当前位置:文档之家› 爱丁顿到底有没有验证广义相对论

爱丁顿到底有没有验证广义相对论

爱丁顿到底有没有验证广义相对论
爱丁顿到底有没有验证广义相对论

爱丁顿到底有没有验证广义相对论?

一个教科书中的神话

有一些进入了教科书的说法,即使被后来的学术研究证明是错了,仍然会继续广泛流传数十年之久。“爱丁顿1919年观测日食验证了广义相对论”就是这样的说法之一。即认为爱丁顿通过1919年5月的日全食观测,验证了爱因斯坦广义相对论对引力场导致远处恒星光线偏折的预言。这一说法在国内各种科学书籍中到处可见,稍举数例如下:

理查德·奥尔森等人编的《科学家传记百科全书》“爱丁顿”条这样写道:“爱丁顿……拍摄1919年5月的日蚀。他在这次考察中获得的结果……支持了爱因斯坦惊人的预言。”著名的伽莫夫《物理学发展史》、卡约里《物理学史》中都采用同样的说法。在非物理学或天体物理学专业的著作中,这种说法也极为常见,比如在卡尔·齐默所著《演化:跨越40亿年的生命纪录》一书中,为反驳“智能设计论”,举了爱因斯坦广义相对论对引力场导致远处恒星光线偏折的预言为例,说“智能设计论”无法提出这样的预言,所以不是科学理论。作者也重复了关于爱丁顿在1919年日食观测中验证了此事的老生常谈。这个说法还进入了科学哲学的经典著作中,波普尔在著名的《猜想与反驳》一书中,将爱丁顿观测日食验证爱因斯坦预言作为科学理论预言新的事实并得到证实的典型范例。他说此事“给人以深刻印象”,使他“在1919~1 920年冬天”形成了著名的关于“证伪”的理论。爱丁顿验证了广义相对论的说法,在国内作者的专业书籍和普及作品中更为常见。

长高的秘诀

有效增高

这个被广泛采纳的说法从何而来的呢?它的出身当然是非常“高贵”的。例如我们可以找到爱丁顿等三人联名发表在1920年《皇家学会哲学会报》(Philosophical Transactions of the Royal Society)上的论文,题为《根据1919年5月29日的日全食观测测定太阳引力场中光线的弯曲》,作者在论文最后的结论部分,明确地、满怀信心地宣称:“索布拉尔和普林西比的探测结果几乎毋庸置疑地表明,光线在太阳

附近会发生弯曲,弯曲值符合爱因斯坦广义相对论的要求,而且是由太阳引力场产生的。”

上述结论当然不是爱丁顿爵士的自说自话,它早已得到科学共同体的权威肯定。事实上在此之前爱丁顿已经公布了他的上述结论。因为在1919年的《自然》(Nat ure)杂志上,E. Cunningham连载两期的长文《爱因斯坦关于万有引力的相对论》中已经引用了上述爱丁顿论文中的观测数据和结论。

爱丁顿其实未能验证爱因斯坦的预言

那么这个进入教科书多年的“标准说法”,究竟有什么问题呢?

这就要涉及“科学的不确定性”了。本来,诸如相对论、物理学、天体物理之类的学问,在西方通常被称为“精密科学”——指它们可以有精密的实验或观测,并可以用数学工具进行高度精确的描述。但是,即使是这样的学问,仍然有很大的不确定性。而这种不确定性是我们传统的“科普”中视而不见或尽力隐瞒的。

具体到在日食时观测太阳引力场导致的远处恒星光线弯曲(偏折)这件事,事实上其中的不确定性远远超出公众通常的想象。

之所以要在日食时来验证太阳引力场导致的远处恒星光线弯曲,是因为平时在地球上不可能看到太阳周围(指视方向而言)的恒星,日全食时太阳被月球挡住,这时才能看到太阳周围的恒星。在1919年的时代,要验证爱因斯坦广义相对论关于光线弯曲的预言,办法只有在日食时进行太阳周围天区的光学照相。但麻烦的是,在照片上当然不可能直接看到恒星光线弯曲的效应,所以必须仔细比对不同时间对相同天区拍摄的照片,才能间接推算出恒星光线弯曲的数值。

比较合理的办法是,在日食发生时对太阳附近天区照相,再和日食之前半年(或之后半年)对同一天区进行的照相(这时远处恒星光线到达地球的路上没有经过太阳的引力场)进行比对。通过对相隔半年的两组照片的比对和测算,确定恒星光线偏折的数值。这些比对和测算过程中都要用到人的肉眼,这就会有不确定性。

更大的不确定性,是因为即使在日全食时,紧贴太阳边缘处也是不可能看到恒星的,所以太阳边缘处的恒星光线偏折数值只能根据归算出来的曲线外推而得,这就使得离太阳最近的一两颗恒星往往会严重影响最后测算出来的数值。

那么爱丁顿1919年观测归来宣布的结论是否可靠呢?事后人们发现,是不可靠的。

在这样一套复杂而且充满不确定性的照相、比对、测算过程中,使最后结果产生误差的因素很多,其中非常重要的一个因素是温度对照相底片的影响。爱丁顿他们在报告中也提到了温度变化对仪器精度的影响,他们认为小于10°F的温差是可以忽略的,但在两个日食观测点之一的索布拉尔,昼夜温差达到22°F。在索布拉尔一共拍摄了26张比较底片,其中19张由一架天体照相仪拍摄,质量较差;7张由另一架望远镜拍摄,质量较好。然而按照后7张底片归算出来的光线偏折数值,却远远大于爱因斯坦预言的值。

最后公布的是26张底片的平均值。研究人员后来验算发现,如果去掉其中成像不好的一两颗恒星,最后结果就会大大改变。

不是学术造假,是社会建构

爱丁顿当年公布这样的结论,在如今某些“学术打假恐怖主义”人士看来,完全可以被指控为“学术造假”。当然,事实上从来也没有人对爱丁顿作过这样的指控。科学后来的发展最终还是验证了他的“验证”。

在1919年爱丁顿轰动世界的“验证”之后,1922年、1929年、1936年、1947年、1952年各次日食时,天文学家都组织了检验恒星光线弯曲的观测,各国天文学家公布的结果言人人殊,有的与爱因斯坦预言的数值相当符合,有的则严重不符。这类观测中最精密、最成功的一次是1973年6月30日的日全食,美国人在毛里塔尼亚的欣盖提沙漠绿洲作了长期的准备工作,用精心设计的计算程序对所有的观测进行分析之后,得到太阳边缘处恒星光线偏折值为1.66″±0.18″。为了突破光学照相观测

的极限,1974~1975年间,福马伦特和什拉梅克利用甚长基线干涉仪观测了太阳引力场对三个射电源辐射的偏折,终于以误差小于1%的精度证实了爱因斯坦的预言。也就是说,直到1975年,爱因斯坦广义相对论的预言才真正得到了验证。但这一系列科学工作通常都没有得到公众和媒体的关注。

那么,爱丁顿当年为什么不老老实实宣布他们得到的观测结果未能验证爱因斯坦的预言呢?我们倒也不必对爱丁顿作诛心之论,比如说他学风不严谨、动机不纯洁等等。事实上,只需认识到科学知识中不可避免地会有社会(人为)建构的成分,就很容易理解爱丁顿当年为什么要那样宣布了。

科学中的不确定性其实普遍存在,而不确定性的存在就决定了科学知识中必然有人为建构的成分,这是一个方面。另一方面,则是社会因素的影响。爱丁顿当时的学术声誉、他的自负(相传他当时自命为除了爱因斯坦之外唯一懂得相对论的人)、科学共同体和公众以及大众传媒对他1919年日食观测的殷切期盼等等,这一切都在将他“赶鸭子上架”,他当时很可能被顶在杠头上下不来了。

所以,是1919年的科学界、公众、媒体,和爱丁顿共同建构了那个后来进入教科书的神话。

广义相对论基础

广义相对论基础 Introduction to General Relativity 课程编号:S070200J15 课程属性:学科基础课学时/学分:60/3 预修课程:大学理论物理、高等数学 教学目的和要求: 本课程为物理学、天文学研究生的学科基础课,同时也是为今后有可能接触到引力理论的其它学科研究生的学科基础课。主要介绍爱因斯坦的广义相对论。使学生具有在今后接触到引力场问题时,能通过阅读有关书籍文献对更深入的问题进行了解的能力。本课强调弄清物理和几何图像。本课不涉及引力场量子化、引力和其它作用之统一以及以抽象数学工具表现时空几何等问题。本课也扼要对广义相对论的观测和实验检验,黑洞问题和宇宙学问题进行简要地介绍。 内容提要: 第一章张量分析基础 张量代数,联络,协变微商,测地线方程,Killing矢量。 第二章引力场方程 引力与度规,引力红移,黎曼曲率张量,Bianchi恒等式,引力场方程。 第三章场方程的应用(Ⅰ) 西瓦兹解,西瓦兹场中质点的运动,光线偏折,引力透镜效应,雷达回波,0Kruskal坐标和黑洞,Keer度规。 第四章场方程的应用(Ⅱ) 宇宙学原理,共动坐标系,Robertson-Walker度规,宇宙学红移,标准宇宙学模型简介。 主要参考书: 1. R, Adler, M.Bagin,M.Schiffer,Introduction to General Relativity(第二版),McGraw-Hill Book Company,New York,1975. 2. 俞允强,《广义相对论引论》,北京大学出版社,北京,1997。 3. S. Weinberg,Gravitation and Cosmology,John Wiley Sons,Inc.,New York,1972. 撰写人:邓祖淦(中国科学院研究生院) 撰写日期:2001年09日

15[1].4_广义相对论简介_学案(新人教版选修3-4)2

15.4 广义相对论简介学案 ★知识目标 1.了解广义相对性原理和等效原理。 2.了解广义相对论的几个结论。 ★教学重点 广义相对性原理和等效原理。 ★教学难点 理解广义相对论的几个结论。 ★知识梳理 一、超越狭义相对论的思考 爱因斯坦思考狭义相对论无法解决的两个问题: 1、引力问题,万有引力定律不满足洛伦兹变换,无法纳入狭义相对论的理论框架; 2、非惯性系问题,狭义相对论只适用于惯性系。它们是促成广义相对论的前提。 二、广义相对性原理和等效原理 把相对性原理从“任何惯性系平权”推广到“包括非惯性系在内的任意参考系(即包括惯性系和非惯性系)平权”。 三、广义相对论几个结论以及相关实验验证 1、光线经过强引力场中发生弯曲 2、引力红移 3、水星轨道近日点的进动 四、关于的宇宙大爆炸理论 大爆炸宇宙学:多方分析表明,我们的宇宙是在约200亿年以前从一个尺度很小的状态发展演化而来的。 ★随堂检测 1. 和问题难以用狭义相对论解决,催促了广义相对论的诞 生。 2.广义相对论认为,在任何参考系中,物理规律都是_____________。 3.等效原理的基本内容是一个均匀的_____________场与一个做__________________运动的参考系是等价的。 4.广义相对论告诉我们,____________的存在使得空间不同位置的____________出现差别,物质的____________使光线弯曲。 5.下列属于广义相对论结论的是 ( ) A.尺缩效应 B.时间变慢

C.光线在引力场中弯曲 D.物体运动时的质量比静止时大大 6、简答:从广义相对论的两个基本原理出发,可以直接得到一些“意想不到”的结论。请大家阅读教材,说明得到了哪些结论这些解论的实验验证是什么? 7、查阅相关资料了解,宇宙发展演化的过程。 参考答案:1、引力问题,非惯性系问题 2、相同的 3、引力,匀加速 4、引力场,时间进程,引力 5、C 6、1:第一个结论,物质的引力使光线弯曲。20世纪初,人们观测到了太阳引力场引起的光线弯曲。观测到了太阳后面的恒星。 2:第二个结论,引力场的存在使得空间不同位置的时间进程出现差别。例如在强引力的星球附近,时间进程会变慢。天文观测到了引力红移现象,验证了这一结论的成立。 7、略

狭义相对论和广义相对论

要了解狭义相对论和广义相对论的区别,我们首先要搞清楚,这两个理论大概说了什么? 狭义相对论 我们先从狭义相对论说起,其实狭义相对论解决了一个物理学的重大矛盾。在爱因斯坦之前,最成功的两个理论分别是牛顿提出的牛顿力学和麦克斯韦提出麦克斯韦方程。只不过,这两个理论有个矛盾,那就是:光速。 具体来说,牛顿的理论认为,速度可以不断地进行叠加,没有上限,只要你加得上去就行。可是,麦克斯韦方程得出的光速是一个固定值,似乎暗示着光速无论在什么惯性坐标系下都是一样的。要知道,我们在使用牛顿力学时,是需要先选定参考坐标的。因此,科学家就在思考,是不是存在一个奇怪的坐标系,让光速一直保持一个速度,它们管这个叫做以太。于是,一群科学家就拼了命地去找“以太”,然后他们接二连三地失败了。 后来,26岁的爱因斯坦提出了狭义相对论。

有人说他高举了奥卡姆剃刀原理才成功的,这个奥卡姆剃刀原理大意是:如无必须勿增实体。翻译过来就是,咋简单咋来。既然光速是不变的,那为啥还要假设“以太”? 于是,爱因斯坦就以“光速不变原理”和“相对性原理”为基础假设,推导出了狭义相对论。这个过程就有点像平面几何,就只有五条公设,但是能搞出一整套体系。而这里的相对性原理,说白了就是经典物理学的老套路,在研究运动时,需要先选个惯性参考系。 通过这两条假设,爱因斯坦出了很多奇葩的结论,比如:时间膨胀。说的是,如果你想对于我高速运动,那我看你的时间就会变慢,这种变慢可以理解成,如果你在高速的飞船里做操,那我这里看到的就是你在慢动作做操。而你自己其实感觉到的时间是正常流逝。所以,是以我参考系看你时间膨胀了。如果你也 看到,你也会发现我的时间也变慢了,因为我想对于你也是在高速运动的。

验证快速电子的动量与动能的相对论关系实验报告

验证快速电子的动量与动能的相对论关系 实验报告 摘要: 实验是验证快速电子的动量与动能的相对论关系,本实验是通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系;同时了解β磁谱仪测量原理、闪烁记数器的使用方法及一些实验数据处理的思想方法。通过实验过程完成实验内容,得到实验结果,获得实验体会。 关键字: 动量动能相对论β磁谱仪闪烁探测器定标 引言: 动量和能量是描述物体或粒子运动状态的两个特征参量,在低速运动时,它们之间的关系服从经典力学,但运动速度很高时,却是服从相对论力学。相对论力学理论是由伟大的科学家爱因斯坦建立的。 19世纪末到20世纪初期,相继进行了一些新的实验,如著名迈克尔逊—莫雷实验、运动电荷辐射实验、光行差实验等,这些实验的结果不能完全被经典力学和伽利略变换所解释,为解决这一矛盾,爱因斯坦于1905年创立了狭义相对论。 基于相对论的原理,可以解释所有这些实验结果,同时对低速运动的物体,相对论力学能过渡到经典力学。原子核发生β衰变时,放出高速运动的电子,其运动规律应服从相对论力学。通过测量电子的动能与动量,并分析二者之间的关系,可以达到加深理相对论理论的目的。 正文: 1905年,阿尔伯特·爱因斯坦的《论运动物体的电动力学》首次提出了崭新的时间空间理论——狭义相对论。其在1915年左右发表的一系列论文中给出了广义相对论最初的形式。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了近代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。 本实验通过对快速电子的动量值及动能的同时测定,验证其动能与动量的关系,同时了解半圆聚焦β磁谱仪的工作原理。

广义相对论的理解

11、广义相对论的几 个疑难问题 1、暗物质的本质:现代宇宙学观测表明宇宙中存在暗物质和暗能量。但是它们的起源仍然是个谜。我们能找到的普通物质仅占整个宇宙的4%,各种测算方法都证实,宇宙的大部分是不可见的。要说宇宙中仅仅就是暗色尘云和死星体是很容易的,但已发现的有力证据说明,事实并非如此。正是对宇宙中未知物质的寻找,使宇宙学家和粒子物理学家开始合作,最有可能的暗物质成分是中微子或其它两种粒子:neutralino和axions(轴子),但这仅是物理学的理论推测,并未探测到,据认为,这三种粒子都不带电,因此无法吸收或反射光, 但其性质稳定,所以能从创世大爆炸后的最初阶段幸存下来。 天文学家已经证明:宇宙中的天体从比我们银河系小100万倍的星系到最大星系团,都是由一种物质形式所维系在一起的,这种物质既不是构成我们银河系的那种物质,也不发光。这种物质可能包括一个或更多尚未发现的基本粒子组成,该物质的聚集产生导致宇宙中星系和大尺寸结构形成的万有引力。同时,这些粒子可能穿过地面实验室。 美国能源部LANL实验室的液体闪烁体中微子探测器、加拿大Sudbury中微子观测站和日本超级神冈加速器实验的最新结果给出 有力的证据:中微子以各种形式“振荡”,因此必定会具有质量。虽然质量很小,但宇宙中大量的中微子加起来可使总的质量达到相当高。美国费米国家实验室新的加速器实验MiniBooNE和MINOS将研究中微子震荡和中微子质量。 尚未发现的其它粒子有可能存在,例如一种称为超对称的新对称理论预言有一种大的新类型的粒子,其中有些可解释暗物质。现正在费米实验室TeV能级加速器进行的和计划在CERN正建造的大型强子对撞机(LHC)上开展的实验,以及地下低温暗物质寻找和空间利用伽马射线大面积天体望远镜所进行的实验,目的都是要寻找超对称粒子。 阿尔法磁谱仪(AMS)安装在国际空间站上,寻找反物质星系和

几个狭义相对论验证试验的重新分析

几个狭义相对论验证实验的重新分析 尽管相对论解释了许多实验,但是否揭示了导致实验的本质原因,需要继续研究.1971年美国科学家在地面将精度为0.000000001秒的铯原子钟对准,把其中4台原子钟放到喷气式飞机上绕地球一圈,然后返回地球与地面上静止的原子钟比较,结果是绕了地球一圈的这4个原子钟比地面上的慢了59毫微秒(0.000000059秒),与广义相对论的计算结果误差为10%.后来将这个实验的喷气式飞机换成宇宙飞船,实验数据更接近广义相对论的计算结果.物理学家曾经利用原子钟高速运动时钟减缓寿命的延长,说明狭义相对论的正确,笔者认为这是不妥的.因为原子钟在高速运动过程中,地面上的时钟相对于它也在高速运动,为什么地面上的时钟不减缓呢?因为原子钟在实验中有一定的飞行高度,在飞行过程中实际是变速运动,加速运动的物体可以产生引力场,根据广义相对论引力场中时间延缓,所以对此应当重新分析.引力场强度不变,时钟的快慢不变,强度变大,时钟延缓,反之时钟加速.1971年,为了验证相对论的时间变化,美国进行了原子钟环球飞行实验,其结果是:时钟向东飞行时慢了59×10-9,往西飞行时快了273×10-9 .广义相对论的计算值与实验结果有一定的偏差(尤其钟快现象).总之,在实验中的三组原子钟相互看来,实验中既有“动钟变慢”现象,也有“动钟变快”现象. 一般认为,来自外层空间的宇宙线轰击地球大气,产生了大量的μ介子,这些μ子具有很宽的能量范围,飞行速度有大有小,高能量的μ子速度非常接近光速c ,可大于0.9954c.μ子寿命很短暂,产生后会很快衰变掉,各个μ子的实际寿命有长有短,但是当我们统计群体μ子的平均寿命时发现,其平均寿命是恒定的.一群μ子衰变掉一半所需的时间,称为半衰期,常被用作寿命的标志,大量的实验统计出静止μ子的半衰期T = 1.53×10-6秒,恒定不变.在μ子和介子实验中,μ子和介子作有加速的圆周运动,实验证实作这样运动的μ子和介子的平均寿命大于静止μ子和介子的平均寿命.因为1963年的一次实验中,人们在高1910米的山顶上,测量铅直向下的速度在0.9950C ~0.9954C 之间的 μ- 子数目,每小时平均有563 ± 10个;然后在离海平面3米高的地方测量相同速度的 μ- 子数目,平均每小时408 ± 9个. μ- 子从山顶运动到海平面所需时间应为:()()s s m m 68 106.41030.995231910t -?=??-=. 这是静止 μ- 子半衰期()21T 的4倍多,如果高速运动的 μ- 子半衰期和静止时相等的话,人们预期在飞行经过1907米距离后,在海平面附近的 μ- 子数应不到 352 5634≈个.而当时实际测量却有408个,这清楚地表明,运动着

量子科学实验

量子科学实验 一、背景及科学意义 根据国务院第105次常务会议审议通过的“中国科学院创新2020规划”,中国科学院启动实施系列战略性先导科技专项,量子科学实验卫星(以下称量子卫星)所属空间科学战略性先导科技专项是首批启动的先导专项之一。在2008年立项的中科院重大创新项目“空间尺度量子实验关键技术”的基础上,经过近一年的科学目标与有效载荷配置论证、工程立项综合论证,于2011年12月23日正式立项启动。 量子科学实验卫星工程将借助于卫星平台,一方面将在国际上首次实现千公里级的无条件安全的量子通信,促进广域乃至全球范围量子通信网络的最终实现;另一方面,将是国际上首次在宏观大尺度上对量子理论本身展开实验检验,在更深层次上为认识量子物理的基础科学问题、拓宽量子力学的研究方向做出重要贡献。量子科学实验卫星所发展起来的技术,还将为在空间尺度对广义相对论效应、量子引力等物理学基本原理的深入检验奠定基础,促进整个物理学的发展。 量子科学实验卫星总重量631公斤,将由“长征二号丁”运载火箭在酒泉卫星发射中心发射,运行于500公里太阳同步轨道,轨道倾角97.37°,设计在轨运行寿命2年。有效载荷有量子密钥通信机、量子纠缠发射机、量子纠缠源及实验控制与处理机和高速相干激光通信机。卫星配置两套独立的有效载荷指向机构,通过姿控指向系统协同控制,可与地面上相距千公里量级的两处光学站同时建立量子光链路,光轴指向精度优于3.5urad。 二、科学目标 1、进行星地高速量子密钥分发实验,并在此基础上进行广域量子密钥网络实验,以期在空间量子通信实用化方面取得重大突破。 2、在空间尺度进行量子纠缠分发和量子隐形传态实验,开展空间尺度量子力学完备性检验的实验研究。 三、研制历程

就目前的实验验证来说量子力学与广义相对论谁是最精确的物理学分支

就目前的实验验证来说,量子力学与广义相对论谁是最精确 的物理学分支? 【芦苇声的回答(35票)】: 要破题,首先要准确定义什么叫「精确」。 对「精确」的理解,一般来说有三种: 能测量到的效应最小、最微弱;实验结果与理论预言值偏差最小;实验本身的误差(统计误差+系统误差)最小。如果从实验科学的角度出发,我们采取的是第三种理解。这实际上涉及到两个概念:Accuracy(准度)和Precision(精度)。准度描述的是实验的结果和「真值」——真理的值、绝对意义上的真正的值——之间的差距;「精度」描述的是实验结果和统计意义上的「平均值」之间的差距,也就是「不确定度」。这两者的意义是差了十万八千里的,不可混淆。「真值」是客观存在的,比如光速的值,是客观存在的,但人类未必可以准确地得知。以前的科学工作者,一般采用一个广受承认的理论预言值或预测值,作为「真值」,以方便描述实验的准度。但现代科学认为,所有的物理理论都是「有效理论」,都有其适应范围,否定「普适理论」的存在,即使现今的理论未有找到不适用的反例,未必代表以后没有(参见牛顿绝对时空观和狭义相对论的历史)。从这个意义上来说,「精度」比「准度」更适合用来衡量物理学实验的精确性——因为你

不知道你所用的理论是否是「正确的」,失去了标尺,比较也就失去了意义。 那么从这两个概念出发,我们可以判断: 理解1不是个好定义,因为它的精度和准度都有可能很差,比如家用体重秤,以千克为单位可以给你小数点后4位的数字,但误差可能达到500克;理解2定义的是准度,但没有涉及到精度,从上面的讨论中可知,它不是一个好的标准;这是当今实验科学采用的理解。而我们说一个理论「精确」,需要做到两件事: 实验的误差要尽可能地小(理解3意义下)。理论的预言值与实验测量值的差别要尽可能地小。这里有一篇文章: The Most Precisely Tested Theory in the History of Science 作者是Union College in Schenectady, NY的物理系副教授。他介绍了理解1和理解3意义下的两个「最精确」的实验。理解1意义下,相对论胜出,因为它能测量到的效应是 。理解3意义下,QED(量子电动力学)胜出,那就是著名的 实验,测量的是电子的反常磁矩。g是粒子磁矩,狄拉克方程里用g表示,也称为「g因子」。狄拉克方程预言

广义相对论的学习总结

广义相对论的学习总结 1.引言 1.1前言 经过过去一年对广义相对论的学习,基本对广义相对论的基本原理和运用有了比较完整的认识。这篇文章是为了总结自己学习的体会,尽量用自己的语言谈谈对广义相对论的理解。由于作者水平有限,也为了文章的简洁,所以省去数学推导,仅保留基本的数学公式和方法说明。 广义相对论是爱因斯坦一大理论成果,可以解释宏观世界一切物体的运动,可以在一切坐标系下运用,本身又保持了相当完美的对称性和简洁性。随着空间探测技术的发展,广义相对论的许多结论都得到了证明,而广义相对论和量子力学构成了现代物理的两大支柱。 1.2导语 在具体介绍广义相对论的内容之前,我想用自己的语言,对广义相对论的思想和研究问题步骤做一个小的总结和介绍。总的来说,广义相对论是建立在四个假设之上,通过这四个假设,爱因斯坦认为惯性场和引力场等效,以及所有参考系的平权性。然后爱因斯坦把引力场认为是一种几何效应。是由于质量在空间上的分布不均匀,导致空间的空间扭曲。 在数学上,用张量来代表物理量,以满足物理规律在所有参考系下都成立。用黎曼几何来刻画弯曲空间,联络来描述引力强度,曲率

张量来描述空间弯曲,度规张量来描述引力势。 接下来便是构建场运动方程。我们可以用惠曼的名言总结道:“物质告诉时空如何弯曲,时空告诉物质如何运动。”按照爱因斯坦的想法,引力是由于质量空间分布不均匀造成的几何效应。所以爱因斯坦场方程左边应该是反映时空的几何性质的张量,右边是能动张量。再继续利用能量守恒定律,便可以推出爱因斯坦场方程。 应用爱因斯坦的场方程,得到了很多新奇的结论和实验预言,并且以“水星进动”和“引力红移”为代表的实验验证了广义相对论的正确性。 广义相对论还预言了引力弯曲效应极大情况下黑洞的存在。 而广义相对论作为宇宙学的理论基础,特别是近几十年观测技术的进步,使得宇宙学建立起了相对完整的理论系统。 2.基本假设 广义相对论建立在以下假设下。 2.1等效原理 广义相对论用的是强等效原理。 引力场与惯性场的的一切物理效应都是局域不可分辨的。 2.2马赫原理 惯性力起源于物质间的相互作用,起源于受力物体相对于遥远星系的加速运动,而且与引力有着相同或相近的物理根源。

爱因斯坦广义相对论

爱因斯坦广义相对论 广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。 如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。这就相当于因时空弯曲物体沿短程线的运动。所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。 进一步说,这个理论是建立在等效原理及广义协变原理这两个基本假设之上的。等效原理是从物体的惯性质量与引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。 我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。 在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。 广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。 广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线在引力场中的频移,这些不久即为当时的实验观测所证实。以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。60年代天文学上的一系列新发现:3K微波背景辐射、脉冲星、类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。 爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。但是我认为,广

广义相对论的实验验证

广义相对论的实验验证 (1)厄缶实验 19世纪末,匈牙利物理学家厄缶用扭秤证实了惯性质量与引力质量在极高的精确度下,彼此相等。厄缶实验的设计思想极为简单。扭秤的悬丝下吊起一横杆,横杆两端悬吊着材料不同、重量相同的重物。达到平衡后,使整个装置沿水平旋转180°,若惯性质量与引力质量相等,由于无额外转矩出现,整个装置 将始终保持平衡。最后厄缶以10-9的精度,证实了两种质量的等同。由于利用简单而巧妙的实验得到精度 极高的测量结果,厄缶获得德国格廷根大学1909年度的本纳克(Benecke )奖。 1933年6月20日,爱因斯坦在英国格拉斯哥大学作题为《广义相对论的来源》的讲话,表示他提出等效性原理的当时。并不知道厄缶实验。尽管如此,这并不能贬低厄缶实验的意义,它应该作为全部广义相对论的重要奠基石。鉴于这一实验的精确度直接影响广义相对论理论的可靠性,以后几十年来,人们对这一实验的兴趣有增无减。1960~1966年,狄克(Robert Henry ,Dicke ,1916~)等人为提高厄缶实验的精度,把厄缶的扭秤横杆改成三角形水平框架,又把石英悬丝表面蒸镀铝膜以避免静电干扰,并将整个装 置置于真空容器中,使实验的精度推进了两个数量级,达到(1.3±1.0)×10-11。1972年,前苏联的布拉 金斯基(Braginsky )和班诺夫(Panov )对厄缶实验又做了重大的改进。他们采用电场中的振荡法,旋转 由激光反光光斑记录在胶片上,使实验结果又在狄克的基础上提高了两个数量级,即9×10-13。 (2)水星近日点进动的观测 在经典力学这座坚固的大厦中,牛顿力学犹如擎天大柱,已经经受住了两个世纪的考验。把引力作为力的思想似乎根深蒂固。随着时间的推移,牛顿力学的成功事例在不断地增多。1705年哈雷(Edmund Halley ,1656~1742)用牛顿力学计算出24颗彗星的结果,并指出在1531年、1607年和1688年看到的大彗星,实际上是同一颗,这就是后人所称的哈雷彗星。克雷洛(Alxis Claude Clairaut ,1713~1765)在仔细地研究了哈雷的报告后,又根据牛顿力学计入了木星与土星对彗星轨道的影响,预言人们将在1758年圣诞节观测到这颗彗星,果然它如期而至。后来人们又先后在1801年、1802年、1804年以及1807年发现木星与土星轨道间有四颗小行星,它们的轨道也都与牛顿引力理论的计算结果相符。19世纪40年代,法国的勒威耶(Urbain Jean Jeseph Leverrier ,1811~1877)、英国的亚当斯(John Couch Adems ,1819~1892)分别对天王星的轨道偏差做了计算,由此导致了海王星的发现,这又是牛顿力学的一次辉煌的胜利。 尽管牛顿力学获得一次又一次的巨大成功,人们还是发现有一个现象不能由它得到解释。从1859年起,勒威烈接受了阿拉戈的建议。开始把观测的重点放在众星的微小摄动上。他的观测与计算表明,水星的近日点每百年的进动量大约比牛顿引力理论计算值多出40弧秒。1845年,他提出,水星的反常运动是受到一颗尚未发现的行星的影响,他称这颗行星为“火神星”,但是始终未能从观测中发现这颗火神星。1882年.美国天文学家纽科姆(Simon Newcomb ,1835~1909)对水星的进动又做了更加详细的计算。计算结果表明,水即B 点的进动量应为43″/百年。开始,他认为这是发出黄道光的弥散物质使水星的运动受到了阻尼,后来又有人企图用电磁理论作出解释,但是都没有获得成功。 1915年,爱因斯坦的广义相对论建立后,史瓦西(Karl Sahwarzschild ,1873~1916)很快地找到了球对称引力场情况下的引力场方程解,后来被称为史瓦西解,或史瓦西度规。爱因斯坦认为太阳的引力场适用于史瓦西解,由此应该对水星的近日点进动作出解释。他认为,水星应按史瓦西场中的自由粒子方式运动;其轨迹就是按史瓦西度规弯曲的空间中的测地线。按这种假设计算,水星每公转一周,它的近日点的进动角应为)1(242222 2 e c T a -=πε,其中a 为水星公转轨道的半长轴,e 为椭圆轨道的偏心率,T 为水星年周期。当把水星年折合为地球年以后,计算出水星近日点的近动角为43″/百年。这一结果恰好与纽科姆的结果相符,它不但解决了牛顿引力理论多年的悬案,而且为广义相对论提供了有力的证据,它成为验证广义相对论的三大有名的实验判据之一。 在获得这个实验判据的当时。正是爱因斯坦废除他原来的引力场方程,并建立新的场方程后的不久。

爱因斯坦《狭义与广义相对论浅说》

狭义与广义相对论浅说 爱因斯坦 .

第一部分狭义相对论·············································································································· ····································································································································································································································· ················································································································································································································· ······································································································· ················································································· ····································································· ············································································································ ············································································································ ························································································································································································································· ··························································································· ······················································································· ······································································································· ··························································································· ······································································································· ··································································································· ·········································································································· ························································································································································································································· ········································ ····························· ······················································································· ·························································································································································································· ················································ ······················································ ······················································································· ···································································· ··················································································· ··················································································· ···························································· ····················································································································································································································· ······························································································· ··············································································· ······························································································· ····························································································· ····················································································· ····························································································· ······································································· (4) 1.几何命题的物理意义 4 2.坐标系 5 3.经典力学中的空间和时间7 4.伽利略坐标系8 5.相对性原理(狭义)8 6.经典力学中所用的速度相加定理10 7.光的传播定律与相对性原理的表面抵触10 8.物理学的时间观12 9.同时性的相对性14 10.距离概念的相对性15 11.洛伦兹变换16 12.量杆和钟在运动时的行为19 13.速度相加定理斐索实验20 14.相对论的启发作用22 15.狭义相对论的普遍性结果22 16.经验和狭义相对论25 17.闵可夫斯基四维空间27 第二部分广义相对论29 18.狭义和广义相对性原理29 19.引力场31 20.惯性质量和引力质量相等是广义相对性公设的一个论据32 21.经典力学的基础和狭义相对论的基础在哪些方面不能令人满意34 22.广义相对性原理的几个推论35 23.在转动的参考物体上的钟和量杆的行为37 25.高斯坐标41 26.狭义相对论的空时连续区可以当作欧几里得连续区43 27.广义相对论的空时连续区不是欧几里得连续区44 28.广义相对性原理的严格表述45 29.在广义相对性原理的基础上解引力问题47 第三部分关于整个宇宙的一些考虑49 30.牛顿理论在宇宙论方面的困难49 31.一个“有限”而又“无界”的宇宙的可能性50 32.以广义相对论为依据的空间结构53 附录54 一、洛伦兹变换的简单推导54 二、闵可夫斯基四维空间(“世界”)57 三、广义相对论的实验证实58 (1)水星近日点的运动59 (2)光线在引力场中的偏转60 (3)光谱线的红向移动62 四、以广义相对论为依为依据的空间结构64 五、相对论与空间问题65

广义相对论 一个极其不可思议的世界

广义相对论一个极其不可思议的世界 谷锐译原文:Slaven 广义相对论的基本概念解释: 在开始阅读本短文并了解广义相对论的关键特点之前,我们必须假定一件事情:狭义相对论是正确的。这也就是说,广义相对论是基于狭义相对论的。如果后者被证明是错误的,整个理论的大厦都将垮塌。 为了理解广义相对论,我们必须明确质量在经典力学中是如何定义的。 质量的两种不同表述: 首先,让我们思考一下质量在日常生活中代表什么。“它是重量”?事实上,我们认为质量是某种可称量的东西,正如我们是这样度量它的:我们把需要测出其质量的物体放在一架天平上。我们这样做是利用了质量的什么性质呢?是地球和被测物体相互吸引的事实。这种质量被称作“引力质量”。我们称它为“引力的”是因为它决定了宇宙中所有星星和恒星的运行:地球和太阳间的引力质量驱使地球围绕后者作近乎圆形的环绕运动。 现在,试着在一个平面上推你的汽车。你不能否认你的汽车强烈地反抗着你要给它的加速度。这是因为你的汽车有一个非常大的质量。移动轻的物体要比移动重的物体轻松。质量也可以用另一种方式定义:“它反抗加速度”。这种质量被称作“惯性质量”。 因此我们得出这个结论:我们可以用两种方法度量质量。要么我们称它的重量(非常简单),要么我们测量它对加速度的抵抗(使用牛顿定律)。 人们做了许多实验以测量同一物体的惯性质量和引力质量。所有的实验结果都得出同一结论:惯性质量等于引力质量。 牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。 日常经验验证了这一等同性:两个物体(一轻一重)会以相同的速度“下落”。然而重的物体受到的地球引力比轻的大。那么为什么它不会“落”得更快呢?因为它对加速度的抵抗更强。结论是,引力场中物体的加速度与其质量无关。伽利略是第一个注意到此现象的人。重要的是你应该明白,引力场中所有的物体“以同一速度下落”是(经典力学中)惯性质量和引力质量等同的结果。 现在我们关注一下“下落”这个表述。物体“下落”是由于地球的引力质量产生了地球的引力场。两个物体在所有相同的引力场中的速度相同。不论是月亮的还是太阳的,它们以相同的比率被加速。这就是说它们的速度在每秒钟内的增量相同。(加速度是速度每秒的增加值)

爱丁顿到底有没有验证广义相对论

爱丁顿到底有没有验证广义相对论? 一个教科书中的神话 有一些进入了教科书的说法,即使被后来的学术研究证明是错了,仍然会继续广泛流传数十年之久。“爱丁顿1919年观测日食验证了广义相对论”就是这样的说法之一。即认为爱丁顿通过1919年5月的日全食观测,验证了爱因斯坦广义相对论对引力场导致远处恒星光线偏折的预言。这一说法在国内各种科学书籍中到处可见,稍举数例如下: 理查德·奥尔森等人编的《科学家传记百科全书》“爱丁顿”条这样写道:“爱丁顿……拍摄1919年5月的日蚀。他在这次考察中获得的结果……支持了爱因斯坦惊人的预言。”著名的伽莫夫《物理学发展史》、卡约里《物理学史》中都采用同样的说法。在非物理学或天体物理学专业的著作中,这种说法也极为常见,比如在卡尔·齐默所著《演化:跨越40亿年的生命纪录》一书中,为反驳“智能设计论”,举了爱因斯坦广义相对论对引力场导致远处恒星光线偏折的预言为例,说“智能设计论”无法提出这样的预言,所以不是科学理论。作者也重复了关于爱丁顿在1919年日食观测中验证了此事的老生常谈。这个说法还进入了科学哲学的经典著作中,波普尔在著名的《猜想与反驳》一书中,将爱丁顿观测日食验证爱因斯坦预言作为科学理论预言新的事实并得到证实的典型范例。他说此事“给人以深刻印象”,使他“在1919~1 920年冬天”形成了著名的关于“证伪”的理论。爱丁顿验证了广义相对论的说法,在国内作者的专业书籍和普及作品中更为常见。 长高的秘诀 有效增高 这个被广泛采纳的说法从何而来的呢?它的出身当然是非常“高贵”的。例如我们可以找到爱丁顿等三人联名发表在1920年《皇家学会哲学会报》(Philosophical Transactions of the Royal Society)上的论文,题为《根据1919年5月29日的日全食观测测定太阳引力场中光线的弯曲》,作者在论文最后的结论部分,明确地、满怀信心地宣称:“索布拉尔和普林西比的探测结果几乎毋庸置疑地表明,光线在太阳

广义相对论的实验验证

4、引力红移问题 由于采用穆斯堡尔效应,科学家在实验室中验证了引力红移。庞德(R.V..Pound )与瑞布卡(G .A .Rebka )哈佛塔的著名实验证明了引力场可以使光子产生蓝移。从而间接地证明了Einstein 广义相对论的引力红移的存在。这个实验运用光子在地面重力场中的能量守恒关系得出方程 )1(2 0c gh +=νν. 其中0ν是光子在塔顶的频率,ν是光子经过重力场后到达塔底的 频率,h 为塔高,g 为重力加速度。从上式可以看出光子频率的变化与它在引力场中运动的距离有关。在这个实验中,假设我们在塔顶与地面之间设定几个不同的测量点,根据上式,光子在这些不同的点上应当有不同的频率。1960年,哈佛大学的物理学家以千分之一的精度测出了沿垂向下落23米的伽玛射线的频率移动(伽玛射线是一种高能电磁辐射)。从1976年起.超稳定即精确度为一千万亿分之—的钟被放到了高空飞机上,那里的引力比地面上减弱的程度应当可以测量出来。这种飞行的电磁钟与在地面实验室里同样的钟作了比较。二者的速率确有差别,而且与广义相对论预言的结果完全一致。如果一个巨大的物体正好位于地球与恒星之间,那么来自恒星的光线就会受到时空弯曲的影响,它的传播路径就会被扭曲而偏离一定的角度。这种效应还会形成一种有趣的引力透镜现象,它使远处的恒星变得更亮,有时还会形成双像。 广义相对论频移的物理机制,爱因斯坦做出的解释是:“一个原子吸收或发出的光的频率与该原子所处在的引

力场的势有关”;而霍金的解释是“当光从地球引力场往上走,它失去能量,因而其频率下降”。笔者认为——广义相对论频移的本质是时空平权的反映,因为时空弯曲相当于距离的增加,等价于时间的延缓。

相关主题
文本预览
相关文档 最新文档