当前位置:文档之家› 高电压技术的应用

高电压技术的应用

高电压技术的应用
高电压技术的应用

高电压技术的应用

高电压技术是以试验研究为基础的应用技术,主要研究在高电压作用下各种绝缘介质的性能和不同类型的放电现象,高电压设备的绝缘结构设计,高电压试验和测量的设备及方法,电力系统的过电压、高电压或大电流产生的强电场、强磁场或电磁波对环境的影响和防护措施,以及高电压、大电流的应用等。高电压技术对电力工业、电工制造业以及近代物理的发展(如X射线装置、粒子加速器、大功率脉冲发生器等)都有重大影响,工程上把1000伏及以上的交流供电电压称为高电压。高电压技术所涉及的高电压类型有直流电压、工频交流电压和持续时间为毫秒级的操作过电压、微秒级的雷电过电压、纳秒级的核致电磁脉冲(NEMP)等。20世纪以后,随着电能应用的日益广泛,电力系统所覆盖的范围越来越大,输电电压等级不断提高,输电线路经历了35、60、110、150 、230千伏的高压,287、400、500、735 ~765千伏的超高压和1150 千伏的特高压的发展。直流输电也经历了±100 、±250、±400、±450、±500以及±750千伏的发展。这几个阶段都与高电压技术解决了输电线路的电晕现象、过电压的防护和限制以及静电场、电磁场对环境的影响等问题密切相关。这一发展过程以及物理学中各种高电压装置的研制又促进了高电压技术的进步。60年代以后,为了适应大城市电力负荷增长的需要,以及克服城市架空输电线路走廊用地的困难,地下高压电缆输电发展迅速(由220 、275 、345千伏发展到70年代的400、500千伏电缆线路);同时为减少变电所占地面积和保护城市环境,全封闭气体绝缘组合电器(GIS)得到越来越广泛的应用。这些都提出许多高电压技术的新问题。高电压技术可大致分为电力系统过电压及其限制,高电压绝缘特性研究,高电压试验设备、方法和测量技术等几个方面。

高电压技术的内容很广,大致分为电力系统过电压及其限制,高电压绝缘特性研究,高电压试验设备、方法和测量技术几方面。

电力系统过电压及其限制研究电力系统中各种过电压,以便合理确定其绝缘水平是高电压技术的重要内容。电力系统的过电压包括雷电过电压(又称大气过电压、外部过电压)和内部过电压。其中雷电过电压由雷云直接或间接对变电所或输电线路(避雷线、杆塔或导线)放电造成。一般雷电过电压幅值较高,超过系统的额定工作电压,但作用时间较短,波头时间大多数为1.5~2微秒,平均波长时间为30微秒,大于50微秒的很少。雷击除了会威胁输电线路和电工设备的绝缘外,还会危害高建筑物、通信线路、天线、飞机、船舶、油库等设备的安全。因此,这些方面的防雷也属于高电压技术的研究对象。

电力系统内部过电压是因正常操作或故障等原因使电磁状态发生变化,引起电磁能量振荡而产生的。其中衰减较快、持续时间较短的称为操作过电压;无阻尼或弱阻尼、持续时间长的称为暂态过电压。对110~220千伏电力系统,内部过电压水平一般取3倍最大工作电压;对330~500千伏电力系统,需要采取一些限制措施,取2~2.5倍。对特高压电力系统,进一步限制内部过电压具有巨大的经济价值,从前景来看限制到1.5~1.8倍最大工作电压是完全可能的。

高电压绝缘特性研究高压电工设备的绝缘应能承受各种高电压的作用,包括交流和直流工作电压、雷电过电压和内部过电压。研究电介质在各种作用电压下的绝缘特性、介电强度和放电机理,以便合理解决电工设备的绝缘结构问题是高电压技术的重要内容。

雷电过电压和内部过电压对输电线路和电工设备的绝缘是个严重的威胁。因

此,研究各种气体、液体和固体绝缘材料在不同电压下的放电特性是高电压技术的重要课题。其中气体包括大气条件下的空气、压缩空气、六氟化硫气体及高真空等常用作输电线路和电工设备绝缘及其他用途的材料。因此,研究如何提高气体绝缘的放电电压,研究影响气体放电的各种因素,如间隙大小、电极形状、作用电压的极性和类型、气体的压力、温度、湿度和杂质等,对确保电工设备的经济合理和安全运行有重要意义。

在采取措施限制雷电过电压和内部过电压的情况下,随着电压等级的提高,工作电压对绝缘特性的影响越来越重要。在工作电压作用下超高压输电线路和电工设备的电晕放电、局部放电、绝缘老化、静电感应、无线电干扰、噪声等现象都是高电压技术研究的课题。

在工程上经常利用一些气体放电的特性来解决许多高电压技术领域中所遇到的科学技术问题,如利用球隙放电测量高电压;用各种间隙放电来限制过电压;利用电晕放电时产生稳定的电晕层以改善电场分布,从而提高间隙的放电电压等。

高电压试验设备、方法和测量技术高电压领域的各种实际问题一般都需要经过试验来解决。因此,高电压试验设备、试验方法以及测量技术在高电压技术中占有格外重要的地位。

为了在试验室或现场研究电介质或电工设备的绝缘特性以及适应于不同科技领域的高电压技术的应用,需要有各种类型的高电压发生装置。常见的高电压发生装置有:由工频试验变压器(见图)及其调压设备等组成的工频试验设备;模拟雷电过电压或操作过电压的冲击电压发生装置;利用高压硅堆等作为整流阀的高压直流发生装置。

高电压绝缘特性研究高压电工设备的绝缘应能承受各种高电压的作用,包括交流和直流工作电压、雷电过电压和内过电压。研究电介质在各种作用电压下的绝缘特性、介电强度和放电机理,以便合理解决电工设备的绝缘结构问题是高电压技术的重要内容。过电压对输电线路和电工设备的绝缘是个严重的威胁。为此,要着重研究各种气体、液体和固体绝缘材料在不同电压下的放电特性。其中气体包括大气条件下的空气、压缩空气、六氟化硫气体及高真空等常用作输电线路和电工设备绝缘及其他用途的材料。研究如何提高气体绝缘的放电电压,研究影响气体放电的各种因素,对确保电工设备的经济合理和安全运行都有重要的意义。随着电压等级的提高,工作电压对绝缘特性的影响越来越重要。在工作电压作用下超高压输电线路和电工设备的电晕放电、局部放电、绝缘老化、静电感应、无线电干扰、噪声等现象都是高电压技术研究的课题。

高电压试验设备、方法和测量技术高电压领域的各种实际问题一般都需要经过试验来解决。因此,高电压试验设备、试验方法以及测量技术在高电压技术中占有格外重要的地位。常见的高电压发生装置有:①由工频试验变压器及其调压设备等组成的工频试验设备。②模拟雷电过电压或操作过电压的冲击电压发生装置。③利用高压硅堆等作为整流阀的高压直流发生装置。进行高电压试验需要有正确的试验方法,如耐压试验、介质损耗试验、局部放电试验等。对不同类型的高电压需采用不同的测量装置。如测量直流电压或低频交流电压的有效值用高压静电电压表;测单次短脉冲用高压示波器。常用的高电压测量装置还有各种分压器、分流器、局部放电仪等。60年代以后,光电测试技术引入高电压领域,避免了高电压传到低电压的测量系统而引起的危险和电磁场对低电压测量系统的干扰。

60年代后期以后,高电压技术在电工以外的领域得到广泛的应用,同时也不断采用新技术以发展自身。前者主要指高电压技术在粒子加速器、大功率脉冲发生器、受控热核反应研究、磁流体发电、静电喷涂、静电复印等方面的应用;后者包括利用电子计算机计算电力系统的暂态过程和变电所的波过程,利用激光技术进行高电压下大电流的测量等。另一方面,高电压技术对于进一步发展超高压、特高压输电以及高压直流输电继续起着重要的推动作用。此外,美国、前苏联的一些学者还利用电力电子技术的新成就,对现有的超高压电网进行技术改造和扩大传输容量的研究。

浅谈高电压与绝缘技术1234

电子信息工程学院论文 高 电 压 与 绝 缘 技 术 院、系(站):电子信息工程学院 学科专业:电气工程及其自动化 学生:任轩 学号:130417116 2015/10/10

摘要 在电气设备中,其绝大多数都直接暴露在空气中作业,这就对绝缘技术提出了更高的要求。同时,随着经济的快速发展,加强高电压与绝缘技术的结合,对我国高电压工程的发展起着至关重要的作用。而如何运用高电压绝缘技术并寻求全新的突破则成为电力企业可持续发展的关键。本文将从以下几个方面对其进行分析。 关键词:高电压,电气设备,绝缘诊断,预防性试验,探讨,高电压绝缘技术,有机绝缘材料,

Summary In electrical equipment, its most directly exposed to the air operation, it puts forward higher requirements on insulation technology. At the same time, along with the rapid development of economy, strengthening the combination of high voltage and insulation technology, high voltage engineering of our country plays an important role in the development. And how to use high voltage insulation technology and seek new breakthrough to become the key to the sustainable development of the electric power enterprise. This article will from the following several aspects to analyze it. Key Word:high voltage,electric accessory,Insulation diagnosis,preventive trial,discuss,High voltage insulation technology, organic insulating material

高电压技术第二版习题答案

第一章 气体放电的基本物理过程 (1)在气体放电过程中,碰撞电离为什么主要是由电子产生的? 答:气体中的带电粒子主要有电子和离子,它们在电场力的作用下向各自的极板运动,带正电荷的粒子向负极板运动,带负电荷的粒子向正极板运动。电子与离子相比,它的质量更小,半径更小,自由行程更大,迁移率更大,因此在电场力的作用下,它更容易被加速,因此电子的运动速度远大于离子的运动速度。更容易累积到足够多的动能,因此电子碰撞中性分子并使之电离的概率要比离子大得多。所以,在气体放电过程中,碰撞电离主要是由电子产生的。 (2)带电粒子是由哪些物理过程产生的,为什么带电粒子产生需要能量 ? 答:带电粒子主要是由电离产生的,根据电离发生的位置,分为空间电离和表面电离。根据电离获得能量的形式不同,空间电离又分为光电离、热电离和碰撞电离,表面电离分为正离 子碰撞阴极表面电离、光电子发射、热电子发射和强场发射。原子或分子呈中性状态,要使原子核外的电子摆脱原子核的约束而成为自由电子,必须施加一定的外加能量,使基态的原 子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能。 (3)为什么SF6气体的电气强度高? 答:主要因为SF6气体具有很强的电负性,容易俘获自由电子而形成负离子,气体中自由电 子的数目变少了,而电子又是碰撞电离的主要因素,因此气体中碰撞电离的能力变得很弱,因而削弱了放电发展过程。 1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合? 答:汤逊理论的基本观点:电子碰撞电离是气体电离的主要原因;正离子碰撞阴极表面使阴 极表面逸出电子是维持气体放电的必要条件;阴极逸出电子能否接替起始电子的作用是自持放电的判据。它只适用于低气压、短气隙的情况。 气体放电流注理论以实验为基础,它考虑了高气压、长气隙情况下空间电荷对原有电场的影响和空间光电离的作用。 在初始阶段,气体放电以碰撞电离和电子崩的形式出现,但当电子崩发展到一定程度之后,某一初始电子的头部集聚到足够数量的空间电荷,就会引起新的强烈电离和二次电子崩,这种强烈的电离和二次电子崩是由于空间电荷使局部电场大大增强以及发生空间光电离的结果,这时放电即转入新的流注阶段。 1-3 在一极间距离为1cm 的均匀电场气隙中,电子碰撞电离系数α=11cm-1。今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数。 答:e αd=e11=59874。 1-5 试近似估算标准大气条件下半径分别为1cm 和1mm 的光滑导线的电晕起始场强。P15皮 克公式 1-6 气体介质在冲击电压下的击穿有何特点?其冲击电气强度通常用哪些方式表示? 答:在持续电压(直流、工频交流)作用下,气体间隙在某一确定的电压下发生击穿。而在 冲击电压作用下,气体间隙的击穿就没有这种某一个确定的击穿电压,间隙的击穿不仅与电 cm ,1m ,/5.58)1.03 .0(1*1*30)3.01(30/39)13.0(1*1*30)3.01(301.01导线半径空气相对密度光滑导线导线表面粗糙系数--=-=+=+==+=+===r m cm kV r m E cm kV r m E m c m c δδδδδ

(完整版)高电压技术(第三版)课后习题答案_2

第一章作业V 1- 1解释下列术语 (1)气体中的自持放电;(2)电负性气体; (3)放电时延;(4)50%冲击放电电压;(5)爬电比距。 答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象; (2 )电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体; (3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压; (5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电 压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。

1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合? 答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。所逸出的电子能否接替起始电子的作用是自持放电的判据。流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。 汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。 1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数a =11cm-1。今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。 解:到达阳极的电子崩中的电子数目为 n a e d e11 1 59874 答:到达阳极的电子崩中的电子数目为59874个。 1-5近似估算标准大气条件下半径分别为1cm和1mm的光滑导 线的电晕起始场强。 解:对半径为1cm的导线 0 3 0 3 Ec 30m 3 (1 ——)30 1 1 (1 )39( kV / cm) .r 3 1 1

高电压技术(第三版) 简答题整理

第一章电解质的极化和电导 ①气体介质的介电常数:1)一切气体的相对介电常数都接近于1。2)任何气体的相对介电常数均随温度的升高而减小,随压力的增大而增大,但影响都很小。 ②液体介质的介电常数:1)这类介质通常介电常数都较大。但这类介质的缺点是在交变电场中的介质损较大,在高压绝缘中很少应用。2)低温时,分子间的黏附力强,转向较难,转向极化对介电常数的贡献就较大,介电常数随之增大;温度升高时,分子间的热运动加强,对极性分子定向排列的干扰也随之增强,阻碍转向极化的完成,所以当温度进一步升高时,介电常数反而会趋向减小。 ③固体介质的相对介电常数:1)中性或弱极性固体电介质:只具有电子式极化和离子式极化,其介电常数较小。介电常数与温度之间的关系也与介质密度与温度的关系很接近。2)极性固体电介质:介电常数都较大,一般为3—6,甚至更大。与温度和频率的关系类似畸形液体所呈现的规律。 3、介电常数与温度、频率关系:1)低温时,分子间黏附力强,转向较难,转向极化对介电常数的贡献较小,随温度升高,分子间黏附力下降,转向极化对介电常数贡献较大,介电常数随之增大,当温度进一步升高时,分子的热运动加强,对极性分子的定向排列的干扰也随之增强,阻碍转向的完成,介电常数反而趋向较小。2)当频率相当低时,偶极分子来得及跟随交变电场转向,介电常数较大,接近于直流电压下测得的介电常数,当频率上升,超过临界值时,极性分子的转向已跟不上电场的变化,介电常数开始减小,随着频率的继续上升由电子位移极化所引起的介电常数极性。 4.电解质电导与金属电导区别:金属导电的原因是自由电子移动;电介质通常不导电,是在特定情况下电离、化学分解或热离解出来的带电质点移动导致。 5温度对电导影响:温度升高时液体介质的黏度降低,离子受电场力作用而移动所受阻力减小,离子的迁移率增大,使电导增大;另外,温度升高时,液体介质分子热离解度增加,也使电导增大。 6.电容量较大的设备经直流高压试验后,接地放电时间长的原因:由于介质夹层极化,通常电气设备含多层介质,直流充电时由于空间电荷极化作用,电荷在介质夹层界面上堆积,初始状态时电容电荷与最终状态时不一致;接地放电时由于设备电容较大且设备的绝缘电阻也较大则放电时间常数较大(电容较大导致不同介质所带电荷量差别大,绝缘电阻大导致流过的电流小,界面上电荷的释放靠电流完成),放电速度较慢故放电时间要长达5~10min。 第二章气体放电的物理过程 1.电离形式:①光电离②撞击电离③热电离 ④表面电离:热电子发射、强场发射(冷发射)、正离子撞击阴极表面、光电子发射 2. 负离子的形成:负离子的形成不会改变带电质点的数量,但却使自由电子数减少,因此对气体放 电的发展起抑制作用。(或有助于提高气体的耐电强度)。 3. 去游离的三种形式:1)带电粒子在电场的驱动下作定向运动,在到达电极时,消失于电极上而形成外电路中的电流;2)带电粒子因扩散现象而逸出气体放电空间。3)带电粒子的复合。气体中带异

高电压与绝缘技术试题答案及评分标准

2013-2014学年第二学期期末考试答案及评分标准 (A卷) 高电压与绝缘技术 使用班级:11050441X、11050442X、11050443X、11050444X、 11050445X 一、判断题(共30分,每小题 1 分) ( ) 1.输电线路上的空气间隙包括:导线对地面,导线之间,导、地线之间,导线与杆塔之间。√ ( ) 2.实际电气设备中的固体介质击穿过程是错综复杂的,常取决于介质本身的特性、绝缘结构形式和电场均匀性。√ ( ) 3.电介质的损耗为在电场作用下电介质中的非能量损耗。× ( ) 4.介质的功率损耗与介质损耗角正切成反比比。× ( ) 5. 雷电流具有冲击波形的特点是缓慢上升,快速下降。× ( ) 6.电气设备局部放电的检测无关紧要。× ( ) 7. 雷电绕过避雷线直击于线路的概率是平原地区比山区高。× ( ) 8.偶极子极化极化时间最短的。× ( ) 9. 当外加电压逐渐升高后,气体中的放电过程发生转变,此时若去掉外界激励因素,放电仍继续发展,即为自持放电。× ( ) 10. tanδ值的测量,最常用的是西林电桥。√ ( ) 11.电子崩将产生急剧增大的空间电子流;√ ( ) 12.一般而言,吸收比越大,被试品的绝缘性越好。√ ( ) 13.在高气压和高真空的条件下,气隙都容易发生放电现象。×

( ) 14.对空气密度、湿度和海拔,校正方法是相同的。× ( ) 15.电场极不均匀的“棒-板”气隙,负极性击穿电压低于正极性击穿电压。× ( ) 16均匀电场的击穿特性符合巴申定律。√ ( ) 17.雷电冲击电压下“棒-板” 电极,棒极为正极性的击穿电压比负极性时数值低得多。√ ( ) 18.工频交流电压下“棒-棒”气隙的击穿电压要比“棒-板”气隙低一些。× ( ) 19.绝缘电阻和吸收比测量试验属于破坏性试验。× ( ) 20.线路末端短路时,发生负的全反射,电流加倍,电压为零。√ ( ) 21.冲击电晕对波过程的影响如下:导线波阻抗减小、波速增大、耦合系数增大、引起波的衰减与变形。× ( ) 22. 流注理论未考虑表面游离的现象。√ ( ) 23.极不均匀电场,达到30kV/cm出现电晕。√ ( ) 24.同轴圆筒电场是极不均匀电场。× ( ) 25.直流电压下“棒-板”负极性击穿电压大大高于正极性击穿电压。√ ( ) 26. 电场的不均匀程度对SF6电气强度的影响远比对空气的小。× ( ) 27.高真空气体主要用于配电网真空隔离开关中。× ( ) 28. 沿面放电是沿着固体介质表面发展的固体放电现象。√ ( ) 29. 引起气体放电的外部原因有两个,其一是电场作用,其二是外电离因素。√( ) 30.球形屏蔽极可以显著改善电场分布,提高气隙的击穿电压. √ 二、问答题(共40分,每小题5 分) 1、叙述汤逊理论的基本观点和流注理论的基本观点以及它们的适用范围。 答:汤逊理论只适用于pd值较小的范围,流注理论只适用于pd值较大的范围,两者的过渡值为pd≈26.66kPacm。(1分)汤逊理论的基本观点是:电子的碰撞电离是气体放电时电流倍增的主要过程,而阴极表面的电子发射是维持放电的重要条件。(2分)流注理论

(完整版)高电压技术(第三版)课后习题集答案解析2

第一章作业 1-1解释下列术语 (1)气体中的自持放电;(2)电负性气体; (3)放电时延;(4)50%冲击放电电压;(5)爬电比距。 答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象; (2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体; (3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延; (4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压; (5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。

1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合? 答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。所逸出的电子能否接替起始电子的作用是自持放电的判据。流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。 汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。 1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。 解:到达阳极的电子崩中的电子数目为 n a= eαd= e11?1=59874

高电压技术(第三版)课后习题答案

第一章作业 ?1-1解释下列术语 (1)气体中的自持放电;(2)电负性气体; (3)放电时延;(4)50%冲击放电电压;(5)爬电比距。 答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象; (2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体; (3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延; (4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压; (5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。

1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合? 答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。所逸出的电子能否接替起始电子的作用是自持放电的判据。流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。 汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。 1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。 解:到达阳极的电子崩中的电子数目为 n a= eαd= e11?1=59874 答:到达阳极的电子崩中的电子数目为59874个。

高电压与绝缘技术的新发展

龙源期刊网 https://www.doczj.com/doc/8215084678.html, 高电压与绝缘技术的新发展 作者:巩沙 来源:《中国化工贸易·上旬刊》2016年第08期 摘要:随着经济的发展和科学技术的不断提高,电力企业的发展壮大使得高电压的绝缘 技术日益成为人们关注的问题,同时由于存在着大量需要直接裸露在空气中进行作业的电气设备,这使得对高电压的绝缘技术要求越来越高。因此,需要不断在高电压的绝缘技术方面寻求新的突破与创新,以促进电力事业的更好发展。本文从分析高电压的外绝缘的范围及存在的主要问题入手,阐述了目前高电压设备外绝缘的主要材料,并探讨了高电压设备有机外绝缘的应用与发展趋势。 关键词:高电压;绝缘技术;电气设备 一直以来,对于高电压并没有一个较为明确的界限划分,其概念也是相对的,它主要依赖于电介质及相应的系统而存在,因此高电压与绝缘技术两者形成了一个不可分割的整体。随着电力系统的建设和扩大,人们对高电压的关注越来越多,高电压设备的绝缘技术也得到了一定程度的发展,但是仍然在高电压的外绝缘方面存在着些许问题,所以创新研究高电压与绝缘技术对促进我国电力事业进一步发展具有重要意义。 1 高电压外绝缘的范围与主要问题 因高电压设备的特殊性,所以大部分的电气设备是需要裸露在空气中的,从高电压外绝缘的范围来看,其主要包括室内设备外绝缘和户外设备外绝缘。户外的电气设备因其所属环境的复杂性,所以相比室内电气设备的外绝缘,其问题明显要多出很多,由此可以看出户外电气设备绝缘问题的解决是高电压外绝缘技术研究的主体。 1.1 从当前高电压设备户外绝缘的情况来看 其主要存在着以下七个方面的问题:①在多雷雨的季节,高电压电气设备会由于遭受雷击而出现雷电过电压的问题;②在下雨时,高电压设备可能会出现在工作电压下闪络的雨闪问题,从而造成设备故障;③若早上有露水,当露水凝结在高电压设备的表面,同样有可能造成高电压设备在工作电压下闪络的露闪问题;④当出现大风、结冰、地震以系统自身出现故障等情况,高电压设备将会出现瞬间电动力下的超机械负荷问题;⑤电力系统因正常或者是故障操作出现的操作过电压问题;⑥户外高电压设备本就因其处于户外环境,设备难以得到恰当的清洁,导致高电压设备表面产生污垢,再加之潮湿的气象环境,高电压设备从而出现在工作电压下闪络的污闪问题;⑦从高电压设备自身来说,如果长期高强度的运转下,其绝缘材料性能的降低本就容易出现老化等问题。 1.2 从当前高电压设备户内外绝缘的情况来看

高电压技术课后答案

第一章 电力系统绝缘配合 1、解释电气设备的绝缘配合和绝缘水平的定义 答:电气设备的绝缘配合是指综合考虑系统中可能出现的各种作用过电压、保护装置特性及设备的绝缘特性,最终确定电气设备的绝缘水平。 电气设备的绝缘水平是指电气设备能承受的各种试验电压值,如短时工频试验电压,长时工频试验电压,雷电冲击试验电压及各种操作冲击电压 2、电力系统绝缘配合的原则是什么? 答:电力系统绝缘配合的原则是根据电气设备在系统应该承受的各种电压,并考虑过电压的限压措施和设备的绝缘性能后,确定电气设备的绝缘水平。 3、输电线路绝缘子串中绝缘子片数是如何确定的? 答:根据机械负荷确定绝缘子的型式后绝缘子片数的确定应满足:在工作电压下不发生雾闪;在操作电压下不发生湿闪;具有一定的雷电冲击耐受强度,保证一定的耐雷水平。 具体做法:按工作电压下所需的泄露距离初步确定绝缘子串的片数,然后按照操作过电压和耐雷水平进行验算和调整。 4、变电站内电气设备的绝缘水平是否应该与输电线路的绝缘水平相配合?为什么? 答:输电线路绝缘与变电站中电气设备之间不存在绝缘水平相配合问题。通常,线路绝缘水平远高于变电站内电气设备的绝缘水平,以保证线路的安全运行。从输电线路传入变电站的过电压由变电站母线上的避雷器限制,而电气设备的绝缘水平是以避雷器的保护水平为基础确定的。 第二章 内部过电压 1、有哪几种形式的工频过电压? 答:主要有空载长线路的电感-电容效应引起的工频过电压,单相接地致使健全相电压升高引起的工频过电压以及发电机突然甩负荷引起的工频过电压等。 2、电源的等值电抗对空长线路的电容效应有什么影响? 答:电源的等值电抗X S 可以加剧电容效应,相当于把线路拉长。电源容量愈小,电源的等值电抗X S 愈大,空载线路末端电压升高也愈大。 3、线路末端加装并联电抗器对空长线路的电容效应有什么影响? 答:在超高压电网中,常用并联电抗器限制工频过电压,并联电抗器接于线路末端,使末端电压下降。这是因为并联电抗器的电感补偿了线路对地电容,减小流经线路的电容电流,从而削弱了电容效应的缘故。 4、试写出估算操作过电压幅值的计算公式。 答:(1)空载变压器分闸过电压:U m I =; (2)空载线路合闸过电压:2()3m m m m U E E E =-=; (3)空载线路分闸过电压:1(1)(21)n m m U n E +=-+; (4)电弧接地过电压: 5、产生切空载变压器过电压的根本原因是什么? 答:空载变压器相当于等效一个励磁电感,切空载变压器相当于切电感,所以在切消弧线圈、电动机、并联电抗器等电感元件时也会产生同类过电压。 6、影响合空载线路过电压的因素有哪些? 答:影响合空载线路过电压的因素有合闸相位角θ、线路上残余电压的极性和大小、母线的出线数及断路器合闸时三相的同期性等都会影响合闸过电压的大小。 7、为什么断路器带并联电抗器电阻能限制合空载线路过电压? 答:在超高压电网中,常用电抗器限制工频电压升高。在并联电抗器接于线路末端,使末端电压下降。这是因为并联电抗器的电感补偿了对地电容,减小流经线路的电容电流,从而削弱了电容效应的缘故。

高电压技术第三版课后习题答案

第一章作

?1-1解释下列术语 (1)气体中的自持放电;(2)电负性气体; (3)放电时延;(4)50%冲击放电电压;(5)爬电比距。 答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象; (2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体; (3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延; (4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压; (5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。

1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合? 答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。所逸出的电子能否接替起始电子的作用是自持放电的判据。流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。 汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。 1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。 解:到达阳极的电子崩中的电子数目为 n a? e?d? e11?1?59874 答:到达阳极的电子崩中的电子数目为59874个。

西安交大《高电压绝缘技术》课后题答案

高电压绝缘技术 课后答案 第一章 1.计算同轴圆柱电极的不均匀系数f ,其中导体外直径为100 mm ,外壳的直径为320 mm 。 解: d R r =- , av U E d = , max ln U E R r r = , max ln av d E r f r d E r == + 其中 R=160mm ,r=50mm 。代入上式可得f=1.89<2,所以此时电场是稍不均匀的。 2. 离地高度10m 处悬挂单根直径3cm 导线,导线上施加有效值6 3.5kV 工频交流电压,请计算导线表面最大场强。若将该导线更换为水平布置的双分裂导线,两导线总截面积保持与单根导线一致,线间距离30cm ,请重新计算导线表面最大场强。 解:1):等效成圆柱—板电极:由课本P9页可查的公式为 max 0.9 ln U E r d r r =+, 其中U=63.5kV ,d=10m ,r=1.5cm 。代入上式可得:max 5.858/E kV cm =。 2)由题意可知:2 21 2r r ππ=, 可得:1 1.060.0106r cm m = ==,两导线相邻S=30cm=0.3m, 10.01060.03530.3 r S == 对于二分裂导线,由课本P9页可查得公式。 所以 21 12max 2 11(12 2)(2)ln r r U S S E H r r S +-= ,其中H=10m, max 5.450/E kV cm = 3.总结常用调整电场强度的措施。 解: 1)、改变电极形状 ①增大电极曲率半径;②改善电极边缘;③使电极具有最佳外形; 2)、改善电极间电容分布 ①加屏蔽环;②增设中间电极; 3)、利用其他措施调整电场 ①采用不同的电介质;②利用电阻压降;③利用外施电压强制电压分布; 第二章 1、解:由题意: 21 2 e e i m v eV ≥, 因此:62.7510/e v m s ≥ ==? ,,57.6nm i c hv eV v λλ ≥= ≤所以。水蒸气的电离电位为12.7eV 。97.712.7 hc nm λ≤ = 可见光的波长围在400-750nm ,不在可见光的围。

高电压技术第二版习题答案

第一章 1—1 气体中带电质点是通过游离过程产生的。游离是中性原子获得足够的能量(称游离能)后成为正、负带电粒子的过程。根据游离能形式的不同,气体中带电质点的产生有四种不同方式: 1.碰撞游离方式在这种方式下,游离能为与中性原子(分子)碰撞瞬时带电粒子所具有的动能。虽然正、负带电粒子都有可能与中性原子(分子)发生碰撞,但引起气体发生碰撞游离而产生正、负带电质点的主要是自由电子而不是正、负离子。 2.光游离方式在这种方式下,游离能为光能。由于游离能需达到一定的数值,因此引起光游离的光主要是各种高能射线而非可见光。 3.热游离方式在这种方式下,游离能为气体分子的内能。由于内能与绝对温度成正比,因此只有温度足够高时才能引起热游离。 4.金属表面游离方式严格地讲,应称为金属电极表面逸出电子,因这种游离的结果在气体中只得到带负电的自由电子。使电子从金属电极表面逸出的能量可以是各种形式的能。 气体中带电质点消失的方式有三种: 1.扩散带电质点从浓度大的区域向浓度小的区域运动而造成原区域中带电质点的消失,扩散是一种自然规律。 2.复合复合是正、负带电质点相互结合后成为中性原子(分子)的过程。复合是游离的逆过程,因此在复合过程中要释放能量,一般为光能。 、水蒸汽)分子易吸附气体中的自由 3.电子被吸附这主要是某些气体(如SF 6 电子成为负离子,从而使气体中自由电子(负的带电质点)消失。 1—2 自持放电是指仅依靠自身电场的作用而不需要外界游离因素来维持的放电。外界游离因素是指在无电场作用下使气体中产生少量带电质点的各种游离因素,如宇宙射线。讨论气体放电电压、击穿电压时,都指放电已达到自持放电阶段。 汤生放电理论的自持放电条件用公式表达时为 γ(eαs-1)=1 此公式表明:由于气体中正离子在电场作用下向阴极运动,撞击阴极,此时已起码撞出一个自由电子(即从金属电极表面逸出)。这样,即便去掉外界游离因素,仍有引起碰撞游离所需的起始有效电子,从而能使放电达到自持阶段。 1—3 汤生放电理论与流注放电理论都认为放电始于起始有效电子通过碰撞游离形成电子崩,但对之后放电发展到自持放电阶段过程的解释是不同的。汤生放电理论认为通过正离子撞击阴极,不断从阴极金属表面逸出自由电子来弥补引起电子碰撞游离所需的有效电子。而流注放电理论则认为形成电子崩后,由于正、负空间电荷对电场的畸变作用导致正、负空间电荷的复合,复合过程所释放的光能又引起光游离,光游离结果所得到的自由电子又引起新的碰撞游离,形成新的电子崩且汇合到最初电子崩中构成流注通道,而一旦形成流注,放电就可自己维持。因此汤生放电理论与流注放电理论最根本的区别在于对放电达到自持阶段过程的解释不同,或自持放电的条件不同。 汤生放电理论适合于解释低气压、短间隙均匀电场中的气体放电过程和现象,而流注理论适合于大气压下,非短间隙均匀电场中的气体放电过程和现象。

高电压绝缘技术课后习题答案

高电压绝缘技术课后习 题答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

第一章 1.计算同轴圆柱电极的不均匀系数f ,其中内导体外直径为100 mm ,外壳的内直径为320 mm 。 解: d R r =- , av U E d = , max ln U E R r r = max ln av d E r f r d E r = =+ 其中 R=160mm ,r=50mm 。代入上式可得f=<2,所以此时电场是稍不均匀的。 2. 离地高度10m 处悬挂单根直径3cm 导线,导线上施加有效值工频交流电压,请计算导线表面最大场强。若将该导线更换为水平布置的双分裂导线,两导线总截面积保持与单根导线一致,线间距离30cm ,请重新计算导线表面最大场强。 解:1):等效成圆柱—板电极:由课本P9页可查的公式为 max 0.9 ln U E r d r r =+, 其中U=,d=10m ,r=。代入上式可得:max 5.858/E kV cm =。 2)由题意可知:2212r r ππ= ,可得:1 1.060.0106r cm m ===,两导线相邻S=30cm=, 10.01060.03530.3 r S == 对于二分裂导线,由课本P9页可查得公式。

所以2 112max 2 11(122) (2)ln r r U S S E H r r S +-=,其中H=10m, max 5.450/E kV cm = 3.总结常用调整电场强度的措施。 解: 1)、改变电极形状 ①增大电极曲率半径;②改善电极边缘;③使电极具有最佳外形; 2)、改善电极间电容分布 ①加屏蔽环;②增设中间电极; 3)、利用其他措施调整电场 ①采用不同的电介质;②利用电阻压降;③利用外施电压强制电压分布; 第二章 1、解:由题意:21 2 e e i m v eV ≥ ,因此: 62.7510/e v m s ≥==? ,,57.6nm i c hv eV v λλ≥=≤所以。水蒸气的电离电位为。97.712.7hc nm λ≤= 可见光的波长范围在400-750nm ,不在可见光的范围。 2、解: 194223 2212.5 1.6103 ()12.5,,9.661810()233 1.3810 i i i w w O eV w KT T K K --???=====??? 气体的绝对温度需要达到96618K 。 3、解:由/()n n e λλλ-=知

完整版高电压技术第2章参考答案

第二章参考气隙的伏秒特性是怎样绘制的?研究气隙的伏秒特性有何实用意义?、1,从示波图求答:气隙伏秒特性用实验方法来求取:保持一定的波形而逐级升高电压取。电压较低时,击穿发生在波尾。电压甚高时,放电时间减至很小,击穿可发生在被头。在波尾击穿时,以冲击电压幅值作为纵坐标,放电时间作为横坐标。在波头击穿时,还以放电时间作为横坐标,但以击穿时电压作为纵坐标。把相应的点连成一条曲线,就是该气隙在该电压波形下的伏秒特性曲线。伏秒特性对于比较不同设备绝缘的冲击击穿特性具有重要意义,例如,在考虑不同绝缘强度的配合时,为了更全面地反映绝缘的冲击击穿特性,就必须采用伏秒特性。和球-球气S/D>10)试说明在雷电冲击电压作用下,导线对平行平板气隙(2、S/D<0.5)的伏秒特性形状有何不同,并解释其原因。隙()的伏秒特性答:两种情况反映在伏秒特性的形状上,导线对平行平板气隙(S/D>10)的伏秒特性在很小的S/D<0.5在相当大的范围内向左上角上翘,而球-球气隙(时间范围内向上翘。,电场分布极不均匀,在最低)原因可以解释为:导线对平行平板气隙(S/D>10击穿电压作用下,放电发展到完全击穿需要较长的时间,如不同程度地提高电压,电场分布较为均匀,)峰值,击穿前时间将会相应减小。球-球气隙(S/D<0.5(不故击穿前时间较短当某处场强达到自持放电值时,沿途各处放电发展均很快,。s)超过2~3? 50试解释%击穿电压。、3的冲击电压峰值。该值已很接近伏秒击穿电压是指气隙被击穿的概率为50%答:50%,能反映该气隙的基本耐电强度,但由于气隙的击穿电压与电特性带的最下边缘50%击穿电压并不能全面地代表该气隙的耐电强度。压波形相关,因此 ,电m标准大气条件下,下列气隙的击穿场强约为多少(气隙距离不超过2、4压均为峰值计)?答:均匀电场,各种电压。、a??S.653?U24.4S?b?——空气的相对密度;S——气隙的距离,式中cm。 1 b、不均匀电场,最不利的电场情况,最不利的电压极性,直流、雷电冲击、操作冲击、工频电压。 直流:4.5kV/cm;棒板间隙(正棒负板) 雷电冲击:6kV/cm棒板间隙(正棒负板) 操作冲击:3.7kV/cm棒板间隙(正棒负板) 工频电压:4.4kV/cm棒板间隙(正极性) 为什么压缩气体的电气强度远较常压下的气体为高?又为什么当大气的湿、5度增大时,空气间隙的击穿电压增高。 答:压缩气体中的电子的平均自由行程大为减小,削弱电离过程,从而提高气体的电气强度。当大气的湿度增大时,大气中有较多的水蒸气,其电负性较强,易俘获自由电子以形成负离子,使最活跃的电离因素即自由电子的数目减少,阻碍电离的发展。 某110kv电气设备如用于平原地区,其外绝缘应通过的工频试验电压有效值、6为240kv,如用于海拔4000m地区,而试验单位位于平原地带,问该电气设备的外绝缘应通过多大的工频试验电压值? U?U?K?K试验电压修正经验公式:hd0b其中:K为湿度修正系数,这里不考虑,可取1;hm??K,指数m一般情况下取1。为空气相对密度修正系数,K dd??273p0???

高电压技术(第三版)考试复习题

《高电压技术》复习题 1、雷电对地放电过程分为几个阶段?P38 答:1、先导放电:放电不连续,放电分级先导,持续时间为0.005~0.01S ,雷电流很小 2、主放电:时间极短,50~100s μ,电流极大,电荷高速运动。 3、余光放电:电流不大,电流持续时间较长,约0.03~0.05s 。 2、什么是雷电参数?P242 答:1、雷电放电的等值电路。 2、雷电流波形。 3、雷暴日与雷暴小时:雷暴日是一年中有雷电的日数,在一天内只要听到过雷声,无论(次数多少)均计为(一个雷暴日)。雷暴小时数则是(一年中发生雷电放电的小时数,)即在一个小时内只有(一次雷电),就计作(一个雷电小时)。 4、地面落雷密度和输电线路落雷总次数:地面落雷密度是指每一雷暴日每平方千米地面遭受雷击的次数,以γ表示。与雷暴日数有关,如下:3.0023.0d T =γ 3、什么是波阻抗?波速?P206 答:波阻抗00 C L Z =是(电压波与电流波之间)的比例常数,它反映了波在传播过程中遵循 (储存在单位长度线路周围媒质中的电场能量和磁场能量一定相等)的规律,所以Z 是(一个非常重要)的参数。 波速001 C L v =等于空气中的光速,对电缆来说,其单位长度对地电容C0较大,故电 缆中波速一般为1/2~1/3倍的光速。 4、防雷保护有哪些基本装置?P246 答:现代电力系统中实际采用的防雷保护装置有(避雷针、避雷线、保护间隙、各种避雷器、防雷接地、电抗线圈、电容器、消弧线圈、自动重合闸等等)。 5、避雷针的作用是什么?其保护范围如何确定?P246 答:避雷针高于被保护的物体,其作用是吸引雷电击于自身,并将雷电流迅速汇入大地,从而使避雷针附近的物体得到保护,保护范围指具有0.1%左右概率的空间范围,可以通过模拟实验并结合运行经验来确定,常用的方法有折线法、滚球法。 6、避雷线的作用是什么?其保护范围如何确定?P246 答:同上。 7、各种避雷器的结构特点,适合于哪些场合?P254 答:避雷器的类型有主要有何护间隙、管型避雷器、阀型避雷器和氧化锌避雷器等几种。 8、接地的种类有哪些?P261 答:分为工作接地、保护接地、防雷接地。 9、降低接地电阻的方法是什么?P265 答:1、加大接地物体的尺寸 2、利用自然接地体 3、引外接地 4、换土 5、采用降阻剂 10、线路防雷的四道防线是什么?P268 答:输电线路雷害事故的形成通常要经历这样四个阶段:线路'>输电线路受到雷电过电压的作用;线路'>输电线路发生闪络;线路'>输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代线路'>输电线路在采取防雷保护措施时,要做到“四道防线”,即: 1.防直击,就是使输电线路不受直击雷。采取的措施是沿线路装设避雷线。

高电压技术课后题答案详解

第一章电介质的极化、电导和损耗第二章气体放电理论 1)流注理论未考虑的现象。表面游离 2)先导通道的形成是以的出现为特征。C- C.热游离 3)电晕放电是一种。A--A.自持放电 4)气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称为C--C.热游离 5)以下哪个不是发生污闪最危险的气象条件?D-D.大雨 6)以下哪种材料具有憎水性?A--A.硅橡胶 20)极性液体和极性固体电介质的相对介电常数与温度和电压频率的关系如何?为什么?极化液体相对介电常数在温度不变时,随电压频率的增大而减小,然后就见趋近于某一个值,当频率很低时,偶极分子来来得及跟随电场交变转向,介电常数较大,当频率接近于某一值时,极性分子的转向已经跟不上电场的变化,介电常数就开始减小。在电压频率不变时,随温度的升高先增大后减小,因为分子间粘附力减小,转向极化对介电常数的贡献就较大,另一方面,温度升高时分子的热运动加强,对极性分子的定向排列的干扰也随之增强,阻碍转向极化的完成。极性固体介质的相对介电常数与温度和频率的关系类似与极性液体所呈现的规律。 21)电介质电导与金属电导的本质区别为何?1)带电质点不同:电介质为带电离子(固有离子,杂质离子);金属为自由电子。2)数量级不同:电介质的γ小,泄漏电流小;金属电导的电流很大。3)电导电流的受影响因素不同:电介质中由离子数目决定,对所含杂质、温度很敏感;金属中主要由外加电压决定,杂质、温度不是主要因素。 22)简要论述汤逊放电理论。设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至eαd 个。假设每次电离撞出一个正离子,故电极空间共有(eαd -1)个正离子。这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ的定义,此(eαd -1)个正离子在到达阴极表面时可撞出γ(eαd -1)个新电子,则( eαd -1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的αd电子,则放电达到自持放电。即汤逊理论的自持放电条件可表达为r( e-1)=1或γ eαd =1。 23)为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?答:在不均匀电场中,电压极性对气隙的击穿电压和气隙击穿发展过程影响很大,称为极性效应。当棒具有正极性时:在棒极附近,积聚起正空间电荷,减少了紧贴棒极附近的电场,而略微加强了外部空间的电场,棒极附近难以造成流注,使得自持放电、即电晕放电难以形成,所以棒—板间隙中棒为正极性时电晕起始电压比负极性时略高 U+(电晕)> U-(电晕)当棒具有负极性时:电子崩中电子离开强电场区后,不在引起电离,正离子逐渐向棒极运动,在棒极附近出现了比较集中的正空间电荷,使电场畸变棒极附近的电场得到增强,因而自持放电条件就抑郁得到满足、易于转入流注而形成电晕现象,所以棒—板间隙中棒为负极性时击穿电压比正极性时高 U+(击穿)< U-(击穿) 24)影响套管沿面闪络电压的主要因素有哪些? 1)电场分布情况和作用电压波形的影响、电介质材料的影响、气体条件的影响、雨水的影响。 25)某母线支柱绝缘子拟用于海拔 4500m的高原地区的 35kV变电站,问平原地区的制造厂在标准参考大气条件下进行 1min工频耐受电压试验时,其试验电压应为多少kV? 查 GB311.1-1997 的规定可知,35kV 母线支柱绝缘子的1min 干工频耐受电压应为100kV,则可算出制造厂在平原地区进行出厂1min 干工频耐受电压试验时,其耐受电压U 应为U=KaU0=154kv 26)某些电容量较大的设备经直流高电压试验后,其接地放电时间要求长达5~10min,为什么?因为容型设备的储存电荷较多,放电实质是一个RC 电路,等效的公式为U(1-e^T)其中时间常数T=R*C,电容越大,放电的时间越长28)气体放电的汤森德机理与流注机理主要区别在哪里?它们各自的适用范围如何?答:①汤森德理论认为气体放电主要是由于电子碰撞电离和正离子撞击阴极表面逸出自由电子两个过程;而流注理论认为电子的撞击电离和空间光电离是自持放电的主要因素,它注意到了空间电荷对电场的畸变作用。②汤森德理论适用于 Pd较小的情况,流注理论适用于 Pd较大的情况。 29)长气隙火花放电与短气隙火花放电的本质区别在哪里?形成先导过程的条件是什么?为什么长气隙击穿的平均场强远小于短气隙的?答:①是否有先导过程,长气隙有先导过程,而短气隙火花放电没有先导过程。②条件是气隙距离较长时(约 1米以上),流注通道中的一部分转变为先导。③长间隙中,炽热的导电通道是在放电发展过程中建立的,而不是在整个间隙被流注通道贯穿后建立的,所以长间隙击穿的平均场强远小于短间隙击穿的平均场强。 31、电晕产生的物理机理是什么?它有哪些有害影响?试列举工程上各种防晕措施的实例。 答:在极不均匀电场中,最大场强与平均场强相差很大,以至当外加电压及平均场强还较低时,电极曲率较大处附近空间的局部场强已很大,在这局部场强区中,产生强烈的电离,但由于电极稍远处场强已大为减弱,所以此电 离区不可能扩展到很大,只能局限在此电极附近的场强范围内。伴随着电离而存在的复合和反激励,辐射出大量光子,使在黑暗中可以看到在该电极附近空间有蓝色的晕光,这就是电晕。 若出现电晕放电,将带来许多危害。首先是电晕放电将引起功率损耗、能量损耗,这是因为电晕放电时的光、声、热、化学等效应都要消耗能量。其次,电晕放电还将造成对周围无线电通讯和电气测量的干扰,若用示波器观察,电晕电流为一个个断续的高频脉冲。另外,电晕放电时所产生的一些气体具有氧化和腐蚀作用。而在某些环境要求比较高的场合,电晕放电时所发出的噪声有可能超过环保标准。 防晕措施包括:增大电极的曲率半径,改进电极形状,例如超、特高压线路采用分裂导线;有些高压电器采用空心薄壳的、扩大尺寸的球面或旋转椭圆等形式的电极;发变电站采用管型空心硬母线等。

相关主题
文本预览
相关文档 最新文档