16电炉温度控制器

KSY-6D-16电炉温度控制器

目录 一、用途 (2) 二、主要技术指标和参数 (2) 三、仪器结构 (2) 四、仪器使用及注意事项 (3) 五、仪器成套及技术文件 (3) 本仪器为精密、低温制冷仪器, 使用前请详阅说明书,谨慎操作!

一、产品简介 KSY-6D-16电炉温度控制器适用于以硅碳棒(管)加热型电炉,与镍铬——镍硅热电偶配套使用,可对电炉内的温度进行测量、显示、控制,并可使炉内的温度自动保持恒温。 设计新颖,控温精度高,性能稳定易操作。 控温仪表分为指针式A:数显式AS:智能式ASP:智能多段 二、技术指标 ★输入电压(V):220 ★输出电压(V):50-210 ★最高温度(℃):1600 ★最大控制功率(KW):6

One, product introduction KSY-6D-16furnace temperature controller applied to silicon carbon rod ( tube ) heating furnace, and Ni-Cr -- nickel-silicon thermocouple supporting the use of electric furnace, temperature measurement, display, control, and can make the temperature inside the oven to keep constant temperature automatically. Novel design, high precision of temperature control, stable performance and easy to operate. Temperature control instrument for pointer type A: digital display type AS: intelligent ASP: intelligent multi segment Two, technical indicators Of the input voltage ( V ):220 Of the output voltage ( V ):50-210 Of the maximum temperature ( c ):1600 Control of maximum power ( KW ):6

相关主题
文本预览
相关文档 最新文档