当前位置:文档之家› 水库毕业设计资料

水库毕业设计资料

水库毕业设计资料
水库毕业设计资料

湖北省XX水库

除险加固工程水工建筑物设计

第一章概述

第一节工程概况及存在的主要问题

1.1工程概况

XX水库位于湖北省xx市xx县xx乡xx村,距五峰乡约3.0Km,距姚五路3公里。水库拦截汉江支流花瓶沟河,坝址以承雨面积47.9平方公里。XX水库是一座以灌溉为主,兼顾防洪、水产养殖等综合效益的小(I)型水库。

XX水库为IV等工程,主要建筑物为4级建筑物,水库正常蓄水位231.6m。原洪水标准按50年一遇设计,相应设计洪水位235.41m,500年一遇校核,相应校核洪水位236.67m,水库死水位214.00m,总库容205.6万m3,调洪库容68.6万m3,兴利库容117.2万m3,死库容19.8万m3。

根据《防洪标准》(GB50201—94)及《水利水电工程等级划分及洪水标准》(SL252—2000)规定,本次复核设计洪水标准为50年一遇设计,相应设计洪水位235.67m,500年一遇校核,相应校核洪水位237.55m,总库容172.705万m3,调洪库容72.34万m3,兴利库容93.765万m3,死库容6.6万m3。20年一遇洪水位233.97m。

水库原设计灌溉面积0.16万亩,实灌0.15万亩。水库保护着下游0.07万亩耕地和0.3万人的生命财产及3公里五峰乡集镇街道和3公里姚五路的安全。

XX水库于1967年10月开工,1969年6月竣工,现有管理人员4人。

水库枢纽工程由大坝、溢洪道、输水隧洞、水电站等组成。

大坝为粘土心墙坝,坝顶高程237.4m,最大坝高29.34m,坝顶宽5m,大坝全长87m。大坝上游坝坡为干砌石护坡,坡比分为3级,自上而下为1:1.5、1:2.5和1:2.75,坡比转折

处高程分别为233.9m和218m,在218m高程处设2m宽的平台;下游坝坡为草皮护坡,坡比分为4级,坡比自上而下为1:1.5、1:2.0、1:2.25、1:1.5(排水棱体),坡比转折处高程分别为233.9m、224.6m和213.7m,分别在224.6m和213.7m高程处设有2m宽的平台,213.7m高程平台下为排水棱体。

溢洪道位于大坝右端,控制段为开敞式宽顶堰,堰顶高程231.6m,堰顶溢流宽40m,最大泄量959.70m3/s。溢洪道控制段底板为桨砌石混凝土结构,底部桨砌石厚0.4m,表面0.1m厚混凝土抹面。泄水槽过流断面为矩形,过流宽度由进口39.5m渐变到出口28m,纵坡为0.1,底部原设计为0.35m钢筋混凝土结构,未实施。溢洪道右侧边坡较陡、无衬砌防护,左侧为浆砌块石挡墙,顶宽0.8m,高4.0m,溢洪道无消能、防冲设施,下泄水流直冲原河道。

输水隧洞布置在大坝右岸,介于大坝与溢洪道之间。隧洞洞长80m,纵坡1/200,进口底部高程214m。洞身过水断面为圆形,洞径为0.8米,钢筋混凝土衬砌厚度0.2m,最大过水能力4.3 m3/s。闸门由启闭竖井起闭,启动设备为手动拉杆式启闭机。

水电站位于输水隧洞出口,装机2台,总容量100千瓦,已报废。发电尾水接灌溉渠道。

XX水库是一座以灌溉为主,兼顾防洪及养殖综合利用的小(I)型水库,由国家、地方及社队集资修造。

水库于1967年8月郧县水电局进行设计,同年10月地区水电局批复并开工,1969年6月基本竣工,主体工程投入使用。

水库经1975年8月8日洪水考验,原设计坝顶高程不满足防洪要求,大坝在原来基础上加高了2.8m到现规模。

1.2工程存在的主要问题

XX水库自1969年水库大坝建成投入运行以来,历时38年,较好地发挥了防洪、灌溉及养殖效益。由于工程先天不足,目前工程运行中存在以下主要问题:

(1)XX水库没有必要的水文水情监测设施,不利于水库和大坝的准确测报及安全运行;大坝没有必要的安全监测设备设施,不利于大坝安全运行;水库大坝管理所无交通

工具,水库现有生活管理用房因长年失修,已破烂不堪,不能满足大坝管理的正常运用。

(2)大坝渗漏严重,水库高水位渗漏加剧,枯水期渗漏相对减弱,水库蓄水无法满足农业灌溉需要。下游坝坡散浸现象普遍,大面积散浸现象造成下游坝脚土质长期湿化,局部渗漏严重。水库大坝粘土心墙顶部高程应不低于校核洪水位,实际大坝粘土心墙顶部高程太低,水库大坝防渗体顶部高程不满足规范要求。大坝上游坝坡局部塌陷凹凸不平,护坡块石严重老化、部分缺失;大坝下游坡面不规则,坡面凸凹不平,草皮护坡破坏,从下游坝坡坡面形态来看,坝体变形较严重。排水系统不完善,排水棱体干砌块石风化破碎;大坝存在白蚁活动情况。

(3)溢洪道未完建。控制段不满足控制段要求,右岸山坡未衬砌,极不平整,左岸侧挡土墙破损,砌石风化严重,多处开裂,局部垮塌,变形严重,底板混凝土质量极差,遍布裂缝,遍生杂草;泄水槽无衬砌;溢洪道无消能、防冲设施。

(4)输水隧洞受当时技术经济条件限制施工质量差,运行过程中又没有进行正常维修加固,洞壁有渗水;进水塔工作桥桥面破损,栏杆缺损、露筋;闸门老化、漏水;启闭机锈蚀严重,操作失灵;尾阀锈蚀严重,操作失灵。

鉴于XX水库大坝存在问题的严重性,湖北省水利厅组织有关方面的领导、专家在对大坝安全分析评价的基础上,依据水利部《水库大坝安全鉴定办法》中的有关规定,于2007年10月对XX水库大坝进行了安全鉴定。鉴定结论为XX水库防洪标准不满足国家标准要求,且存在较严重的工程质量问题,影响大坝安全,根据《水库大坝安全评价导则》(SL258—2000),XX水库大坝为三类坝,经水利部长江水利委员会复核,水利部大坝安全管理中心予以确认,XX水库大坝为三类坝。并对XX水库除险加固提出了如下意见和建议:(1)水库管理单位按规定委托有关单位根据国家规范完成该水库的大坝除险加固前期工作,尽快完成,及早实施;

(2)要尽快恢复完善大坝、溢洪道安全监测设施,加强监测并及时分析有关监测资料,以便及时掌握大坝运行的安全状况;

(3)在水库除险加固完成前,要严格按照经批准的调度规程调度运行,完善防汛应急预案,加强巡视、值守,确保水库安全。

鉴于XX水库的重要作用以及存在问题的严重性,实施除险加固工程,消除大坝安全

隐患,确保水库安全正常运行,以充分发挥其工程效益是十分必要的。

第二节基本资料

1.2.1 工程水文

XX水库位于湖北省xx市xx县xx乡xx村,水库拦截汉江河支流花瓶沟河,坝址以上承雨面积47.9万平方公里。

XX水库流域属北亚热带季风气候区域,气候温和,四季分明,光照充足,热量丰富,雨热同季,由于秦巴山脉屏障和丹江水库的热力效应作用,比同纬度冬季略为温暖。全年平均日照量总时为1800~1980小时,年平均气温16℃左右,年最高气温41℃,最低气温-15℃,风力一般为2~3级,风向偏东风为多,多年平均径流量285×104m3,多年平均降雨量820mm,流域内年降雨在547~1344.5mm之间,年降雨分配极不均匀,6~9月雨量集中,冬季雨量偏少。汛期集中在7~10月,汛期雨量充沛,洪水陡涨陡落。

1.2.2工程地质

1.2.2.1区域地质

库区为构造剥蚀低山-丘陵地貌,属秦巴山余脉,地形起伏较大,峡谷与山间盆地交错,山顶多呈现长条型,沟谷多呈“V”字型,坝区海拔标高一般200~300m,相对高差范围100m,自然坡度35°~45°,植被较发育。

XX水库库区出露地层主要有:人工填土(Q4)、第四系上更新统(Q3)地层及上元古界震旦系下统耀岭河群(Pt3yl)。

坝址区在大地构造上处于南秦岭地槽褶皱带东部,地质构造复杂,两郧大断裂带位于北侧,发育一系列平行次级断裂,古地壳运动较活跃。区内的两郧大断裂距枢纽40km,近代活动较为频繁,虽无强震发生,但弱震时有发生。据从明末清初至上世纪80年代发生地震53次,震级为1.1~2.9级,其中在1959~1984年的25年间共发生地震45次,其中仅1964年一年发生1.1-1.8级地震12次。据国家标准1:400万《中国地震动参数区划图》

(GB18306—2001),当设防标准为50年超越概率10%时,工程区地震动峰值加速度为0.05g,地震动反应谱特征周期为0.40s,相对的地震基本烈度为6度。

根据区域资料,XX水库枢纽位置无地震记录,未发现断裂构造活动迹象。库区地貌形态简单,地形较为开阔,地势起伏较大,地层分布较为简单。故库区在大地区域构造上相对稳定。

根据区域水文地质资料反映,库区水文地质条件较为简单,地下水类型按其含水介质特征可分为上层滞水及基岩裂隙水。上层滞水分布于地表第四系全新统、上更新统粉质粘土层中,水量不大,受大气影响较大。裂隙水主要赋存于的库区基岩风化、构造裂隙中,受裂隙开启性、连通性、充填程度、充填物等因素制约,贮水空间有限,水量小。水质类型为HCO-3—Ca2+—Mg2+型,属弱碱性,对混凝土不具侵蚀性,对钢结构具弱侵蚀性。

坝区海拔标高一般200~300m,相对高差范围100米左右。出露地层主要为第四系全新统(Q4)人工填土、上更新统(Q3)粉质粘土层及上元古界震旦系下统耀岭河群(Z1yl)白云石英片岩。第四系上更新统粉质粘土,广泛分布于库区周边山坡垄岗地带,上元古界震旦系下统耀岭河群(Pt3yl)白云石英片岩分布于库区周边山体,构成库区及大坝基底。

输水隧洞坐落在上元古界震旦系下统耀岭河群(Pt3yl)强风化白云石英片岩层,地基岩土体承载力值较高,正常情况下可以满足要求,但输水隧洞目前已老化,部分衬砌已出现脱落和开裂,对输水隧洞稳定性有不利的影响。

1.2.2.2主坝工程地质

大坝坝基基本由强风化白云石英片岩及中风化白云石英片岩组成,各层工程地质条件评价如下:

强风化白云石英片岩:在钻孔中做压水试验,岩石的透水率在8.5~12.2 Lu,推荐采用12.2 Lu,属中等透水性。推荐承载力特征值fak=500KPa,变形模量Eo=46MPa,容重γ=25.8KN/m3;

中风化白云石英片岩:在钻孔中做压水试验,取岩石样做岩石饱和单轴抗压强度试验,岩石的透水率在3.9~7.1 Lu,推荐采用3.91 Lu,属弱透水性。承载力特征值fak=1200KPa,容重γ=27.5KN/m3。

强风化白云石英片岩,透水率8.5~12.2Lu,平均透水率10.35 Lu,属中等透水;中

风化白云石英片岩,透水率3.9~7.1 Lu,平均透水率5.5 Lu,属弱透水。

大坝最大坝高28.5m,系粘土心墙代料坝,坝基承载能力较高,应力较小,能满足大坝要求,不存在整体滑动失稳问题。

坝基表层为强风化白云石英片岩透水率8.5~12.2Lu,平均透水率10.35 Lu,属中等透水性,为良好透水层,不利于水库大坝防渗,但在大坝心墙部位已清除,清除宽18.5m;下层中风化白云石英片岩属弱透水性,透水性差,透水率3.9~7.1 Lu,平均透水率5.5 Lu,为良好隔水层。

大坝在在坝基范围内,地表覆盖2~8m厚强风化白云石英片岩,大坝清基时,曾进行过大面积清除,清除内容包括地表覆盖层及强风化孤立块体,清基抽槽顶宽15.2m,底宽4.0m。但清基抽槽宽度、深度较小,回填夯实不够,造成心墙与河床结合部位局部渗透。

右坝肩山坡平缓,左坝肩原始边坡较陡,原始地表覆盖残坡积含碎石粘土,开工前对此未进行过大面积开挖,清基深度0.5~2m,范围仅限于粘土心墙处,清基内容包括覆盖层、杂草、孤石、不稳定块体、部分强风化层。

坝基清基不彻底:根据勘察了解,坝基两侧坝肩清基不彻底,局部地段基岩为强风化白云石英片岩,节理裂隙较发育,基岩透水性较强,根据水库管理人员反映,当库水位达到一定高程(231.0m)时,坝基两侧就会出现大面积的散浸和渗漏。

坝基渗漏:根据勘察了解,大坝坝基右侧桩号0+060~0+87m为强风化白云石英片岩,节理裂隙较发育,其透水率为10.35Lu,为中等透水性,当水库水位上涨时,存在渗漏问题。

坝体填土(心墙)(Q ml):黄褐色、棕褐色,稍湿,成份以粉质粘土为主,可-硬塑状,局部夹粉土,含3-5%左右的强风化片岩碎石及角砾,碎石粒径2-5cm,角砾粒径3-10mm,棱角状。局部可见腐植物。坝体填土(心墙)的天然含水量平均值19.5% ,孔隙比0. 6,塑性指数8.0,液性指数平均值0.0,压缩系数a

为0.3Mpa-1,压缩模量Es为4.3Mpa。快

1—2

剪内摩擦角φ=17.4°,凝聚力c=17.6Kpa,推荐慢剪内摩擦角φ=19.7°,凝聚力c=18.4Kpa。(大坝心墙)渗透系数区间值为5.75×10-5cm/s—6.98×10-4cm/s,平均渗透系数为3.07×10-4cm/s,属中等透水性。反映出土体渗透性较强。坝体填土(粘土心墙) 其成份除粉质粘土外,夹大量粉土,粉土压实困难,渗透性较强。

1.2.2.3溢洪道工程地质

溢洪道由人工开挖形成,位于大坝右端,为开敞式泄流明渠,现溢洪道堰顶宽10.0m,最大泄量681.41m3/S。平面形态呈不规则形,衬砌消能、防冲设施不完善,溢洪道进口处渠底为混凝土,其余渠底未硬化,溢洪道左侧为浆砌块石挡墙,无衬砌,挡墙厚0.80m。溢洪道右侧山体为强风化白云石英片岩,边坡较陡、无衬砌。溢洪道底板破碎凸鼓,左边墙毁坏严重,多处裂缝;挑流鼻坎混凝土老化,蜂窝麻面,冲刷严重。溢洪道迭坝以下受泄洪冲击,且局部边坡土体塌滑,形成多级台坎,过水断面偏小。溢洪道不能有效泄洪,遇大-暴雨时,将严重威胁大坝安全。

溢洪道场区地层结构简单,根据井探揭露及现场观察,两岸坡及渠底为上元古界震旦yl)强风化白云石英片岩层。

系下统耀岭河群(Pt

3

yl):②-1层强风化白云石英片岩,灰色、灰黄色,上元古界震旦系下统耀岭河群(Pt

3

鳞片状花岗变晶结构,片状构造,矿物成份主要为石英、钠长石、白云母及少量绢云母。片理发育,裂隙较发育。承载力特征值fak=500KPa,变形模量Eo=46MPa,容重γ=25.8KN/m3,根据溢洪道探井试验结果,透水率推荐12.2Lu,属中等透水。

溢洪道场区地层为1层,②-1层强风化白云石英片岩,节理裂隙发育,渗透性为中等透水性,根据溢洪道探井试验结果,其透水率推荐为12.2Lu。溢洪道工程地质评价:

1、溢洪道堵塞:溢洪道右岸为岩石边坡,左岸部分地段为浆砌块石挡墙,厚度为0.80m,未衬砌,防冲刷能力较弱,两岸地表覆盖少量粉质粘土,土层受雨水冲刷或局部岸坡的坍塌,冲积物堵塞了溢洪道,造成过水断面偏小,不利于泄洪,威胁大坝安全。

2、溢洪道渗漏:溢洪道下伏基岩为强风化白云石英片岩,节理裂隙较发育,透水性较强,透水率推荐12.2Lu,属中等透水,根据水库管理人员反映,当库水位达到一定高程(231.0m)时,溢洪道与坝体接触部位就会渗漏,不利于水库蓄水,影响水库正常工作。

3、边坡需加固,渠底需硬化:溢洪道两岸当时由人工开挖而成,两岸及渠底为强风化白云石英片岩,节理裂隙发育,岩体较破碎,从长远考虑需对溢洪道两岸进行砌筑或用混凝土进行浇筑,边坡放坡比例为1:1,渠底要进行混凝土硬化,以发挥溢洪道泄洪功能,确保大坝安全。

4、缺消能、防冲设施:溢洪道长度较长,坡度变化较大,溢洪道迭坝以下受泄洪冲

击,形成多级台坎,坡度陡,落差大,因此,应根据实际情况,在溢洪道适当位置增设消能防冲设施,延长溢洪道使用寿命。

1.2.2.4输水隧洞工程地质条件

灌溉输水涵管,设在大坝右侧,为混凝土圆形有压隧洞,进口底部高程214m,洞径为φ0.8m,最大过水能力4m3/S。闸门型式为拉杆式,启动设备为手动启闭机,输水涵管进在输水涵管进口处修一砖混平房,进水塔工作桥桥面破损,栏杆缺损、露筋;厂房破旧,电站装机容量100KW,发电机组设备陈旧,老化失修。

yl)强风化白云石英片岩层,地输水涵管坐落在上元古界震旦系下统耀岭河群(Pt

3

基岩土体承载力值较高,正常情况下可以满足要求,但输水涵管目前已老化,部分涵管已出现脱落和开裂,对输水涵管稳定性有不利的影响。

输水涵管坐落在强风化白云石英片岩,岩体承载力值较高,正常情况下可以满足要求,涵管上部覆盖①—1层大坝代料及①—2大坝心墙,其渗透性为中等透水,而且输水涵管已老化,部分涵管已出现脱落和开裂,局部开始渗漏,使涵管周边岩土层长期受水浸泡,土质变软,使涵管与坝体结合质量差,对输水涵管稳定性有不利的影响。围岩类别为Ⅳ类。

表2.1XX水库力学参数c、φ值及渗透系数建议值表

陈丹仲水库除险加固初步设计毕业论文

丹仲水库除险加固初步设计毕业论文 4 工程任务与规模 4.1 工程存在问题 1. 下游坡的抗滑稳定不能满足规要求。 2. 大坝坝坡太陡,坝体不能按照设计要求挡水。大坝心墙高度严重不足,坝基清基不彻底,特别是岸坡削坡或清基不符合要求,导致坝体坝基渗漏,部分地段坝体与坝基的接触渗漏及坝体与岸坡的接触渗漏。大坝存在坝基渗漏和大坝中部转折处山体两侧坝肩绕坝渗透问题。 3. 溢洪道施工质量较差,且大部分未衬砌,由于浆砌石衬砌的基础处理不好,普遍存在不均匀沉降,砌体质量差,所以出现了边墙破损严重,底板老化,已破坏了结构的整体性和稳定性,一旦宣泄较大洪水时,必将造成严重的后果。 4. 高剅为隧洞形式,边墙衬砌出现局部脱落,混凝土强度低,老化严重。低管与与坝体土料接触处的密实度达不到要求,一直存在沿管壁的接触渗漏问题,止水已老化和局部破坏。 5.输水建筑物闸门锈蚀,漏水严重,运行已超过使用折旧年限;启闭设施旧、老化,附件难以更换,属淘汰产品,不能满足正常运用。 6.大坝无安全监测设施。 7.水库无水雨情自动测报系统,无洪水调度系统。通讯及管理设施落后。 4.2 除险加固的必要性 丹冲水库位于红安县上新集镇丹冲村,是一座以灌溉为主,兼顾防洪、养殖等综合利用的小(1)型水库,水库建成以来发挥了重要的作用,取得了良好的社会效益,但由于水库建设过程中诸多不规因素,纯属边勘探、边设计,边施工的三边工程。水库兴建时既没有作地基岩体性质调查,也没有作筑坝土料的物理学性质试验。 该工程已运行了37年,目前,该水库存在较多的安全隐患,影响水库效益的发挥。丹冲水库的设计灌溉面积8000亩,实际灌溉面积为2500亩。1975年、1982年两

水利水电毕业设计

目录 一、基本资料 二、工程量计算(附件) 三、单价表 四、致谢 五、主要参考资料 一、基本资料 1课题名称 芭蕉河面板堆石坝初步设计概算文件编制 2工程概况 芭蕉河一级水电站位于湖北省恩施自治州鹤峰县境内,地处芭蕉河中下游河段,坝址下距鹤峰县城11.1km,距在建的芭蕉河二级水电站7.6km,为芭蕉河干流开发的“龙头”电站。 本工程以发电为主,兼顾航运、养殖、旅游等综合利用。坝址位于柳月坪,控制河域面积为303.3km2,多年平均流量12.6m3/s,多年平均年径流量3.97亿m3,水库正常蓄水位647.5m,死水位616.0m,总库容0.96亿m3,库容系数14.91%,为年调节水库;本工程属Ⅲ等中型工程,工程枢纽由混凝土面板堆石坝、左岸岸边开敞式溢洪道、左岸放空洞、右岸引水洞、地面厂房及升压站等组成,电让装机2台,总装机容量0.901亿kw.h,保证出力5.1MW,增加下游梯级电量0.085亿kw.h。枢纽主要工程量:土石方开挖79.3万m3,土石方填筑230.4万m3,混凝土10.12万m3。施工导流采用左岸隧洞导流,总工期40个月。 3工程地质(坝址工程地质条件) 本工程建坝河段位于芭蕉河下游柳月坪至芭蕉湾之间,长约1.5km,平面上大致成形,以中部河湾为界,河湾以上属柳月坪坝址,河湾以下为落山坝坝址。坝段内河谷深切,呈“V”型,上坝址为斜向谷,两岸地形连续完整,但冲沟发育,岸坡陡峭,一般40--60,右岸发育3堆石体;下坝址为横向谷,岸坡相对平缓,坡度一般35--50,河谷宽度较上坝址宽50—80m,右岸地形连续完整,发育5、6两条冲沟,左岸因背后的溪沟深切,临河山体相对单薄。上坝址基岩主要为龙马溪组上部和罗惹坪组下部,以中硬的条带状砂岩和石英砂岩为主,饱和抗压强度72.4—154.0MP;下坝址基岩为罗惹坪组中上部,以泥质粉砂岩为主,饱和抗压强度20.1—30.5MP;岩石较软弱,且普遍具有崩解特性。综合而言,上、下坝址的工程地质条件各有优缺点,以上坝址工程地质条件略优。 选定的上坝址位于八字山背斜南东,地质构造较简单,为单斜构造区,岩层产状N35—50E,SE30—50。区内以探明的断层有6条,规模均较小,最大断层破碎带宽0.40m。本区节理主要有4组,具有延伸性、连续性好、节理面较平直的特征,尤其是4组,为区内各种陡崖,跌坎的控制性结构面,坝址岩体风化较浅,卸荷作用相对而言较弱,建坝堆风化岩带,卸载带开挖处理的工作量都不大,坝址工程地质条件满足重力坝,面板堆石坝的建坝要求,基本满足拱坝的建坝要求,但面板堆石坝方案更适应坝址的地形地质条件。 水质分析结果表明芭蕉河河水对混凝土无任何腐蚀性,左岸岩湾溪水和右岸谢家溪沟水对混凝土具有中等溶出型或弱溶出型腐蚀性,但溪沟水流量很小,对工程影响甚微。

水资源规划毕业设计(沅水五强溪水库

水资源规划 沅水五强溪水库水利计算 姓名: 学号: 专业: 学习形式: 时间:

目录 1 基本情况 (3) 1.1 流域概况 (3) 1.2 开发任务 (3) 1.3 设计任务 (4) 1.4 设计前提 (4) 1.5 设计内容 (5) 1.6 设计原始资料 (5) 2 兴利计算 (10) 2.1 基本资料整理 (10) 2.2 死水位的确定 (10) 2.3 保证出力计算 (13) 2.4 水电站必需容量选择 (15) 2.5 水电站调度图绘制 (16) 2.6 重复容量选择与多年平均电能计算 (20) 3 防洪计算 (24) 3.1 水库调洪计算 (24) 3.2 坝顶高程的确定 (26) 4 经济计算 (29) 4.1 方案一工程费用 (29)

4.2 其它方案工程费 (32) 4.3 防洪效益 (39) 4.4 经济比较 (40) 附表 (45) 附图 (70)

1 基本情况 1.1 流域概况 五强溪水电站位于湖南省沅陵县境内,上离沅陵县城73km,下距常德市130km。坝址控制流域面积83800km2,占沅水总流域面积的93%,流域雨量充沛,水量丰富,坝址多年平均流量2060m3/s,年水量649×108m3,并有1925年以来的水文资料和核实的历史洪水资料。坝址位于沅水干流最后一段峡谷出口处,岩性坚硬,地形地质条件良好。具备了修筑高坝的自然条件。 在沅水规划中,五强溪水电站为沅水干流最后第二个梯级,上游接虎皮溪及酉水的风滩(已建成)梯级,是一个以发电为主,兼有防洪、航运效益的综合利用水库,系湖南省最大的水电电源点。 1.2 开发任务 五强溪水电站是以发电为主、兼有防洪、航运和灌溉等效益的综合利用工程。其开发任务分述如下: 1.发电 五强溪水电站建成后投入华中电网,主要供电范围为湖南省。 2.防洪 沅水下游赤山以西的桃源、常德、汉寿三县及常德市所属平原河网地区,统称沅水尾闾。这个地区地势低洼。全靠提防保护,共保护人口106万,农水159万亩。现有河道的泄洪能力20000m3/s,如遇1927、1931、1933、1935、1943、1949、1954、1969等年洪水重现,河道均不

河岸溢洪道水力计算实例

河岸溢洪道水力计算实例 一﹑ 资料及任务 某水库的带胸墙的宽顶堰式河岸溢洪道,用弧形闸门控制泄流量,如图15.7所示。溢洪道共三孔,每孔净宽10米。闸墩墩头为尖圆形,墩厚2米。翼墙为八字形,闸底板高程为33.00米。胸墙底部为圆弧形,圆弧半径为0.53米,墙底高程为38.00米。闸门圆弧半径为7.5米,门轴高程为38.00米。闸后接第一斜坡段,底坡1i =0.01,长度为100米。第一斜坡段后接第二斜坡段,底坡i 2=1:6,水平长度为60米。第二斜坡段末端设连续式挑流坎,挑射角=α25°。上述两斜坡段的断面均为具有铅直边墙,底宽B 1=34米的矩形断面,其余尺寸见图15.7。溢洪道用混凝土浇筑,糙率n=0.014。溢洪道地基为岩石,在闸底板前端设帷幕灌浆以防渗。水库设计洪水位42.07米,校核洪水位为42.40米,溢洪道下游水位与流量关系曲线见图15.8。当溢洪道闸门全开,要求: 1. 1.绘制库水位与溢洪道流量关系曲线; 2. 2.绘制库水位为设计洪水位时的溢洪道水面曲线; 3. 3.计算溢洪道下游最大冲刷坑深度及相应的挑距。 图7 图8 二﹑ 绘制库水位与溢洪道流量关系曲线 (一)确定堰流和孔流的分界水位 宽顶堰上堰流和孔流的界限为= H e 0.65。闸门全开时,闸孔高度e =38.0-33.0=5.0 米,则堰流和孔流分界时的相应水头为

H =7 .765.00.565.0==e 米 堰流和孔流的分界水位=33.0+7.7=40.7米。库水位在40.7米以下按堰流计算;库水位在40.7米以上按孔流计算。 (二)堰流流量计算 堰流流量按下式计算: 2 /302H g mB Q σε= 式中溢流宽度B=nb=3×10=30米。因溢洪道上游为水库,0v ≈0则0H ≈H 。溢洪 道进口上游面倾斜的宽顶堰,上游堰高a=33.0-32.5=0.5米,斜面坡度为1:5,则 θctg =5(θ为斜面与水平面的夹角),宽顶堰流量系数m 可按H a 及ctg θ由表11.7 查得;侧收缩系数ε按下式计算: =ε1-0.2[(n -1)k ζζ+0 ]nb H 0 其中孔数n=3;对尖圆形闸墩墩头,=0ζ0.25;对八字形翼墙,=k ζ0.7。因闸后为陡坡段,下游水位较低,不致影响堰的过水能力,为宽顶堰自由出入流,取=σ1。 设一系列库水位,计算相应的H ,m ,ε和Q ,计算成果列于表1 因胸墙底缘为圆弧形,闸孔流量可按具有圆弧底缘的平面闸门下自由孔流流量公式计算 Q=μeB e H g eB εμ'-0(2 已知 e =5.0米,B=30米,H 0≈H 自由孔流流量系数?εμ'=,由表11.12取闸孔流速系数=?0.95,垂向收缩系数ε'按式计算: ε' ])( 1[11 2H e k -+= 其中系数k=e r 16 718 .24 .0,而门底(即胸墙底)圆弧半径r=0.53 米,106.00.553 .0==e r , 则 k =106.016718.24.0?==7 .1718.24 .00.073

小型水库溢洪道病害分析及处理探讨

小型水库溢洪道病害分析及处理探讨 摘要:溢洪道是水库枢纽中的重要建筑物,是洪水期间保证水库安全的重要设施。笔者通过对小型水库溢洪道的一些常见病害形成原因进行分析,提出了对水库溢洪道病害处理的措施。 关键词:小型水库;溢洪道;病害分析;处理措施 小型水库多建于上世纪50-60年代,“三边”(边勘测、边设计、边施工)和“四不清”(来水量不清、流域面积不清、库容不清、基础不清)很普遍,技术含量低,防洪标准低,大坝形体单薄,结构不安全。经过几十年的运行,小型水库坝体裂缝、渗漏,溢洪道和输水道塌陷、堵塞、泄洪能力不足,闸门启闭不灵活等工程问题普遍存在,有些还相当严重。许多小水库位于深山中,处于“无防汛抢险道路、无通信预警手段、无防汛抢险物料”的“三无”状态。还有许多小水库实行了承包、租赁、拍卖使用权等形式的改革,但有些承包、租赁给个人时没有明确工程管理维护责任,导致水库工程长期疏于管理、老化失修,存在安全隐患。正是基于小型水库普遍存在的诸多安全隐患,近年来国家加大了对小水库的治理力度。 溢洪道是水库枢纽中的重要建筑物,是洪水期间保证水库安全的重要设施,是用来宣泄规划库容所不能容纳的洪水、保证坝体安全的开敞式或带有胸墙进水口的溢流泄水建筑物。 1 溢洪道常见病害分析 在工程实践中,小型水库的溢洪道存在不少共性的问题,大致归纳如下。 1.1小型水库由于受建设时期施工条件、建设资金等的限制,其设计采用的洪水标准往往偏低,溢洪道设计尺寸偏小,再加上周边岩体风化坍落,往往造成泄流能力不足,因而不能保证安全泄洪。 1.2在布置上,有些工程设计的溢洪道进出口段离坝身太近,由于几十年的运行,进口段的护砌出现裂缝,泄洪时一旦发生冲蚀现象,将危及坝肩安全;有些设计的陡槽末端与坝脚紧贴,假如发生横流冲刷,更易危及坝脚安全。 1.3有的溢洪道平面弯道半径过大和收缩过剧,对泄流十分不利。在溢洪道陡坡段布置弯道时,由于弯道流态、流势剧烈变化,导致二岸产生水面差,这时凹岸水面壅高,并在下游衔接的平直段内产生折冲水流,大大影响泄流能力和消能效果。另外陡坡段或缓流段的过剧收缩,也会发生显著的壅水和流态变化,并对溢洪道衬砌造成冲击。 1.4溢洪道纵横剖面及平面布置设计不当,比较突出的问题是陡坡比降过陡。部分溢洪道布置在非岩性山坡上,其底部未做有效的反滤衬砌,致使渗水后易产生滑坡。在横断面设计中,有些工程对两侧山坡开挖坡度注重不够,有的过陡,

水利水电工程与管理毕业设计

一、综述 1.1工程概况 平山水库位于湖北省某县平山河中游,该河系睦水(长辽的支流)的主要支流,全长284m,流域面积为556㎞2,坝址以上控制流域面积491㎞2;平山河是山区河流,河床比降为0.3%,沿河有地势较为平坦的小平原,最低高程为62.5m左右。 1.2枢纽任务 枢纽主要任务以灌溉发电为主,并结合防洪、航运养殖、给水等任务进行开发。 1.3设计基本数据 1)正常蓄水位 113.0 2)设计洪水位:113.10m; 3)校核洪水位:113.50m; 4)死水位:105.0m(发电极限工作深度8m); 5)灌溉最低库水位:104.0m; 6)总库容:2.00亿m3; 7)水库有效库容:1.15亿m3; 8)发电调节保证流量Qp=7.35m3/s,相应下游水位63.20m;

9)发电最大引用流量Qmax=28 m3/s,相应下游水位68.65m; 10)通过调洪演算,溢洪道下泄流量Q1%=840 m3/s,相应下游水 位72.65m。 11)校核情况下,溢洪道下泄流量Q0.1%=1340 m3/s,相应下游水 位74.30m。 12)水库淤积高程85.00m。 二、坝址水文特性 暴雨洪峰流量Q0.05%=1860m3/s,Q0.5%=1550m3/s,Q1%=1480m3/s。 多年平均流量13.34m3/s,多年平均来水量4.22亿m3。多年平均最大风速10m/s,水库吹程8km,多年平均降雨次数48次/年,库区气候温和。 三、枢纽及库区地形地质条件 3.1坝址、库区地形地质及水文地质 平山河流域多为丘陵地区,在平山枢纽上游均为大山区,河谷山势陡峭,河谷边坡一般为60°~70°,地势高差都在80~120m,河床宽一般为400m,河道弯曲很厉害,尤其枢纽布置处更为显著形成S 形,沿河沙滩及两岸坡积层发育,坝址处两岸河谷呈马鞍形,其覆盖

(整理)五强溪水库水资源规划毕业设计

河海大学函授毕业设计报告-------------水资源规划 姓名: 学号: 专业: 学习形式: 时间:

目录 1 基本情况 (3) 1.1 流域概况 (3) 1.2 开发任务 (3) 1.3 设计任务 (4) 1.4 设计前提 (4) 1.5 设计内容 (5) 1.6 设计原始资料 (5) 2 兴利计算 (10) 2.1 基本资料整理 (10) 2.2 死水位的确定 (10) 2.3 保证出力计算 (13) 2.4 水电站必需容量选择 (15) 2.5 水电站调度图绘制 (16) 2.6 重复容量选择与多年平均电能计算 (20) 3 防洪计算 (24) 3.1 水库调洪计算 (24) 3.2 坝顶高程的确定 (26) 4 经济计算 (29) 4.1 方案一工程费用 (29)

4.2 其它方案工程费 (32) 4.3 防洪效益 (39) 4.4 经济比较 (40) 附表 (45) 附图 (70)

1 基本情况 1.1 流域概况 五强溪水电站位于湖南省沅陵县境内,上离沅陵县城73km,下距常德市130km。坝址控制流域面积83800km2,占沅水总流域面积的93%,流域雨量充沛,水量丰富,坝址多年平均流量2060m3/s,年水量649×108m3,并有1925年以来的水文资料和核实的历史洪水资料。坝址位于沅水干流最后一段峡谷出口处,岩性坚硬,地形地质条件良好。具备了修筑高坝的自然条件。 在沅水规划中,五强溪水电站为沅水干流最后第二个梯级,上游接虎皮溪及酉水的风滩(已建成)梯级,是一个以发电为主,兼有防洪、航运效益的综合利用水库,系湖南省最大的水电电源点。 1.2 开发任务 五强溪水电站是以发电为主、兼有防洪、航运和灌溉等效益的综合利用工程。其开发任务分述如下: 1.发电 五强溪水电站建成后投入华中电网,主要供电范围为湖南省。 2.防洪 沅水下游赤山以西的桃源、常德、汉寿三县及常德市所属平原河网地区,统称沅水尾闾。这个地区地势低洼。全靠提防保护,共保护人口106万,农水159万亩。现有河道的泄洪能力20000m3/s,如遇1927、1931、1933、1935、1943、1949、1954、1969等年洪水重现,河道均不

溢洪道设计实例

水位(mm ) 泄量 (m) 计算公式(假设 υ=2m/s ) 表 2(忽略行近水头 υ2/2g) 溢洪道设计实例 黑龙江农垦林业职业技术学院 1、进水渠 进水渠是将水流平顺引至溢流堰前。采用梯形断面,底坡为平坡,边坡采 用 1:1.5。为提高泄洪能力,渠内流速 υ<3.0m/s ,渠底宽度大于堰宽,渠底高 程是 360.52m 。 进水渠断面拟定尺寸,具体计算见表 1。 表 1 (m 3/s ) H (m) B Q =υA , A =(B+mh)h 设计 校核 363.62 364.81 540 800 3.1 4.29 82.4 86.7 A —过水断面积; B —渠底宽 度 由计算可以拟定引渠底宽 B =90 米(为了安全) 进水渠与控制堰之间设 20 米渐变段,采用圆弧连接,半径 R =20m ,引渠 长 L =150 米。 2、控制段 其作用是控制泄流能力。本工程是以灌溉为主的小型工程,采用无闸控制, 溢洪道轴线处地形较好,岩石坚硬,堰型选用无坎宽顶堰,断面为矩形。顶部 高程与正常蓄水位齐平,为 360.52m 。堰厚 δ 拟为 30 米(2.5H<δ<10H )。坎 宽由流量方程求得,具体计算见表 2。 3、泄槽 泄槽是渲泄过堰洪水的,槽底布置在基岩上,断面必须为挖方,且要工程 量最小,坡度不宜太陡。为适应地形、地质条件,泄槽分收缩段、泄槽一段和 泄槽二段布置。 据已建工程拟收缩段收缩角 θ=12°,首端底宽与控制堰同宽,b 1=65m,末 端底宽 b 2 拟为 40m ,断面取为矩形,则渐变段长 L 1 = b 1 - b 2 2tg θ = 58.81m ,取整则

溢洪道设计

某水库溢洪道设计 一、设计方案理论论证 某水库由于当年的条件限制,所以工程质量较差,加之近40年的运行,反复冻融破坏,结构、设备老化,水库诸多隐患,水库经专家鉴定,评价为:溢洪道无底板,右侧边墙短,破坏严重,安全评定为C级。根据中华人民共和国行业标准《溢洪道设计规范》(SL253-2000),对溢洪道进行计算和设计。该工程中河岸式溢洪道由引水渠、控制段、泄槽、出口消能和尾水渠等部分组成。 (一)、溢洪道水力计算 由正常、设计、校核洪水位时所对应的下泄流量查坝址水位流量关系曲线可得出下表。 溢洪道开挖后,为减轻糙率和防止冲刷,需进行衬砌,糙率取n=0.016。 溢洪道为3级建筑物,按10年一遇设计,20年一遇校核的洪水标准。 (二)、进水渠的设计 根据《溢洪道设计规范》(SL253-2000),进水渠的布置应依照以下原则:选择有利的地形、地质条件;在选择轴线方向时,应使进水顺畅。 进水渠是将水流平顺引至溢流堰前。进水渠的地基为土基,故采用梯形断面;底坡为平底坡,边坡采用m=0.5。根据《溢洪道设计规范》(SL253-2000)进水渠设计流速宜采用3~5m/s,渠内流速取υ=3.0m/s,渠底宽度大于堰宽,渠底高程是18.259m。 进水渠断面拟定尺寸,具体计算见表1-2。 表1-2 进水渠断面尺寸计算表 - 1 -

- 2 - 由计算可以拟定引渠底宽B=10 m (为了安全),引渠长L=10m 。 (二)、控制段的设计 控制段也叫溢流堰段,控制段包括溢流堰及两侧连接建筑物,其作用是控制泄流能力。本工程是以灌溉为主的小型工程,溢洪道轴线处地形较好,岩石坚硬,开敞式溢流堰有较大的超泄能力,故堰型选用开敞式宽顶堰,断面为矩形。顶部高程与正常蓄水位齐平,为18.80m 。堰厚δ拟为8米(2.5H<δ<10H )。堰宽由流量方程求得,具体计算见表1-3。 表1-3 堰宽计算表 (忽略行近水头υ2/2g) 由计算知,控制堰宽取b=15m 为宜。 (三)、泄槽的设计及水力计算 泄槽设计时要根据地形、地质、水流条件、与经济等因素合理确定其形式和尺寸。泄槽是渲泄过堰洪水的,槽底布置在基岩上,断面必须为挖方,且要工程量最小,坡度不宜太陡。为适应地形、地质条件,泄槽分收缩段(收缩角θ≦11.25°)和泄槽段,采用均一坡度023.0=i ,拟断面为矩形。 根据《溢洪道设计规范》(SL253-2000)附录A 中的泄槽水力计算规范,泄槽边墙收缩段角度可按经验公式v r k h g F k tg ?=?= 1 θ 计算。本工程拟定收缩段收缩角θ=6°,首端底宽与控制堰同宽b 1=15m,末端底宽b 2拟为8m ,断面取为矩形,则渐变段长 m tg b b L 30.3322 11=-= θ,取整则L 1为35m ,底坡i=0.023。 泄槽段上接收缩段,拟断面为矩形,宽b=8m ,长L 2为65m ,底坡和收缩段相同 023.0=i 。 (四)、出口消能 溢洪道出口段为冲沟,岩石比较坚硬,离大坝较远,采用挑流消能,水流冲刷不会危及大坝安全。

主坝、溢洪道、放水洞毕业设计

1枢纽概况 群安水库位于某省某地区群安河河谷出山口地段,水库控制流域面积714平方公里,库容900×104m3。 水库以灌溉和工业供水为主,兼顾防洪,工程兴建后可以向地区工业年提供水量2160×104m3,向灌区年供水1782×104m3,全年供水3942×104m3,改善灌溉面积14.32×104亩。 水库枢纽建筑物由主坝、溢洪道、放水洞组成。根据工程规模及其在国民经济中的作用,按《水利水电工程等级划分及洪水标准》SL252—2000,水库永久性建筑物设计洪水标准为50年标准,校核洪水标准为1000年标准。水库枢纽的工程等别为Ⅲ等,工程规模为中型。水库枢纽的主要建筑物级别为3级,次要建筑物为4级,临时建筑物为5级。 2 设计基本资料(见附件) 3 设计任务及基本要求 3.1 设计任务 3.1.1 工程任务和规模阶段 (1)根据工程任务确定工程规模,然后确定工程等别、建筑物级别及相应洪水标准。 (2)拟定泄洪建筑物型式和水库泄洪方式,选定泄洪建筑物尺寸,进行洪水调节计算,确定水库特征水位及相应库容。拟定导流建筑物型式和尺寸,确定围堰前设计水位,确定坝体临时度汛水位。 3.1.2 工程布置及建筑物阶段 (1)根据地形、地质、筑坝材料、水文气象、施工条件和枢纽建筑物的组成等因素进行坝轴线选择。 (2)根据已知基本资料进行坝型选择,可选坝型为粘土心墙堆石坝、沥青混凝土心墙堆石坝、混凝土面板堆石坝、混凝土重力坝和碾压混凝土重力坝五种,通过技术经济比较,确定最优坝型和相应泄洪建筑物尺寸。 (3)根据选定的坝型和枢纽建筑物组成,进行枢纽布置方案的比较,确定枢纽布置方案,绘制枢纽平面布置图。 (4)挡水建筑物-大坝设计:①坝体结构设计;②坝基处理设计;③坝体与坝基及其他建筑物的连接设计;④坝体计算与分析;⑤细部构造设计。 (5)泄水建筑物-溢洪道设计:①方案比较;②溢洪道布置;③设计计算;④结构设计。 (6)导流输水建筑物-导流放水洞设计:①方案比较;②水力计算;③结构设计。 3.1.3 施工组织设计阶段 (1)施工条件分析。 (2)施工组织设计:导流标准确定;导流方式选择;围堰设计;导流泄水建筑物设计;导流工程施工及河道截流设计;基坑排水设计;料场选择与开采、主体工程施工;施工交通布置;施工工厂设施设计;施工总布置和施工总进度计划设计。 3.2 设计成果内容及要求 3.2.1 设计成果内容 1、毕业设计报告一套(包括设计说明书1本和设计计算书1本),不少于2万字; 2、设计图纸4张,包括:

片上水库毕业设计5

1 枢纽概况及工程目 片上水库是河海流域大清河北支流拒马河上的一座大(二)型综合利用水利工程。水库总库容7.16亿立米,死库容0.44亿立米可进行防洪、兴利的调节库容6.72亿立米。 拒马河发源于河北省涞源县,流经涞源、易县、涞水山峡地区,至北京房山县张坊镇流入平原,并分南北两支。南拒马河经涞水至北河店与易水汇流至新城白沟镇,北拒马河汇合胡良河、琉璃河后在涿州县东茨村入白沟河,往南流至白沟镇汇合南拒马河后为大清河。 拒马河位于太行山东麓,流域面积约10000km2。地形特点,西部为山区,流域面积约5000km2,东部为平原。山区多为石质山区,植被较少,坡度较陡。仅上游涞源以上分水岭处于黄土高原边缘地区。平原河槽较窄,坡度很缓。本流域且为华北暴雨中心所在,因此洪水大,危害较为严重。 本工程可为东部平原房、涞、涿灌区的一百多万亩农田灌溉、北京生活及工业用水提供水源。 枢纽建筑物包括主坝、付坝、溢洪道、导流泄洪洞、灌溉发电洞及枢纽电站。

2 设计的基本资料 2.1 地形、地质条件 2.1.1库区地形 图2-1 片上水库河谷断面图 2.1.2 库区工程地质条件 本区除第四系地层外,均为中震旦系,雾迷山组地层(Z2w),分层、厚度及岩性见表2.1。此外尚有燕山期辉绿岩墙侵入体。 表2.1 地层厚度及岩性 辉绿岩和片岩透水性甚微,是本区相对隔水层。 本区构造,普遍发育有两组构造裂隙,一组为走向北东70度左右,一组为走向北西300-340度,均为陡倾角裂隙。

本区地震烈度为7度。 2.1.3 坝址区工程地质条件 (1)河床覆盖层 河床宽600余米为第四系冲积砂卵石层所覆盖,厚度为15-28m,靠左右岸边各有一冲蚀槽,左侧为古河床,以卵石层为主。地下水位约为105-106m。通过抽水试验,渗透系数K最小为 2.74×10-4m/s,最大8.56×10-3m/s,一般为(2.31~5.79)×10-3m/s,砂卵石层须防渗处理。 在砂卵石层中,有砂质黏土及细沙夹层。 砂质夹层分布在坝线下游02钻孔附近,高程一般89-91m,厚度1.5-1.8m,这些夹层顺河方向延伸稍长,以窄条带状分布在古河床西侧漫滩边缘和古河床死洼处。 河床右岸发现有含碎石、卵石的砂质黏土层,在基岩面上部,属岩石的风化残积层,厚度约1-2m。 总观,这些夹层分布范围不大,厚度较薄,一般位置较深,因此对坝体稳定影响不大,但应摸清具体分布范围,论证其对坝体稳定的影响和确定处理措施。 (2)岩溶、渗漏问题 从岩性看,本区灰岩均系硅质和白云质灰岩(白云岩),结晶程度较好,相对不易被溶蚀。据钻孔分析,本区岩溶发育,一是在坝址区高程70-90m较多发育,二是在片岩层的上下层面处较多发育,但溶洞很少,也很小。深层岩溶问题是不存在的,主要表现为岩溶裂隙。 据压水试验,坝基岩石透水性较大,单位吸水量算术平均值为3.2升/分,大值平均值为14.5升/分,对坝基渗漏不利。但在坝下基岩中第2层绢云母片岩,在坝下普遍分布,厚度3-7m,没有间断现象,隔水性好,是防渗的有利条件。不存在顺河断层。 坝基防渗处理时,河床砂卵石层宜做防渗墙,其下第2层片岩出露部分风化较严重,宜进行帷幕灌浆,伸入基岩内3-5m,至新鲜岩层处。两岸帷幕灌浆处理深度,左岸宜20-60m(伸入基岩),右岸岩石透水性较小,平均处理深度可为25m。 (3)地下水动态 据地下水位观测,坝址区地下水位坡降较小,在右岸为地下水补给河水。但左岸地下水有一“凹陷带”,从钻孔资料看,主要是因为该段为古河床主流线部位,砂砾石层中孤石较多,因而透水性大,致使该段地下水位稍低。考虑两岸地下水位较低,一般工程在106-110m左右,因此存在绕渗问题,建议适当向两岸适当延长帷幕线,以减少绕渗量。特别是右岸,为防止渗流改变工程地质条件,建议筑坝帷幕与溢洪道帷幕相接,使其连成一体。

小型水库溢洪道和放水设施除险加固设计

小型水库溢洪道和放水设施除险加固设计 摘要:本文主要针对小型水库溢洪道和放水设施的除险加固设计展开了探讨,通过结合具体的工程实例,对工程存在的问题作了详细的阐述,并对建筑物的加固设计作了深入的分析,以期能为有关方面的需要提供参考借鉴。 关键词:水库溢洪道;放水设施;除险加固设计 引言 所谓的溢洪道,是用于宣泄规划库容所不能容纳的洪水,保证坝体安全的开敞式或带有胸墙进水口的溢流泄水建筑物,而放水设施,顾名思义,就是指水库中的排水建筑。这两者的正常运行对水库有着重要的作用。因此,我们重视水库溢洪道和放水设施的质量,并做好除险加固的设计工作,以为水库溢洪道和防水设施除险加固的施工提供帮助。 1 工程概况 某水库控制流域面积为3.84km2,坝址以上沟道长度2.38km,比降35.8‰,水库原设计总库容50万m3,有效库容40万m3,死库容10万m3,现已淤积18万m3,有效库容为32万m3。大坝原设计为均质土坝,坝高28m,坝顶长130m。正常水位100m,设计洪水位101.13m,校核洪水位102.11m,死水位88.5m,是一座以农田灌溉为主,兼有防洪、养殖、林业等功能的Ⅴ等小(Ⅱ)型水库。该水库始建于1970年,1975年建成并蓄水运行。水库坝址以上控制流域面积3.84km2,坝址以上沟道长度2.38km,比降35.8‰,水库坝址以上流域地形由两部分组成,。流域内植被覆盖率低,水土流失较为严重。根据水库淤积量及淤积年限计算,多年平均输沙模数达3480t/km2。水库位处的沟谷下切严重,切割深度50m~70m,沟道狭窄,呈“V”型沟,沟底宽10m~30m,斜坡坡度在25°~55°,坡体较稳定。 2 工程存在的问题 经过对水库监测资料分析、现场安全检查、工程质量监测及地质勘查等综合考量,水库主要建筑物存在以下问题: (1)坝体:坝体工程基本完整,但是迎水坡风浪冲刷淘空严重;背水坡杂草丛生,坡面不平整,左坝肩放水洞出口以下出现30m2塌坑一处。 (2)溢洪道:溢洪道建筑物损坏达70%,严重堵塞,行洪不畅。施工缝杂草丛生,底板大面积毁坏,而且溢洪道进口已成为右岸村民行走的道路,滑落泥土严重阻塞了溢洪道行洪的畅通。 (3)放水设施:卧管损毁达90%,且现在的卧管全为砖砌,严重影响了大坝蓄水。坝后灌溉渠道的衬砌已有部分毁坏及断裂,从放水洞出来的水经过很短的一段灌溉渠后直接从断开处下落至坝体背水面,影响坝体安全。 (4)管理设施及防汛设施:水库原管理房已被当地政府拆除。目前,仅有养殖户的两间简易房,无法满足水库管理需要。管理人员不足,资金困难,管理工作粗放,大坝观测工作没有开展。水库无管理站房和防汛设施,无照明线路,通信设备,抢修道路不畅。 (5)现仅有2m宽的上坝土路,未硬化,坡陡弯急,防汛抢险重型车辆无法到达坝顶,严重影响防汛抢险工作的开展。 3 主要建筑物加固设计 3.1 大坝加固设计 设计对迎水坡坡面进行干砌石砌护,厚度30cm,自上而下坡比为1:2.52、

河海大学毕业设计

目录 第一章调洪演算 (4) 1.1 洪水调节计算 (4) 1.1.1 绘制洪水过程线 (4) 1.1.2 洪水过程线的离散化 (5) 1.1.3 时段内水位的试算 (5) 1.1.4 方案最高水位和最大下泄流量的计算 (6) 1.1.5 调洪演算方案汇总 (6) 1.2 防浪墙顶高程计算 (7) 第二章防浪墙计算 (9) 2.1 防浪墙尺寸设计 (9) 2.2 防浪墙荷载分析 (9) 2.2.1 完建情况 (9) 2.2.2 校核洪水位情况 (13) 2.2.3 结果分析 (17) 2.3 防浪墙配筋计算 (17) 2.3.1 墙身配筋计算 (17) 2.3.2 底板配筋计算 (18) 2.4 抗滑稳定计算 (19) 2.4.1 完建工况 (19) 2.4.2 非常运用工况(校核洪水位情况) (19) 2.5 抗倾覆计算 (20) 第三章坝坡稳定计算 (20) 3.1 坝体边坡拟定 (20) 3.2 堆石坝坝坡稳定分析 (20) 3.2.1 计算公式 (20) 3.2.2 计算过程及结果 (22) 第四章复合土工膜强度及厚度校核 (23) 3.1 0.4mm厚土工膜 (23) 3.2 0.6mm厚土工膜 (24) 第五章坝坡面复合土工膜稳定计算 (25) 5.1混凝土护坡与复合土工膜间抗滑稳定计算 (25) 5.2复合土工膜与下垫层间的抗滑稳定计算 (25)

5.1 最大断面设计 (26) 5.2 趾板剖面的计算 (26) 第六章副坝设计 (28) 6.1 副坝顶宽验算 (28) 6.2 强度和稳定验算 (29) 6.2.1 正常蓄水位情况 (29) 6.2.2 校核洪水位情况 (31) 第七章施工组织设计 (33) 7.1 拦洪高程 (33) 7.1.1 隧洞断面型式、尺寸 (33) 7.1.2 隧洞泄流能力曲线 (33) 7.1.3 下泄流量与上游水位关系曲线 (34) 7.1.4 计算结果 (35) 7.2 堆石体工程量 (36) 7.2.1 计算公式及大坝分期 (36) 7.2.2 计算过程 (37) 7.2.3 计算结果 (39) 7.3 工程量计算 (39) 7.3.1 堆石坝各分区工程量 (39) 7.3.2 趾板工程量 (40) 7.3.3 混凝土面板工程量 (41) 7.3.4 副坝工程量 (41) 7.3.5 防浪墙工程量 (42) 7.4 堆石体施工机械选择及数量计算 (42) 7.4.1 机械选择 (42) 7.4.2 机械生产率及数量计算 (42) 7.5 混凝土工程机械数量计算 (45) 7.5.1 混凝土工程施工强度 (45) 7.5.2 混凝土工程机械选择 (46) 7.6 导流隧洞施工 (46) 7.6.1 基本资料 (46) 7.6.2 开挖方法选择 (46) 7.6.3 钻机爆破循环作业项目及机械设备的选择 (47) 7.6.4 开挖循环作业组织 (47)

土石坝毕业设计_说明

前言 1、设计任务书及原始资料是工作的依据,因此首先要全面了解设计任务,熟悉该河流的一般自然地理条件,坝址附近的水文和气象特性,枢纽及水库的地形、地质条件,当地材料,对外交通及有关规划设计的基本数据,只有在熟悉基本资料的基础上才能正确地选择建筑物的类型,进行枢纽布置、建筑物设计及施工组织设计。因此,应把必要的资料整理到说明书中。通过对资料的了解和分析,初步掌握原始资料中对设计和施工有较大影响的主要因素和关键问题,为以后设计工作的进行打下良好的基础。 2、本次设计内容及要求: (1)坝轴线选择。 (2)坝型选择。 (3)枢纽布置。 (4)挡水建筑物设计:包括土坝断面设计、平面布置、渗流计算、稳定计算、细部构造设计、基础处理等。 (5)泄水建筑物设计:溢洪道或导流洞设计(仅选其中一项),以水利计算为主。选取溢洪道设计。 (6)施工导流方案论证(选作内容)。仅作简单的阐述。 3、工程设计概要 ZH水库位于QH河干流上,水库控制流域面积4990km2,库容5.05×108m3。水库以灌溉发电为主,结合防洪,可引水灌溉农田71.2×104亩,远期可发展到10.4×105亩。灌区由一个引水流量45m3/s的总干渠和4条分干渠组成,在总干渠渠首及下游24km处分别修建枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kw·h。水库防洪标准为百年设计,万年校核。

枢纽工程由挡水坝、溢洪道、导流泄洪洞、灌溉发电洞及枢纽电站组成。摘要:土坝设计渗流计算稳定计算细部结构

第一章基本数据 第一节工程概况及工程目的 本水库建成后具有灌溉、发电、防洪、解决工业用水和人畜吃水等多方面的效益,是一座综合利用的水库。水库近期可灌溉农田71.2×104亩,远期可发展到10.4×105亩。枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kwh。除满足农业提水灌溉用电外,还剩余50%的电力供工农业用电。防洪方面,水库控制流域面积4990km2,占全流域面积的39%,对下流河道防洪、削减洪峰、减轻防汛负担也有一定的作用,可将下游100年一遇的洪水流量6010m3/s 削减到3360m3/s,相当于17年一遇;可将50年一遇洪水流量6000m3/s削减到2890m3/s,相当于12年一遇。另外,每年还可供给城市及工业用水0.63×108m3。 由于市库区沿岸山峰重迭,村庄零散,耕地不多,故淹没损失较小。按库区移民高程770m统计,共需迁移人口3115人,淹没耕地12157亩,房屋1223间,窑洞1470孔。

隧洞设计实例

隧洞设计实例 一、隧洞的基本任务和基本数据 1、隧洞的基本任务 泄水隧洞的进口全部淹没在水下,进口高程接近河床高程,其担负的任务如下: (1) 预泄库水,增大水库的调蓄能力。 (2) 放空水库以便检修。 (3)排放泥沙,减小水库淤积。 (4) 施工导流。 (5) 配合溢洪道渲泄洪水。 2、设计基本数据 (1) 洞壁糙率泄洪洞采用钢筋砼衬砌,n=0.014~0.017,考虑到本隧洞施工质量较好,故取较小值n=0.014。 (2) 水利计算成果见表1。 二、隧洞的工程布置 1、洞型选择 由于段村坝址为石英砂岩,地质条件较好,所以采用圆形有压隧洞,圆形断面的水流条件和受力条件比较好,并且可以充分利用围岩的弹性抗力,从而减小衬砌的工程量,降低施工的难度和造价。同时有压隧洞水流较平顺、稳定,不易产生不利流态。 2、洞线位置 洞轴线布置在右岸,这样出口水流对段村无影响,进口山势较陡,进流条件好,洞线为直线,较短,工程量小又利于泄洪。 3、工程布置 泄洪隧洞由进口段、洞身段、出口段三部分组成。 (1)进口型式 由于进口部位山体岩石条件较好,故采用竖井式进口,在岩体中开挖竖井,将闸门放在竖井底部,在井的顶部布置启闭机及操作室、检修平台,竖井式进口结构简单,不受风浪影

响,地震影响也较小,比较安全。 (2) 进口段 包括进口喇叭口段、闸室段、通气孔、渐变段等。 1) 进口喇叭口段 为了与孔口的水流型态相适应,使水流平顺,避免产生不利的负压和空蚀破坏,同时尽量减少局部水头损失,提高泄流能力,在隧洞进口首部,其形状应与孔口锐缘出流流线相吻合,一般顺水流方向做成三向收缩的矩形断面喇叭口形,其收缩曲线为1/4椭图曲线,顶面椭圆方程为: 1)5.33.0(5.32 222 =?+y x ,用下列坐标绘制顶面曲线,见表1。 表1 侧面曲线方程为:1)5.32.0(5.32 2=?+x ,用下列坐标绘制侧面曲线,见表2。 表2 2) 进口闸室段 闸孔尺寸为3.5×3.5m ,闸室段长度参照工程经验取6.0m ,在闸门上端设置操作室,后设工作桥与坝面相连,桥面高程为365.81m ,与坝顶路面高程一致,在操作室与闸室之间设置检修平台,平台高程在正常高水位360.52m 以上,取361.50m 。 闸门用5.0×4.0m 的平面钢闸门,闸门槽宽度为1.0m ,深度为75cm ,由于高速水流通过平面闸门闸孔时,水流在门槽边界突变,容易发生空化水流,致使门槽及附近的边墙或底板发生空蚀。为此,将门槽的下游壁削去尖角,用半径为R=10cm 的圆弧代替,并做成1:12的斜坡,错距采用8cm 。 3) 通气孔 在闸室右部设置通气孔,其作用是在关闭检修门,打开工作门放水时,向孔中充气,使洞中水流顺利排出;检修完毕后,关闭工作门,向检修闸门和工作闸门之间充水时,排出洞中空气,使洞中充满水。通气孔的断面积一般取泄水孔断面积的0.5%~1%,此 泄水孔的断面积为9.62m 2 )4 5.314.3(2 ?,所以通气孔取0.25×0.25m ,通气孔的进口必须与闸门启闭机室相分离,以免在充、排气时影响工作人员的安全。 4)渐变段 为使水流平顺过渡,防止产生负压和空蚀,设置渐变段,由于渐变段施工复杂,故不宜太长,但是为使水流过渡平顺,又不能太短,一般用洞身直径的2~3倍,取渐变段长度为8.0m 。 根据本隧洞的任务,其进口高程应设置得低一些,河床的平均高程为340m ,这样既便于施工期导流,降低围墙高程,又可在运用期泄水,力争一洞多用,以求隧洞施工方便,运用安全,造价低廉。 (3) 洞身段 考虑到所选洞线的地形、地质情况,并运用情况,洞线长为230m ,洞身段长198.5m ,为了便于施工时出碴和检修时排除积水,坡降i =1/500,顺坡。 初拟洞径:按管流公式计算,公式为 02gH w Q μ=; 式中 μ—流量系数,μ=0.74~0.77 ,这里取0.74; w —出口断面面积(m 2 ); H 0—作用于隧洞的有效水头;H 0=库水位一出口顶部高程。 分别列表(3)计算设计及校核洪水位时所需的洞径:

水库溢洪道工程施工作方案[优秀工程方案]

新疆吉木萨尔县水溪沟水库工程溢洪道工程施工作业 葛洲坝新疆工程局(有限公司) 二0一三年六月

审定: 代兴艳审核: 陈行友编写: 郭文高

溢洪道工程施工作业指导书 1、工程概况 溢洪道为正槽式溢洪道,布置在右岸岩体上,由进口段、控制段、泄槽段、出口消能段组成,全长 200.0米.进口底板高程 992.10米,长 30.0米,宽度 25.0米.控制段采用驼峰堰,长度 10.0米,宽度 25.0米,其中闸孔净宽 24米,中间闸墩宽 1.0米,边墙高 4.0米,堰顶高程 993.67米.渐变段长 30米,采用台阶形式,宽度由 25米渐变为 15米,底坡 i=0.4.泄槽段采用台阶形式,全长 105米,宽 15.0米,底坡 i=0.48,由大小相等的台阶组成,槽身结构分缝长度为10米.消力池全长 25米,宽 15.0米,消力池出口采用 50米长的导流渠与河道相连,导流渠采用混凝土矩形断面,底宽 15.0米. 2、开挖方案及施工顺序 2.1开挖顺序及施工部署 为保证2号闸井及溢洪道各种材料及砼运输的交通要求,满足后续工作的正常施工,在进行2号闸井开挖期间,保留现有至2号闸井后侧的施工道路,进行溢洪道的进口段、控制的开挖及砼浇筑工作,待溢洪道进口段、控制段施工完毕后将该段进行回填,形成施工道路,满足2号闸井的施工运输要求,再进行溢洪道渐变段、泄槽段的开挖及砼浇筑工作. 2.2土石方开挖 2.2.1测量放线 施工技术人员根据施工图纸的底高程和原地面高程计算出开挖深度 ,根据各部位的控制坐标,将建筑物的开挖边线放于实地,洒出开挖边线,为开挖做好准备. 2.2.2土方开挖方案 土方采用挖掘机分层进行开挖,用1.6米3挖掘机配合220推土机挖甩,挖掘机装15~20T自卸车运输至弃料场或利用料场;土方开挖内容包括准备工作、场地清理、开挖、边坡观测维护、开挖渣料的利用和弃渣的处理及质量检查和验收等工作. 进口段及控制段开挖时用1.6米3挖掘机直接挖装至20t自卸汽车拉远至弃

溢洪道设计规范

前言 本规范是根据水利部水利水电规划设计管理局水规局技[1997]7号文《关于印发水利水电勘测设计技术标准修订工作会议有关文件的通知》,对SDJ341-89《溢洪道设计规范》(以下简称原《规范》)修订而成. 本规范保留了原《规范》的章节结构,共分为总则,溢洪道布置,水力设计,建筑物结构设计,地基及边坡处理设计,安全监测设计等六章,并有五个附录. 本规范对原《规范》主要作了如下修改: (1)明确本规范使用范围为大中型水利水电工程中岩基上的1,2,3级河岸式溢洪道,删去了原《规范》中"兼顾厂顶溢流,厂前挑流及泄洪隧洞出口的水力设计"的内容. (2)充实了关于侧槽溢洪道的内容,并增加了关于面流戽流消能布置的内容.对进水渠直线段长度,首末端底宽比,泄槽弯道半径等规定了具体数值. (3)水力设计方面,在实用堰堰顶负压,WES堰,宽顶堰泄流能力,侧槽内横向水面差,边墙脉动压力,挑流鼻坎流速,泄槽收缩段,弯道及消力池等计算中,增加了若干系数的取值规定,补充了若干计算公式,图表.在防空蚀设计中,综合国内外近期研究成果,给出了若干常见体型的初生空化数,供不具备进行减压箱试验时判别能否发生空蚀. (4)在"建筑物结构设计"一章中,混凝土的强度指标改用了强度等级体系;按照GB50287-99《水利水电工程地质勘察规范》改写了混凝土与基岩接触面以及软弱夹层的抗剪断强度指标表;删去了堰(闸)基抗剪(纯摩)计算公式;在控制段荷载组合中,增加了完建和施工两种工况;增加了闸后段边墙的荷载组合表;增加了边墙抗倾及抗滑稳定的计算公式. (5)在地基及边坡处理一章中,增写了在确定建基面时不宜只通过开挖手段,还应考虑采取加固措施改善地基条件的内容.在边坡稳定分析中,采用了在传统基岩分类基础上,考虑岩层结构与边坡的几何关系的分类法,并将各类岩体可能失稳方式和常见处理措施一并列于附录D中. (6)将观测设计更名为安全监测设计,且将巡视检查列入监测内容,将仪器监测分为必设和选设两类,不再沿用《原规范》中一般性,专门性观测的分类. 本规范的归口管理单位和解释单位:水利部水利水电规划设计总院 本规范修订的主编单位:水利部天津水利水电勘测设计研究院 本规范的主要起草人:李启业郭竟章夏毓常牟广丞倪世生目次 1总则 2溢洪道布置 2.1一般规定 2.2进水渠 2.3控制段 2.4泄槽 2.5消能防冲设施 2.6出水渠 3水力设计 3.1一般规定 3.2进水渠 3.3控制段 3.4泄槽

相关主题
文本预览
相关文档 最新文档